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This paper introduces the Hub Location Problem under Inter-Hub Link Failures, a hub location problem,

in which activated inter-hub links may fail with a given probability. Two different optimization models are

studied, which construct hub backbone networks protected under inter-hub link disruptions by imposing

that for each commodity an additional routing path exists besides its original routing path. Both models

consider the minimization of the fixed costs of the activated hubs and inter-hub links plus the expected value

of the routing costs of the original and alternative paths. The first model builds explicitly the alternative

routing paths, whereas the second model guarantees that for each commodity at least one alternative path

exists using a large set of connectivity constraints, although the alternative paths are not built explicitly.

The results of extensive computational testing allow to analyze the performance of the two proposed models

and to evaluate the extra cost required to design a robust backbone network under inter-hub link failures.

The obtained results support the validity of the proposal.
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1. Introduction

Hub location (HL) lies in the intersection of location analysis and network design, and produces

challenging optimization problems with multiple applications, mostly in the fields of distribution

and logistics (parcel delivery, air transportation, etc.) and telecommunications (Farahani et al.

2013). The increasing attention they have received in the last decades is thus not surprising (see

e.g. Campbell and O’Kelly 2012, Erdoğan et al. 2022, Oliveira et al. 2022, Zheng et al. 2022). The
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interested reader is referred to the book chapter by Contreras and O’Kelly (2019) for a recent

survey on HL, including terminology, modeling assumptions, etc.

One of the current trends in HL is the search of models suitable for dealing with different sources

of uncertainty (Alumur et al. 2012). Whereas some models in the literature consider uncertainty in

demand (Contreras et al. 2011, Zetina et al. 2017), other models are concerned with the robustness

of solution hub networks, by associating uncertainty with the possibility (probability) of disruption

of the elements involved in the solution networks and looking for solutions that are robust under

disruptions.

Most hub networks are sensitive to failures in their links, being the impact on users particularly

harmful in some cases. This is precisely the focus of this work, where we introduce the HL Problem

under Inter-Hub Link Failures (HLPIHLF), a HL problem, in which activated inter-hub links may

fail with a given probability. Our study can be very useful in typical HL applications, in which

the total failure of a hub is highly unlikely, whereas partial failures occur only affecting some

of the links incident with the hubs (certain air connections, train lines, etc.) We point out that

by protecting inter-hub links under failure, we also partially protect hub nodes under failures.

Examples of potential applications of the models that we study include the management of airlines

and airport industries (Campbell et al. 2005), in which breakdowns in certain flight connections

may occur, and passengers are directly affected, as well as rapid delivery packing systems (Çetiner

et al. 2010), where users pay for fast services and failures in the hub network may cause large

delays.

For dealing with the HLPIHLF we propose two alternative models, which guarantee that solu-

tion networks are protected under disruption of inter-hub links, in the sense that for each ori-

gin/destination demand pair (commodity) at least one alternative (backup) routing path exists.

Both models can be seen as two-stage stochastic programming models, in which the a priori solu-

tion is determined by the strategic decisions associated with the selection of activated hub nodes

and inter-hub links, together with an original plan given by a set of feasible routing paths, one for

each commodity, containing exactly one inter-hub arc (directed link). The recourse action deter-

mines a backup plan, given by a set of alternative routing paths for the commodities, which can be

used in case the inter-hub link of the original plan fails.

The main difference between the two models is how backup paths are enforced. The first model

imposes that the alternative routing path of each commodity contains exactly one inter-hub arc

(as in the original plan) and builds it explicitly. The second model is more flexible, in the sense

that it allows for arbitrarily large sequences of inter-hub arcs to be used in the alternative routing

paths, although such paths are not built explicitly. This is achieved with a set of exponentially

many (on the number of nodes of the network) constraints, by imposing that the cut-set of the
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backbone network contains at least λ links, for a given integer value of λ ≥ 2. We study some

properties of both models and propose a Mixed Integer Linear Programming (MILP) formulation

for each case. For the second model, since it has exponentially many constraints, we also propose

a branch-and-cut solution algorithm.

In both cases we consider fixed costs for both activated hubs and activated inter-hub links. Thus,

we do not fix the number of inter-hub links to activate, allowing for incomplete backbone networks.

As usual in HL, the routing costs apply a discount factor α to inter-hub arcs.

Extensive computational experiments have been carried out on a large set of benchmark instances

based on the well-known CAB (O’Kelly 1987), AP (Ernst and Krishnamoorthy 1996), and TR (Tan

and Kara 2007) datasets, for varying settings of the failure probabilities and other cost parameters.

The obtained results are summarized and analyzed, comparing the computational performance

of each of the models and the effect of the different parameters. Managerial insights are derived

from the analysis of the characteristics of the solutions produced by each of the models and their

comparison. In particular, we analyze the distribution of the costs among the different elements

considered (routing costs and fixed costs for hubs and links), the number of activated hub and

links, and the density of the obtained backbone networks. Finally, we have carried out an empirical

analysis of the different models in terms of their efficiency and robustness. Specifically, for each of

the proposed models, we analyze their a posteriori capability to re-route the commodities under

multiple failure scenarios. The obtained results assess the validity of the proposal.

The remainder of this paper is structured as follows. In Section 2 we review the related literature

and in Section 3 we introduce the notation that we will use and formally define the HLPIHLF from

a general perspective. In that section we also specify and motivate the modeling assumptions that

we make. Most of them are usual in classical models in the HL literature. This allows us to better

focus on the novel aspects of our proposal. Section 4 is devoted to the first HLPIHLF model that

we analyze, in which it is assumed that the alternative paths for the commodities contain exactly

one inter-hub arc. We study some of its properties and propose a MILP formulation for it. The

model in which we impose that the backbone network is λ-connected is detailed in Section 5 where

we also present a MILP formulation for it. Section 6 describes the computational experiments we

have carried out and summarizes the obtained results. Some managerial insights from the analysis

of the structure of the solution networks produced by each model are also derived in this section.

Finally, Section 7 describes the empirical analysis that has been performed considering multiple

failure scenarios. The paper closes in Section 8 with some conclusions.

2. Related literature

Several works have studied models, in which it is assumed that activated hub nodes may fail (totally

or partially) with a certain probability. An et al. (2015) propose a model, in which two backup hub
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nodes are determined for each commodity. Rostami et al. (2019) assume that a finite set of hub

breakdown scenarios is known and provide a two-stage formulation for the single allocation HL

problem with possible hub breakdown. Cui et al. (2010) provide a stochastic model to determine

a subset of the activated hub nodes of given size through which each commodity can be routed,

in such a way that if the cheapest route fails, the commodity can be routed through the second

cheapest, and so on, or through an emergency facility. The authors provide a MILP formulation

for the problem as well as an approximate Lagrangean relaxation scheme for its solution based on

the ideas in Snyder and Daskin (2005) for the p-median problem. The planar version of this model

is also analyzed there.

Kim and O’Kelly (2009) propose the reliable p-hub location problem (PHMR) and the p-hub

mandatory dispersion (PHMD). In the PHMR the goal is to determine the location of p nodes based

on the level of reliability to maximize the flows sent through the selected hubs. The PHMD imposes

a certain minimum separation between the p selected hub nodes, and maximizes the reliability of

the network. MILP formulations and heuristic approaches are provided for the problems, both in

the single and the multiple-allocation framework. The reliability of hub backbone networks has

been also studied in Zeng et al. (2010), Korani and Eydi (2021) and Li et al. (2022).

Parvaresh et al. (2013) consider the multiple allocation p-hub median problem under intentional

disruptions, in which the goal is to identify the optimal strategy for the location of p hub nodes by

minimizing the expected transportation cost, taking into account the worst-case situation when an

interdictor attacks the backbone network. A bilevel mixed integer formulation is provided as well

as a simulated annealing heuristic for its solution.

The problem of designing robust networks under link failures has also been studied in the lit-

erature under different settings. Aneja et al. (2001) study the single-commodity maximum flow

problem when link failures occur by means of the maximum residual flow problem, whose goal is to

determine the maximal flow, in which the largest link flow is as small as possible. This problem is

closely related to the network interdiction problem that consists of determining a certain number

of links whose removal from the network minimizes the maximum amount of flow that one can

send through the network (see e.g. Altner et al. 2010, Cormican et al. 1998, Royset and Wood

2007, Wood 1993). Ma et al. (2016) propose the Conditional Value-at-Risk Constrained Minimum

Spanning k-Core Problem where the possibility of link disruptions is prevented when trying to

construct minimum-cost subgraphs of a network with a minimum number of incident links at each

node. Andreas and Smith (2008) study shortest path problems under link failures by imposing that

the probability that all links that successfully operate in at least one path be greater than certain

threshold value.
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We are only aware of one work (Mohammadi et al. 2019), dealing with potential failure of inter-

hub links, which is the specific focus of our work. Nevertheless, in contrast to Mohammadi et al.

(2019), who consider a p-hub single allocation pattern, and complete hub networks with no set-up

costs for inter-hub links, we adopt a multiple allocation policy on a non-complete backbone network

where the number of hubs is not a fixed parameter, and assume fixed costs for inter-hub links.

Furthermore, Mohammadi et al. (2019) apply meta-heuristics to solve the models whereas we solve

them to proven optimality.

