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Abstract

This paper introduces a new algorithmic scheme for two-stage stochastic mixed-integer pro-

gramming assuming a risk averse decision maker. The focus is the minimization of the con-

ditional value at risk for a hard combinatorial optimization problem. Some properties of a

mixed-integer non-linear programming formulation for conditional value at risk are studied

as well as their algorithmic implications. This yields to a procedure for obtaining lower and

upper bounds on the optimal value of the problem that may lead to an optimal solution.

The new developments are applied to a fixed-charge transportation problem with stochas-

tic demand, and they are computationally tested. The corresponding results are thoroughly

presented and discussed.
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1. Introduction

In this work we propose an algorithmic scheme for two-stage stochastic mixed-integer

programming assuming a risk averse decision maker.

As recently pointed out by Escudero et al. (2017), many risk measures can be found in

the literature, among which the most popular ones are scenario immunization, semi-deviation,

min-risk, stochastic dominance, value-at-risk, and the conditional value-at-risk (CVaR) (see

e.g., Chelst and Canbolat, 2011, for further details on these measures). The two latter mea-

sures are possibly the most widely used in the literature. The risk measure adopted in this

work is the CVaR (Uryasev and Rockafellar, 2001).

Stochastic Programming has become a very important tool to hedge against uncertainty

when compared to approaches derived from simplified (deterministic) counterpart models

(Birge and Louveaux 2011, Wallace and Ziemba 2005). Due to applications arising in many

relevant fields (e.g., logistics), an increasing amount of work is being done on two-stage, and
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multi-stage, stochastic mixed-integer linear programming (e.g., Santoso et al., 2005; Hinojosa

et al., 2014; Nickel et al., 2012).

Initially, stochastic programming literature focused predominantly on risk-neutral decision

makers, i.e., the future assets are accounted for using a mean-type objective function. More

recently this trend has changed and there exists an increasing interest on models capturing

a risk-averse attitude. To the best of our knowledge, the first work considering a mean-risk

objective function in two-stage stochastic programming is Ahmed (2006), where the complex-

ity of mean-risk stochastic programming considering different risk measures was investigated.

Fábián (2008) studied two-stage CVaR minimization problems (as well as CVaR-constrained

problems) and devised decomposition and solution schemes based on the linear programming

representation of CVaR proposed by Künzi-Bay and Mayer (2006). Also in the context of

two-stage stochastic linear programming problems, Miller and Ruszczyński (2011) consider

an objective function combining several conditional risk measures.

For the case of two-stage stochastic mixed-integer linear programming problems, Schultz

and Tiedemann (2006) presented an explicit mixed-integer linear programming formulation for

the CVaR, when the probability distribution is discrete and finite. For the same problem Carøe

and Schultz (1999) devised a dual decomposition approach by relaxing the non-anticipativity

constraints.

The use of risk measures in two-stage stochastic mixed-integer linear programming prob-

lems has been considered in several applications. Noyan (2012) proposed a CVaR mean-risk

model in the context of disaster relief, which was solved with a variation of the L-Shaped

method (Van Slyke and Wets, 1969). In the context of retrofitting infrastructures in a trans-

port network to protect against disaster events (e.g., earthquake), Liu et al. (2009) studied

a mean-risk two-stage stochastic programming model in which risk is handled via a semi-

deviation measure.

Recently, Homem-de-Mello and Pagnoncelli (2016) discussed risk measures in multi-stage

stochastic programming and potential applications. Also, Escudero et al. (2017) considered a

mean-risk model using a so-called time stochastic dominance measure and proposed a scenario

cluster Lagrangean decomposition approach. Finally, we refer to the work by Alonso-Ayuso

et al. (2016) who presented a mean-risk multistage stochastic mixed-integer linear program-

ming model for a forestry management problem.

In this work we focus on the minimization of the CVaR for a hard combinatorial optimiza-

tion problem. We investigate a two-stage stochastic programming formulation, derived from

the direct definition of CVaR, as an alternative to previous linear representations for the case

when the random vector has a discrete distribution (Rockafellar and Uryasev, 2002; Schultz

and Tiedemann, 2006). In particular, we consider a mixed-integer non-linear programming

formulation and study some of its properties as well as their algorithmic implications. Given
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the combinatorial nature of the considered problem, the evaluation of each scenario requires

solving a hard optimization problem, even if the number of scenarios is discrete. However,

the properties of the proposed formulation can be exploited to derive a solution framework,

as an alternative option to schemes based on linear representations.

The new algorithmic framework has been applied to a risk-averse stochastic fixed-charge

transportation problem, which generalizes the risk-neutral objective studied in Hinojosa et al.

(2014). This problem incorporates three main features to a standard transportation problem.

First, it is assumed that a strategic decision has to be made concerning the distribution chan-

nels that will be activated for shipping demand between origin/destination pairs. Similarly to

Balinski (1961), activating a distribution channel incurs a fixed cost. Second, variable costs

associated with flows, both for handling them at the origins and for sending them through

the activated network, are considered as well. This extends the fixed-charge transportation

problem of Balinski (1961), which does not consider handling costs at the origins. Third, we

assume that demand is stochastic (reflecting volatility of current markets leading to continu-

ously changing demands), and consider the problem as a two-stage stochastic problem with

recourse. The first stage is given by the strategic decision concerning the distribution chan-

nels and the recourse action refers to the tactical decision corresponding to the transportation

pattern.

