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A B S T R A C T

Airborne methodologies based on unmanned aerial vehicles (UAV) are becoming an extraordinary tool for
implementing fast, accurate and affordable phenotyping strategies within plant breeding programs. The aim of
this paper was to study the potential use of a previously developed UAV-OBIA platform, to fasten and support
decision making for olive breeders regarding the selection of the most promising genotypes in terms of tree
geometric traits. In particular, we have studied the feasibility of the system to efficiently classify and select olive
genotypes according to four architectural parameters: tree height, crown diameter, projected crown area and
canopy volume. These vegetative growth traits and their evolution during the first months after planting are key
selection criteria in olive breeding programs. On-ground measurements and UAV estimations were recorded over
two years (when trees were 15 and 27 months old, respectively) in two olive breeding trials using different
training systems, namely intensive open vase and super high-density hedgerows. More than 1000 young trees
belonging to 39 olive accessions, including new cross-bred genotypes and traditional cultivars, were assessed.
Even though the accuracy in the UAV estimation compared to the on-ground measurements largely improved the
second year, both methodologies detected in both years a high variability and significant differences among the
studied genotypes, allowing for statistical comparisons among them. Genotype rankings based on the on-ground
measures and UAV estimations were compared. The resulting Spearman’s rank coefficient correlations were very
high, at above 0.85 in most cases, which highlights that very similar genotype classifications were achieved from
either field-measured or airborne-estimated data. Thus, UAV imagery may be used to assess geometric traits and
to develop rankings for the efficient screening and selection of genotypes in olive breeding programs.

1. Introduction

Since the domestication of the olive (Olea europaea L.) approxi-
mately 6000 years ago (Diez et al., 2015), olive trees have been grown
in the Mediterranean basin where they are the most important fruit
crop at present: around 10 million ha in the area, 94 % of the world
olive surface (FAOSTAT, http://fao.org). Up to the middle of the
twentieth century, olives were grown under rainfed conditions in long-
lasting orchards with low investments, empirical technologies and high
labor demand, leading to erratic and low yields. Since then, a con-
tinuous trend towards the intensification and technification of more
productive and mechanized olive plantations, irrigation, pruning and
harvesting mechanization, and new growing systems (e.g., super-high-

density hedgerows) has taken place (Rallo et al., 2018b) to respond to
an increasing demand for olive products, namely olive oil and table
olives. In fact, the expansion of olive growing worldwide is a response
to the rising interest and increase in the consumption of these products
for their high nutritional value and their beneficial effects on human
health (Rallo et al., 2018c).

The need for new olive cultivars that are better adapted to these
new growing systems and to near-future scenarios (climate change and
new abiotic and biotic stresses including new sanitary threats) en-
courages the development of olive breeding programs in many olive-
producing countries, including Israel (Lavee, 1990), Italy (Bellini et al.,
2002), Spain (Rallo et al., 2018a, 2008); Tunisia (Dabbou et al., 2012),
Turkey (Ozdemir et al., 2013) and Iran (Zeinanloo et al., 2009).
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Nevertheless, the number of new olive cultivars released so far is still
scarce compared to other fruit species (Rallo et al., 2018b). The ex-
traordinary length of the juvenile period of this species has constrained
the efficiency of olive breeding programs. In addition, cross-breeding
olives requires multiple years of intense screening and the thorough
field evaluation of a large number of genotypes during the different
stages of the breeding process: initial evaluation of seedlings, inter-
mediate evaluation of preselected genotypes, and final evaluation of
advanced selections in comparative trials (Rallo et al., 2018b). Plant
phenotyping is commonly laborious since many of the traits of interest
to breeders require manual assessment in the field, of sometimes
complex-to-achieve characteristics, which are frequently prone to
human error and subjectivity (Makanza et al., 2018). In the case of
woody species such as the olive, phenotyping is even more complex and
laborious due to the usually large size of the trees and their irregular
geometry, which hampers the assessment of certain traits, such as ca-
nopy architectural features. Trees also require more extensive field
trials that are costly for breeders to monitor and evaluate. The eva-
luation of architectural traits and vegetative growth habits in olive
breeding is of major importance for estimating the adaptation of new
genotypes to mechanization and different growing systems, particularly
super-high-density orchards (Rallo et al., 2013; Rosati et al., 2013).
Initial vigor traits have also been related to the rapid passing of the
juvenile period in olive progenies (De la Rosa et al., 2006; Rallo et al.,
2008), and thus, they are commonly assessed and used as selection
criteria in breeding programs (Hammami et al., 2011).