3. Notation and definition of the problem

Consider a graph N = (V,E), where the node set V = {1,2, . . . , n} represents a given set of users

and the edge set E the existing undirected connections or links between pairs of users. We assume

that N is a complete graph and that E contains loops, i.e. for all i ∈ V , edge {i, i} ∈ E. We

further assume that potential locations for hubs are placed at the nodes of the graph and the set

of potential locations coincides with V . For each potential location k ∈ V , we denote by fk the

fixed cost for activating a hub at node k. Any pair of hub nodes can be connected by means of an

inter-hub edge, provided that both end nodes k and l are activated as hub nodes as well.

The set E will be referred to as the set of potential inter-hub edges or just as set of potential

hub edges. Activated hub edges incur fixed costs; let hkl ≥ 0 be the fixed cost for activating hub

edge {k, l} ∈E. A set of activated hubs will be denoted by H ⊆ V , and a set of activated hub edges

for H by EH ⊆ E[H], where E[H] is the set of edges with both end nodes in H. Note that the

assumption that N is a complete graph implies no loss of generality, since (i) arbitrarily large fixed

costs can be associated with nodes that are not potential hubs; and, (ii) arbitrarily large activation

costs can be associated with non-existing hub edges. Activating a hub edge allows to send flows

through it in either direction. Let A= {(i, j)∪ (j, i) : {i, j} ∈E, i, j ∈ V } be the (directed) arc set.

Arcs in the form (i, i), i ∈ V , are allowed and will also be called loops. We will use AH ⊆ A to

denote the set of inter-hub arcs induced by EH .

Service demand is given by a set of commodities defined over pairs of users, indexed in a set R.

Let D= {(or, dr,wr) : r ∈R} denote the set of commodities, where the triplet (or, dr,wr) indicates

that an amount of flow wr ≥ 0 must be routed from origin or ∈ V to destination dr ∈ V . The

origin/destination pair associated with a given commodity will also be referred to as its OD pair.

Commodities must be routed via paths of the form π = (or, k1, . . . , ks, dr) with ki ∈H, 1≤ i≤ s.

Similarly to most HL problems, a routing path π = (or, k1, . . . , ks, dr) is feasible if (1) it includes

at least two hub nodes, i.e. s ≥ 2 (being possible that ki = ki+1 for some i = 1, · · · , s − 1), and

(2) the underlying edges of all traversed arcs other than the access and delivery arcs, (or, k1) and

(ks, dr), respectively, are activated inter-hub edges, i.e., {ki, ki+1} ∈EH , 1≤ i≤ s−1. Note that this
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implies that in any feasible path all intermediate nodes are activated as hubs as well, i.e. ki ∈H,

1≤ i≤ s. In the following, the set of feasible paths for a given commodity r ∈R will be denoted

by Π(H,EH )(r).

Routing flows through the arcs of a hub-and-spoke network incurs different types of costs. These

costs, which may depend on the type of arc, account for transportation costs as well as for some

additional collection/handling/distribution costs at the end nodes of the arcs. As usual in the

literature, we assume that transportation costs of flows routed through inter-hub arcs are subjected

to a discount factor 0≤ α≤ 1. In this work we will denote by cij ≥ 0 the unit routing cost through

inter-hub arc (i, j) ∈AH , which includes discounted transportation costs and handling costs, and

we will denote by c̄ij ≥ 0 the unit routing cost for an access or a delivery arc (i, j)∈A \AH , which

may also incorporate different discounted access or delivery costs.

With the above notation, the routing cost of commodity r ∈ R through a feasible path π =

(or, k1, . . . , ks, dr)∈Π(H,EH )(r) is:

Cr
π =wr

(
cork1 +

s−1∑
i=1

ckiki+1
+ cksdr

)
, (1)

where the first and last addends correspond to the access and delivery arcs, respectively, and the

intermediate ones are the service costs through the backbone network (H,EH).

Broadly speaking, under the above assumptions, the goal of a HL problem is to decide the

location of the hub nodes H and to select a suitable subset of hub edges EH , to optimally route

the commodities through the backbone network (H,EH) induced by the activated hub nodes and

hub edges, so as to minimize the sum of the overall fixed costs for activating hub nodes and hub

edges, plus the commodities routing costs. With the above notation, this problem can be stated

as:

min
H⊆V,EH⊆E[H]

∑
k∈H

fk +
∑
e∈EH

he +
∑
r∈R

min
π∈Π(H,EH )(r)

Cr
π. (HLP)

In the reminder of this paper we make the following assumptions:

• All our models assume multiple allocation of OD nodes to open hubs. With the multiple

allocation policy, in case two commodities share the same origin, each of them is allowed to route

its demand using a different access arc. Similarly, two commodities with the same destination may

be routed using different delivery arcs. This strategy provides greater flexibility to hub backbone

networks than the single allocation pattern, in which OD nodes are assigned to a single hub node

such that all the demand originated at (or arriving to) such a node is routed initially (or finally)

through the same access (or delivery) arc. The multiple allocation policy is assumed in several

so-called fundamental HL models (see, e.g., Contreras and O’Kelly 2019), and is commonly applied
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by delivery companies that allocate origins to hub centers based on the destination of the deliveries,

or by airlines that route passengers departing from the same city through different intermediate

airports (hubs) based, for instance, on the continent of their final destination.

• Loops (self-arcs) of the form (k, k) are considered as hub arcs. This is a slightly more general

setting than in most HL problems studied in the literature, which only consider proper arcs (k, l)

with k ̸= l as potential hub arcs. In this work, if a loop (k, k) is used in a routing path, it is required

not only that k is activated as a hub node, but also that the loop {k, k} is activated as a hub edge

as well. The rationale for this assumption is that loops allow one to model the different operations

that are required when flows enter a hub network, as the preparation of the machinery, workforce,

etc. As far as we know, loops have never been explicitly considered in the literature of HL, although

loops are present in other types of network design problems (see, e.g., Wei et al. 2021, Huang and

Tian 2017).

• Activated hub edges in EH may fail. We are given the failure probabilities for each potential

inter-hub edge, pkl, {k, l} ∈ E. When k ̸= l failure of edge e arises not only when the edge {k, l}

can no longer be used, but also when, for any reason, the collection and distribution services at

any end node of edge {k, l} cannot be carried out. Thus pkl represents the probability that any of

these events happen. In case edge e is a loop, i.e., e= {k, k}, with k ∈H, then pkk represents the

probability that the handling process carried out when k is used as the unique intermediate hub

fails.

• In case hub edge {k, l} ∈EH fails, then the inter-hub arcs (k, l), (l, k) ∈AH can no longer be

used for routing the commodities. In order to protect solution networks from failure we adopt

a policy that does not alter the strategic decisions on the activated hubs and inter-hub edges

and focuses solely on the operational decisions concerning the re-routing of affected commodities.

Accordingly, we impose that, for each commodity, the backbone network (H,EH) contains a routing

path and, in addition, a substitute path connecting or and dr, for each r ∈ R. Such a substitute

path will be referred to as backup or alternative path whereas, the routing path used in case the

edges do not fail will be called original or initial path. The allocation pattern may be different in

the original and backup paths, so they may use different access/delivery arcs.

• The original routing path of each commodity r = (or, dr,wr) contains exactly one inter-hub

arc, which can be a loop. Most HL problems studied in the literature (see, e.g., Contreras and

O’Kelly 2019), which do not consider loops explicitly, restrict the set of potential paths for routing

the commodities to those using at most one hub arc. When loops are also considered as potential

hub arcs as we do, potential routing paths are of the form (or, k,m,dr), where k and m are activated

hubs, and (k,m) is an inter-hub arc, which reduces to a loop when k=m.
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Thus, for H and EH given, the set of potential original paths for routing commodity r ∈ R is

given by Π(H,EH )(r) = {π = (or, k, l, dr) : k, l ∈H, {k, l} ∈ EH}. In such a case the routing cost of

commodity r through path π= (or, k, l, dr) reduces to

Cr
kl :=Cr

π =wr(cork + ckl + cldr).

• For each edge e= {k, l} ∈E, let Xkl denote the random variable modeling whether e fails. We

assume that the random variable Xkl follows a Bernoulli distribution with probability pkl, for each

{k, l} ∈E. Observe that when edges may fail with a given probability, the costs of feasible routing

paths are also random variables, which will be denoted by Cr, r ∈R. Furthermore, the probability

distribution of Cr, r ∈R, is dictated by the failure probability distribution of the involved inter-hub

edges. In particular, when π0 = (or, k, l, dr) is the original routing path of a given commodity r ∈R,

the expected routing cost of commodity r can be calculated as:

E[Cr|π0] = (1− pkl)C
r
kl + pklC

r
π0
. (2)

where π0 ∈Π(H,EH )(r)\{π0} is the backup path in case {k, l} fails.

• The objective is to minimize the sum of the fixed costs of the activated hubs and inter-hub

edges, plus the expected routing costs.

In the following we deal with the problem of finding hub backbone networks protected against

inter-hub edge failures under the above assumptions.

That is, the HLPIHLF can be stated as:

min
H⊆V,EH⊆E[H]

∑
k∈H

fk +
∑
e∈EH

he +
∑
r∈R

min
π0∈Π(H,EH )(r)

E[Cr|π0]. (HLPIHLF)

Indeed, multiple choices fall within the above generic framework which differ from each other in

how the alternative routing paths are obtained. In the following sections we propose two models

for determining such backup paths, based on different assumptions, and provide mathematical

programming formulations for each of them.