Examples of potential applications of such a problem are listed in Hinojosa et al. (2014)

and arise in logistics systems in which previous contracts are needed in order to activate

distribution channels (see, for instance, Xu and Nozick, 2009). Other examples can be found

in telecommunications where traffic can be sent through some channel only if such channel

has been previously made physically available (see Ahuja et al., 1993). Applications can also

be found in production planning when a set of machines is available during a certain period

of time for producing a set of products and one has to decide which machines will produce

which products and in what quantities (see, for instance, Grieco et al., 2001, and the references

therein). Finally, one potential area where the findings of this work can be applied concerns

fleet management. In fact, most of the distribution companies must decide in advance about

the fleet portfolio to use (type and number of vehicles) before knowing the demand. Some

work in this direction includes List et al. (2003) and Meng et al. (2012).

It is also possible to find some work in the literature that investigates the use of CVaR in

the context of logistics/transportation systems. Hemmati et al. (2016) highlights the usage

of CVaR as a risk measure in a context of energy transportation. The authors propose a

two-stage stochastic mixed integer linear programming. Uncertainty is associated with wind

resources, i.e., it is associated with supply. The decisions are related with scheduling stor-

age units. Toumazis and Kwon (2016) consider CVaR for routing decisions in the context

of hazmat materials transportation. In this case, uncertainty is associated with the occur-
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ring accidents and their consequences. The concept of worst case CVaR is introduced as a

way to hedge against data inaccuracy. A robust optimization modeling framework is adopted.

In this paper we develop an algorithmic framework for a two-stage stochastic combinatorial

optimization problem, with a finite set of scenarios, assuming a CVaR objective. The solution

algorithm exploits some properties of a mixed-integer non-linear programming formulation,

derived from the direct definition of CVaR. Alternative solution strategies are applied and

computationally tested for a fixed-charge stochastic transportation problem that generalizes

the problem studied in Hinojosa et al. (2014). The obtained numerical results are thoroughly

discussed and analyzed. These results show that our proposal outperforms alternative meth-

ods for the largest tested instances.

The remainder of this paper is organized as follows. Section 2 recalls the concepts of

CVaR on risk-averse decision making as well as its computation via the mathematical pro-

gramming representation developed in Uryasev (2000), Rockafellar and Uryasev (2002) and

Schultz and Tiedemann (2006). In Section 3 we introduce the mixed integer non-linear for-

mulation for CVaR that we use, we study some of its properties, and present the proposed

solution framework. Section 4 focuses on its application to the CVaR stochastic fixed-charge

transportation problem. The numerical results of the computational tests executed with our

solution proposal are presented and analyzed in Section 5. The paper ends in Section 6 with

some conclusions and guidelines for future research.

2. Models for risk-averse decision making

Consider a two-stage stochastic problem, where stochasticity is associated with a random

vector ξ and is expressed via a finite set of possible scenarios Ω. Let πω, ω ∈ Ω, denote the

probabilities of the different scenarios. In two-stage stochastic problems an a priori (first-

stage) solution must be defined before the actual realization of ξ is known. We denote by Y

the domain for a priori solutions. The second-stage recourse action associated with a given

first-stage decision y ∈ Y represents the set of decisions to be made for each possible real-

ization of the uncertain vector ξ. Let R(y, ξω) denote the cost of the recourse action under

scenario ω ∈ Ω. Computing R(y, ξω) requires to solve some associated optimization problem

on the set of second-level variables. Moreover, when an a priori solution y ∈ Y is considered,

it is not possible to compute the actual cost of the recourse action. The reason is that when

the a priori solution y ∈ Y is chosen, the specific scenario ω ∈ Ω that will actually occur

in the realization of ξ is unknown. In this context it is natural to consider some objective

function that incorporates joint information of all possible realizations. One such objective

for the case of risk-averse decision making is the value-at-risk (VaR) that we revisit below.
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Let R(y; ξ) = f(y) + R(y, ξ) be the cost associated with an a priori solution y ∈ Y ,

where f(y) represents the here-and-now cost, and R(y, ξ) the value of the recourse function.

The latter is a random variable representing the cost of the optimal second-stage decision for

the a priori solution and thus, R(y; ξ) is also a random variable. For a given confidence level

α, the VaR is defined as the α-quantile of the probability distribution of R(y; ξ). That is, the

VaR of an a priori solution y ∈ Y , denoted by ηα(y), is the value of the minimum threshold

η for which P [R(y; ξ) ≤ η] is at least α. More formally,

ηα(y) = min {η | P [R(y; ξ) ≤ η] ≥ α} .

Using as objective the minimization of the VaR for a given confidence level α, that is,

miny∈Y ηα(y), the decision maker aims at minimizing the threshold for the risk level 1 − α.

Still, for the solution y obtained with this objective, the value of R(y; ξ) may be too high,

for some of the scenarios whose cost exceeds this minimum threshold, even if their joint

probability is very low (smaller than or equal to 1−α). An alternative that takes into account

this consideration is to minimize the expected cost of the scenarios whose cost exceeds the

threshold for a fixed confidence level α. This leads to the minimization of the α−Conditional

Value at Risk (α-CVaR), which is precisely the objective that we consider in this work and

we formally define below.

The α-CVaR of an a priori solution y ∈ Y , Ψα(y), is the expected value of the total cost

in the (1− α)× 100% worse scenarios for the a priori solution y, i.e., it is the expected cost

conditional to the scenarios whose value exceeds ηα(y). Note that the α-CVaR generalizes

the expected cost objective, which is a particular case when all the scenarios come into play.

Thus, when α is suitably chosen the α-CVaR of an a priori solution y is just the expected

value of R(y; ξ) (see Puerto et al., 2017).

For a given solution y ∈ Y , it is difficult to express Ψα(y), unless an analytical repre-

sentation for ηα(y) is known, because the latter is involved in the definition of the former.

