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Abstract

The bipartite vertex (resp. edge) frustration of a graph G, denoted by ψ(G) (resp.
φ(G)), is the smallest number of vertices (resp. edges) that have to be deleted from
G to obtain a bipartite subgraph of G. A sharp lower bound of the bipartite vertex
frustration of the line graph L(G) of every graph G is given. In addition, the exact
value of ψ(L(G)) is calculated when G is a forest.
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1 Introduction

Throughout this paper, all the graphs are simple, that is, with neither loops
nor multiple edges. Notations and terminology not explicitly given here can
be found in the book by Chartrand and Lesniak [1].

Given a graph G with vertex set V (G) and edge set E(G), a subset F ⊂
V (G) such that G− F is bipartite is called a vertex bipartization for G. The
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minimum cardinality of a vertex bipartization for G is called the bipartite
vertex frustration of G and it is denoted by ψ(G). An analogous definition
of bipartite edge frustration φ(G) of G is stated. Thus, the bipartite vertex
(resp. edge) frustration of a graph G, denoted by ψ(G) (resp. φ(G)), is the
smallest number of vertices (resp. edges) that have to be deleted from G to
obtain a bipartite subgraph of G.

These two parameters have interesting applications in different fields of
science as, for instance, fullerene chemistry. Since its very beginning, the
rapid development of fullerene chemistry has been paralleled by a similarly
rapid build-up of interest and a flow of results on the graphs that serve as
mathematical models of fullerene isomers. Very early it became clear that
the fullerene stability is related to the absence of abutting pentagons in the
corresponding graphs (see, for instance, [4,6,7]). It is well known that the
bipartite graphs are characterized by the absence of cycles of odd length.
Hence, one may think on the number of vertices or edges that need to be
removed in order to make a bipartite graph as a measure of non-bipartivity
of this graph. An idea to transplant a bipartivity measure into the context
of fullerene chemistry is that the minimum number of vertices and/or edges
which have to be deleted to make a graph bipartite may be related to the
fullerene stability.

In Graph Theory is usual to study a lot of parameters in several families
of graphs. One of the best known is line graphs (see for instance [5]). The
bipartite vertex/edge frustration have been also studied in several families
of graphs which model different typologies of networks (see [2,3,9,10,11,12]).
In [9] Yarahmadi and Ashrafi study some extremal properties of the bipartite
vertex frustration of graphs and provide the exact value for the corona product
of two graphs and the line graph. For this last family, there is a step in the
proof of Theorem 9 of [9] which is incorrect. In this paper we find the mistake
and give a sharp lower bound of the bipartite vertex frustration of the line
graph. Moreover, the exact value of ψ(L(G)) when G is a forest is determined.

2 Main results

The line graph L(G) of a graph G has the edge set E(G) as vertex set and
two vertices in V (L(G)) are adjacent, whenever they are incident as edges
in G. In an interesting paper [9], Yarahmadi and Ashrafi study the bipartite
vertex frustration of the line graph L(G) of any graph G. It is understood that
the considered graphs are connected, since previously, they state the following
lemma whose proof is straightforward.



Lemma 2.1 ([9]) Let G be a graph with components G1, G2, . . . , Gk. Then
ψ(G) =

∑k
i=1 ψ(Gi).

In Theorem 9 of [9] they prove that

ψ(L(G)) =


2 (|E(G)| − |V (G)|) , if G is not an odd cycle

1, otherwise.
(1)

In the proof they apply Theorem 7.1.16 of [8], which says that L(G) de-
composes into complete subgraphs, with each vertex of L(G) corresponding
to an edge of G appearing in two of these complete subgraphs. Using this
result and that ψ(Kn) = n − 2 for every integer n ≥ 2, and denoting by
di the degree of vertex vi ∈ V (G) for i = 1, . . . , |V (G)|, they deduce that

ψ(L(G)) =
∑|V (G)|

i=1 ψ(Kdi). This last step is incorrect, because the com-
plete graphs Kdi , i = 1, . . . , |V (G)|, are non-disjoint in L(G) and therefore,
Lemma 2.1 cannot be applied.
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Fig. 1. An example which shows that L(G− uv) = L(G)− (uv).

The following lemma help us to find an idea to get a lower bound of
the bipartite vertex frustration of the line graph of every connected graph.
Basically, ifW ⊂ E(G) is a set of edges and F ⊂ V (L(G)) is its corresponding
set of vertices, then L(G−W ) ≃ L(G)− F (see Figure 1).

Lemma 2.2 Let G be a connected graph with at least 4 vertices. Let uv ∈
E(G) be any edge and denote by (uv) ∈ V (L(G)) the corresponding vertex of
L(G). Then the following assertions hold.

(i) L(G− uv) ≃ L(G)− (uv).

(ii) L(G) contains a triangle if and only if ∆(G) ≥ 3.

Given a connected graph G of order at least 4, from Lemma 2.2 it follows
that the deletion of a minimum vertex bipartization from L(G) is equivalent



to find a minimum edge subset W ⊂ E(G) such that ∆(G − W ) ≤ 2 and
G−W contains no odd cycles. Thus, ψ(L(G)) = θ(G).