4. HLPIHLF with single inter-hub arc backup paths

The HLPIHLF we address in this section enforces that the alternative paths for routing the com-

modities have the same structure as the original ones. That is, we assume that backup paths contain

exactly one inter-hub arc (possibly a loop). This avoids having to use many transshipment points

in case of failure. This model will be referred to as (HLPIHLF-1BP).

Given a commodity r ∈ R, the backbone network (H,EH) and the original routing path π0 =

(or, k, l, dr), we assume that the backup path is in the form π0 = (or, k̄, l̄, dr), with {k, l} ̸= {k̄, l̄}.
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Thus, the expected routing cost of commodity r is:

E[Cr|π0] = (1− pkl)C
r
kl + pklC

r
k̄l̄. (3)

Figure 1 illustrates the different situations that may arise in case a hub edge fails. Figure 1a

shows a backbone network with four hub nodes (k, l, m and q) and five hub edges, two of them

corresponding to loops, {m,m} and {l, l}, and the other ones corresponding to edges {k, q}, {k, l}

and {q,m}. The figure also depicts the origin (or) and destination (dr) of a given commodity r ∈R

and a possible path for this commodity through hub arc (k, l). We assume that this is the original

path for the commodity r ∈R. Access/distribution arcs are depicted as dashed lines and hub edges

as solid lines.

Figures 1b and 1c show different backup paths with a single inter-hub arc for commodity r ∈R

in case the inter-hub link {k, l} of the original path fails. In Figure 1b, the backup path uses the

inter-hub arc (q,m) to re-route the commodity, whereas in Figure 1c the backup path uses the loop

arc (l, l).

Next we develop a mathematical programming formulation for the above problem, first intro-

ducing the decision variables associated with the design decisions on the elements of the network

that are activated, hubs nodes and hub edges:

zk =

{
1 if a hub is opened at the potential hub node k,
0 otherwise

for k ∈ V ,

ykl =

{
1 if hub edge {k, l} is activated,
0 otherwise

for {k, l} ∈E.

The formulation uses two additional sets of variables, which represent the original and alternative

routing path for each commodity, respectively. In particular, for r ∈R and (k, l)∈A:

xr
kl =

{
1 if the original routing path for commodity r is (or, k, l, dr),
0 otherwise,

x̄r
kl =

{
1 if the alternative path for commodity r ∈R is (or, k, l, dr),
0 otherwise.

With these sets of decision variables the expected routing cost of commodity r ∈R can be expressed

as:

∑
(k,l)∈A

xr
kl

[
Cr

kl(1− pkl)+ pkl
∑

(k′,l′)∈A\{(k,l)∪(l,k)}

Cr
k′l′ x̄

r
k′ l′

]
, (4)

where the two addends in each term of the above expression correspond to the expected routing

cost of the original and backup plan of commodity r, respectively. Observe that both terms only

apply if, in the original plan, the commodity is routed through the inter-hub arc corresponding
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dr

or

q

k

l

m

(a) Original path via (k, ℓ).

dr

or

q

k

l

m

(b) Backup path via (q,m).

dr

or

q

k

l

m

(c) Backup path via (l, l).

Figure 1 A network with four nodes and one commodity r = (or, dr,wr): Original path, π0 = (or, k, l, dr), and

different backup paths in case edge {k, l} fails.

to the term. In particular, the first addend gives the overall routing cost for commodity r in case

the arc of the backbone network used for routing r in the original plan does not fail (multiplied

by the probability of not failing). The second term computes the cost of the alternative routing

path, multiplied by the probability of failure of the inter-hub arc of the original plan. Observe that

in case (k, l) is the arc used initially by commodity r ∈R and (k′, l′) is the backup arc for r, one

obtains the cost (1− pkl)C
r
kl + pklC

r
k′l′ .

Rearranging the terms and after some algebra we get:∑
(k,l)∈A

xr
klpkl

∑
(k′,l′)∈A\{(k,l)∪(l,k)}

Cr
k′l′ x̄

r
k′ l′ =

∑
(k,l)∈A

∑
(k′,l′)∈A\{(k,l)∪(l,k)}

Cr
k′l′ x̄

r
k′l′pklx

r
k l

=
∑

(k,l)∈A

Cr
klx̄

r
kl

∑
(k′,l′)∈A\{(k,l)∪(l,k)}

pk′ l′x
r
k′ l′ .

Thus, one can rewrite the overall routing cost for commodity r as:
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∑
(k,l)∈A

Cr
kl

[
(1− pkl)x

r
kl + x̄r

kl

∑
(k′,l′)∈A\{(k,l)∪(l,k)}

pk′ l′x
r
k′ l′

]
. (5)

Note that in the above expression, the term x̄r
kl

∑
(k′,l′)∈A\{(k,l)∪(l,k)} pk′ l′x

r
k′ l′ indicates the proba-

bility of using inter-hub arc (k, l) in the alternative path of commodity r. Thus, the impact of a

given arc (k, l) ∈A in the routing cost of commodity r is either 0 (if it is not used neither in the

original nor the alternative path); (1− pkl)C
r
kl if it is used in the original path; or Cr

klpk′,l′ in case

arc (k, l) is used in the alternative path and arc (k′, l′) in the original one.

The above decision variables and routing cost function lead to the following integer nonlinear

programming formulation for (HLPIHLF-1BP):

min
∑
k∈V

fkzk +
∑

{k,l}∈E

hklykl +
∑

(k,l)∈A

Cr
kl

[
(1− pkl)x

r
kl + x̄r

kl

∑
(k′,l′)∈A\{(k,l)∪(l,k)}

pk′ l′x
r
k′ l′

]
s.t.

∑
(k,l)∈A

xr
kl = 1 ∀r ∈R (1.1)∑

(k,l)∈A

x̄r
kl = 1 ∀r ∈R (1.2)

xr
kl +xr

lk + x̄r
kl + x̄r

lk ≤ ykl ∀r ∈R,{k, l} ∈E,k ̸= l (1.3)

xr
kk + x̄r

kk ≤ ykk ∀r ∈R,{k, k} ∈E (1.4)

ykl ≤ zk ∀{k, l} ∈E (1.5)

ykl ≤ zl ∀{k, l} ∈E,k ̸= l (1.6)

xr
kl, x̄

r
kl ∈ {0,1} ∀r ∈R, (k, l)∈A (1.7)

zk ∈ {0,1} ∀k ∈ V (1.8)

ykl ∈ {0,1} ∀{k, l} ∈E, (1.9)

where Constraints (1.1) and (1.2) enforce that each commodity uses exactly one inter-hub arc both

in the original and the backup path. Constraints (1.3) and (1.4) impose that the original and the

backup path do not coincide. These constraints also guarantee that any used inter-hub edge is

activated. Constraints (1.5) and (1.6) ensure that the end nodes of activated inter-hub edges are

activated as hub nodes. Finally, (1.7)–(1.9) are the domains of the decision variables.

To reinforce the relationship between the routing variables and the hub activation variables, we

incorporate the following valid inequalities:

xr
kk +

∑
l∈V
l ̸=k

(xr
kl +xr

lk)≤ zk ∀ r ∈R, k ∈ V (1.10)

x̄r
kk +

∑
l∈V
l ̸=k

(x̄r
kl + x̄r

lk)≤ zk ∀ r ∈R, k ∈ V. (1.11)
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These well-known valid inequalities were introduced in Maŕın et al. (2006) and have now become

standard in different HL problems (see, for instance, Cánovas et al. 2007, de Camargo et al. 2009,

among others).

4.1. Linearization of the objective function

The reader may have observed the non-linearity of the objective function term corresponding to

the expected routing cost. As we explain below this term can be suitably linearized by introducing

a new auxiliary variable P r
kl ∈R+ associated with each commodity r ∈R and each arc (k, l)∈A.

Let P r
kl = x̄r

kl

∑
(k′,l′)∈A\{(k,l)∪(l,k)} pk′l′x

r
k′l′ denote the probability of using inter-hub arc (k, l) in

the alternative path of commodity r that appears in the objective function term (5). Observe that

by Constraints (1.3) and (1.4), P r
kl can be written as P r

kl = x̄r
kl

∑
(k′, l′)∈A pk′l′x

r
k′l′ . Thus, because

of the minimization criterion, the non-negativity of the routing costs, and Constraints (1.1), the

value of P r
kl can be determined by the following set of constraints:

P r
kl ≥

∑
(k′, l′)∈A

pk′l′x
r
k′l′ +(x̄r

kl − 1), ∀r ∈R, (k, l)∈A, (1.12)

P r
kl ≥ 0, ∀r ∈R, (k, l)∈A. (1.13)

The above constraints linearize the expression that defines P r
kr. Observe that in case x̄r

kl takes value

1, since P r
kl is being minimized, its associated Constraint (1.12) becomes active and we will get that

P r
kl =

∑
(k′, l′)∈A pk′l′x

r
k′l′ . Otherwise, in case x̄r

kl takes value 0, Constraints (1.1) and (1.13) imply

that (1.12) is redundant. Therefore, by the minimization criterion, P r
kl will take the value 0.

Thus, by introducing Constraints (1.12) and (1.13) in our model, the objective function can be

rewritten as: ∑
k∈V

fkzk +
∑

{k,l}∈E

hklykl +
∑
r∈R

∑
(k,l)∈A

Cr
kl

(
(1− pkl)x

r
kl +P r

kl

)
. (7)

We can also incorporate the following valid inequalities to reinforce our formulation:∑
(k,l)∈A

P r
kl ≤ max

{k,l}∈E
pkl, ∀r ∈R. (1.14)

Therefore, we have the following MILP formulation for (HLPIHLF-1BP):

min
∑
k∈V

fkzk +
∑

{k,l}∈E

hklykl +
∑
r∈R

∑
(k,l)∈A

Cr
kl

(
(1− pkl)x

r
kl +P r

kl

)
(HLPIHLF-1BP)

s.t. (1.1)− (1.14).

