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Abstract

A 3 − arc of a graph G is a 4-tuple (y, a, b, x) of vertices such
that both (y, a, b) and (a, b, x) are paths of length two in G.

Let
←→
G denote the symmetric digraph of a graph G. The 3-arc

graph X(G) of a given graph G is defined to have vertices the

arcs of
←→
G . Two vertices (ay), (bx) are adjacent in X(G) if and

only if (y, a, b, x) is a 3-arc of G. The purpose of this work is
to study the edge-connectivity and restricted edge-connectivity
of 3-arc graphs. We prove that the 3-arc graph X(G) of every
connected graph G of minimum degree δ(G) ≥ 3 has edge-
connectivity λ(X(G)) ≥ (δ(G) − 1)2; and restricted edge- con-
nectivity λ(2)(X(G)) ≥ 2(δ(G) − 1)2 − 2 if κ(G) ≥ 2. We also
provide examples showing that all these bounds are sharp.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or
multiple edges are considered. Unless otherwise stated, we follow [10] for
terminology and definitions.

Let G be a graph with vertex set V (G) and edge set E(G). For every
v ∈ V (G), NG(v) denotes the neighborhood of v, that is, the set of all
vertices adjacent to v. The degree of a vertex v is d(v) = |NG(v)| and the
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minimum degree δ = δ(G) of the graph G is the minimum degree over all
vertices of G.

A graph G is called connected if every pair of vertices is joined by a
path. If S ⊂ V (G) and G − S is not connected, then S is said to be a
cutset. A component of a graph G is a maximal connected subgraph of G.
A (noncomplete) connected graph is called k-connected if every cutset has
cardinality at least k. The connectivity κ(G) of a (noncomplete) connected
graph G is defined as the maximum integer k such that G is k-connected.
The minimum cutsets are those having cardinality κ(G). The connectivity
of a complete graph Kδ+1 on δ + 1 vertices is defined as κ(Kδ+1) = δ.
Analogously, for edge connectivity an edge-cut in a graph G is a set W
of edges of G such that G − W is nonconnected. If W is a minimum
edge-cut of a connected graph G, then G −W contains exactly two com-
ponents. Every connected graph on at least two vertices has an edge-cut.
The edge-connectivity λ(G) of a graph G is the minimum cardinality of an
edge-cut of G. A classic result due to Whitney is that for every graph G,
κ(G) ≤ λ(G) ≤ δ(G). A graph is maximally connected if κ(G) = δ(G), and
maximally edge-connected if λ(G) = δ(G).

Though the parameters κ, λ of connectivities give the minimum cost
to disrupt the network, they do not take into account what remains after
deletion. Even two graphs with the same connectivity κ, λ may be consid-
ered to have different reliabilities, since the number of minimum cutsets or
edge-cuts is different. Superconnectivity is a stronger measure of connec-
tivity, introduced by Boesch and Tindell in [8], whose study has deserved
some attention in the last years, see for instance, [1, 6, 7, 19, 20]. A max-
imally connected [edge-connected] graph is called super-κ [super-λ] if for
every cutset [edge-cut] W of cardinality δ(G) there exists a component C
of G−W of cardinality |V (C)| = 1. The study of super-κ [super-λ] graphs
has a particular significance in the design of reliable networks, mainly due
to the fact that attaining superconnectivity implies minimizing the number
of minimum cutsets [edge-cuts] (see [7, 20]).

In order to measure the super edge-connectivity we use the following
parameter introduced by Esfahanian and Hakimi [11]. The restricted edge-
connectivity λ(2) = λ(2)(G) is the minimum cardinality over all restricted
edge-cuts W , i.e., those such that there are no isolated vertices in G−W .
A restricted edge-cut W is called a λ(2)-cut if |W | = λ(2). Obviously for
any λ(2)-cut W , the graph G − W consists of exactly two components
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C,C and clearly |V (C)| ≥ 2, |V (C)| ≥ 2. A connected graph G is called
λ(2)-connected if λ(2) exists. Esfahanian and Hakimi [11] showed that each
connected graph G of order n(G) ≥ 4 except a star, is λ(2)-connected and
satisfies λ(2) ≤ ξ, where ξ = ξ(G) denotes the minimum edge-degree of G
defined as ξ(G) = min{d(u) + d(v) − 2 : uv ∈ E(G)}. Furthermore, a
λ(2)-connected graph is said to be λ(2)-optimal if λ(2) = ξ. Recent results
on this property are obtained in [2, 5, 12, 13, 18, 21, 23]. Notice that if
λ(2) ≤ δ, then λ(2) = λ. When λ(2) > δ (that is to say, when every edge
cut of order δ isolates a vertex) the graph must be super-λ. Therefore, by
means of this parameter we can say that a graph G is super-λ if and only
if λ(2) > δ. Thus, we can measure the super edge-connectivity of the graph
as the value of the restricted edge-connectivity λ(2).