One possibility (see Uryasev, 2000; Rockafellar and Uryasev, 2002, for further details) is to

consider the following function:

Φα(y, η) = η +
1

1− α
E [(R(y; ξ)− η) | R(y; ξ) > η] ,

which, when uncertainty is expressed by a finite set of scenarios reduces to

Φα(y, η) = η +
1

1− α
∑
ω∈Ω

(R(y; ξω)− η)+ πω, (1)

with a+ = max{0, a}. Then, the α-CVaR of y ∈ Y can be computed as:

Ψα(y) = Φα(y, η(y)) = min
η

Φα(y, η).
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Thus, the problem of finding a feasible vector y ∈ Y with the smallest α-CVaR reduces

to:

CVaRα min
y∈Y

Ψα(y) = min
y∈Y

Φα(y, η(y)) = min
y∈Y, η

,Φα(y, η), (2)

which, taking into account (1), can be expressed as:

CVaRα minimize η +
1

1− α
∑
ω∈Ω

πωψω (3)

subject to y ∈ Y, (4)

ψω ≥ R(y; ξω)− η, ω ∈ Ω, (5)

ψω ≥ 0, ω ∈ Ω. (6)

Note that the meaning of the ψω variables in optimal solutions to the above formulation is

precisely ψω = (R(y; ξω)− η)+, ω ∈ Ω. When the domain Y can be expressed by means

of a set of linear constraints, the above formulation is a valid mathematical programming

formulation, linear on the decision variables y.

It is possible to derive an alternative formulation for CVaR by observing that when y ∈ Y
is fixed, its α-CVaR, Ψα(y), can be expressed just in terms of y (Rockafellar and Uryasev,

2002). In order to make the paper self-contained we include the reformulation in which we

base our algorithmic framework.

For a given a priori solution y ∈ Y , let us solve the associated second-stage problem for

each realization, ξω ω ∈ Ω, of the uncertain vector ξ, then sort the scenarios by non-increasing

values of R(y; ξω), and finally index them accordingly. To alleviate notation, if ωr(y) is the

index of the r-th sorted scenario we will write ξr(y) and πr(y) instead of ξωr(y) and πωr(y),

respectively. Hence,

R(y; ξ1(y)) ≥ . . . ≥ R(y; ξ|Ω|(y)),

with probabilities π1(y), . . . , π|Ω|(y), respectively. Let `(y) be the index such that

π1(y) + . . .+ π`(y)−1 ≤ 1− α (7)

π1(y) + . . .+ π`(y) > 1− α. (8)

Then, according to Rockafellar and Uryasev (2002), ηα(y) = R(y; ξ`(y)).

Let Ω(y) = {ωr(y) ∈ Ω | 1 ≤ r ≤ `(y)} and let β(y) be the weight vector induced by
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Ω(y), whose r-th component is given by

βr(y) =


πr(y)

1−α if ωr(y) ∈ Ω(y) \ {ω`(y)}

1−
∑

ω∈Ω(y)\{ω`(y)}
πω

1−α if ωr(y) = ω`(y)

0 if ωr(y) ∈ Ω \ Ω(y).

(9)

Since the non-zero components of β(y) determine the conditional probabilities for the

scenarios in Ω(y), the α-CVaR of y can be expressed as:

ϑ(β(y),y) := f(y) +

|Ω|∑
r=1

βr(y)R(y, ξr(y)). (10)

As pointed out by Fábián (2008) the above β(y) vectors correspond to the dual optimal

solution of the linear programming problem emerging from (3)–(6) when y ∈ Y is fixed. Such

weights can also be looked at as the optimal solution of the linear relaxation of a knapsack

problem. This is an aspect that has been explored in the context of k-sum optimization by

Bertsimas and Sim (2003, 2004); Puerto et al. (2017); and Punen (1992).

3. Algorithmic framework for minimizing CVaR

In this section we exploit the results of the above section to derive our algorithmic frame-

work for the CVaR. Note that the definition of the CVaR associated with a given a priori

solution y ∈ Y produces the following non-linear formulation for CVaRα:

CVaRα min ϑ(β(y),y) := f(y) +

|Ω|∑
r=1

βr(y)R(y, ξr(y)) (11)

s. t. y ∈ Y. (12)

One difficulty of this formulation, which is independent of the representation of the domain

Y , is the non-linearity of the objective function. This can be partially overcome by using a

fixed weight vector β ∈ R|Ω|. The resulting subproblem is:

H(β) = min f(y) +
∑
ω∈Ω

βωR(y, ξω) (13)

s. t. y ∈ Y. (14)

Of course, there is no guarantee that when β ∈ R|Ω| is fixed, H(β) produces an optimal

solution to CVaRα. However, as we will see, when β ∈ R|Ω| is suitably chosen, from an

optimal solution to H(β) we can derive both a lower and an upper bound on the optimal
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value of CVaRα. In this context, a key issue is how to select appropriate weight vectors

β ∈ R|Ω| that provide useful bounds. For this we will choose suitable indices ` ∈ {1, . . . |Ω|}
and scenario sets Ω` ⊆ Ω with ω` ∈ Ω` that jointly satisfy∑

ω∈Ω`\{ω`}

πω ≤ 1− α (15)

∑
ω∈Ω`

πω > 1− α. (16)

In the following such subsets Ω` are referred to as `-tails for α. Any `-tail for α naturally

induces the following vector β that we refer to as `-weight vector :

βω =


πω

1−α ω ∈ Ω` \ {ω`}

1−
∑

ω∈Ω`\{ω`}
πω

1−α ω = ω`

0 ω ∈ Ω \ Ω`.

(17)

The particular case Ω` = Ω(y) is referred to as scenario subset induced by y ∈ Y , and

the `-weight vector β = β(y) is called scenario vector induced by Ω(y).