Below we state some simple optimality conditions that can be used to reduce the set of decision

variables.
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Proposition 4.1 There is an optimal solution to (HLPIHLF-1BP) such that xr
lk = x̄r

lk = P r
lk = 0

for all r ∈R, (l, k)∈A, with Cr
kl ≤Cr

lk.

Proof. The proof is straightforward. Indeed, the value of any solution with xr
lk = 1 where Cr

kl <

Cr
lk will improve by changing the direction in which edge {k, l} is traversed, i.e., by doing xr

lk = 0,

xr
kl = 1. When Cr

kl =Cr
lk the value of the new solution will not change.

The same argument can be applied for setting x̄r
lk = 0 and thus, P r

lk = 0. □

Note that the above result allows to reduce to half the number of decision variables.

In practice, it is likely that there are few possible values for failure probabilities, and the edges

of the network are clustered in groups such that, within each group, all edges have the same failure

probability. We next analyze such a situation.

Remark 4.1 (Clustered sets of edges) Let us assume that the edges of E are clustered in K

groups E1, . . . ,EK such that all edges in Es have the same failure probability ρs ∈ [0,1], for s =

1, . . . ,K. Then, in the term of the objective function of (HLPIHLF-1BP) corresponding to the

expected routing cost of the commodities, variables P r
kl can be substituted by a new set of variables

as follows. For r ∈ R, (k, l) ∈ As, being As the arc set induced by Es, s = 1, . . . ,K, let ξrkls be a

binary variable that takes value one if and only if the original route of commodity r uses some hub

arc in the s-th cluster (with failure probability ρs) and in the backup route it uses hub arc (k, l).

Then, the expected routing cost of commodity r ∈R can be rewritten as:

K∑
s=1

[
(1− ρs)

∑
(k,l)∈As

Cr
klx

r
kl + ρs

∑
(k,l)∈A

Cr
klξ

r
kls

]
. (8)

Using similar arguments as for the linearization of variables P r
kl, the values of the ξrkls variables

can be determined by the following sets of constraints:

ξrkls ≥
∑

(k′,l′)∈As

xr
k′l′ +(x̄r

kl − 1) ∀r ∈R, (k, l)∈A,s= 1, . . . ,K (9)

K∑
s=1

ξrkls = x̄r
kl ∀r ∈R, (k, l)∈A (10)

ξrkls ≥ 0 ∀r ∈R, (k, l)∈A,s= 1, . . . ,K. (11)

The particular case of one single cluster (K = 1) where all edges have the same failure probability,

i.e., pkl = ρ for all {k, l} ∈ E, allows to further simplify the above formulation. Now the index s

can be dropped from variables ξ and Constraints (9)-(11) are no longer needed, as Constraints (10)

reduce to ξrkl = x̄r
kl, (k, l)∈A. Then, the expected routing cost of commodity r ∈R simplifies to:∑

(k,l)∈A

Cr
kl

(
(1− ρ)xr

kl + ρxr
kl

)
. (12)



V. Blanco, E. Fernández and Y. Hinojosa: Hub Location under Link Failures
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

5. HLPIHLF with λ-connected backbone networks

In this section we introduce a different model for the HLPIHLF, that will be referred to as λ-

connected HLPIHLF (HLPIHLF-λ). Again we make the assumption that the original routing paths

contain exactly one inter-hub arc, although we follow a different modeling approach as for how to

protect the backbone network (H,EH) against potential failures. On the one hand, we extend the

set of alternative paths that can be used when the hub edge of some original path fails, and allow

for any arbitrarily long chain of arcs connecting the OD pair of each commodity, provided that all

its intermediate arcs are activated inter-hub arcs. On the other hand, we no longer make explicit

the alternative routing paths for the commodities. Instead, we impose that the backbone network

is λ-connected, in the sense that it must contain at least λ routing paths connecting any pair of

activated hubs k, l ∈H with k ̸= l, where λ≥ 2 is a given integer parameter. This implies that if

some hub arc of the original path fails, then the backbone network contains at least λ−1 alternative

paths connecting the activated hubs. Note that, this forces the backbone network to have at least

λ activated hub nodes. The particular case of HLPIHLF-λ with λ= 2, extends the HLPIHLF-1BP

studied in the previous section, as it enforces at least one backup path in the backbone network in

addition to the original one, which can be arbitrarily long.

We recall that for any non-empty subset of nodes S ⊂ V , the cutset associated with S is precisely

the set of edges connecting S and V \S namely:

δ(S) = {{k, l} ∈E |k ∈ S, l ∈ V \S}.

Observe that the backbone network (H,EH) depicted in Figure 1a is 2-connected since any cutset

has at least two edges (one of them being possibly a loop).

Let us introduce the following additional notation. For a given indicator vector ȳ ∈ {0,1}|E|:

ȳ(δ(S)) =
∑

{k,l}∈δ(S)

ȳkl. (13)

That is ȳ(δ(S)) gives the number of edges in the cutset δ(S), that are activated relative to vector

ȳ. When ȳ= y, with y being the vector of hub-edge decision variables as defined in HLPIHLF-1BP,

then y(δ(S)) gives precisely the number of inter-hub edges in the cutset δ(S).

Continuing with the example drawn in Figure 1, Figure 2 shows different choices for backup

paths in case edge {k, l}, used in the original path for commodity r= (or, dr,wr), fails. Note that,

whereas the backup paths drawn in Figures 2a and 2c are also valid for HLPIHLF-1BP, the backup

path shown in Figure 2b uses two inter-hub arcs, thus not being valid for HLPIHLF-1BP. Similarly

to HLPIHLF-1BP, loops also account for the λ-connectivity, as they can be used both in original

and backup paths. Note also that in case the original path for commodity r= (or, dr,wr) uses the

loop (m,m), the backup paths in Figure 2 are also feasible.
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dr

or

q

k

l

m

(a) Backup path via (q,m).

dr

or

q

k

l

m

(b) Backup path via (k, q) and (q,m).

dr

or

q

k

l

m

(c) Backup path via (l, l).

Figure 2 Alternative possibilities for backup paths in the λ-connected model.

With the above notation, and taking into account that, by definition, δ(S) contains no loops,

the λ-connectivity of the backbone network can be stated by means of the following constraints,

associated with each subset S ⊂ V , and each pair of potential hubs k, l ∈ V with k ∈ S, l /∈ S:

y(δ(S))+ ykk ≥ λ (zk + zl − 1) . (14)

The right hand side of the above constraint can take a strictly positive value only when k, l are

activated hub nodes, that is, when δ(S) is a cutset of the backbone network. In this case, the

inequality imposes that δ(S) contains at least λ− ykk activated hub edges. As indicated, the loop

{k, k} must also be accounted for a potential hub edge since it can be used in routing paths. Hence,

if the loop {k, k} is activated as a hub edge, it should be subtracted from the number of hub

edges in δ(S) that must be activated. Summarizing, the above constraint imposes that, if nodes

k, l, k ∈ S, l /∈ S, are activated hubs, then the number of hub edges in the cutset δ(S) must be

at least λ − 1 if the loop {k, k} is activated as a hub edge or λ otherwise. The λ-connectivity

of singletons can be imposed by means of constraints y(δ(k)) + ykk ≥ λzk, k ∈ V , which have an

analogous interpretation.
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Below we develop a MILP formulation for the HLPIHLF-λ, which incorporates λ-connectivity

by means of the family of Constraints (14) introduced above. The formulation uses the same z, y,

and x variables as before. Still, since backup paths are no longer made explicit, variables x̄ used

in formulation HLPIHLF-1BP of the previous section are no longer needed. As explained, the y

variables will be used to impose the λ-connectivity condition, which will be stated by means of an

exponential set of constraints.

Given that backup routes are no longer made explicit, we no longer have closed expressions for

their expected routing costs and we must estimate their values. Let us denote by C̄r
kl an estimation

of the backup routing cost of commodity r when the hub arc (k, l) of its original routing path fails.

The resulting formulation for the HLPIHLF-λ is:

min
∑
k∈V

fkzk +
∑

{k,l}∈E

hklykl+
∑
r∈R

∑
(k,l)∈A

[
(1− pkl)C

r
kl + pklC̄

r
kl

]
xr
kl

s.t.
∑

(k,l)∈A

xr
kl = 1 ∀r ∈R (2.1)

xr
kl +xr

lk ≤ ykl ∀r ∈R,{k, l} ∈E,k ̸= l (2.2)

xr
kk ≤ ykk ∀r ∈R,k ∈ V (2.3)

ykl ≤ zk ∀{k, l} ∈E (2.4)

ykl ≤ zl ∀{k, l} ∈E,k ̸= l (2.5)

y(δ(S))+ ykk ≥ λ(zk + zl − 1) ∀S ⊂ V, |S| ≥ 2, k ∈ S, l /∈ S (2.6)

y(δ(k))+ ykk ≥ λzk ∀k ∈ V (2.7)

xr
kl ∈ {0,1} ∀r ∈R, (k, l)∈A (2.8)

zk ∈ {0,1} ∀k ∈ V (2.9)

ykl ∈ {0,1} ∀{k, l} ∈E, (2.10)

where Constraints (2.1)-(2.5) are similar to (1.1)-(1.6) but referring to the original path only, and

(2.6) and (2.7) are the λ-connectivity constraints described above.