The development of accurate and automatic airborne methodologies
based on unmanned aerial vehicles (UAV) represents an extraordinary
and powerful tool for phenotyping plant species. In fact, their potential
use to extract phenotypic data from large breeding populations to ac-
celerate the selection of new and improved cultivars is currently being
investigated over a wide range of species and target traits. For instance,
UAV platforms have been used to select high yielding genotypes in
cotton (Jung et al., 2018); for the ranking of wheat, barley, and triticale
accessions for their potential bioethanol production (Ostos-Garrido
et al., 2019); the screening of wild tomatoes for salt tolerance
(Johansen et al., 2019); the evaluation of maize genotype performance
under low-N conditions (Buchaillot et al., 2019); dry bean responses to
abiotic stresses (Sankaran et al., 2018); or the screening of inbred let-
tuce lines for their carotenoid contents (Maciel et al., 2019).

The use of different sensor technologies to acquire field data on
olives and other woody crops (e.g., vineyards, citrus, almonds, and
poplars) in experimental trials or commercial groves has also been ex-
plored. Most of these studies have been focused on agronomic appli-
cations to improve field management, such as weed mapping (Jimenez-
Brenes et al., 2019), disease detection (Calderon et al., 2013; De Castro
et al., 2015), site-specific phytosanitary sprays (de Castro et al., 2018a),
biomass estimation (Peña et al., 2018), irrigation (Caruso et al., 2019;
de Castro et al., 2018b), pruning impact quantification (Jimenez-Brenes
et al., 2017) or the evaluation of tree damage caused by straddle har-
vesters (Perez-Ruiz et al., 2018). Other airborne imagery applications in
olive include real-time tree counting (Salami et al., 2019), the identi-
fication of field-grown cultivars (Avola et al., 2019) and the estimation
of plant architectural features (Moriondo et al., 2016; Noori and Panda,
2016). However, information regarding the application of UAV plat-
forms for olive breeding purposes is almost nonexistent. To the best of
our knowledge, there is only one previous study that has explored the
possible use of UAV imagery in olive breeding trials to estimate the
plant height and crown diameter (Diaz-Varela et al., 2015). Never-
theless, specific data on its application to the screening and selection of
the best performing genotypes has not been reported.

Recently, our research team developed and validated a high-
throughput UAV-based system to estimate multitemporal architectural
traits accurately in very young olive trees during breeding trials (De
Castro et al., 2019). That system consisted of UAV flight configurations
in terms of the flight altitude and image overlaps and an automatic and

accurate object-based image analysis (OBIA) algorithm based on pho-
togrammetric point clouds. The present study aimed at exploring the
reliability of the former methodology to support decision making in
olive breeding programs regarding the selection of the most promising
genotypes on the basis of UAV estimated architectural traits. In parti-
cular, data from the previously developed workflow (De Castro et al.,
2019) were tested at the genotype level to verify the potential use to
correctly sort and select 39 olive genotypes grown in two olive breeding
trials at two timepoints: 15 and 27 months after planting. Particular
attention has been given to the comparison of genotype rankings based
on each methodology.

2. Materials and methods

2.1. Field trials and plant material

This experiment was performed in two olive trials belonging to the
University of Sevilla (US) table olive breeding program located in
Morón de la Frontera, Sevilla (37.193 °N, 5.476 °W, WGS84). The plant
material evaluated in the trials included breeding selections and tra-
ditional table olive cultivars from different Mediterranean countries
(Tables 1 and 2), some of which have been used as progenitors in the US
breeding program. The breeding selections are cross-bred genotypes
that were previously selected after 3–5 years of initial evaluation in the
field for optimal fruit traits (size, pulp-to-pit ratio, and low bruising
incidence, among others). The selected original seedlings of these
genotypes were clonally propagated by rooting softwood cuttings under
mist to produce sufficient number of plants per genotype for the study
trials. The trees were planted in the field in October 2015, when both
trials were established.

Each trial employed a different training system, namely intensive
open vase trees (intensive trial) and super high-density hedgerows
(hedgerow trial) (Fig. 1). The intensive trial comprised 25 olive geno-
types (12 traditional cultivars and 13 breeding selections, Table 1) with
10 trees per genotype arranged in a randomized design, with two trees

Table 1
Genotypes evaluated in the intensive open vase system trial. The country of
origin of traditional cultivars and the progenitors of the genotypes selected
within the University of Sevilla (US) olive breeding program are shown.