Let
←→
G denote the symmetric digraph of a graph G. For adjacent

vertices u, v of V (G) we use (u, v) to denote the arc from u to v, and
(v, u)(= (u, v)) to denote the arc from v to u. A 3-arc is a 4-tuple (y, a, b, x)
of vertices such that both (y, a, b) and (a, b, x) are paths of length two in G.
The 3-arc graph X(G) of a given graph G is defined to have vertices the arcs

of
←→
G and they are denoted as (uv). Two vertices (ay), (bx) are adjacent

in X(G) if and only if (y, a, b, x) is a 3-arc of G, see [17, 22]. Equivalently,
two vertices (ax), (by) are adjacent in X(G) if and only if dG(a, b) = 1; that

is, the tails a, b of the arcs (a, x), (b, y) ∈ A(
←→
G ) are at distance one in G.

Thus the number of edges of X(G) is
∑

uv∈E(G)(d(u)− 1)(d(v)− 1) so that

the minimum degree of X(G) is (δ(G) − 1)2. There is a bijection between
the edges of X(G) and those of the 2-path graph P2(G), which is defined to
have vertices the paths of length two in G such that two vertices are adja-
cent if and only if the union of the corresponding paths is a path or a cycle
of length three, see [9]. Since P2(G) is a spanning subgraph of the second
iterated line graph L2(G) = L(L(G)) (see e.g. [14]), we have a relation
between 3-arc graphs and line graphs. Some results on the connectivity of
P2-path graphs are studied e.g. in [3, 4, 15].

The purpose of this paper is to study the edge-connectivity, the re-
stricted edge-connectivity and vertex-connectivity of the 3-arc graph X(G)
of a given graph G. The following theorem gather together the results on
connectivity of 3-arc-graph X(G) obtained by Knor and Zhou [16].

Theorem 1 [16] Let G be a graph with minimum degree δ(G).

(i) X(G) is connected if G is connected and δ(G) ≥ 3.
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(ii) κ(X(G)) ≥ (κ(G) − 1)2 if κ(G) ≥ 3.

The main results contained in this paper are the following:
Let G be a connected graph with minimum degree δ(G) ≥ 3.

(i) λ(X(G)) ≥ (δ(G) − 1)2.

(ii) λ(2)(X(G)) ≥ 2(δ(G) − 1)2 − 2 if κ(G) ≥ 2.

(iii) κ(X(G)) ≥ min{κ(G)(δ(G) − 1), (δ(G) − 1)2}.

(iv) X(G) is super-κ if κ(G) = δ(G) and δ(X(G)) = (δ(G) − 1)2.

2 Results on the edge-connectivity and restricted

edge-connectivity of 3-arc graphs

Let X(G) be the 3-arc graph of a graph G. If (ay) and (bx) are adjacent in
X(G) then the edge (ay)(bx) will be called an ab-edge (or ba-edge). Observe
that (ay)(bx) = (bx)(ay) but (ay) = (ya) and (bx) = (xb). For any edge
ab ∈ E(G) let Va

ab = {(ay) ∈ V (X(G)) : y ∈ NG(a)− b}. Observe that the
induced subgraph of X(G) by the set Va

ab ∪ Vb
ba is the complete bipartite

graph K|Va
ab|,|Vb

ba| = Kd(a)−1,d(b)−1.

If W is a minimal edge cut of a connected graph G, then, G−W nec-
essarily contains exactly two components C and C, so it is usual to denote
an edge cut W as [C,C] where [C,C ] denotes the set of edges between C
and its complement C.