In principle, any `-weight vector induced by a subset of scenarios defining an `-tail, or

any other vector in the convex hull of such vectors, can be useful choices. In our framework

we will indistinctively use both weight vectors induced by generic `-tails as well as scenario

vectors.

Remark 1. The expected conditional cost of an a priori solution y relative to any subset of
scenarios defining an `-tail, Ω` 6= Ω(y), cannot exceed the α-CVaR of y. This includes the
scenario subsets Ω(y′) induced by different a priori solutions y′ ∈ Y , y′ 6= y. This is due
to the sorting used to define the scenario subset Ω(y), which guarantees that this subset is
precisely the set of worse scenarios for the α-quantile for y, and to the fact that β(y) defines
the conditional probabilities for this set of scenarios.

In what follows we will denote by u the set of the second-stage variables. We further

denote by Q(y) the set of feasible solutions u associated with a given y ∈ Y , and by

Q = {(y,u) | u ∈ Q(y), y ∈ Y } the feasible domain for joint vectors. We assume that

the problem we are dealing with has relatively complete recourse, i.e., Q(y) 6= ∅, for all

y ∈ Y . This is motivated by the application we present in Section 4. When β = β(y) is the

scenario vector induced by Ω(y) for some y ∈ Y , H(β) can be interpreted as the problem of

finding the best solution q = (y′,u) ∈ Q for the scenario set induced by y. Since y′ does not

necessarily coincide with y, this perspective is complementary to that of the computation of

the scenario vector β(y), which, is to find the set of scenarios that define the actual CVaRα

for a given solution y.
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Next we analyze some of the properties of subproblems H(β). First we note that if

q = (y,u) is an optimal solution toH(β), then q ∈ Q, since otherwise it would not be optimal.

Let us denote by v (β,q) the objective function value (13) for solution q = (y,u) ∈ Q for

H(β). Note that v (β(y),q) = ϑ(β(y),y).

Remark 2.

(i) The domain of H(β) is exactly the same as that of CVaRα, and only their objective
functions are different. Thus, any feasible solution to H(β) produces a valid upper
bound to CVaRα, provided that it is evaluated with respect to the function ϑ(β(y),y).
Therefore, for any q = (y,u) ∈ Q, v(β(y),q) is an upper bound on the optimal value
to CVaRα.

(ii) Let q = (y,u) ∈ Q, with associated scenario vector β(y). Then, v
(
β′,q

)
≤ v (β(y), q)

for any `-weight vector β′ 6= β(y). This property is just a restatement of Remark 1,
taking into account that if β′ 6= β(y), then the `-tail that induces β′ will also be different
from Ω(y).

Below we prove that when β is an `-weight vector the optimal value to H(β) gives a valid

lower bound for CVaRα.

Proposition 1. Let v∗ be the optimal value to CVaRα. Let also q̄ = (ȳ, ū) ∈ Q be an optimal
solution to H(β) for an `-weight vector β. Then, v (β, q̄) ≤ v∗.

Proof. Let q∗ = (y∗,u∗) ∈ Q denote an optimal solution to CVaRα with associated scenario
vector β∗ = β(y∗). Consider also an optimal solution to H(β), q̄ = (ȳ, ū) ∈ Q, with value
v (β, q̄). Then

v (β, q̄) ≤ v (β,q∗) ≤ v (β∗,q∗) = v∗,

where the first inequality follows from the optimality of q̄ for H(β) and the second one from
the definition of conditional value at risk of solution q∗ and Remark 2.(ii).

The next result allows to determine if a given solution q̄ = (ȳ, ū) ∈ Q is optimal for

CVaRα.

Proposition 2. Let q̄ = (ȳ, ū) ∈ Q be an optimal solution to H(β̄) for an `-weight vector β̄.
If the scenario vector induced by Ω(ȳ) coincides with β̄, i.e. β(ȳ) = β̄, then q̄ is an optimal
solution to CVaRα.

Proof. Let q̄ = (ȳ, ū) ∈ Q be an optimal solution to H(β̄) for the `-weight vector β̄. By
Proposition 1, v

(
β̄, q̄

)
≤ v∗. On the other hand, by Remark 2.(i), v∗ ≤ v(β(ȳ), q̄). Finally,

since β(ȳ) = β̄ we have,

v(β(ȳ), q̄) = v
(
β̄, q̄

)
≤ v∗ ≤ v(β(ȳ), q̄),

and the result follows.
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The above results allow us to propose a solution algorithm that solves a sequence of

subproblems H(βk) for a series of weight vectors βk. As we have already pointed out there

is no guarantee that when β ∈ R|Ω| is fixed, H(β) produces an optimal solution to CVaRα.

However, as we have seen above, from an optimal solution to H(β) we can derive both a

lower and an upper bound on the optimal value of CVaRα. Moreover, Proposition 2 gives a

termination criterion for such an iterative algorithm, certifying optimality. A pseudocode of

the above algorithmic scheme is given in Algorithm 1.

Algorithm 1 Algorithmic scheme for CVaRα.

// Initialization
y0 ← Any feasible vector y;
β0 ← β(y0)
UB ←∞; LB ← 0
k ← 1
repeat

Determine yk solving (13)–(14)
Update UB and LB
βk ← β(yk)
k ← k + 1

until stopping criterion met

The new algorithmic framework may be particularly suitable for problems of combinato-

rial nature in which an appropriate representation of the domain Y is not available, so the

evaluation of H(βk) remains a hard optimization problem. This is the approach that we

propose and we apply for the CVaR Transportation Problem that we study in the following

section.