Genotype names Origin

Traditional Cultivars
‘Aggezi Shami’ Egypt
‘Ascolana Tenera’ Italy
‘Hojiblanca’ Spain
‘Imperial’ Spain
‘Kalamon’ Greece
‘Manzanilla Cacereña’ Spain
‘Manzanilla de Sevilla’ Spain
‘Memecik’ Turkey
‘Picholine Marrocaine’ Morocco
‘Toffahi’ Egypt
‘Uovo di Piccione’ Italy
‘Belluti’ Turkey

US Breeding Selections
05-389 ‘Manzanilla de Sevilla’ x ‘Santa Caterina’
06-194 ‘Manzanilla de Sevilla’ x ‘Hojiblanca’
06-1158 ‘Ascolana Tenera’ open pollination
06-1176 ‘Ascolana Tenera’ open pollination
06-1308 ‘Belluti’ open pollination
06-1388 ‘Toffahi’ open pollination
06-1439 ‘Toffahi’ open pollination
06-1476 ‘Toffahi’ open pollination
06-1510 ‘Toffahi’ open pollination
06-1577 ‘Toffahi’ open pollination
06-1590 ‘Toffahi’ open pollination
07-038 ‘Ascolana Tenera’ x ‘Uovo di Piccione’
07-083 ‘Ascolana Tenera’ x ‘Uovo di Piccione’
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per elementary plot and five repetitions (Fig. 1 A left side and B). The
trees were planted in a 7 × 5 m layout and were trained as a single-
trunk open vase intended for mechanical harvesting by trunk shaker. In
the hedgerow trial, 14 different genotypes (six traditional cultivars and
eight breeding selections, Table 2) were included (Fig. 1A right side and
C). The experimental design consisted of continuous rows of 20 trees
per genotype (elementary plot) with three randomly arranged repeti-
tions. The trees were planted in a 5 × 1.75 m layout and were trained
to a central leader to form a continuous hedgerow to allow for me-
chanical harvesting by straddle harvester. Both trials were planted
following a North-South orientation, and they were drip-irrigated and
had guard rows.

2.2. Phenotyping at the ground level: field measurements

The major architectural traits were manually assessed at each field
trial in January 2017 and January 2018 (15 and 27 months after
planting), coinciding with the dates of the UAV flights. The maximum
tree heights were measured for all individual trees with a telescopic
ruler in both the intensive (244 trees) and hedgerow (806 trees) trials.

The canopy traits (crown diameter, area and volume) were assessed
for all the trees in the intensive trial (244 trees), and, in the case of the
hedgerow trial, for four trees per elementary plot (164 trees). The
height of the canopy (Hc) and the maximum projected horizontal width
(D1) and its perpendicular (D2) length were measured with a measuring
tape. The mean crown diameter was calculated. The crown area and
volume were estimated as in Ben Sadok et al. (2015), assuming an el-
liptical shape [Π x ((D1+D2)/4)2] and a cone-shaped form [1/3 x
Crown area x Hc], for intensive and hedgerow trees, respectively.

2.3. Phenotyping by using a UAV platform

Data from the application of a previously developed and validated
workflow (De Castro et al., 2019) were used. This UAV-based workflow
consisted of two primary steps, i) the generation of 3D photogram-
metric point clouds and ii) the automatic analysis of the point clouds
using an OBIA algorithm to generate and evaluate a set of agronomic
traits of great importance in olive phenotyping, such as the tree height,
diameter, area and volume of the crown of each tree and of each gen-
otype.

2.3.1. Generation of the 3D point cloud
The generation of the 3D photogrammetric point cloud requires the

acquisition of UAV images with high overlaps between them as inputs,
and the registration of the coordinates of some ground control points in
every field.

The aerial images were acquired in January 2017 and 2018 using a
low-cost, commercial, off-the-shelf camera, a Sony ILCE-6000 model

Table 2
Genotypes evaluated in the super high-density hedgerow system trial. The
country of origin of traditional cultivars and the progenitors of the genotypes
selected within the University of Sevilla (US) olive breeding program.