Lemma 2 Let G be a graph and [C,C] an edge-cut of X(G). Let ab ∈
E(G), if [C,C] contains ab-edges, then it contains at least min{d(a) −
1, d(b) − 1} ab-edges.

Proof: Suppose that (ay)(bx) is an edge of [C,C ] such that (ay) ∈ V (C)
and (bx) ∈ V (C). Then Va

ab ∩ V (C) = ∅ and Vb
ba ∩ V (C) = ∅. Let denote

by |Va
ab ∩V (C)| = ra ≥ 1, |Vb

ba∩V (C)| = rb ≥ 0, |Va
ab ∩V (C)| = ra ≥ 0 and

|Vb
ba ∩ V (C)| = rb ≥ 1. Moreover, these numbers must satisfy ra + ra =

d(a) − 1 and rb + rb = d(b) − 1. Furthermore, the number of ab-edges
contained in [C,C] is rarb + rbra, that is,

|[C,C]| ≥ rarb + rbra. (1)
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If rb = 0, then rb = d(b)− 1. As ra ≥ 1, (1) implies |[C,C ]| ≥ d(b)− 1 and
the lemma follows. Similarly, if ra = 0, the result is also true. Therefore, we
can assume that ra, rb, ra, rb ≥ 1. In this case rarb+rbra ≥ ra+ra = d(a)−1,
and rarb + rbra ≥ rb + rb = d(b) − 1, and the result holds. �

Suppose that [C,C ] is an edge-cut of X(G). Let denote by ω(α) = {e ∈
E(G) : e = αβ} and define A = {αβ ∈ E(G) : (αy)(βx) ∈ [C,C ]}. Then,
as a consequence of the above lemma, we have |[C,C ]| ≥ |A|(δ(G) − 1).
Next we prove that |[C,C ]| ≥ (δ(G) − 1)2.

Lemma 3 Let G be a graph and [C,C ] an edge-cut of X(G). Let ab ∈
E(G) and suppose that ab ∈ A. Then |(ω(a) ∪ ω(b)) ∩ A| ≥ (δ − 1)2.

Proof: Suppose that for all y ∈ N(a) − b, ay ∈ A. Then there are at
least δ different ay-edges in [C,C ], and by Lemma 2 the number of ay-
edges in [C,C] is at least δ(δ − 1) > (δ − 1)2. The same occurs if for
every x ∈ N(b) − a, bx ∈ A. Therefore we may assume that there exists
y0 ∈ NG(a) − b such that ay0 ∈ A and there exists x0 ∈ NG(b) − a such
that bx0 ∈ A.

As ab ∈ A, (ay′)(bx′) ∈ [C,C ] for some y′ ∈ N(a)−b and x′ ∈ N(b)−a,
and without loss of generality we may suppose that (ay′) ∈ V (C), (bx′) ∈
V (C). Suppose that (ay0)(bx0) ∈ [C,C]. Without loss of generality we may
assume that (ay0), (bx0) ∈ V (C) in which case (ay′)(bx0) ∈ [C,C ] because
(ay′) ∈ V (C). Then we can continue the proof assuming that there is an
edge (ay)(bx) ∈ [C,C] such that bx ∈ A, i.e., there are no bx-edges in
[C,C].

First suppose that Vx
xb ∩ V (C) = ∅. Let B = {x′ ∈ NG(b) \ {x, a} :

(x′z) ∈ V (C)} and B = {x′ ∈ NG(b) \ {x, a} : (x′z) ∈ V (C)}. Observe
that for all x′ ∈ B ∪ B, (x′z) is adjacent to (bx) ∈ V (C), and (x′z) is
adjacent to (ba). Hence the edge-cut [C,C ] must contain |B| different bx′-
edges. Moreover, since (ba) is adjacent to every (xb′) ∈ Vx

xb and bx ∈ A,
then (ba) ∈ V (C) because our assumption Vx

xb ∩ V (C) = ∅. Hence [C,C]
also contains |B| different bx′-edges yielding that [C,C ] contains at least
|B|+ |B|+ |{ab}| = d(b)− 1 ≥ δ − 1 different bv-edges with v ∈ N(b) and
by Lemma 2, the result holds.