Note that once the hub backbone network (H,EH) is obtained by solving the above problem, one

can explicitly compute a backup path for a commodity r ∈R, whose original path is (or, kr, lr, dr),

by solving (in polynomial time) a shortest path problem from source or to destination dr on the

graph Gr = (Vr,Er) with nodes Vr = {or, dr}∪H and edges Er =
{
{or, h} : h∈H

}
∪Eh∪

{
(h,dr) :

h∈H
}
\{kr, lr}.

We next show that, in some cases, Constraints (2.6) can be reinforced.
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Proposition 5.1 Let S ⊂ V be a nonempty subset of nodes with |S| ≤ λ− 1. Then, the associ-

ated Constraints (2.6) are dominated by the following set of inequalities, which are also valid for

(HLPIHLF−λ):

y(δ(S))+ ykk ≥ λzk, ∀k ∈ S. (2.11)

Proof. We first see that (2.11) are valid for (HLPIHLF−λ). Taking into account that λ-

connectivity with λ ≥ 2 implies that any feasible solution has at least λ open hubs and that

|S| ≤ λ−1, when k ∈ S is activated as a hub node (i.e. zk = 1), there will be at least one more open

hub l̄ /∈ S (i.e. zl̄ = 1). That is, when zk = 1 there will be at least one active constraint in the set

(2.6) with right-hand-side value λ(zk + zl̄ − 1) = λzk. When k is not activated as a hub node (i.e.

zk = 0) none of Constraints (2.6), nor (2.11) will be active.

Furthermore, (2.11) dominate (2.6), since zl ≤ 1 implies that λzk ≥ λ(zk + zl − 1).

Therefore, the result follows. □

Note that when S is a singleton, i.e., S = {k}, the set of Constraints (2.11) reduces precisely to

(2.7).

5.1. Incorporation of λ-cutset constraints: a branch-and-cut approach

As already mentioned, in (HLPIHLF−λ), the size of the family of Constraints (2.6) is exponential

in the number of potential hub nodes, n. It is thus not possible to solve the formulation directly

with some off-the-shelf solver, even for medium size instances. In this section we present an exact

branch-and-cut algorithm for this formulation in which, as usual, the family of constraints of expo-

nential size (2.6) is initially relaxed. The strategy that we describe below is embedded within an

enumeration tree and it is applied not only at the root node but also at all explored nodes. Our

separation procedure is an adaptation of the separation procedure for classical connectivity con-

straints (Padberg and Grötschel 1985), and follows the same vein of those applied to more general

connectivity inequalities in node and arc routing problems (see, e.g., Belenguer and Benavent 1998,

Aráoz et al. 2009, Rodŕıguez-Pereira et al. 2019, for further details).

The initial formulation includes all Constraints (2.1)-(2.5), and (2.7). Furthermore, all integrality

conditions are relaxed.

Let (x, y, z) be the solution to the current linear programming relaxation and let G(y) =

(V (y),E(y)) denote its associated support graph where E(y) consists of all the edges of E such

that ȳkl > 0 and V (y) the set of end nodes of the edges of E(y). Each edge (k, l)∈E(y) is associated

with a capacity ȳkl. The separation for inequalities (2.6) is to find S ⊂ V , and k ∈ S, l ̸∈ S, with

y(δ(S))<λ(zk+zl−1)−ykk or to prove that no such inequality exists. Note that, when they exist,

violated λ-connectivity Constraints (2.6) can be identified from a tree of min-cuts associated with

G(y) relative to the capacities vector y, T (y).
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Therefore, to solve the above separation problem we proceed as follows. For each min-cut δ(S)

of T (y) of value y(δ(S)), we identify (k, l) ∈ argmax{λ (zk + zl − 1)− ykk : k ∈ S, l ̸∈ S}. Then, if

y(δ(S))<λ (zk + zl − 1)− ykk, the inequality (2.6) associated with S and (k, l) is violated by y.

In case |S| ≤ λ − 1, according to Proposition 5.1, we incorporate cuts in the shape of (2.11)

instead of (2.6).

In our computational experiments, we use the procedure proposed by Gusfield (1993) to identify

T (y). Such an algorithm computes V (y) max-flows in G(y), so its overall complexity is O(|V (y)|×

|V (y)|3).

6. Computational Experience

In this section we report the results of an extensive battery of computational tests, which

have been carried out to analyze the performance of the two modeling approaches for obtain-

ing robust hub networks protected under inter-hub failures, discussed in the previous sections.

For the experiments, we have used a large set of benchmark instances based on the well-

known CAB (O’Kelly (1987)), AP (Ernst and Krishnamoorthy (1996)) and TR (Tan and Kara

(2007)) datasets (taken from ORLIB http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ and

https://ie.bilkent.edu.tr/~bkara/dataset.php), for varying settings of the failure probabil-

ities and other parameters as described below. All instances were solved with the Gurobi 9.1.1

optimizer, under a Windows 10 environment on an Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz

4.01 GHz processor and 32 GB of RAM. Default values were used for all parameters of Gurobi

solver and a computing time limit of 7200 seconds was set.

6.1. Instance generation

We have generated several instances based on the entire CAB, AP and TR datasets with a num-

ber of nodes (n) initially ranging in {10,15,20,25} for the instances based on the CAB and TR

datasets and in {10,20,25} for the instances based on the AP dataset. Let c′kl be the standard

unit transportation costs provided in ORLIB for CAB and AP instances or the travel distances

provided for the TR instances and let w be the normalized vector of service demands, taken from

the provided datasets.

Table 1 summarizes the main characteristics of the testing instances and the selected parameters.

A detailed description of how the different parameters have been generated can be found in Section

Instance Generation of the Online Supplement.

The files of the randomly generated probabilities, as well as the Python codes used for such a

generation, are available in the Github repository https://github.com/vblancoOR/HLPLF.

For each combination of parameters n, α, ρ, and each dataset (CAB, AP with type T and L hub

nodes activation costs, and TR) five different instances have been generated for scenario of failure

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/
https://ie.bilkent.edu.tr/~bkara/dataset.php
https://github.com/vblancoOR/HLPLF
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Instances n λ α β

CAB {10,15,20,25}

{2,3,4} {0.2, 0.5, 0.8} {0.5,1}AP {10,20,25,40,50}

TR {10,15,20,25,40,50}

Costs

Instances ckl fk hkl C̄r
kl

CAB

α(ak + c′kl + dl)

100


100

ckl/wkl

maxw
if k ̸= l,

100
ckl/w̄

maxw
if k= l.

(1+β)Cr
klAP T and L data files

TR Data file Data file

ak = dk =min{minj ̸=k c
′
kj,minj ̸=k c

′
jk}; w̄ := Mean of w; maxw=max{ cij

wij
: i, j ∈ V, wij > 0}

Failure probabilities

Random probabilities (RP) pkl ∼U [0, ρ], ρ∈ {0.1,0.3}

Clustered probabilities (CP) pkl ∈ {0.1,0.2,0.3}

Same probability (SP) pkl = ρ, ρ∈ {0.1,0.3}

Table 1 Summary of instances and parameters.

probabilities RP and one instance has been considered for scenario SP. Five instances have been also

generated for scenario CP and each combination of n, α, and each dataset. Thus, (HLPIHLF-1BP),

hereafter called M1, has been solved on a total of 714 instances.

Concerning formulation (HLPIHLF-λ), we considered three different values for the parameter λ,

namely λ= 2, λ= 3 and λ= 4 (we call the corresponding models M2 2, M2 3 and M2 4, respec-

tively) and two values for β. Thus, (HLPIHLF-λ) has been solved on a total of 4284 instances.

Additionally, for comparative purposes, we have solved 42 instances of the uncapacitated HL prob-

lem, in which no protection under failures is considered. This model will be referred to as M0.

Finally, to test the scalability of our formulations, a second experiment was carried out on a set

of larger instances (n∈ {40,50}) based on the AP and TR datasets considering only (HLPIHLF-λ),
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CPUTime MIPGAP %Solved
RP

CP

SP RP
CP

SP RP
CP

SP

0,1 0,3 0,1 0,3
0,1 0,3 0,1 0,3

0,1 0,3 0,1 0,3n α Data Av Max Av Max Av Max Av Max Av Max

10

0,2

APT 4 7 15 1 1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100
APL 7 93 13 2 3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100
CAB 143 5198 TL 1 1 0,0 0,0 0,5 1,1 1,1 1,9 0,0 0,0 0,0 0,0 100 40 0 100 100
TR 4 9 44 0 1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100

0,5

APT 6 21 14 1 1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100
APL 10 112 11 2 3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100
CAB 62 5391 1864 1 1 0,0 0,0 1,0 3,5 0,0 0,0 0,0 0,0 0,0 0,0 100 40 100 100 100
TR 5 11 63 0 1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100

0,8

APT 7 13 15 1 1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100
APL 9 99 12 1 3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100
CAB 25 TL 727 1 1 0,0 0,0 0,6 1,2 0,0 0,0 0,0 0,0 0,0 0,0 100 0 100 100 100
TR 5 19 53 0 1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100

15

0,2
CAB TL TL TL 2 7 0,6 1,0 8,3 9,6 9,4 10,8 0,0 0,0 0,0 0,0 0 0 0 100 100
TR 51 71 287 4 6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100