4. The Conditional Value at Risk Transportation Problem

In this section we define the Conditional Value at Risk Transportation Problem (CVaRαTP)

which extends the single-commodity variant of the expected cost stochastic transportation

problem studied in Hinojosa et al. (2014).

As we show below, by considering the minimization of CVaR we face a more involved

mathematical model than when considering an expected cost objective. This is explained

by the fact that the expected value to be computed now involves only a subset of scenarios

that, in turn, depends on the first-stage decision to make. Therefore, in addition to the first-

stage decisions, already considered by Hinojosa et al. (2014), we now need to identify the

(1 − α) × 100% worst scenarios which calls for sorting the second-stage costs. This implies

that the methodology and algorithms applied in that paper are no longer valid for our current

problem.

Next we introduce some notation and describe the feasible domain for the CVaRαTP.

Then, we adapt formulations (3)–(6) and (11)–(12) to it.
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Let I and J denote some given index sets for origins and destinations, respectively. In or-

der to satisfy some existing demand located at the destinations, some product can be shipped

from the origins to the destinations. Each origin has a limited capacity, that represents the

maximum amount of product that it can distribute to demand points.

Sending flow from an origin to a destination incurs two types of costs: a fixed set-up cost

for activating the connection (link) and a variable cost, which depends on the amount of flow

that is sent through the link. Activating any link starting at a given origin i ∈ I incurs an

additional fixed cost due to the set-up of handling operations at the origin. It is possible that

the flows that are routed do not meet the demand at some destination point, incurring in

such a case some additional cost (e.g. loss opportunity cost).

The following deterministic parameters are known:

cij Set-up cost for link (i, j), i ∈ I, j ∈ J .

dij Unit cost for the flow through link (i, j), i ∈ I, j ∈ J .

ki Maximum amount that can be distributed from (or be handled at) origin i ∈ I.

hi Fixed handling cost at origin i ∈ I. We assume that not all these values can

be equal to 0.

pj Unit penalty for unmet demand at destination j ∈ J (e.g., loss opportunity

cost).

In the CVaRαTP stochasticity is associated with demand, and expressed by a finite set of

possible scenarios Ω with probabilities πω, ω ∈ Ω. We denote by Dj the demand of customer

j ∈ J and by ξ = [Dj ]j∈J the associated random vector.

A priori solutions for the CVaRαTP are given by a set of distribution links that are acti-

vated. The cost of an a priori solution is the overall set-up cost for the selected links. After

demand is revealed, the recourse action is to identify the origins that will actually operate, and

to decide the quantity of product to ship from each such origin to each demand destination,

using the links activated in the a priori solution. Hence, broadly speaking, feasible solutions

to the CVaRαTP consist of (i) the links that are be activated in the a priori solution plus,

(ii) the origins that will operate, and (iii) the flows that will be sent via the activated links,

in the second-stage.

A priori decisions can be represented by means of the following set of decision variables:

yij =

1 if link (i, j) is activated

0 otherwise
i ∈ I, j ∈ J .
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According to the notation used in Section 2 the domain of the a priori solutions is

Y =
{
y ∈ {0, 1}|I|×|J |

}
and the cost of a priori solutions can be expressed in terms of the

decision variables as f(y) =
∑

i∈I
∑

j∈J cijyij .

Given a first-stage decision y, the problem of finding a minimum cost second-stage deci-

sion for each possible scenario ω ∈ Ω (equivalently, for each possible realization of the demand

ξ), can be formulated using the following sets of decision variables:

ziω =

1 if origin i is used under scenario ω

0 otherwise
i ∈ I, ω ∈ Ω,

xijω = Flow to be shipped from i ∈ I to j ∈ J under scenario ω ∈ Ω,

sjω = Amount missing at destination j ∈ J under scenario ω ∈ Ω.

The motivation for considering the s-variables is the need to compute the penalties for

unmet demand. Nevertheless, the use of such variables can be avoided if shortages are con-

sidered as shipments made from a fictitious origin with enough capacity and a set-up cost

equal to 0. In this case, the unit shipment costs from such fictitious origin must be defined

as the unit penalty cost at destination. Hence, in the following we consider an extended set

of origins I ∪ {0} where origin 0 is the fictitious one and has a (scenario-dependent) capacity

given by k0ω = max{
∑

j∈J Djω−
∑

i∈I ki; 0}, ω ∈ Ω. The associated set-up and routing costs

are defined as h0 = 0 and d0j = pj , j ∈ J , respectively. For ease of presentation, hereafter we

use I to denote the extended set of origins, including the fictitious one. When the new set I

contains the fictitious origin, part of the flow that arrives to a demand point may correspond

to some some missing amount, as just explained. Now, the correct evaluation of the missing

amount at a destination requires to impose that the overall flow arriving at each destination

j ∈ J is at least its demand Dj . Then, a minimum cost recourse action for the a priory

solution y when the realization of the stochastic demand ξ corresponds to scenario ω ∈ Ω can

be formulated as follows:

R(y, ξω) = minimize
∑
i∈I

hiziω +
∑
i∈I

∑
j∈J

dijxijω, (18)

subject to xijω ≤ Djωyij , i ∈ I, j ∈ J, (19)∑
i∈I

xijω ≥ Djω, j ∈ J, (20)∑
j∈J

xijω ≤ kiziω, i ∈ I, (21)

xijω ≥ 0 i ∈ I, j ∈ J, (22)

ziω ∈ {0, 1}, i ∈ I. (23)

12



Constraints (19) ensure that flows are shipped using distribution links previously acti-

vated. Constraints (20) guarantee that a sufficient amount of flow is shipped to each demand

destination. The identification of the origins that are activated and their capacity limitations

are imposed in (21). We somehow abuse notation by not making explicit the above-mentioned

scenario-dependent capacity of the fictitious origin in its associated constraint (21). The do-

main of the decision variables is defined in (22)–(23). The objective (18) computes the cost of

a recourse action for the a priory solution y under scenario ω ∈ Ω, as the set-up costs of the

handling operations at the origins that are used plus the overall routing costs, which include

the penalty costs for unmet demand.

