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Abstract. This work highlights the existence of partial symmetries in large
families of iterated plethystic coefficients. The plethystic coefficients in-
volved come from the expansion in the Schur basis of iterated plethysms of
Schur functions indexed by one-row partitions.The partial symmetries are
described in terms of an involution on partitions, the flip involution, that
generalizes the ubiquitous ω involution. Schur-positive symmetric func-
tions possessing this partial symmetry are termed flip-symmetric. The
operation of taking plethysm with sλ preserves flip-symmetry, provided
that λ is a partition of two. Explicit formulas for the iterated plethysms
s2 ◦sb ◦sa and sc ◦s2 ◦sa, with a, b, and c ≥ 2 allow us to show that these
two families of iterated plethysms are flip-symmetric. The article con-
cludes with some observations, remarks, and open questions on the uni-
modality and asymptotic normality of certain flip-symmetric sequences
of iterated plethystic coefficients.
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1. Introduction

Let V be an n dimensional complex vector space. Each partition λ of length
at most n indexes an irreducible representation (unique up to isomorphism)
of the complex general lineal group GL(V ). The irreducible representation
indexed by λ can be constructed as the evaluation of the Schur functor S

λ on
the vector space V. Therefore, it is denoted by S

λ[V ].
The composition of representations provides us with a important and

natural way of combining group representations, an operation referred to as
the plethysm of representations. In the setting of the representation theory
of the general lineal group, the plethysm of the irreducible representations
indexed by μ and ν is defined by the composition of Schur functors Sμ[Sν [V ]].
Further information can be found in Fulton and Harris’ book [1].
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https://orcid.org/0000-0003-0746-5794
https://orcid.org/0000-0002-7738-5792
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Rational representations of the general linear group are completely re-
ducible. This raises the question of decomposing the plethysm S

μ[Sν [V ]] as a
sum of irreducible representations.

The plethystic coefficient aλ
μ[ν] is defined as the multiplicity of Sλ[V ] in

S
μ[Sν [V ]]. More generally, the iterated plethystic coefficient aλ

μ1[μ2[...[μk]]] is

defined as the multiplicity of S
λ[V ] in S

μ1
[Sμ2

[. . . [Sμk

[V ]]]]. The partitions
indexing the iterated plethystic coefficient aλ

μ1[μ2[...[μk]]] satisfy that |λ| =
|μ1||μ2| · · · |μk|.

The problem of understanding the plethystic coefficients is a notoriously
hard problem [1–4] that has stumped many attempts to solve it. In this work,
we report the occurrence of partial symmetries in certain iterated plethystic
coefficients indexed by a specific type of partitions, hook+column partitions.
First considered by Langley and Remmel [5] in 2004, a hook+column partition
is a partition of the form (α, 2β , 1γ). Langley and Remmel obtained a simple
formula (stated in Theorem 2.14) for the plethystic coefficients aλ

(b)[(a)], where
λ is a hook+column partition.

Following them, we restrict our attention to iterated plethystic coeffi-
cients aλ

μ1[μ2[...[μk]]] where λ is a hook+column, and where each partition μi is
either a row or a column partition. We derive closed formulas for the plethystic
coefficients aλ

(c)[(b)[(a)]] when either b or c is equal to 2, and λ is a hook+column
partition. These formulas (described in Theorems 2.15 and 2.16) allow us to
uncover new and intriguing partial symmetries in the iterated plethystic coef-
ficients that we illustrate in the following example.

Example 1.1. Consider the coefficients aλ
[ [ ]] with λ hook+column parti-

tions. The non-zero coefficients are:

a [ [ ]] = 1, a [ [ ]] = 2, a [ [ ]] = 3, a [ [ ]] = 3, a [ [ ]] = 2, a [ [ ]] = 1,

a [ [ ]] = 1, a [ [ ]] = 1.

The symmetry demonstrated in this example can be characterized by
a generalization of the transposition of diagrams where some (2 × 1) hori-
zontal dominoes in λ swap their placement (between the first two columns
and the first row) without altering their orientation. We name the operation
that describes this process the flip involution. It is a partial symmetry of
S
(2)[S(3)[S(2)[V ]]] because it is only defined on the coefficients aλ

[ [ ]] for λ

a hook+column.

This situation evokes the partial symmetry for the Littlewood–Richardson
coefficients, originally conjectured to exist by Pelletier and Ressayre [6], and
described explicitly and shown to hold by Grinberg [7]. The presence of sym-
metries often gives us a better grasp of these coefficients. They can be useful
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in simplifying the number of cases that need to be addressed in both proofs
and calculations involving them [8].

In Sect. 2, we provide an overview of the necessary background on sym-
metric functions, and present the following results. We introduce a partial
involution, defined on hook+column partitions, in Definition 2.8, named the
flip involution. Lemma 2.11 shows that this involution can be understood
as a “transposition” of brick tilings of partitions. We then give closed ex-
pressions for the multiplicities of hook+column irreducible representations in
S
(c)[S(b)[S(a)[V ]]], when either b or c is equal to 2, in Theorems 2.16 and 2.15. As

a corollary, these are examples of flip-symmetric representations. In Theorem
2.19, we show that the Schur functors S

(2) and S
(1,1) preserve flip-symmetry.

This result allows us to produce infinite families of flip-symmetric representa-
tions. In Sect. 3, we furnish proofs for all these results. In Sect. 4, we finish this
article presenting an analysis of certain intriguing sequences constructed in a
natural way from flip-symmetric iterated plethysm coefficients that appear to
be both unimodal and asymptotically normal.

2. Background and Presentation of the Results

Let V a complex vector space of dimension n. In the language of symmetric
functions, the role of the irreducible representation S

λ[V ] of GL(V ) is played
by the Schur polynomial sλ(x1, x2, . . . , xn). A representation W of GL(V ) will
then corresponds to a Schur-positive symmetric function f , and the multiplic-
ity of Sλ[V ] in W is equal to the coefficient of sλ in f .

We follow Stanley [9] for the standard concepts and notations in the
theory of symmetric functions, the main exception being that we write our
partitions using the French convention [10]. A partition is a weakly decreasing
sequence of natural numbers in which there are finitely many non-zero entries.
The non-zero entries are called the parts. Two partitions are equal if they have
the same parts. The weight of a partition is defined as the sum of its parts.

We let Par(N) be the set of partitions of weight N . We identify partitions
with their Young diagrams. The Young diagram of a partition λ = (λ1, λ2, . . .)
is the set {(c, r) : 0 ≤ c ≤ λr}, whose elements we call cells. According to the
French convention Young diagrams are drawn bottom-left justified, thus cells
of the diagram are described by its Cartesian coordinates.

The transpose λ′ of λ is the partition whose diagram is the image of the
diagram of λ under the reflection (c, r) �→ (r, c). Given partitions μ and λ, the
skew-partition μ/λ is the set of cells in μ but not in λ. We define the sum of
two partitions λ and μ as the partition λ + μ = (λ1 + μ1, λ2 + μ2, . . .). The
union of two partitions is the sorting of its parts.