0,5
CAB 4577 TL TL 5 8 0,4 0,7 9,8 12,5 7,6 8,4 0,0 0,0 0,0 0,0 40 0 0 100 100
TR 52 89 619 3 5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100

0,8
CAB 511 TL TL 4 6 0,0 0,0 8,8 13,3 3,7 5,5 0,0 0,0 0,0 0,0 100 0 0 100 100
TR 55 138 412 3 4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100

20

0,2

APT 1812 TL 6336 43 30 0,0 0,0 5,9 15,8 1,4 2,0 0,0 0,0 0,0 0,0 100 0 20 100 100
APL TL TL TL 3443 2080 14,8 15,4 20,5 21,8 17,8 19,1 0,0 0,0 0,0 0,0 0 0 0 100 100
CAB TL TL TL 13 121 3,1 3,7 14,4 16,5 15,4 17,9 0,0 0,0 0,0 0,0 0 0 0 100 100
TR 360 1402 4131 32 32 0,0 0,0 0,0 0,0 1,1 5,3 0,0 0,0 0,0 0,0 100 100 80 100 100

0,5

APT 1520 TL 6611 53 34 0,0 0,0 2,9 7,4 1,3 3,4 0,0 0,0 0,0 0,0 100 0 20 100 100
APL TL TL TL 4308 1257 13,1 14,5 20,3 21,9 17,2 19,2 0,0 0,0 0,0 0,0 0 0 0 100 100
CAB TL TL TL 20 51 3,0 3,8 15,7 19,5 15,5 19,8 0,0 0,0 0,0 0,0 0 0 0 100 100
TR 363 1850 5497 21 36 0,0 0,0 0,0 0,0 3,6 12,0 0,0 0,0 0,0 0,0 100 100 60 100 100

0,8

APT 1693 7137 5780 40 33 0,0 0,0 3,8 12,1 1,6 4,3 0,0 0,0 0,0 0,0 100 20 40 100 100
APL TL TL TL 2343 1809 12,6 13,6 19,0 20,6 15,6 16,5 0,0 0,0 0,0 0,0 0 0 0 100 100
CAB TL TL TL 12 27 2,8 3,9 16,4 19,3 16,2 18,3 0,0 0,0 0,0 0,0 0 0 0 100 100
TR 422 1864 5625 19 33 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 100 100 100 100 100

25

0,2

APT 4774 6835 4731 128 129 2,4 11,8 12,5 21,6 0,0 0,0 0,0 0,0 0,0 0,0 80 20 100 100 100
APL TL TL TL TL TL 16,6 17,9 22,8 24,1 19,8 20,4 11,5 11,5 14,2 14,2 0 0 0 0 0
CAB OoM TL TL 62 3208 4,3 5,4 19,5 21,7 19,2 23,2 0,0 0,0 0,0 0,0 0 0 0 100 100
TR 2332 TL TL 119 169 0,0 0,0 12,0 13,2 17,3 22,4 0,0 0,0 0,0 0,0 100 0 0 100 100

0,5

APT 6389 TL 4789 129 179 5,0 9,5 12,6 19,3 0,0 0,0 0,0 0,0 0,0 0,0 40 0 80 100 100
APL TL TL TL TL TL 14,7 16,3 20,8 24,4 18,1 20,2 8,6 8,6 13,4 13,4 0 0 0 0 0
CAB OoM OoM TL 98 2403 4,7 6,7 23,2 24,2 20,4 23,3 0,0 0,0 0,0 0,0 0 0 0 100 100
TR 1935 TL TL 82 128 0,0 0,0 11,5 13,3 13,3 14,3 0,0 0,0 0,0 0,0 100 0 0 100 100

0,8

APT 6465 6789 3490 125 316 5,1 8,7 10,3 20,6 0,0 0,0 0,0 0,0 0,0 0,0 40 20 100 100 100
APL TL TL TL 2927 TL 13,8 14,8 20,5 21,8 17,5 22,5 0,0 0,0 11,9 11,9 0 0 0 100 0
CAB OoM OoM TL 71 2740 7,1 9,2 24,0 25,1 18,9 20,6 0,0 0,0 0,0 0,0 0 0 0 100 100
TR 2483 TL TL 53 80 0,0 0,0 12,7 14,6 14,2 15,1 0,0 0,0 0,0 0,0 100 0 0 100 100

Table 2 Results for (HLPIHLF-1BP).

which, as we will see, is the most promising formulation, for λ ∈ {2,4} and β = 1. We have solved

a total of 612 instances in this second study. Overall, 5652 instances have been solved.

6.2. Numerical results with (HLPIHLF-1BP) and (HLPIHLF-λ)

In the following sections we present and compare the results obtained in our computational study

with (HLPIHLF-1BP) and (HLPIHLF-λ).

6.2.1. Results with (HLPIHLF-1BP) The results produced by (HLPIHLF-1BP) are sum-

marized in Table 2. In that table, “RP”, “CP” and “SP” stand for the scenarios with random failure

probabilities (with ρ= 0.1 and ρ= 0.3), clustered failure probabilities and same failure probability

(with ρ = 0.1 and ρ = 0.3), respectively. The values of n, α and “Data” indicate the number of
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nodes in the network, the value for the discount factor applied to the routing cost through inter-hub

arcs, and the dataset that has been used to obtain the costs and the flows, respectively. “APT” and

“APL” refer to AP dataset using type T and type L fixed costs for the hub nodes, respectively. For

scenarios RP and CP, the information contained in each row refers to average values over the five

instances with the corresponding combination of parameters, whereas for scenario SP the values of

the entries correspond to the unique instance with this combination of parameters. The maximum

MIPGap values over the five instances are also shown under “Max” columns.

The numerical results are grouped in three blocks of columns. Block “CPUTime” gives the com-

puting times, in seconds, required to solve the instances, block “MIPGap” the percentage MIP

gaps returned by Gurobi at termination, and block “%Solved” the percentage of instances solved

to proven optimality within the time limit. An entry “TL” in the CPUTime block means that the

time limit of 7200 seconds was reached in all five instances of the group. The “OoM” entry indicates

that the flag “Out of memory” was the output of the solver in at least one of the instances in the

row, and then, the remaining information of the row refers to average values (or maximum values

when corresponding) over the solved instances only (even if none of these instances could be solved

to proven optimality). We observe that there is no significant difference between the maximum and

the average MIP gap values. Thus, in what follows we only report average values in our tables and

figures.

Table 2 shows a different performance of (HLPIHLF-1BP) among the instances corresponding

to the different scenarios. Based on the computing times, MIPGaps, and percentage of solved

instances, scenario SP produces the easiest instances, for all configurations of parameters, as

expected. One can observe that, for instances with the same probability, all instances generated

from the CAB, APT , and TR datasets with up to n= 25, as well as the instances generated from

APL with up to n= 20 have been optimally solved within the time limit.

On the other hand, note that instances based on CAB dataset are more difficult to solve than

instances based on TR and AP datasets. TR based instances are the easiest to solve: all instances

with up to n = 15, 95% for n = 20 and 35% for n = 25 have been optimally solved within the

time limit. Regarding AP based instances, all instances with n = 10 have been optimally solved

within the time limit, although APT instances consumed, in general, less computing time. The

difference between APT and APL instances becomes more evident for n> 10, since approximately

50% of the APT instances were optimally solved whereas no APL instance with random or clustered

probability (scenarios RP and CP) was solved to proven optimality within the time limit. As

mentioned before, CAB instances are the most difficult ones. For n= 10, 30% of these instances

could not be optimally solved solved within the time limit. This percentage increases up to 90%

for n= 20 and up to 100% for n= 25. Additionally, for n= 25, the execution was stopped due to

an Out of Memory flag for 30% of the CAB instances under a random probability (RP) scenario.
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6.2.2. Results with (HLPIHLF-λ) Using formulation (HLPIHLF-λ), all instances could be

solved to proven optimality within the maximum computing time for all three considered values of

λ∈ {2,3,4}.

This means that (HLPIHLF-λ) is notably easier to solve than (HLPIHLF-1BP). This can be

explained by its smaller number of decision variables.

The difficulty of (HLPIHLF-λ) increases with the value of λ, as reflected by a decrease in

its performance for higher values of this parameter. This could be expected, as (HLPIHLF-λ)

becomes more restrictive as the value of λ increases. When λ= 2, the average computing time over

all the instances is approximately 64 seconds, being two seconds for the CAB instances, 70 seconds

for the APT instances, 89 seconds for the APL instances, and 102 for the TR instances. Unlike

(HLPIHLF-1BP), CAB instances are computationally less demanding than AP and TR instances.

This behavior was also observed for λ= 3 and λ= 4. For λ= 4 the average computing time over

all the instances is approximately 218 seconds, being 30 seconds for the CAB instances, 168

seconds for the APT instances, 225 seconds for the APL instances, and 438 for the TR instances.

We have observed that the value of α also affects the performance of (HLPIHLF-λ), instances

being more difficult for smaller α values, specially for the AP instances. We also noted that, unlike

(HLPIHLF-1BP), with (HLPIHLF-λ) there seem to be no noticeably differences among scenarios.

Detailed results on the computing times required in the implementation of (HLPIHLF-λ) with

the tested instances can be found in the Online Supplement.

Given the good performance of (HLPIHLF-λ) with instances up to 25 nodes, we carried out a

second set of computational experiments, on larger instances (n ∈ {40,50}) based on the AP and

TR datasets. For this second set of experiments we only considered (HLPIHLF-λ) for λ ∈ {2,4}

and β = 1, but did not consider (HLPIHLF-1BP), since it most instances could not be optimally

solved with it within the time limit already for n= 25. Table 3 summarizes the obtained results.