Note that constraints (19) can be reinforced to the set of tighter constraints:

xijω ≤ Dijωyij , i ∈ I, j ∈ J, ω ∈ Ω (24)

where Dijω = min{ki, Djω}. In the following we assume that this reinforcement is applied

together with the following valid inequalities, which impose that the overall capacity of the

activated origins must be enough to supply the total demand in each scenario ω ∈ Ω:∑
i∈I

kiziω ≥
∑
j∈J

Djω, ω ∈ Ω. (25)

Using again the notation of Section 3 we assume that the domain of the recourse function

for a given a priori solution y is expressed by

Q(y) = {u = (z,x) | (18)− (25) are satisfied for the a priori solution y}
and the domain for feasible joint vectors for the CVaRαTP is Q = {q = (y, z,x) with y ∈
Y, (z,x) ∈ Q(y)}.

The adaptation of the CVaRα formulation (3)–(6) to the CVaRαTP is:

CVaRαTP minimize η +
1

1− α
∑
ω∈Ω

πωψω, (26)

subject to ψω ≥

∑
i∈I

∑
j∈J

cijyij +
∑
i∈I

∑
j∈J

dijxijω +
∑
i∈I

hiziω

− η, ω ∈ Ω, (27)

ψω ≥ 0, ω ∈ Ω, (28)

(y, z,x) ∈ Q (29)

Since the domain Q is now represented by sets of linear constraints, the above formulation

is a mixed integer linear program.

13



On the other hand, the adaptation of (11)–(12) to the CVaRαTP becomes:

CVaRαTP min
∑
i∈I

∑
j∈J

cijyij +

|Ω|∑
r=1

βr(y)

∑
i∈I

∑
j∈J

dijxijωr +
∑
i∈I

hiziωr

 (30)

subject to (y, z,x) ∈ Q. (31)

Due to the non-linearity of the objective function, formulation (30)–(31) is a mixed integer

non-linear program. Furthermore, we have no closed expression for the weight vector β(y),

which depends on y. Therefore, one possibility to partially overcome such difficulty is to

focus on the subproblem H(β) that arises when the weights are fixed to some constant vector

β ∈ R|Ω| suitably selected. Now H(β) becomes:

H(β) = min
∑
i∈I

∑
j∈J

cijyij +
∑
ω∈Ω

βω

∑
i∈I

∑
j∈J

dijxijω +
∑
i∈I

hiziω

 (32)

subject to xijω ≤ Djωyij , i ∈ I, j ∈ J, ω ∈ Ω, (33)∑
i∈I

xijω ≥ Djω, j ∈ J, ω ∈ Ω, (34)∑
j∈J

xijω ≤ kiziω, i ∈ I, ω ∈ Ω, (35)

∑
i∈I

kiziω ≥
∑
j∈J

Djω, ω ∈ Ω, (36)

yij ∈ {0, 1}, i ∈ I, j ∈ J, (37)

xijω ≥ 0 i ∈ I, j ∈ J, ω ∈ Ω, (38)

ziω ∈ {0, 1}, i ∈ I, ω ∈ Ω, (39)

In the following, we specify the elements of Algorithm 1 in its application to the CVaRαTP.

The initialization phase starts sorting the scenarios by decreasing values of their total demand∑
j∈J Djω. Thus, the initial constant vector β0 is computed as the `-weight vector induced

by the `-tail obtained according to this sorting. In each iteration k ≥ 1 we solve the problem

H(βk−1) and we calculate a lower bound as LBk = v(βk−1,qk) being qk = (yk, zk,xk) ∈
Q an optimal solution of H(βk−1). Then, we update the scenario vector as βk = β(yk)

and we calculate an upper bound as UBk = v(βk,qk). If the updated scenario vector βk

coincides with βk
′

for some k′ < k− 1, we define the new weight vector as βk+βk−1

2 . Finally,

the algorithm terminates either when an optimal solution of the CVaRαTP is found, which

happens when βk = βk−1, or after a maximum number of iterations previously specified. In

this last case we obtain a lower and an upper bound of the optimal solution of the CVaRαTP.
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5. Computational tests

In this section we report on the results of a series of computational tests performed to

evaluate the methodological developments discussed in the previous sections.

For the computational study we considered test data introduced by Hinojosa et al. (2014)

namely, the set of instances involving a single commodity, since this is the case in the current

work. In particular, we have |I| ∈ {10, 20, 50}, |J | ∈ {20, 50, 100}, and |Ω| ∈ {8, 12, 20, 30}.
For each combination of |I| and |J | such that |I| ≤ |J |, five instances were retrieved from

Hinojosa et al. (2014) for each considered value of |Ω|. The reader is referred to that work for

details concerning the generation of the instances. Overall, we are considering 160 instances.

The computational tests were performed on a PC Intel Core i7-6700K CPU @ 4.00 CHz

4.01 CHz with 32 GB of RAM. The solution algorithms were implemented using Visual

Studio C++ 2017 integrated with ILOG CPLEX Studio 12.7.1 Concert Technology routines.

In particular, all the MIP formulations were solved using that solver. Apart from the MIP

gap, default parameters have been used.

With the purpose of comparing the CVaRαTP formulation, given by (26)–(29), and the

proposed algorithmic framework based on formulation (30)–(31), we tested four ways for tack-

ling the specific problem we are investigating:

� GEN: solve formulation (26)–(29).