Definition 2.1. We say a partition is a hook+column partition if it is of the
form (α, 2β , 1γ), that is, the sum of a hook partition and a column partition.

Hook+column partitions were introduced by Langley and Remmel [5]
along with hook+row partitions (α, β, 1γ), which are the union of a hook and
a row partition.
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Warning 2.2. When we write λ = (λ1, 2m2(λ), 1m1(λ)) for a hook+column par-
tition, we use the convention that λ1 can be equal to either one or two. We
write (15) as (1, 20, 14), and (22, 1) as (2, 21, 11). Thus, m1(λ) and m2(λ) are
not always the multiplicities of 1 and 2 in λ.

The algebra of symmetric functions Λ is defined as the algebra Q[p1, p2, . . .]
generated by a set of variables that play the role of the power sum symmetric
functions. Note that these are not defined in terms of another set of variables.

However, it will sometimes be useful to identify an element f of Λ with a
formal power series. For this, we let X = x1+x2+· · · be an alphabet. (The xi’s
are variables.) Then, we identify f ∈ Λ with its image f [X] under the algebra
morphism that maps pk to xk

1 + xk
2 + · · · . We write f [X] = f(x1, x2, . . .) and

say that it is the evaluation of f in X. In particular, we identify p1 with
X = x1 + x2 + · · · .

The notion of plethysm of symmetric functions comes from that of com-
position of representations. Consider the action of a Schur functor Sλ on a diag-
onal endomorphism whose eigenvalues are variables. Its trace is then the Schur
polynomial sλ. Therefore to compute the plethysm of two symmetric functions
one has to substitute the monomials appearing in the first symmetric function
into the second one. More precisely, let f and g be elements of Λ. If g[X] is a
sum of monic monomials, g[X] = g1 + g2 + · · · then

(
f ◦ g

)
[X] = f(g1, g2, . . .).

Example 2.3. Let f [X] = 2p2[X], then, since 2p2[X] = 2x2
1 + 2x2

2 + · · · =
x2
1 + x2

1 + x2
2 + x2

2 + · · · , we have that

pn [ 2p2[X] ] = pn(x2
1, x

2
1, x

2
2, x

2
2, . . .) = 2 p2n[X].

Warning 2.4. One needs to be careful using plethystic notation. In general,
evaluating on alphabet cX is not equivalent to evaluating on the alphabet
cx1 + cx2 + · · · . We denote the first by f [cX] and the latter by f [tX]|t=c. In
particular, −pk[X] = pk[−X] �= pk[tX]|t=−1 = (−1)kpk[X].

The plethysm of symmetric functions can be defined axiomatically.

Definition 2.5. (Plethysm of symmetric functions) The plethysm of symmetric
functions is the operation ◦ : Λ × Λ → Λ verifying

1. pn ◦ pm = pnm for all n,m ∈ N0.
2. For any f ∈ Λ, the map g �→ g ◦ f is a Z-algebra homomorphism on Λ.
3. For any f ∈ Λ, the equality pn ◦ f = f ◦ pn holds.

The core tools of this work come from plethystic calculus, namely, from
the operation of evaluation in sums and differences of alphabets. The following
lemma is a consequence of the well known expansion of sλ◦(f±g) found in [10].
Let cλ

μ,ν denote the Littlewood–Richardson coefficient indexed by partitions
μ, ν and λ. That is, cλ

μ,ν is the coefficient of sλ in the product sμ · sν .

Lemma 2.6. Let X and Y be two alphabets and let λ be a partition. Then:
1. sλ[−X] = (−1)|λ|sλ′ [X].
2. sλ[X + Y ] =

∑
μ⊂λ sμ[X] · sλ/μ[Y ] =

∑
μ,ν cλ

μ,ν sμ[X] · sν [Y ].
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Figure 1. Three valid SSYT with positive and/or negative
letters

3. sλ[X − Y ] =
∑

μ⊂λ(−1)|λ/μ| sμ[X] · s(λ/μ)′ [Y ]
=
∑

μ,ν(−1)|ν| cλ
μ,ν sμ[X] · sν′ [Y ].

Note 2.7. Let X and Y be two alphabets. Then, Lemma 2.6 says that sλ[X−Y ]
is the generating function of the tableaux T on positive letters from X and
negative letters from −Y obeying the semistandard rules for the positive entries
and a similar, but opposite rule for the negative ones: negative entries should
be weakly increasing across the columns when reading from from bottom to
top, and strictly increasing across the rows, when reading from left to right.
See Fig. 1.

Definition 2.8. Fix a non-negative number γ, and let f be a Schur positive and
homogeneous symmetric function of degree n. Define bβ

f,γ as the coefficient of
s(n−2β−γ,2β ,1γ) in f . Then, The hook+column sequence Σ(f, γ) is defined as
the sequence

Σ(f, γ) = (bβ
f,γ)β≥0.

We refer to a sequence as symmetric if its non-zero entries form a symmetric
sequence.

Example 2.9. Tables 1 and 2 give examples of hook+column sequences. The
data clearly indicates that these are symmetric sequences. Some further prop-
erties of these sequences will be discussed in the final section of this work.

We describe the symmetry present in these sequences using the flip invo-
lution, a partial involution on partitions that we proceed to define.

Definition 2.10. Let λ be a hook+column partition, and let r ≥ 2 be an integer.
Assume furthermore that one can write λ1 − r − γ = 2δ for some non-negative
integer δ. The flip involution with offset r, also called r-flip, is defined as
follows:

λ = (r + 2δ + γ, 2β , 1γ) �→ Flip(r;λ) = (r + 2β + γ, 2δ, 1γ).

Note that Flip(r;−) is clearly an involution on its domain. See Fig. 2.

The following lemma translates the r-flip involution to a tiled transposi-
tion of Young diagrams. We say a partition is tiled if we have a collection of
non-overlapping rectangles (tiles) of shape (h × w) for some h,w ∈ N covering
its Young diagram. A tiling is a brick tiling if every tile is of height 1.
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(6, 23, 1) = = (10, 2, 1)
offset

offset

3-flip→−−−�

Figure 2. The three-flip of (6, 23, 1), is Flip(3; (6, 23, 1)) =
(10, 2, 1)

(6, 23, 1)

�→
1
2
2
2
3 2 1

�→
1
2
3 2 2 2 1

�→

(10, 2, 1)

Figure 3. The tiled transpose of this tiling of (6, 23, 1) is
Flip(3; (6, 23, 1)) = (10, 2, 1)

A brick tiling of a Young diagram corresponds to a tableau in the follow-
ing manner: a row tiled into (1 × t1), (1 × t2), . . . , (1 × tk) can be collapsed to
the row-tableau t1 t2 · · ·tk ; now the diagram can be collapsed row by row into
a tableau Tλ. (The shape of this tableau need not be a partition, but a com-
position.) If the shape of Tλ is a partition, we can define the tiled-transpose
of λ as the (brick tiled) partition μ whose tableau Tμ is the transpose of Tλ.