We can observe that, for λ= 2, all the TR instances, 99% of the APT instances, and 80% of the

APL instances have been solved to proven optimality within the time limit, whereas for λ= 4 the

percentage of solved instances decreased to 70% for APT , 40% for APL, and 6% for TR. This shows

that (HLPIHLF-λ) is able to solve larger instances with up to n = 50, even if instances become

more challenging as the value of the parameter λ increases.

6.3. Managerial Insight

In this section we derive some managerial insight from the results obtained in our first set of

experiments, i.e., n≤ 25 when the instances were solved with both formulations, as well from the

solutions of these instances for M0 (the uncapacitated HLP with no protection under failures).
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CPUTime MIPGap %Solved
RP SP RP SP RP SP

n α Data 0.1 0.3 CP 0.1 0.3 0.1 0.3 CP 0.1 0.3 0.1 0.3 CP 0.1 0.3

λ= 2

40

0.2

APT 371 363 382 361 310 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
APL 1608 1689 5418 1181 1059 0.00 0.00 4.43 0.00 0.00 100 100 60 100 100
TR 870 775 773 666 537 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

0.5

APT 344 479 313 322 432 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
APL 3579 3155 2487 2602 1351 0.00 3.16 0.00 0.00 0.00 100 80 100 100 100
TR 434 600 601 337 414 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

0.8

APT 331 376 325 303 337 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
APL 2067 1663 2126 1604 692 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
TR 499 489 430 512 390 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

50

0.2

APT 3986 3470 5128 4147 3651 0.00 0.00 2.46 0.00 0.00 100 100 80 100 100
APL 6427 5362 6472 3273 TL 13.79 6.56 12.40 0.00 15.64 20 60 40 100 0
TR 2877 2520 3385 2180 3817 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

0.5

APT 2635 3789 4319 4823 1590 0.00 0.00 2.02 0.00 0.00 100 100 80 100 100
APL 3819 3406 TL 2761 2131 0.00 3.45 17.09 0.00 0.00 100 80 0 100 100
TR 1296 3037 3264 1201 1349 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

0.8

APT 2862 3732 2836 3736 2474 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
APL 5872 5151 7183 6279 1172 9.93 2.99 14.02 0.00 0.00 40 80 20 100 100
TR 1010 1495 1356 852 1050 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

λ= 4

40

0.2

APT 2919 2907 2300 2582 6060 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
APL TL TL 5643 5427 5674 49.57 50.23 19.51 0.00 0.00 0 0 60 100 100
TR 6958 7044 6002 TL TL 13.64 9.16 5.89 7.14 10.61 20 20 60 0 0

0.5

APT 2807 2335 2293 2186 2939 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
APL 5589 4865 3875 5535 2960 10.03 10.03 0.00 0.00 0.00 80 80 100 100 100
TR TL 7030 7024 TL TL 20.15 14.00 12.62 22.24 13.99 0 20 20 0 0

0.8

APT 2315 2400 2272 1640 1750 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100
APL 4959 5691 3512 6253 2767 19.83 9.12 0.00 0.00 0.00 60 80 100 100 100
TR TL 6991 7139 TL TL 17.73 13.56 12.25 17.51 14.20 0 20 20 0 0

50

0.2

APT 7089 7198 6966 7134 6004 30.03 40.96 27.71 0.00 0.00 40 20 40 100 100
APL TL TL TL TL TL 49.99 49.23 50.31 48.24 46.73 0 0 0 0 0
TR TL TL TL TL TL 17.12 13.76 16.23 17.77 16.54 0 0 0 0 0

0.5

APT 6482 6995 6711 5310 TL 20.67 39.79 25.85 0.00 49.76 60 20 40 100 0
APL TL TL TL TL TL 49.68 48.38 50.03 48.53 48.19 0 0 0 0 0
TR TL TL TL TL TL 24.59 16.95 17.05 22.29 20.88 0 0 0 0 0

0.8

APT 6933 7081 6259 7202 7201 28.66 39.67 0.00 29.26 46.94 40 20 100 0 0
APL TL TL TL TL TL 48.91 47.81 47.93 48.24 46.94 0 0 0 0 0
TR TL TL TL TL TL 25.94 21.03 22.78 27.43 23.51 0 0 0 0 0

Table 3 Average results for (HLPIHLF-λ) for n≥ 40.

We first analyze the contribution to the objective function value of the different types of costs:

routing costs, fixed costs for activating hubs (Hubs Costs) and fixed costs for activating inter-hub

edges (Links Costs). Since results are similar for APL and APT data sets, for this analysis we

differentiate, for each formulation, between datasets CAB, AP and TR, as well as among the three

values of the α parameter.

The obtained results indicate that the percent contribution of the fixed costs for activating inter-

hub edges varies from 0.1% for CAB instances to 13% for TR instances in M0. As expected, the

percent contribution of hub fixed costs depends on the value of the parameter α, but mainly on the

dataset and on the model. For the instances based on the CAB dataset, the percent contribution of

hub fixed costs varies from 20% with M0, M1, and M2 2 for α= 0.8, to 40% with M2 4 for α= 0.2.

For the instances based on the AP dataset, the percent contribution of hub fixed costs varies from

45% with M0 and α ∈ {0.5,0.8} to 75% with M2 4. Regarding the instances based on the TR

dataset, the percent contribution of hub fixed costs varies from 21% with M0 and α∈ {0.5,0.8} to
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69% with M2 4 for α= 0.2. The percent contribution of routing costs also depends on the value of

the parameter α, on the dataset, and on the model. For the instances based on the CAB dataset,

this percentage varies from 55% to 80%, with the highest values for M0, M1, and M2 2 and α= 0.8.

For the instances based on the AP dataset, the percent contribution of routing costs varies from

15% to 55%, corresponding the highest values to M0 with α= 0.8. Finally, for the instances based

on the TR dataset, the percent contribution of routing costs varies from 22% to 68%, corresponding

again the highest values to M0 with α= 0.8.

In the Online Supplement we provide the bar diagrams of the percent contribution of each type

of cost for the different models.

For analyzing the structure of the backbone networks produced by the different tested models

we have studied the number of open hubs and activated inter-hub edges, together with two density

indices, denoted by I1 and I2. I1 indicates the density of the backbone network including loops and

is computed as the ratio between the number of activated inter-hub edges and the total number of

edges in a complete graph with #H nodes if loops were included:

I1 =
2#Lk

#H(#H +1)
.

I2 indicates the density of the backbone network when loops are not considered, and is computed

as the ratio between the number of non-loop inter-hub edges activated and the number of edges in

a complete graph with #H nodes if loops were excluded:

I2 =
2(#Lk−#Lp)

#H(#H − 1)
.

Note that values of the two indices range in [0,1], i.e., 0≤ I1, I2 ≤ 1.

The obtained results show that the number of open hubs mostly depends on the model and also

on the dataset. For all the AP instances the number of open hubs is always one for M0, two for

M1 and M2 2, three for M2 3, and four for M2 4. For the CAB instances this number ranges, in

average, in [2, 5] for M0, in [2.18, 4.29] for M1, in [2, 4.76] for M2 2, in [3, 4.76] for M2 3, and in

[4, 4.74] for M2 4. For the TR instances, the number of open hubs is always one for M0, two for

M1, three for M2 2, four for M2 3, and five for M2 4.

Concerning the number of activated inter-hub edges, our results indicate that this number is

smaller for M0 than for M1 and that, for M1, this number is similar to that for M2 2 but smaller

than that for M2 λ for λ > 2, since, as expected, this number increases with the value of λ.

Additionally, with M0 most of the activated inter-hub edges are loops, specially with the AP and

the TR instances. In fact, we have observed that M0 gives a density index I1 close to 1 and a

density index I2 close to 0, for both the AP instances and TR instances. This indicates that most
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of the activated inter-hub edges are loops. Instead, for the TR instances the optimal backbone

networks produced by M1 have both I1 = I2 = 1.

We finally point out that, as expected, the density of the backbone network for M2 λ increases

with the value of the parameter λ.

In the Online Supplement we provide with several tables and figures that support the above

analysis. In particular, we report the average values for the number of hubs (#H), inter-hub edges

including loops (#Lk), and loops (#Lp) activated in the optimal backbone networks for the differ-

ent models; and depict bar diagrams of the values for the density indices I1 and I2, for the different

types of instances.

7. The price of robustness

For assessing the robustness and reliability of the hub network models proposed in this paper, we

evaluate the so-called price of robustness (see e.g. Bertsimas and Sim 2004), defined as the extra

cost incurred to design a robust network. In our case, robustness translates into protecting the

backbone network under inter-hub edge failures, which, essentially, is attained by incorporating

additional inter-hub edges to the backbone network. We thus start our analysis by comparing the

overall fixed cost for each of the proposed models M1, M2 2, M2 3, and M2 4, with that of the

unprotected network obtained with M0. The interested reader is referred to the Online Supplement

for detailed information about these costs.