Next theorem shows a lower bound of the bipartite vertex frustration of the
line graph L(G) of any connected graph G containing cycles. Taking into ac-
count Lemma 2.1, the result can be extended to any non-necessarily connected
graph by the sum of the bipartite vertex frustration of its components.

Theorem 2.3 Let G be a connected graph other than a tree. Then

ψ(L(G)) ≥ |E(G)| − |V (G)|+ 1

2

(
(−1)|V (G)|+1 + 1

)
.

The lower bound of Theorem 2.3 is an equality when the graph is Hamil-
tonian, as we can see in the following corollary.

Corollary 2.4 Let G be a Hamiltonian graph. Then

ψ(L(G)) = |E(G)| − |V (G)|+ 1

2

(
(−1)|V (G)|+1 + 1

)
.

Theorem 2.3 does not consider the case when G is a tree. Given a tree
T , as T contains no cycles, by Lemma 2.2, the problem of determining the
minimum number of vertices whose deletion from L(T ) produces a bipartite
graph is equivalent to find θ(T ), that is, the cardinality of a minimum set
W ⊂ E(T ) such that T −W is formed by the union of vertex disjoint paths.
Indeed, the number of disjoint paths is equal to |W |+ 1.

Lemma 2.5 Let G be a forest. Suppose that G contains an edge uv ∈ E(G)
such that min{dG(u), dG(v)} ≥ 3 and dG(w) ≤ 2 for every w ∈ NG(u) \ {v}.
Then θ(G) = 1 + θ(G− uv).

Remark 2.6 Given any tree T , if min{dT (w0), dT (z0)} ≥ 3 for some edge
w0z0 ∈ E(T ), then there exists uv ∈ E(T ) such that min{dT (u), dT (v)} ≥ 3
and dT (w) ≤ 2 for every w ∈ NT (u) \ {v}.

Let us consider the following algorithm.

Algorithm 1 Let G0 be a forest. Let us construct a subset Z ⊂ E(G0) fol-
lowing these steps:
Step 1: If min{dG0(u), dG0(v)} ≥ 3 for some edge uv ∈ E(G0), then take
e1 = u1v1 ∈ E(G0) as in Remark 2.6 and denote by G1 = G0 − e1 and
Z1 = Z ∪ {e1}. Otherwise, Z = ∅ and we finish the algorithm.
Step 2: If min{dG1(u), dG1(v)} ≥ 3 for some edge uv ∈ E(G1), then take
e2 = u2v2 ∈ E(G1) as in Remark 2.6 and denote by G2 = G1 − e2 and



Z2 = Z1 ∪ {e1}. Otherwise, Z = Z1 and we finish the algorithm.
· · ·
Step j: If min{dGj−1

(u), dGj−1
(v)} ≥ 3 for some edge uv ∈ E(Gj−1), then take

ej = ujvj ∈ E(Gj−1) as in Remark 2.6 and denote by Gj = Gj−1 − ej and
Zj = Zj−1 ∪ {ej}. Otherwise, Z = Zj−1 and we finish the algorithm.
· · ·
Step k+1. min{dGk

(u), dGk
(v)} ≤ 2 for every uv ∈ E(Gk), leading to Z = Zk

and we finish the algorithm.
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Fig. 2. An example which shows application of Algorithm 1 to obtain Z = {e1, e2}.

Figure 2 depicts a graph G0 where Algorithm 1 is applied, obtaining Z =
{e1, e2} such that min{dG−Z(u), dG−Z(v)} ≤ 2 for every edge uv ∈ E(G−Z).

Lemma 2.7 Let r be a positive integer and let G0 be a forest with r leaves such
that
min{dG0(u), dG0(v)} ≥ 3 for some edge uv ∈ E(G0). Then there exist an inte-
ger k ≥ 1 and a set Z = {e1, . . . , ek} ⊂ E(G0), with ei = uivi for i = 1, . . . , k,
satisfying these conditions:

(i) Gi = Gi−1 − ei, for i = 1, . . . , k.

(ii) min{dGi−1
(ui), dGi−1

(vi)} ≥ 3 and dGi−1
(w) ≤ 2 for every w ∈ NGi−1

(ui) \
{vi}, for i = 1, . . . , k.

(iii) min{dG0−Z(u), dG0−Z(v)} ≤ 2, for every edge uv ∈ E(G0) \ Z.
(iv) The graph G0 − Z has r leaves.

Lemma 2.8 Let m and r be two positive integers and let G be a forest with
m components and r leaves such that min{dG(u), dG(v)} ≤ 2 for every uv ∈
E(G). Then ψ(L(G)) = r − 2m.

The following theorem gives the bipartite vertex frustration of the line
graph of a forest.



Theorem 2.9 Let m and r be two positive integers and let G be a forest with
m components and r leaves. Let Z be a set of edges obtained by application of
Algorithm 1 to G. Then ψ(L(G)) = r − 2m− |Z|.
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