Lemma 2.11. Let λ = (λ1, 2β , 1γ) be a hook+column partition and let r ≥ 2 be
an integer. Assume furthermore that one can write λ1 − r − γ = 2δ for some
non-negative integer δ. Consider the following brick tiling of λ.

1. The first row is made up of one (1 × r)-tile, followed by δ tiles of shape
(1 × 2), and γ tiles of shape (1 × 1).

2. Each of the remaining rows forms a tile.
Then the flip involution with offset r corresponds to tiled transposition. See
Fig. 3.

Given a symmetric function f and a partition μ, we denote the coefficient
of sμ in the expansion of f in the Schur basis by [μ] f . We define the support
of f as the set of partitions appearing in the decomposition of f in the Schur
basis, supp(f) = {μ : [μ] f �= 0}.

Definition 2.12. A symmetric function f is flip-symmetric with offset r if for
all hook+column μ in supp(f),

1. Flip(r;−) is defined on μ, and
2. [ν]f = [Flip(r;μ)]f .

Moreover, f is flip-symmetric if its flip-symmetric with some offset r.

In particular, hook+column sequences of flip-symmetric functions are
symmetric sequences. However, as the following example illustrates, not all
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symmetric functions with symmetric hook+column sequences are
flip-symmetric.

Example 2.13. Here are some functions with symmetric hook+column
sequences arising from plethysm.

s1,1 ◦ s1,1 = s(2,1,1) Not flip-symmetric.
s1,1 ◦ s2 = s(3,1) Flip-symmetric with offset 2.
s2 ◦ s1,1 = s(14) + s(2,2) Not flip-symmetric.
s2 ◦ s2 = s(4) + s(2,2) Flip-symmetric with offset 2.

For instance, the third is not flip-symmetric because there is no r such that
Flip(r;−) fixes the set {(14), (22)}.

This observation calls for a description of all flip-symmetric iterated
plethysms. The following formula of Langley and Remmel will provide us with
the first non-trivial examples of such functions, and let us construct two more
flip-symmetric families of functions arising from plethysm. Given a symmetric
function f =

∑
aλsλ, we introduce the notation (f)|h+c for

∑
λ=(α,β,1γ) aλsλ.

If furthermore we write (f)|γh+c, we are fixing γ for all λ.

Theorem 2.14. (Langley and Remmel [5], Thm. 4.8) For any a, b ≥ 2,

(sb ◦ sa)|h+c = (sb ◦ sa)|γ=0
h+c =

∑

k<b

s(ab−2k,2k).

We generalize this theorem of Langley and Remmel, and obtain closed
formulas for the iterated plethystic coefficients aλ

(c)[(b)[(a)]]] when either b or c

is equal to 2, and λ is a hook+column partition. As a corollary, we obtain that
both families of iterated plethysms are flip-symmetric.

Theorem 2.15. Let a and b be integers ≥ 2. Then,

(s2 ◦ sb ◦ sa)|h+c =
2b−1∑

k=0

min {k + 1, 2b − k} · s(2ab−2k, 2k)

+
2b−3∑

k=1

min
{⌊

k + 1
2

⌋
,

⌊
2b − 1 − k

2

⌋}
· s(2ab−2k−1, 2k, 1).

The proof of this theorem can be found in Sect. 3.2 and relays on Langley
and Remmel’s formula. It reduces our calculation to counting the number of
integer points within particular polytopes.

Theorem 2.16. Let a and c be integers ≥ 2. Then, (sc ◦ s2 ◦ sa)|h+c is equal to
2c−1∑

k=0

min
{

k2 + k + 2
2

,
(2c − 1 − k)2 + (2c − 1 − k) + 2

2

}
· s(2ac−2k,2k)

+
2c−3∑

k=1

min
{⌊

(k + 1)2

4

⌋
,

⌊
(2c − 1 − k)2

4

⌋}
· s(2ac−2k−1, 2k, 1).
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The proof of this theorem appears in Sect. 3.3. The techniques used in this
proof originate in [11], and [5]. They relay on careful evaluation of sc ◦ s2 ◦ sa

on signed finite alphabets.

Corollary 2.17. The iterated plethysms sc◦sb◦sa are flip-symmetric with offset
abc − 2(bc − 1) when either b or c equals 2.

Note that the increasing parts of of the sequences of coefficients appearing
in Theorems 2.15 and 2.16 are, respectively, the natural numbers, the natural
numbers (repeated twice), the triangular numbers plus one, also known as the
central polygonal numbers (OEIS A000124), and the “quarter-squares” (OEIS
A002620 [12]). The generating functions for all these sequences are rational.

Note 2.18. There exists a relationship between hook+column sequences and
the analogously defined hook+row sequences, via the ω involution [10]: for two
homogeneous symmetric functions, ω(f ◦ g) = f ◦ω(g) if degree(g) is even and
ω(f ◦ g) = ω(f) ◦ ω(g) otherwise. Consequently, if (sn1 ◦ sn2 ◦ · · · ◦ snk

)|γh+c

=
∑

β aβsνβ
, then applying the aforementioned formulas successively will give

a function on the left-hand-side whose hook+row sequences coincide with the
hook+column sequences of the original function. Our work could be therefore
translated to hook+row sequences.

We show that the plethysm operation with either s(2) or s(1,1) preserves
the flip-symmetry of Schur-positive symmetric functions, a result that allows
us to construct even more families of flip-symmetric functions.

Theorem 2.19. Let f ∈ Λn be a Schur-positive symmetric function. If f is
flip-symmetric with offset r, then both s1,1 ◦ f and s2 ◦ f are Schur-positive
flip-symmetric (with offset 2r − 2) symmetric functions in Λ2n.

On Fig. 7, we tabulate the hook+column sequences obtained from the
iterated plethysms s◦k

2 for γ = 0 and k = 2, 3, 4, 5.
As a corollary of Theorem 2.19, we obtain that the plethystic action of

h1,1 = s2 + s1,1 also preserves flip-symmetry and Schur positivity. In the pro-
cess, we show that (p1,1 ◦f) and (p2 ◦f) also preserve flip-symmetry (although
p2 does not, in general, preserve Schur positivity).

Corollary 2.20. Let f be a Schur-positive homogeneous symmetric function
f , and let λ1, λ2, . . ., λk be any sequence of partitions of two. If f is flip-
symmetric with offset r, then

sλ1 ◦ sλ2 ◦ · · · ◦ sλk ◦ f,

is also flip-symmetric with offset 2kr − 2k+1 + 2.

See Figs. 4 and 7 for some examples of flip-symmetric sequences obtained
in this way.
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(s2 ◦ s2 ◦ s3)|h+c = s + 2s + 2s + s + s .