Second suppose that Vx
xb ⊂ V (C). Hence Vb

ba ⊂ V (C) because every
(bx′) ∈ Vb

ba is adjacent to every (xb′) ∈ Vx
xb and [C,C ] does not contain

bx-edges. If ay ∈ A, reasoning for ay in the same way as for bx we get that
Va

ab ⊂ V (C). Thus as Vb
ba ⊂ V (C) it follows that [C,C] contains at least
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(d(a) − 1)(d(b) − 1) ≥ (δ − 1)2 ab-edges and the lemma holds. Therefore,
suppose that ay ∈ A.

We know that there exists v ∈ NG(a) − y such that av ∈ A. As (va′)
is adjacent to (ay) for all (va′) ∈ Vv

va it follows that Vv
va ⊂ V (C) (because

(ay) ∈ V (C) and av ∈ A). Hence Va
av ⊂ V (C) because every (ay′) ∈ Va

av is
adjacent to (va′) ∈ Vv

va. As Vb
ba ⊂ V (C) it follows that [C,C ] contains at

least (d(a)− 2)(d(b)− 1) ab-edges. Further, as ay ∈ A, by Lemma 2, [C,C ]
also contains at least δ − 1 ay-edges, yielding that the number of au-edges
contained |[C,C ]| is at least (δ − 2)(δ − 1) + (δ − 1) = (δ − 1)2, and the
lemma holds. �

Theorem 4 Let G be a connected graph with minimum degree δ ≥ 3. Then

λ(X(G)) ≥ (δ − 1)2.

Proof: Let [C,C ] be a minimum edge-cut of X(G) and A = {ab ∈ E(G) :
(ay)(bx) ∈ [C,C ]}. As G is connected and δ ≥ 3, then X(G) is connected
yielding that |A| ≥ 1. So considering ab ∈ A, and using Lemma 3 we get
|[C,C ]| ≥ (δ − 1)2, following the theorem. �

The following corollary is an immediate consequence from Theorem 4,
and from the fact that if G is a graph of minimum degree δ having an
edge xy such that d(x) = δ and d(y′) = δ for all y′ ∈ NG(x) − y, then the
minimum degree of X(G) is δ(X(G)) = (δ − 1)2.

Corollary 5 Let G be a connected graph of minimum degree δ ≥ 3 having
an edge xy such that d(x) = δ and d(y′) = δ for all y′ ∈ NG(x) − y. Then
the 3-arc graph X(G) of G is maximally edge-connected.

Figure 1 shows a 3-regular graph G with λ(G) = 1 and its 3-arc graph
X(G) which has λ(X(G)) = 4 = δ(X(G)). However X(G) is not super-λ
and hence is not λ(2)-optimal. And Figure 2 shows a 3-regular graph G with
λ(G) = κ(G) = 2, and its 3-arc graph X(G) which has λ(X(G)) = 4 and
λ(2)(X(G)) = 6 = ξ(X(G)), i.e., this graph is λ(2)-optimal. In what follows
we give a lower bound on the restricted edge-connectivity λ(2)(X(G)) where
G is a graph having connectivity κ(G) ≥ 2.

Two edges which are incident with a common vertex are adjacent.
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Figure 1: A 3-regular graph with λ = 1 and its 3-arc graph.

Figure 2: A 3-regular graph with λ = 2 (κ = 2) and its 3-arc graph.

Lemma 6 Let G be a graph with minimum degree δ ≥ 3 and vertex con-
nectivity κ ≥ 2. Let [C,C] be a restricted edge-cut of X(G) and consider
the set A = {ab ∈ E(G) : (ay)(bx) ∈ [C,C]}. Then there are at least two
nonadjacent edges in A.

Proof: Clearly A = ∅, because X(G) is connected. Thus let (ay) ∈ V (C)
and (bx) ∈ V (C) be two adjacent vertices in X(G), which implies that
ab ∈ A. Since [C,C ] is a restricted edge-cut, then there exist (uy′) ∈ V (C)
and (wx′) ∈ V (C) adjacent to (ay) and (bx) in X(G), respectively. Observe
that we may assume that u = w because δ ≥ 3. Since G is 2-connected we
can find a path R : u = r0, r1, . . . , rk = w from u to w in G− a. As δ ≥ 3,
there exists vi ∈ N(ri) \ {ri−1, ri+1} for each i = 1, . . . , k − 1. Moreover
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we may choose v0 = y′ and vk = x′. Then the path R induces in X(G)
the path R∗ : (uy′), (r1v1), . . . , (rk−1vk−1), (wx′) (observe that if k = 1
then R∗ : (uy′), (wx′)). Since (uy′) ∈ V (C) and (wx′) ∈ V (C), it follows
that [C,C ] ∩ E(R∗) = ∅, hence riri+1 ∈ A for some i ∈ {0, . . . , k}. Since
a ∈ V (R) then a ∈ {ri, ri+1}.