As expected, constructing networks that are robust under inter-hub edge failures has a signifi-

cant impact in the design costs (fixed costs for activating hub nodes and inter-hub edges) of the

network. We have observed that, in this type of instances, the value of α scarcely affects the design

costs in any of the models. The percent deviation of the activated hubs and inter-hub edges fixed

costs with respect those of M0 ranges, in average, from around 65% for M1 to around 335% for

M2 4, increasing for the λ-connected models with the value of λ. This can be easily explained as

larger backbone networks are required as λ increases. Nevertheless, as shown by the results of the

experiment that we report next, in case of failure, this increase in the design costs strengthens

the possibility of being able to re-route all the commodities of a posteriori solutions (after the

occurrence of a failure in the inter-hub edges).

For this experiment, we have used all n = 20 instances of the TR dataset, whose optimality

is guaranteed for all models. For each of the 255 instances generated for the TR dataset with

n = 20, we have simulated the following scenarios for potential failures of the inter-hub edges of

the backbone networks produced by the different models:

• Failure scenario 1 (FS1): Only activated inter-hub edges may fail. Each activated hub

edge {k, l} in a backbone network fails (and removed from the backbone network) according to a

Bernoulli distribution with probability pkl.
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Figure 3 Illustration of the four different failure scenarios that we perform.
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• Failure scenario 2 (FS2): In this scenario failures are associated with hub nodes. Failure of a

hub node implies the failure of all the inter-hub edges incident to the hub. Thus, each activated hub

fails with probability pkk, and then all its incident inter-hub edges are removed from the backbone

network.

• Failure scenario 3 (FS3): Failures are simulated for inter-hub edges of the backbone network

similarly to FS1. In case an inter-hub edge fails, the failure probability of the loops at the end

nodes of the edges is increased by 50%. Then, failures in the loop edges are simulated.

• Failure scenario 4 (FS4): First, failures are simulated for inter-hub edges of the backbone

network similarly to FS1. The difference is that we now assume that the failure of a considerable

number of inter-hub edges incident to any activated hub node, will provoke the failure of the hub

node as well, and thus the failure of all its incident inter-hub edges. That is, for each activated

hub node, we assume that if at least a given percentage γ% of its incident inter-hub edges have

failed, then the whole hub node fails, provoking that its remaining incident inter-hub edges also

fail, which are also removed from the network. In our study we fix the value of the parameter γ to

75%, i.e., if 75% or more of the inter-hub edges incident to a hub node fails, then, the hub (and

the remaining incident inter-hub edges) cannot be used any more for routing the commodities.

Figure 3 illustrates with simple backbone networks (H,EH) the four failure scenarios that we

consider. The backbone network has four hub nodes H = {k, l,m, q} and six inter-hub edges, of

which two are loops EH = {{k, l},{k, q},{l,m},{q,m},{l, l},{m,m}}. In FS1, hub edges {k, l} and

{m,m} are chosen to fail, both depicted with dashed lines in the left picture. The network resulting

after removing these inter-hub edges is shown in the right picture. In FS2, hub node m (in a gray

circle) is chosen to fail, and then, all the hub edges incident with it (depicted with dashed lines),

namely {q,m},{m,m} and {l,m}, are removed from the network. In FS3 the inter-hub edge {q,m}

is chosen to fail, and increases in 50% the failure probability of the loop {m,m}, which is then

randomly chosen to fail. Thus, we chose {q,m} and {m,m} (depicted with dashed lines), which

are then removed from the network. Finally, in FS4, hub edges {k, l}, {l,m}, {q,m} and {m,m}

are chosen to fail. Then, since the percentage of inter-hub edges incident to m that fail exceeds

γ = 75%, all edges incident to m are removed. For the remaining hub nodes, such a percentage is

not exceeded so no further inter-hub edges are removed.

We have carried out simulations for each of the above failure scenarios, all of which follow the

same general structure, for a given backbone network. (i) We randomly generate the edges that fail

according to the corresponding failure scenario and obtain the after-failure network by removing

from the backbone network these edges. (ii) We try to re-route all the demand through the after-

failure network. (iii) Since it may happen that it is no longer possible to route the demand in

the after-failure network, we analyze this circumstance in our study. For each failure scenario,
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each simulation is repeated 10000 times over each instance. The obtained results indicate that

the networks obtained with the proposed models (M1 and M2 λ) are clearly more robust under

inter-hub edge failures than M0. Specifically, in average, with our models all the demand can be

re-routed after failure in 90% of the 1000 simulations, whereas with M0 all the demand can be

re-routed in only 78% of them. For M2 4 the results are even more impressive since re-routing

the demand was possible in 99.5% of the simulations. These results are summarized in the Online

Supplement.

On the other hand, the results of failure scenario FS2 show that models M2 λ are not only

robust under inter-hub edge failures, but also under failures of the hub nodes. On the contrary,

M0 and M1 have a weaker behaviour under these scenarios, as, in average, the demand could not

be routed in nearly 20% of the simulations. This highlights the performance of M2 2, M2 3, and

M2 4, for which the percentage of simulations where demand could not be re-routed decreases to

12%, 5%, and 2%, respectively.

Finally, we have defined a function that allows us to estimate the extra routing cost in the

after-failure network. Specifically, for each simulation, when the demand can be routed in the after-

failure network, we compute the overall a posteriori routing cost RF . We denote by τF ∈ [0,1] the

proportion of simulations for which this cost can be computed. In case a commodity r ∈R cannot be

routed through the after-failure backbone network, we assume that its routing cost is proportional

to the cost of the direct connection c̄o(r)d(r), i.e. the overall routing cost is (1 + q)
∑
r∈R

wrco(r)d(r).

The parameter q > 0 represents the extra percent cost (over the cost of the direct connection) for

re-routing a commodity in case the backbone network can no longer be used to route it. Such a

cost may represent the outsourcing cost of a direct delivery between the origin and destination of

the commodity or the opportunity loss of an unsatisfied user for which the service could not be

provided. With this information, we compute the average design and routing cost for the network

as:

Φ(q) =
∑
h∈H

fh +
∑
e∈EH

he + τFR
F +(1− τF )(1+ q)

∑
r∈R

wrco(r)d(r).

We summarize in Figure 4 the average behavior of the above cost for all the simulations and

all the failure scenarios. Each line represents Φ(q), as a function of the parameter q, for each of

the after-failure networks produced by the simulations constructed with the five different models

(M0, M1, M2 2, M2 3, and M2 4). One can observe that for small values of q (the re-routing costs

are a small fraction of the direct routing costs) M0 is more convenient. This is clear, since when

re-routing costs are not very high, one may undertake such costs, even if failures occur very often.

As q increases, the most convenient models are M1, M2 2, and M2 3 (in this order). M2 4 is clearly
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Figure 4 Routing costs + fixed costs on the after-failure network as a function of the parameter q.

the most robust one, since the parameter q almost does not affect its routing cost (in this case

the percentage of simulations for which the commodities cannot be routed is really small), but its

design costs are very high.

Furthermore, it can be observed that, when results are disaggregated by failure scenario (FS1,

FS2, FS3, and FS4), the behavior of Φ(q) is different for the failure scenario FS2, where we

simulate failures in hub nodes, from the other failure scenarios. In FS2, models M0, M2 3, and

M2 4 outperform M1 and M2 2, in average, whereas in the remaining failure scenarios M0, M1,

and M2 2 are more convenient for reasonable values of q. This information is shown in the figures

provided in the Online Supplement.

We conclude this section by highlighting that the study that we have carried out allows the

decision maker to determine the best model to construct the backbone network based on the

expected extra cost that should be paid for not providing the service to commodities due to failures

in the network.

8. Conclusions and further research

In this paper we have developed several models to design hub networks that are robust under link

failures. All models ensure that, for each commodity, an additional routing path exists besides its

original routing path, which can be used in case of failure of the inter-hub arc of the original path.

The first model builds explicitly the backup path for each commodity, whereas the second model

ensures that backup paths exist by imposing the λ-connectivity of the backbone network for a

given value of λ≥ 2. The two models present advantages from the point of view of the robustness

of the backbone network. One the one hand, the first model guarantees that backup paths for the

commodities are of the same nature than the original ones, although the computational effort to
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obtain solutions is high. On the other hand, the second model ensures that backup paths exist,

with lower computational requirements.

Both models have been computationally tested on an extensive battery of experiments with

instances based on three well-known HL benchmarks, namely AP, CAB and TR. Furthermore, we

have analyzed the robustness of the models by simulating failures corresponding to different types of

failure scenarios on the TR network, assessing their applicability. Some conclusions can be derived

from this study. In particular, we observe that our models are very useful for the design of hub

networks exposed to link failures, since they produce backbone networks that allow re-routing the

demand even when failures occur. As expected, the design costs for obtaining robust hub networks,

which guarantee that commodities can be re-routed if inter-hub edges fail, considerably increase

with respect to those of models that do not consider potential failures of inter-hub edges. Our

simulation study indicates that, even when re-routing costs are small, the robust networks produced

by our models allow reducing the overall cost for building and using the hub infrastructure.

Future research on the topic includes the study of valid inequalities for both models in order

to alleviate the computational effort for their exact solution. We observed in the results of our

computational experiments, that for model (HLPIHLF-1BP), there are already instances with n=

25 nodes for which the the Time Limit was reached (even some of them flagged Out of Memory).

For model (HLPIHLF-λ), for n= 50 the time limit was also reached, with MIP Gaps close to 50%.

In our opinion, with a suitable choice of the heuristic approach, we think it would be possible to

find better solutions (smaller MIPGap) in much smaller computing times.

Another topic of research related to this work is the incorporation of the robust strategies that

we use here to other network design problems as min-cost spanning trees or min-cost flow networks,

where failures in the edges of the network may cause a break in the system.
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