� ALG1: execute one single iteration of Algorithm 1.

� GEN-2,5%: solve formulation (26)–(29), using as a stopping criteria to attain a MIP

gap smaller than or equal to 2,5%.

� ALG1-2,5%: execute Algorithm 1 as follows. A MIP gap of 2,5% is set for the for-

mulations (32)-(39) solved at the different iterations. The execution of Algorithm 1

terminates either when the number of iterations reaches |Ω|, or when the deviation gap

between the current lower and upper bounds is smaller than or equal to 2,5%.

For all alternatives a time limit of two hours was considered.

5.1. Results

The results obtained have been split among Tables 1–3 according to the number of origins.

In these tables the information contained in each row refers to average values for 5 instances;

|J | and |Ω| indicate the number of customers and the number of scenarios, respectively, for

each group of 5 instances; “Approach” stands for the alternative approach considered when

solving CVaRαTP among the four detailed above; “CPU time (seconds)” is the (average)

time, in seconds, required to solve the problem to optimality or to meet the stopping criterion;
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“# Iter” is the (average) number of iterations required by Algorithm 1. This information is

depicted only for ALG1-2,5% since this is the only approach for which this information makes

sense. Finally, three columns present different gaps. “Gap (%) UB-LB” is the (average)

percentage gap considering the best upper and lower bounds obtained in the corresponding

approach. For each instance, it is computed as (UB− LB)/UB× 100. “Gap (%) UB” is the

(average) percentage gap computed using the objective values of the best feasible solution

obtained by the corresponding approach, say v̄, and the best feasible solution found using

the standard formulation (26)–(29), say v̄GEN. Hence, for each instance, “Gap (%) UB” is

computed as [v̄ − v̄GEN]/v̄GEN × 100. We do not present such gap for approach GEN since it

is trivially equal to zero. “Gap (%) LB” is the (average) percentage gap computed using the

objective value of the best feasible solution obtained using the standard formulation (26)–

(29)—v̄GEN—and the best lower bound obtained in the corresponding approach, say v. For

each instance, it is obtained as [v̄GEN − v]/v̄GEN × 100. Again, we do not present this gap for

approach GEN since in this case it coincides with Gap (%) UB-LB. We note that GEN is the

“standard” existing approach. This motivates the use of the corresponding upper bound for

computing two of the three gaps just described.

Despite the difficulty of drawing overall comparisons when observing the extensive infor-

mation provided by Tables 1–3, there are a few aspects that can be highlighted.

First, the time limit of two hours was often reached when using either GEN or ALG1.

Nevertheless, the final gap—“Gap (%) UB-LB”—is in general below 2%. When this is not

the case, we often find the final gap provided by ALG1 outperforming that of GEN (e.g.,

|I| = 20, |J | = 100, |Ω| = 30). The superiority of ALG1 over GEN seems stronger when we

consider the largest instances tested (|I|=50; |Ω| = 20, 30).

Second, observing Tables 2 and 3 we see that in several cases the average “Gap (%)

UB” is negative for ALG1 and ALG1-2,5% indicating a better upper bound provided by

these approaches when compared to GEN. Again, this is more evident for larger instances

(Table 3).

Third, considering either GEN-2,5% or ALG1-2,5%, in most of the cases, a final gap—

“Gap (%) UB-LB”—less than or equal to 2.5% was obtained in a fairly small computing

time.

Finally, regarding the quality of the best lower bound (when compared to the upper bound

provided by the standard approach GEN), we observe that, in general, ALG1 performs the

best. In particular, one single execution of Algorithm 1 seems to be enough for obtaining a

sharp lower bound.

Although true, the above observations are not enough for drawing a clear conclusion as

for the superiority of our new approach when compared to the standard one. Below we

present results, which provide further insight into the overall performance of the compared

alternatives.
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(b) All instances with |Ω| = 30.

0

10

20

30

40

50

60

70

80

90

100

0,20% 0,40% 0,75% 1,10% 1,60% 2,10% 2,60% 3,10% 3,60%

%
 o

f 
in

st
an

ce
s

GEN

ALG1

(c) Larger instances (|I| = 50, |J | = 100, |Ω| = 30).

Figure 1: Performance profile with respect to the Gap.

5.2. Performance profiles

In this section we analyze the performance profiles of the different approaches tested. We

recall that a performance profile graph plots the percentage of instances solved for each value

of the corresponding measure.

We start with a gap performance profile for GEN and ALG1 with a time limit of two hours.

For this, we consider the gaps between the best upper bound provided by each approach and

the best upper bound among the two approaches. More specifically, let v̄GEN be the objective

function value for the best feasible solution found using GEN and v̄ALG1 the corresponding

value for ALG1. Define v∗ = min{v̄GEN, v̄ALG1}. For GEN and ALG1 we compute the gap

according to (v̄GEN − v∗)/v∗ × 100 and (v̄ALG1 − v∗)/v∗ × 100, respectively. The gap profiles

are depicted in Figure 1.

As we can see in Figure 1(a), when we consider the whole set of instances the performance

profile with respect to the gap of the standard formulation (26)–(29) is slightly better than

the performance profile of our alternative solution approach. However for all instances with

|Ω| = 30 and for the larger instances —Figures 1(b) and 1(c)— the performance profile of

our new approach ALG1 is superior to that of the standard formulation. In this comparison,

it is worth-noting that we are considering only one iteration of Algorithm 1. A similar

conclusion was already sketched in the previous section from the analysis of the extensive

results presented in Tables 1–3.

Figure 2 depicts performance profiles with respect to computing times for GEN and ALG1.
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Figure 2: Performance profile with respect to computing times (all instances).