Genotype names Origin

Traditional Cultivars
‘Ascolana Tenera’ Italy
‘Hojiblanca’ Spain
‘Manzanilla Cacereña’ Spain
‘Manzanilla de Sevilla’ Spain
‘Memecik’ Turkey
‘Toffahi’ Egypt

US Breeding Selections
06-999 ‘Ascolana Tenera’ open pollination
06-1158 ‘Ascolana Tenera’ open pollination
06-1173 ‘Ascolana Tenera’ open pollination
07-078 ‘Ascolana Tenera’ x ‘Uovo di Piccione’
07-192 ‘Gordal Sevillana’ open pollination
07-214 ‘Gordal Sevillana’ open pollination
08-463 ‘Toffahi’ open pollination
08-507 ‘Toffahi’ open pollination

Fig. 1. General aerial and field views of the olive breeding trials in 2018: intensive open vase trial (A left side and B) and super high-density hedgerow trial (A right
side and C). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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(Sony Corporation, Tokyo, Japan), which was installed on board a
quadcopter model MD4-1000 (microdrones GmbH, Siegen, Germany).
This camera has a 23.5 × 15.6 mm APS-C CMOS sensor, which is
capable of acquiring 24 megapixel (6,000 × 4,000 pixels) images with
8-bit radiometric resolution, and it is equipped with a 20 mm fixed lens.
The camera originally captured spectral information in the red, blue
and green bands of the electromagnetic spectrum; however, it was
modified to capture information in the near infrared (NIR), red, and
green bands. The UAV routes were designed to take images from a nadir
point of view at a 50 m flight altitude, which resulted in a spatial re-
solution of 1 cm. The selected forward and side overlaps among the
images were 93 % and 60 %, respectively; this configuration has been
shown to allow for the accurate 3D modelling of woody crops in pre-
vious research (Torres-Sanchez et al., 2015; 2018).

The coordinates of six ground control points from every breeding
trial were registered using a real-time kinematic (RTK) GPS linked to a
reference station from the GNSS RAP network from the Institute for
Statistics and Cartography of Andalusia (IECA), Spain. The estimated
accuracy of the GNSS-RTK system is 0.02 m in planimetry and 0.03 m in
altimetry.

The images and their coordinates were used as input into Agisoft
PhotoScan Professional Edition (Agisoft LLC, St. Petersburg, Russia)
version 1.2.4 build 1874, for the generation of the 3D point clouds. The
process was fully automatic, with the exception of the manual locali-
zation of the ground control points in both olive orchards. The final
points in the 3D point clouds were saved in. las format. More in-
formation about the processing parameters of this software can be
found in Torres-Sanchez et al. (2018) and De Castro et al. (2019).

2.3.2. Automatic analysis of the 3D point clouds
The segmentation and characterization of the olive trees was

achieved using the OBIA algorithm reported in De Castro et al. (2019).
The work presented here is an extension of a broader research project.
Once the rule-set was developed and duly validated, the next step was
testing the ability of this approach to phenotype olive genotypes in
breeding programs efficiently. Since one of the primary interests of
phenotyping studies is to rank different varieties for the target geo-
metric trait, the generated information was used to assess a set of
specific variety rankings to select the most promising accessions. This
algorithm was created using the Cognition Network programming
language in eCognition Developer 9 software (Trimble GeoSpatial,
Munich, Germany). The algorithm is fully automatic, and the only in-
puts needed are the point clouds from every breeding trial and a vector
layer with its limits. The algorithm can be divided into the following
automatically executed steps: 1. Digital terrain model (DTM) genera-
tion (the lower points in the point cloud were selected); 2. Tree point
cloud creation (the OBIA algorithm calculated the height of all the
points over this reference surface. A new point cloud called Tree point
clouds containing all the points with heights over 0.30 m was created);
3. Tree crown delineation (a grid was overlaid on the field, and all the
squares containing points from the Tree point clouds were classified as
Tree); 4. Point cloud slicing (the Tree point cloud was divided into slices.
Considering that the field had previously been divided into squares, the
point cloud was divided into 3D pixels (voxels)); 5. Olive tree char-
acterization (knowing the voxel volume and the number of voxels it was
possible to find the volume occupied by the olive crown. Finally, the
crown area, length and width were extracted from the classification
performed during the second step of the algorithm).

The output of the algorithm is a vector file that includes the crown
limits of every tree and contains, as associated information, its crown
volume, maximum height, projected area, length and width. This file
can be used in any geographic system, and all the information can also
be exported as an ASCII file, including the previous information plus the
central coordinate of every tree. More details about the OBIA algorithm
can be found in De Castro et al. (2019).