Figure 4. The function s2 ◦ s2 ◦ s3 is flip-symmetric with
offset 6. The arrows indicate the images of the 6-flip involution
Flip(6;−). The indexing partitions appear tiled according to
the flip algorithm

3. Proofs

3.1. A Handful of Lemmas

Starting from the elementary remark that 2s2 = p1,1+p2 and 2s1,1 = p1,1−p2,
we get that the plethysms s2 ◦ f and s1,1 ◦ f are completely determined by the
plethysms p2 ◦ f and p1,1 ◦ f . The following lemma says that when we want to
compute (sσ ◦ f)|h+c, we can restrict our attention to plethysms of the form
p2 ◦ (f)|h+c and p1,1 ◦ (f)|h+c.

Lemma 3.1. Let f be a symmetric function. Then, for any partition σ, we
have

(sσ ◦ f)|h+c =
(
sσ ◦ (f)|h+c

)∣∣
h+c

.

Proof. Let f =
∑

μ dμsμ be a symmetric function. We follow the outline of the
proof of [13, Theorem 5.1]. For simplicity, we also use the same notation. We
have

sσ ◦ f =
∑

λ

χσ(λ)
zλ

pλ ◦ f =
∑

λ

χσ(λ)
zλ

∏

i

pλi
◦ f =

∑

λ

χσ(λ)
zλ

∏

i

f ◦ pλi

=
∑

λ

χσ(λ)
zλ

∏

i

∑

μ

dμsμ ◦ pλi
=
∑

λ

χσ(λ)
zλ

∏

i

∑

μ

dμ

∑

τ

bτ
λi,μsτ .

The expansion sσ =
∑

λ
χσ(λ)

zλ
pλ is classical. The coefficients bτ

λi,μ
appearing

the the last equality come from the expansion sμ ◦ pλi
=
∑

τ bτ
λi,μ

sτ .

By the Littlewood–Richardson rule, a hook+column partition is a con-
stituent of a product sτ · sπ only if τ and π are hook+column partitions. From
[13, Theorem 4.1], we know bτ

λi,μ
is non-zero only if μ ⊆ τ (that is, μi ≤ τi for

all i). Then,
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(sσ ◦ f)|h+c =

(
∑

λ

χσ(λ)

zλ

∏

i

∑

μ

dμ

∑

τ

bτ
λi,μsτ

)∣∣
∣
∣
∣
h+c

=

⎛

⎝
∑

λ

χσ(λ)

zλ

∏

i

∑

μ

dμ

∑

τ h+c

bτ
λi,μsτ

⎞

⎠

∣
∣
∣
∣
∣
∣
h+c

=

⎛

⎝
∑

λ

χσ(λ)

zλ

∏

i

∑

μ h+c

dμ

∑

τ h+c

bτ
λi,μsτ

⎞

⎠

∣
∣
∣
∣
∣
∣
h+c

=
(
sσ ◦ (f)|h+c

)∣∣
∣
h+c

.

�

In [14] , Carré and Leclerc found an elegant description of the plethystic
action of p2 in terms of domino tableaux and their 2-signs. Let λ be a partition
of 2n. A tiling is domino if every tile is (1× 2) or (2× 1). A domino tableau of
λ is a labeling of a domino tiling of λ with non-negative integers so that the
numbers increase weakly in rows and strictly increase in columns. There is a
general definition for the n-sign of a partition (see [15]). However, we are only
interested in the 2-sign of a partition, defined as

sgn2(λ):=(−1)#vertical dominoes in a domino tiling of λ.

As a fact, this is independent of the domino tiling of the partition.

Example 3.2. To compute the two-sign of (4, 3, 1), we first compute a domino
tiling of its diagram.

λ = sgn2(λ) = −1.

Simple inspection leads to the following realization: if λ = (α, 2β , 1γ) is
a hook+column partition, then the sign of λ only depends on the congruence
class of γ modulo 4, as shown in Table 3.

Carré and Leclerc’s description gives the following formula.

Lemma 3.3. Let λ = (λ1, 2m2(λ), 1m1(λ)) be a hook+column. Then, (−1)m1(λ)

(p2 ◦ sλ)|h+c is equal to
∑

β≥2m2(λ)

(−1)βs(2λ1,2β ,1•) − s(2λ1−1,22m2(λ),1•) +
∑

β≥2m2(λ)+1

(−1)β+1s(2λ1−2,2β ,1•).

There is an equivalent way of stating Lemma 3.3. Given a symmetric
function f and a partition λ, let us denote by [λ]f the coefficient of sλ in

Table 3. The 2-sign of λ = (α, 2β , 1γ) only depends on γ

γ modulo 4 0 1 2 3

sgn2(μ) + – – +



Partial Symmetries of Iterated Plethysms 505

the expansion of f in the Schur basis. Let λ = (λ1, 2β , 1γ) be a hook+column
partition, and let f be a homogeneous symmetric function of degree n. Then,

[λ] (p2 ◦ f) = sgn2(λ) · #D(λ; p2 ◦ f),

where D(λ; p2 ◦ f) ⊆ Par(2n) is a multiset constructed as follows:
1. The underlying set is

⎧
⎨

⎩

{(
λ1+1

2 , 2
β
2 , 1

γ−1
2

)}
if λ1 is odd,

{
μ : 2μ1=λ1

m2(μ)≤β/2

}
∪
{

μ : 2μ1=λ1+2

m2(μ)≤ β−1
2

}
if λ1 is even.

2. The multiplicity of μ in D(λ; p2 ◦ f) is [μ] f .
Observe that in the case when λ1 is even, D(λ; p2 ◦f) naturally splits into two
multisets, which we call D0(λ; p2 ◦ f) and D2(λ; p2 ◦ f) respectively.

We need to evaluate the expression (p1,1 ◦ f)|h+c. Since p1,1 ◦ f = f2,
we just need to compute (sλ · sμ)|h+c when both λ and μ are hook+column
partitions. The following formula comes from the Littlewood–Richardson rule.

Lemma 3.4. Let μ = (μ1, 2m2(μ), 1m1(μ)) and ν = (ν1, 2m2(ν), 1m1(ν)) be hook
+columns. Set α=ν1 +μ1, m2=m2(μ)+m2(ν), and m1= min{m1(μ),m1(ν)}.

Then,

(sμ · sν)|h+c =
m2+m1∑

β=m2

s(α,2β ,1•) +
m2+m1+1∑

β=m2

χβ
(μ,ν) · s(α−1,2β ,1•)

+
m2+m1+1∑

β=m2+1

s(α−2,2β ,1•),

where χβ
(μ,ν) = 1 if β = m2 or β = m2 + m1 + 1 and χβ

(μ,ν) = 2 otherwise.

Consequently, if λ = (λ1, 2β , 1γ) and f is a homogeneous symmetric
function of degree n, we can write [λ] (p1,1 ◦ f) = #D(λ; p1,1 ◦ f), where
D(λ; p1,1 ◦ f) ⊆ Par(2n) × Par(2n) is a multiset constructed as follows: the
underlying set is the union of the sets

{
(μ, ν) : μ1+ν1=λ1

m2≤β≤m2+m1

}
,

{
(μ, ν) : μ1+ν1=λ1+1

m2≤β≤1+m2+m1

}

and
{
(μ, ν) : μ1+ν1=λ1+2

1+m2≤β≤1+m2+m1

}
.