All instances were considered when drawing this profiles. As we can see, both approaches

exhibit a similar behavior. In this figure, we also get a clear empirical evidence of the difficulty

for solving CVaRαTP. As can be seen, only 10% of the instances were solved to optimality

within the time limit of two hours with any of the two tested methods.

Due to the difficulty in solving CVaRαTP to proven optimality, we focused on the behavior

of the two variants of the proposed approaches, when a 2, 5% MIP gap is set as a termination

criterion when solving the MIP formulations. The corresponding performance profiles for the

computing times are depicted in Figure 3. In this case, the superiority of the new model-

ing framework (ALG1-2,5%) as compared to the standard one (GEN-2,5%) becomes visible.

Nonetheless, it is stronger for the largest instances tested as shown in Figure 3(c).

The superiority of ALG1-2,5% becomes more noticeable if we consider performance profiles

with respect to the Gap(%) UB-LB, as depicted in Figure 4. In the particular cases of

Figures 4(b) and 4(c) we see that ALG1-2,5% provides in general smaller gaps. This fact,

combined with a better performance in terms of computing times, makes clear the superiority

of ALG1-2,5% when compared to the standard approach GEN-2,5%.

Finally, Figure 5 gives the performance profile of ALG1-2,5% with respect to the number

of iterations. As we can observe, in 90% of the cases, Algorithm 1 stopped after performing

just one iteration since that was enough to obtain a solution with a MIP gap smaller than or

equal to 2, 5%.

5.3. Further testing—large-scale instances

In order to give more evidence of the superiority of our proposed solution framework

relative to the standard one, we have compared both of them on one additional set of 15 large-

scale instances, generated as proposed in Hinojosa et al. (2014). In all cases we considered

|Ω| = 50 scenarios. For |I| = 50 we took |J | = 100 and 200; for |I| = 100 we considered

|J | = 200. Five instances have been generate for each combination of |I|, |J | and |Ω|. The

obtained results are summarized in Table 4. We do not report computing times, because the

two hours time limit was reached in all cases. Moreover, neither the final gap at termination

is reported for approaches GEN-2, 5% and ALG1-2, 5% with the largest instances (|I| = 100,
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(c) Larger instances (|I| = 50, |J | = 100, |Ω| = 30).

Figure 3: Performance profile with respect to computing time (MIP gap 2,5%).
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(c) Larger instances (|I| = 50, |J | = 100, |Ω| = 30).

Figure 4: Performance profile with respect to Gap (MIP gap 2,5%).
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Figure 5: Performance profile with respect to the number of iterations.

|J | = 200), as it is always greater than 2, 5%. For these new instances, our new approach

clearly outperforms the standard one in terms of the average gap attained. In some cases,

particularly for all cases with |J | = 200 the difference is very significant.

Table 4: Additional results.

|I| |J | |Ω| Tested Approach Gap (%) UB-LB # Iter

50 100 50 GEN 5,18 —
ALG1 3,57 —
GEN-2, 5% 5,18 —
ALG1-2, 5% 3,56 1,2

200 50 GEN 80,88 —
ALG1 6,10 —
GEN-2, 5% 80,88 —
ALG1-2, 5% 5,36 1,4

100 200 50 GEN 22,23 —
ALG1 3,46 —

6. Conclusions

In this paper, we proposed a new algorithm for obtaining lower and upper bounds on

the optimal value of a stochastic mixed-integer programming problem considering the mini-

mization of the conditional value at risk. The methodological developments were applied to

a fixed-charge stochastic transportation problem. The results show that the new approach

is competitive when compared to the standard one. This is particularly true for the largest

instances tested.

One drawback of our approach is the need to solve one MIP problem in each iteration.

Therefore, the competitiveness of this approach could possibly be higher if we considered a

specially-tailored procedure for solving those MIPs. This depends of course on the specific

application being considered. Nevertheless, this is a research direction to explore when making

use of our new algorithmic scheme.
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Related with the previous aspect, it is worth investigating the application of our new al-

gorithm to other problems. This is relevant not only because the new approach is a promising

alternative to the existing one but also because that would allow evaluating the robustness of

our approach across different experimental settings.

Acknowledgement

The research of the first three authors was partially supported by the Spanish Ministry

of Economy and Competitiveness through MINECO/FEDER grants MTM2015-63779-R and

MTM2016-74983-C02-01. The research of the fourth author was partially supported by the

Portuguese Science Foundation (FCT—Fundação para a Ciência e Tecnologia) under the

project UID/MAT/ 04561/2013 (CMAF-CIO/FCUL).

References

References

Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathe-

matical Programming, 106:433–446.

Ahuja, R., Magnanti, T., and Orlin, J. (1993). Network Flows: Theory, Algorithms, and

Applications. Prentice Hall.

Alonso-Ayuso, A., Escudero, L., Guignard, M., and Weintraub, A. (2016). Risk manage-

ment for forestry planning under uncertainty in demand and prices. Optimization Online.

http://www.optimization-online.org/DB HTML/2016/12/5756.html.

Balinski, M. (1961). Fixed-cost transportation problems. Naval Research Logistics Quaterly,

8:41–54.

Bertsimas, D. and Sim, M. (2003). Robust discrete optimization and network flows. Mathe-

matical Programming Series B, 98:49–71.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52:35–53.

Birge, J. and Louveaux, F. (2011). Introduction to stochastic Programming. Springer, Berlin-

Heidelberg. Second edition.

Carøe, C. and Schultz, R. (1999). Dual decomposition in stochastic integer programming.

Operations Research Letters, 24:37–45.

Chelst, K. and Canbolat, Y. (2011). Value-added decision making for managers. CRC Press,

Boca Raton-London-New York.

24
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