Now reasoning analogously, we can find a path S : u = s0, s1, . . . , s� =
w from u to w in G − b that induces a path S∗ from (uy′) ∈ V (C) to
(wx′) ∈ V (C). This implies that [C,C] ∩ E(S∗) = ∅, hence sjsj+1 ∈ A for
some j ∈ {0, . . . , �}. Since b ∈ V (S) then b ∈ {sj, sj+1}.

As ab, riri+1, sjsj+1 ∈ A, a ∈ {ri, ri+1} and b ∈ {sj, sj+1}, it follow that
al least two of the edges of {ab, riri+1, sjsj+1} are nonadjacent. �

Theorem 7 Let G be a graph with minimum degree δ ≥ 3 and vertex con-
nectivity κ ≥ 2. Then X(G) has restricted edge-connectivity λ(2)(X(G)) ≥
2(δ − 1)2 − 2.

Proof: Let [C,C ] be a restricted edge-cut of X(G) and consider the set
A = {ab ∈ E(G) : (ay)(bx) ∈ [C,C]}. From Lemma 6, A contains two
nonadjacent edges ab and cd. By Lemma 3, the number of au-edges and
bv-edges, u, v ∈ N(a) ∪ N(b) contained in [C,C ] is at least (δ − 1)2, and
the number of cu-edges and dv-edges, u, v ∈ N(c) ∪ N(d) contained in
[C,C ] is at least (δ − 1)2. If |[{a, b}, {c, d}] ∩ A| ≤ 2 then |[C,C ]| ≥ 2(δ −
1)2 − |[{a, b}, {c, d}] ∩ A| ≥ 2(δ − 1)2 − 2. If 3 ≤ |[{a, b}, {c, d}] ∩ A| ≤ 4
then we may assume without loss of generality that ac, bd ∈ A, hence, by
applying Lemma 3, the number of au-edges and cv-edges, u, v ∈ N(a)∪N(c)
contained in [C,C ] is at least (δ− 1)2, and the number of bu-edges and dv-
edges, u, v ∈ N(b) ∪N(d) contained in [C,C] is at least (δ − 1)2. Thus,

|[C,C ]| ≥ 2(δ − 1)2 − |[{a, b}, {c, d}] ∩A|+ 2(δ − 1)2 − |[{a, c}, {b, d}] ∩ A|
≥ 4(δ − 1)2 − 8

≥ 2(δ − 1)2 − 2,

since δ ≥ 3. Hence the theorem is valid. �

Figure 3 shows that λ(G) ≥ 2 is not enough to guarantee that λ(2)(X(G)) ≥
2(δ− 1)2− 2. In this example G is a 4-regular graph with λ = 2 and κ = 1,
but λ(2)(X(G)) = 12 < 16.

The following corollary is an immediate consequence from Theorem 7,
and from the fact that if G is graph of minimum degree δ having an edge
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Figure 3: The 3-arc graph of a 4-regular graph with κ = 1 and λ = 2 with
λ(2)(X(G)) = 12.

xy such that d(x) = δ, d(y) = δ and such that every w ∈ (NG(x) − y) ∪
(NG(y) − x) also has degree δ, then the minimum edge degree of X(G) is
ξ(X(G)) = 2(δ − 1)2 − 2.

Corollary 8 Let G be a graph of minimum degree δ ≥ 3 and vertex con-
nectivity κ ≥ 2 having an edge xy such that d(x) = δ, d(y) = δ and such
that every w ∈ (NG(x) − y) ∪ (NG(y) − x) also has degree δ. Then the 3-
arc graph X(G) has restricted edge connectivity λ(2)(X(G)) = ξ(X(G)) =
2(δ − 1)2 − 2.
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