(Therefore the multiset D(λ; p1,1 ◦ f) naturally splits into three multisets,
which we call D0(λ; p1,1 ◦ f), D1(λ; p1,1 ◦ f) and D2(λ; p1,1 ◦ f) respectively.)
The multiplicity of each pair (μ, ν) in D0(λ; p1,1 ◦ f) and D2(λ; p1,1 ◦ f) is
[μ] f ·[ν] f , whereas the multiplicity of (μ, ν) in D1(λ; p1,1◦f) is χβ

(μ,ν)[μ] f ·[ν] f .

Note 3.5. These multisets, or rather their underlying sets, can be interpreted
as the sets of integral points of some polytopes in Z

6, by identifying a hook+
column pair (μ, ν) =

(
(μ1, 2m2(μ), 1m1(μ)), (ν1, 2m2(ν), 1m1(ν))

)
with the point(

μ1,m2(μ),m1(μ), ν1,m2(ν),m1(ν)
)
. Now, the equalities and inequalities that

define our sets are viewed as the restriction to certain hyperplanes and regions
of the space. Once this work is done, the integer points inside the intersection
of those hyperplanes and regions form the announced polytope.
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Inspection of Lemmas 3.3 and 3.4 reveals a beautiful result. If μ = ν,
then

supp
(

(p2 ◦ sμ)|h+c

)
⊆ supp

(
s2μ
∣
∣
h+c

)
.

Furthermore, if m1(μ) = 0, then the two sets are identical, and so are the
multiplicities associated with each partition. Finally, there is one more thing to
notice: sgn2((α, 2β)) = 1 for all (α, 2β). Consequently, we obtain the following
result.

Lemma 3.6. Let μ = (α, 2β). Then, (p2 ◦ sμ)|γ=0
h+c = (p1,1 ◦ sμ)|γ=0

h+c .

3.2. An Explicit Formula for s2 ◦ sb ◦ sa on Hook+Columns

In this section, we prove Theorem 2.15. We build our proof on Langley and
Remmel’s Theorem 2.14. Note that their formula barely depends on a. In
fact, all that a introduces is a tail of zeros in our hook+column sequence. For
instance, Σ(s3 ◦ s2, 0) = (1, 1, 1) and Σ(s3 ◦ s4, 0) = (1, 1, 1, 0, 0, 0).

Lemma 3.7. The hook+column sequence Σ(sb◦sa, 0) is (1, b times. . . , 1, 0, Z−b times. . . , 0),
where Z =

⌊
ab
2

⌋
.

Proof. The hook+column partitions of size ab with γ = 0 are (ab), (ab −
2, 2), (ab − 4, 22), . . . , (ab − 2(Z − 1), 2Z−1). The claim now is an immediate
consequence of Theorem 2.14. �

Consequently, we can suppose a = 2 hereafter without loss of generality.
Proof of Thm. 2.15 We begin the proof observing that, since s2 = 1

2 (p2 +p1,1),
then, by Theorem 2.14,

2s2 ◦ (sb ◦ s2)|h+c = (p2 + p1,1) ◦
∑

k<b

s(2b−2k,2k)

=
∑

k<b

p2 ◦ s(2b−2k,2k) +
∑

k<b

s2(2b−2k,2k)

+ 2
∑

i<j<b

s(2b−2i,2i) · s(2b−2j,2j)

=
∑

k<b

2s2 ◦ s(2b−2k,2k) + 2
∑

i<j<b

s(2b−2i,2i) · s(2b−2j,2j). (1)

We now restrict to the γ = 0 part of the hook+column sequence. Note
that [5, Thm. 4.8 (3)] gives (s2 ◦ sλ)|h+c = (s2 ◦ sλ)|γ=0

h+c whenever λ = (λ1, 2β)
is a hook+column with γ = 0. With this and using Lemma 3.6, we simplify
our expression into

(s2 ◦ sb ◦ s2)|γ=0
h+c =

⎛

⎝
∑

i≤j<b

s(2b−2i,2i) · s(2b−2j,2j)

⎞

⎠

∣
∣
∣
∣
∣
∣

γ=0

h+c

.

We use Lemma 3.4 to compute the products appearing in this equation. For
each term in the second sum, we get the exactly the two hook+column parti-
tions λ with m1(λ) = 0, whose first row verify

λ1 ∈ {4b − 2(i + j), 4b − 2(i + j + 1)} .



Partial Symmetries of Iterated Plethysms 507

j

i

i = j

j = b − 1

i+ j = 2b − k − 1
i+ j = 2b − k

Figure 5. We let b = 5 and k = 5. The polytope Δ is shaded
in blue. Each black dot represents a valid pair. On the right,
we illustrate the result of the described projection

Consequently, the hook+column partitions that will appear in the sum are
those whose first row is in the set {2, 4, 6, . . . , 4b}. We now ask how many
times each one appear.

Take b ∈ N≥2 and k ∈ {1, 2, . . . , 2b}. We ask how many integer pairs (i, j)
there are in the polytope Δ:= {0 ≤ i ≤ j < b}, which are solutions to either of
these two equations:
{

4b − 2(i + j) = 2k,

4b − 2(i + j + 1) = 2k,
or, consequently,

{
i + j = 2b − k,

i + j = 2b − k − 1.
(2)

Refer to Fig. 5 for a graphical representation.
To help count the solutions, we will project them orthogonally from one

of the lines to the other one, in such a way that all the projections remain
inside Δ. More precisely, if k ≥ b then project onto {i + j = 2b − k}, an if
k < b to the other line.

One can easily see now what the coefficients are going to look like. Noting
that the biggest line is counted twice (because we change the projection mid
way), results in the desired integer sequence for γ = 0.

Let us now bring back Equation (1) and restrict to the γ �= 0 part of the
hook+column sequence. Using [5, Thm. 4.8 (3)] again, we obtain

(s2 ◦ sb ◦ s2)|γ �=0
h+c =

⎛

⎝
∑

i<j<b

s(2b−2i,2i) · s(2b−2j,2j)

⎞

⎠

∣
∣
∣
∣
∣
∣

γ �=0

h+c

.

These products give rise, using Lemma 3.4, to a new polytope {0 ≤ i < j < b}
together with the equation i+j = 2b−k. A similar argument gives the desired
sequence. This completes the proof of Theorem 2.15. �
3.3. An Explicit Formula for sc ◦ s2 ◦ sa on Hook+Columns

This section is dedicated to the proof of Theorem 2.16. Fixing γ = 0, we
will show that the first c terms of the hook+column sequence are given by
the formula n2+n+2

2 (OEIS A000124 [12]) that have, as generating function
z

(1−z)3 + 1
1−z [16]. As before, it will be enough to show it for a = 2. The

techniques used in this section have been used by the second author in [11] to
study the Kronecker coefficients, and by Langley and Remmel [5].
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?
...

? ?

−2 −1
...

...

−2 −1

−2 −1 1 · · · 1

Figure 6. Our only choices when filling a hook+column with
1, −1 and −2 are represented by a question mark

We begin by explicitly computing the evaluation of a Schur function
indexed by a hook+column on the alphabet 1 − x − y.

Lemma 3.8. Let λ = (α, 2β , 1γ) and α ≥ 2. Then,

sλ[1 − x − y] = (−1)γ(xy)β(1 − x)(1 − y)
xγ+1 − yγ+1

x − y
.

In particular, the formula is independent of α.

Proof. Recall Note 2.7. We construct all tableaux of shape λ with three letters
(fixing an order, let 1 be the letter for the variable 1, −1 for −x, and −2 for
−y) and record the weight of each resulting tableau.

Notice that we have very little freedom when filling a hook+column with
only these three letters. Our only choices are in the last entries in the first two
columns (see Fig. 6).

We can have 0, 1 or 2 entries equal to 1 in these cells. The rest can be
filled with various quantities of −1s and −2s, resulting into weights

(xy − x − y + 1)
∑

i+j=γ

(−1)γxiyj = (−1)γ(1 − x)(1 − y)
xγ+1 − yγ+1

x − y
.

As there are β instances of −2 −1 , the desired expression arises. �

Further inspection of Lemma 3.8 reveals that the restriction to γ = 0
equates to restriction to monomials which are also monomials in the variable
(xy). We write this as follows:

(sc ◦ s2 ◦ s2)|γ=0
h+c [1 − x − y]

(1 − x)(1 − y)
=

sc ◦ s2 ◦ s2[1 − x − y]
(1 − x)(1 − y)

∣
∣
∣
∣
(xy)

. (3)

The numerator sc ◦ s2 ◦ s2[1 − x − y] can be rewritten, using the equality
sc =

∑
λ�c z−1

λ pλ and the properties of plethysm, as

sc ◦ s2 ◦ s2[1 − x − y] = sc ◦ (s4 + s2,2)[1 − x − y] (by 2.14)

= sc[(1 + xy)(1 − x)(1 − y)] (by 3.8)
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=
∑

λ�c

pλ[(1 + xy)(1 − x)(1 − y)]
zλ

=
∑

λ�c

(
∏

i

(
1 + (xy)λi

)
)

pλ[(1 − x)(1 − y)]
zλ

=
∑

k≥0

(xy)k
∑

λ�c

χk(λ)
pλ

zλ
[(1 − x)(1 − y)],

where

χk(λ) =

⎧
⎪⎨

⎪⎩

∑
μ�k

(
m1(λ)
m1(μ)

) · · · (mk(λ)
mk(μ)

)
for 0 ≤ k ≤ ⌊

c
2

⌋
,

χc−k(λ) for
⌊

c
2

⌋
< k ≤ c,

0 for c < k.

Lemma 3.9. We have
∑

λ�c

χk(λ)pλ

zλ
= hc−k,k for 0 ≤ k ≤ ⌊

c
2

⌋
.

Proof. We compute

hc−k,k = sc−ksk =
∑

μ�c−k

pμ

zμ

∑

ν�k

pν

zν
=

∑

μ�c−k
ν�k

pμ∪ν

zμzν

=
∑

λ�c
μ�k

pλ

zλ

∏
mi(λ)!

∏
mi(μ)!(mi(λ) − mi(μ))!

=
∑

λ�c

χk(λ)
pλ

zλ
.

�

Again by Note 2.7, we get the following lemma.

Lemma 3.10. For n ≥ 2, the have the following equality:

sn[1 − x − y + xy] = (1 − x)(1 − y)
1 − (xy)n−1

1 − xy
.

Proof. A row tableau of size n can have at most one entry equal to −1, and
at most one entry equal to −2. The remaining cells n − 2 can have and any
number 0 ≤ k ≤ n of entries equal to 1 and n − k − 2 entries equal to 2. �

Proof of Thm. 2.16 With these lemmas, expression (3) now becomes
∑c

k≥0(xy)khc−khk[(1 − x)(1 − y)]
(1 − x)(1 − y)

∣
∣
∣
∣
∣
(xy)

(4)

3.10=
2c∑

k≥0

(xy)k +
(1 − x)(1 − y)

(1 − xy)2

c−1∑

k≥1

(xy)k − (xy)c − (xy)2k + (xy)c+k

∣
∣
∣
∣
∣
∣
(xy)

=
1 − (xy)2c+1

1 − xy
+

1 + xy

(1 − xy)2

(
(xy) − (xy)c

1 − xy
− (n − 1)(xy)c

− (xy)2 − (xy)2c

1 − (xy)2
+

(xy)c − (xy)2c

1 − xy

)
. (5)
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Let us consider only the terms which affect the first c entries of the hook+column
sequence. We obtain

1
1 − xy

+
1 + xy

(1 − xy)2

(
xy

1 − xy
− (xy)2

1 − (xy)2

)
=

1
1 − xy

+
xy

(1 − xy)3
,

which is precisely the generating function for OEIS A000124, as announced. So
far, we have shown that sc ◦ s2 ◦ s2 yields, for γ = 0, a hook+column sequence
starting with (1, 2, 4, . . . , Tc + 1), where Tc is the cth triangular number.

Furthermore, as it is apparent from (4), the coefficient of (xy)k coincides
with the coefficient of (xy)c−k, proving that, in fact, the hook+column se-
quence of sc◦s2◦s2 for γ = 0 is equal to (1, 2, 4, . . . , Tc+1, Tc+1, . . . , 4, 2, 1, 0, . . .).
In other words, (sc ◦ s2 ◦ sa)|γ=0

h+c is equal to

2c−1∑

k=0

min
{

k2 + k + 2
2

,
(2c − 1 − k)2 + (2c − 1 − k) + 2

2

}
· s(2ac−2k,2k).

It remains to show that (sc ◦ s2 ◦ sa)|γ �=0
h+c is equal to

2c−3∑

k=1

min
{⌊

(k + 1)2

4

⌋
,

⌊
(2c − 1 − k)2

4

⌋}
· s(2ac−2k−1, 2k, 1).

We only sketch the proof, since the computations are similar. We begin by
considering the expression (5). But instead of restricting to monomials which
are symmetric in x and y, we consider the remaining monomials. We obtain
this way the generating function for the coefficients in for Σ(sc ◦ s2 ◦ sa, 1).

This time, the starting sequence is an offset of OEIS A002620 [12], whose
general term is

⌊ (n+1)2

4

⌋
and which has a generating function z

(1+z)(1−z)3 [16].
This is shown similarly.

This completes the proof of Theorem 2.16. �

3.4. Symmetry of Hook+Column Sequences

This section is dedicated to the proof of our main result (Theorem 2.19).
Express s2 as 1

2 (p1,1 + p2) and s1,1 as 1
2 (p1,1 − p2). Using the results and

notations of Sect. 3.1, for each hook+column λ we can write

2[λ] (s2 ◦ f) = #D(λ; p1,1 ◦ f) + sgn2(λ)#D(λ; p2 ◦ f),
2[λ] (s1,1 ◦ f) = #D(λ; p1,1 ◦ f) − sgn2(λ)#D(λ; p2 ◦ f).

Our aim is to show that if f is flip-symmetric with offset r, then [λ] (s2◦f)
equals [Flip(2r−2;λ)] (s2◦f). Let us denote R = 2r−2 and let λR:=Flip(R;λ).
Note from Table 3 that the sign function is invariant under the flip involu-
tion. Hence, proving #D(λ; p2 ◦ f) = #D(λR; p2 ◦ f) and #D(λ; p1,1 ◦ f) =
#D(λR; p1,1 ◦ f) will suffice to show the theorem.

We begin with well-definedness. Note that for any r ≥ 2, we have R ≥ 2.
Fix λ = (λ1, 2β , 1γ) ∈ supp(s2 ◦ f). We claim that the R-flip is well defined on
λ. That is, we can find δ ≥ 0 such that λ1 = R + 2δ + γ. Indeed, the parity
of 2n = λ1 + 2β + γ implies λ1 − γ ≡ R ≡ 0 mod 2. Moreover, suppose μ ∈
D(λ; p2 ◦ f), λ1 is even and 2μ1 = λ1. Then, r ≤ μ1 − m1(μ) and β ≥ 2m2(μ)
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imply R ≤ λ1 − γ, as desired. In any other case (e.g., μ ∈ D0(λ; p1,1 ◦ f)),
similar computations yield similar results.

The following four facts complete the proof of the theorem:
• If λ1 is odd, then #D(λ; p2 ◦ f) = #D(λR; p2 ◦ f) by Lemma 3.11.
• If λ1 is even, then #D0(λ; p2 ◦ f) = #D2(λR; p2 ◦ f) by Lemma 3.12.

Relabelling λ for λR gives #D0(λR; p2 ◦ f) = #D2(λ; p2 ◦ f).
• By Lemma 3.13, #D0(λ; p1,1 ◦ f) = #D2(λR; p1,1 ◦ f), and relabelling λ

for λR gives #D0(λR; p1,1 ◦ f) = #D2(λ; p1,1 ◦ f).
• Finally, #D1(λ; p1,1 ◦ f) = #D1(λR; p1,1 ◦ f) by Lemma 3.14.

The non-negativity of the resulting coefficients holds from Lemma 3.1
and from the fact that Schur positivity is preserved under plethysm by s2.

Lemma 3.11. Under the hypotheses of this section, if λ1 is odd then #D(λ; p2◦
f) = #D(λR; p2 ◦ f).

Proof. If λ1 = R + 2δ + γ is odd, then so is λR
1 = R + 2β + γ. The multiset

D(λ; p2 ◦ f) only has one element, μ. We have

μ =
(

r + δ +
γ − 1

2
, 2

β
2 , 1

γ−1
2

)
r−flip�−−−−→

(
r + β +

γ − 1
2

, 2
δ
2 , 1

γ−1
2

)
=: μr.

Note that μr is the only partition appearing in D(λR; p2 ◦ f). By hypothesis,
these two partitions appear with the same multiplicity [μ] f = [Flip(r;μ)] f in
their corresponding multisets. This completes the proof. �

The remaining lemmas will follow in the same spirit as the previous one.

Lemma 3.12. Under the hypotheses of this section, if λ1 is even then #D0(λ; p2◦
f) = #D2(λR; p2 ◦ f).

Proof. Explicitly, we can write D0(λ; p2 ◦ f) and D2(λR; p2 ◦ f) (up to multi-
plicities) as follows,

{(
r + δ +

γ

2
− 1, 2m2 , 1β+ γ

2 −2m2

)
: m2 ≤ β

2

}

and
{(

r + β +
γ

2
, 2m′

2 , 1•
)

: m′
2 ≤ δ − 1

2

}
.

Applying the r-flip on every element of D0(λ; p2 ◦ f) yields

Flip(r;D0(λ; p2 ◦ f)) =
{(

r + β +
γ

2
, 2m′

2 , 1β+ γ
2 −2m2

)
: m2 ≤ β

2

}
,

where m′
2 = 1

2 (δ + 2m2 − β − 1).
We aim to identify Flip(r;D0(λ; p2 ◦ f)) with D2(λR; p2 ◦ f). The only

thing that remains to show is that m2 ≤ β
2 if and only if m′

2 ≤ δ−1
2 . From the

expression of m′
2, the inequality m′

2 ≤ δ−1
2 simplifies to δ−1+2m2−β

2 ≤ δ−1
2 ,

and it is now clear that this is equivalent to the inequality m2 ≤ β
2 . �

Lemma 3.13. Under the hypotheses of this section, we get #D0(λ; p1,1 ◦ f) =
#D2(λR; p1,1 ◦ f).
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Proof. Let μr and νr be the r-flip of some (μ, ν) ∈ D0(λ; p1,1 ◦ f). Note that
|μ| + |ν| = |λ| and μ1 + ν1 = λ1 imply

2m2(μ) + m1(μ) + 2m2(ν) + m1(ν) = 2β + γ. (6)

Adding R = 2r − 2 to both sides of the equation, we conclude μ1 + ν1 = λ1 if
and only if μr

1 + νr
1 = λR

1 + 2.
Again from Equation (6), we get m2 ≤ β if and only if m1(μ)+m1(ν) ≥ γ.

Knowing that μ1 + ν1 = λ1, we write
(
r + 2m2(μr) + m1(μ)

)
+
(
r + 2m2(νr) + m1(ν)

)
= R + 2δ + γ

= 2r − 2 + 2δ + γ.

And so, m2 ≤ β if and only if m′
2 + 1 ≤ δ, where m′

2:=m2(μr) + m2(νr). In a
similar fashion, one can show β ≤ m2 + m1 if and only if δ ≤ m′

2 + m1 + 1.
Summing up, we have proved that a pair (μ, ν) is in D0(λ; p1,1 ◦f) if and

only if (μr, νr) is in D2(λR; p1,1◦f), and thus #D0(λ; p1,1◦f) = #D2(λR; p1,1◦
f) by the flip-symmetry hypothesis on f . �

Lemma 3.14. Under the hypotheses of this section, we get #D1(λ; p1,1 ◦ f) =
#D1(λR; p1,1 ◦ f).

Proof. The proof is similar to that of Lemma 3.13. Following in each step the
case in which the equalities are attained, we also get χβ

(μ,ν) = χδ
(μr,νr). �

4. Final Comments

Theorems 2.15, 2.16, and 2.19 imply that the iterated plethysm f = s2 ◦ s2 ◦
· · · ◦s2 ◦sc ◦sb ◦sa is flip-symmetric when either b or c is equal to 2. Therefore,
the hook+column sequence Σ(f, γ) is symmetric for each non-negative integer
γ. However, sequences like this one appear to have stronger properties. Based
on our data, we put forth some questions regarding the structural behavior of
hook+column sequences arising from iterated plethysms.

1. Our first question is a very natural one. Are the hook+column sequences
of the form Σ(sn1 ◦ sn2 ◦ · · · ◦ snk

, γ) symmetric for all n1, . . . , nk and all
γ?

2. Our algebraic definition of the flip involution makes sense even if the offset
is r = 0 or 1. Our data suggests that if f is flip symmetric with offset
0 or 1, then Σ(s2 ◦ f, γ) and Σ(s1,1 ◦ f, γ) are also symmetric sequences.
But s2 ◦ f and s1,1 ◦ f are not flip-symmetric sequences according to our
definition. See for instance Example 2.13. Based on our analysis of the
data, we infer that there is a wider partial symmetry that has yet to be
revealed. A more general description of the flip-symmetry and the flip
involution is expected to exist.

3. A finite sequence (ai)i=1,...,n is said to be unimodal if there exists a k
such that

a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an−1 ≥ an.
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Based on the available data, we ask: Are the hook+column sequences
Σ(sn1 ◦ sn2 ◦ · · · ◦ snk

, γ) unimodal for all n1, . . . , nk and all γ? Another
way of rephrasing this question is reminiscent of a celebrated result, the
unimodality of the q-binomial coefficients. This result can be reduced to
deciding whether the following polynomial is unimodal:

(sa ◦ sb)[1 + q] = sa[(b + 1)q] =
(

a + b

a

)

q

=
∑

m

bmqm,

where (n)q is the q-analog of n and
(
n
k

)
q

is the q-binomial coefficient. On
the other hand, our problem can be reduced to studying whether

sn1 ◦ sn2 ◦ · · · ◦ snk
[1 − x − y] · (x − y)

(−1)γ(1 − x)(1 − y)(xγ+1yγ+1)
=
∑

β

aβ(xy)β

is a unimodal polynomial in the variable (xy) for any γ.
4. A positive finite sequence (ai)i=1,...,n is said to be log-concave if a2

i ≥
ai−1ai+1 for all i = 2, . . . , n − 1. It is well known that log-concavity im-
plies unimodality. Recently, the log-concavity of many combinatorial se-
quences has been established thanks to the development of several break-
through methods [17–20]. In some of these works, the sequences shown to
be log-concave are not the classical combinatorial sequences, but a renor-
malization of them [21].The hook+column sequence Σ(s◦5

2 , γ) appearing
in Fig. 7 gives us an example of a hook+column sequence that is not log-
concave. However, is there a sensible renormalization of hook+column
sequences arising from plethysm that renders them log-concave?

5. Asymptotic normality is another structural phenomenon commonly found
in combinatorial sequences. Experimental evidence suggests that the hook
+column sequences of (s2)◦k:=s2◦ k times. . . ◦s2 for any fixed γ are asymp-
totically normal when k tends to infinity, as Fig. 7 illustrates. Moreover,
a χ2 normality test returns a p-value of 1 or almost 1 for every sequence
coming from s◦k

2 , k = 2, . . . , 5. These huge p-values1 seem to indicate that
the Gaussian curve perfectly fits our sequences, even for small values of k.
Is the hook+column sequence Σ(s◦k

2 , γ) asymptotically normal for each
fixed γ? (In the sense that its relative sums approach a Gaussian curve
when k tends to infinity.) (See [22–24] for more details in asymptotic
normality of combinatorial integer sequences.)

6. We have used SageMath [25] to compute data supporting these questions.
For instance, the hook+column sequences of the family s◦k

1,1 also appear
to be asymptotically normal. Moreover, our data for fabc:=sc ◦ sb ◦ sa

suggest that the limiting hook+column sequences of fabc when both b
and c tend to infinity is asymptotically normal (see Fig. 8).

7. In Theorems 2.15 and 2.16, we gave explicit descriptions of the hook+
column sequences Σ(fabc, γ), whenever b or c are equal to 2. Our data

1We adopt the usual convention of rejecting the null hypothesis if the p-value is smaller than
0.05.
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Function, f γ Hook+column sequence, Σ(f, γ)

s◦2
2 0 (1, 1)

s◦3
2 0 (1, 2, 2, 1)

s◦4
2 0 (1, 3, 8, 13, 13, 8, 3, 1)

s◦5
2 0 (1, 4, 20, 72, 205, 446, 756, 986, 986, 756, 446, 205, 72, 20, 4, 1)

Figure 7. On top, a table showing the hook+column se-
quence of s◦k

2 for γ = 0 and k = 2, 3, 4, 5. Below, plots of
the aforementioned sequences with the x-axis being β, and
represented as the normalized histogram whose frequencies
read Σ(s◦k

2 , 0). They appear overlaid with Gaussian curves of
adjusted mean and variance

allows us to make reasonable guesses about what the hook+column se-
quences of fabc approach for other values of b and c. (Recall that, by
Lemma 3.7, the value of a does not affect the non-vanishing part of the
sequence.) The hook+column sequences of f23c = sc ◦ s3 ◦ s2 and γ = 0
up to c = 6 are shown in Table 1. Unlike the sequences in Theorems 2.15
and 2.16, each consecutive sequence is not simply a longer version of the
previous ones. However, they seem to stabilize. Is their stable limit se-
quence (1, 2, 5, 10, 19, 33, 57, 92, 147, . . . ), the number of partitions with
two kinds of 1 s, 2 s, and 3 s? (OEIS A000098 [12].)The hook+column se-
quences of f24c = sc ◦ s4 ◦ s2 and γ = 0 up to c = 6 are shown in Table
2. Again, the coefficients seem to stabilize. Is their stable limit sequence
(1, 2, 5, 11, 22, 42, 77, 135, . . . ), the number of partitions of 2n? (OEIS
A058696 [12].) More generally, are the hook+column sequences Σ(fabc, γ)
counting partitions of a number with some restriction on the allowable
parts, for all b, c and γ? The literature already contains instances of se-
quences similar to the last two, in the context of exploring structural
constants of symmetric functions, including Kronecker coefficients [26].
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Figure 8. From left to right, the histogram plots for the
hook+column sequences associated to s9 ◦ s2 ◦ s2, s6 ◦ s3 ◦ s2,
s5 ◦ s4 ◦ s2 and s4 ◦ s5 ◦ s2, with γ = 0, and where the x-axis
represents β. They appear overlaid with Gaussian curves of
adjusted mean and variance

Acknowledgements

The authors express their appreciation to Adrià Lillo, Emmanuel Briand, and
Laura Colmenarejo for their insightful comments and engaging discussions.
They also acknowledge the outstanding efforts of the two anonymous referees
in thoroughly reviewing the preliminary version of their work.

Author contributions All authors contributed equally to this manuscript.

Funding MR was partially supported by MTM2016-75024-P and FEDER,
PID2020-117843GB-I00, and Proyectos I+D+i FEDER Andalućıa US-1262169.
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