2.4. Statistical analysis

The mean values per genotype were calculated for all the field-
measured and OBIA-estimated traits. An analysis of variance (ANOVA)
of all the measured and estimated traits per genotype were performed,
and the mean values were compared using Tukey's test (p ≤ 0.05). The
genotypes were sorted and graphically represented according to every
mean field value.

As an estimation of the bias at the genotype level, the relative dif-
ferences between on-ground-measured and OBIA-estimated data were
calculated for each individual tree per genotype using ((field value-
OBIA value)/field value)*100. The ANOVA of the relative differences
per genotype was also performed and the mean values were compared
according to Tukey's test (p ≤ 0.05). The linear regression fits and
correlation coefficients (r) between the measured and estimated plant
heights were calculated at the genotype level for each year and training
system.

The Spearman’s rank correlation coefficients (rs) between the
rankings of genotypes obtained by field data and by OBIA estimations
(according to mean values per genotype) were calculated for each trait,
year and training system.

All the statistical analyses were performed using Statgraphics
Centurion X64.

3. Results

3.1. Genotype characterization and classification

The olive tree identification by UAV-OBIA reached 100 % accuracy.
Figs. 2–5 represent the mean values per genotype of all the measured
traits in the field, and the same traits were estimated using the UAV-
OBIA algorithm for both trials (intensive and hedgerow) and years
(2017 and 2018).

High variability and significant differences among the genotypes
were observed for all the traits and years using both methodologies (on-
ground and OBIA data). The genotypes were sorted in the figures ac-
cording to the values of the ground-measured traits to detect differences
in the relative order graphically, with respect to the OBIA-estimated
values.

During the first year of the experiment (2017) (Figs. 2 and 3), the
differences between the field and OBIA data were particularly large for
the crown area and volume. In the intensive trial (Fig. 2), the relative
order of genotypes according to field records differed moderately
compared to the OBIA-estimated data classification, although the se-
paration of the genotypes with the lowest values from the genotypes
with the highest values was highly conserved between methods. The
relative order seemed to be better achieved in the hedgerow trial, and
the separation of genotypes with the lowest and highest values was
almost the same for the field and OBIA methods (Fig. 3).

One year later, in January 2018, when the trees were 27 months
old, there were fewer differences between the field measured and OBIA-
estimated traits both in the mean values per genotype and in the re-
lative classification of the genotypes, as observed in the intensive
(Fig. 4), and, particularly, in the hedgerow trials (Fig. 5). For example,
in the intensive trial, the genotypes with the significantly lowest field
tree heights were 06−1176, ‘Imperial’, 05−389, 06−1590, ‘Toffahi’,
06−1158, ‘Belluti’ and ‘Memecik’, and the ones with the significantly
largest heights were 06-1476, ‘Picholine Marocaine’, ‘Manzanilla de
Sevilla’, 06-1308, 06-1439, ‘Kalamon’, 06-1510, ‘Hojiblanca’, ‘Aggezi
Shami’ and ‘Manzanilla Cacereña’. The same genotypes would be se-
lected for their significantly lower or higher tree height values as esti-
mated by the drone, with just a few exceptions: 06-1476, ‘Manzanilla de
Sevilla’ and 06-1308, which were considered to be within the inter-
mediate tree height group. Furthermore, the mean values within each
group were alike for both methods: the shortest trees (approximately 2
m high), and the largest ones (approximately 2.5 m). A similar pattern
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was observed for the rest of the traits in the same trial and in the
hedgerow trial (Fig. 5). That is, two years after planting, the estimation
of the trait value and the genotype order (used for further selection
within the breeding scheme) via UAV-OBIA was clearly improved.

3.2. UAV estimation accuracy

The mean relative differences between field-measured and OBIA-
estimated values per genotype and year for all the traits considered in
the study are shown in Table 3 (intensive trial) and Table 4 (hedgerow
trial). In the intensive trial (Table 3), the mean relative differences in
2017 (15 months-old trees) were generally high, although they differed

among the following traits: plant height (mean 18 %; range 0–51%
among genotypes), crown diameter (40 %; 15–68 %), crown area (64
%; 30–90 %) and crown volume (78 %; 41–95 %). The following year,
when the trees were approximately 27 months old, the relative differ-
ences were notably reduced for the plant height (mean 6%; range 1–17
%) crown diameter (8 %; 2–16 %) and crown area (24 %; 12–36 %),
especially the ranges of variation among genotypes. Relative differences
for crown volume (68 %; 58–75 %) were still high in 2018, although
slightly reduced compared to the previous year. Nevertheless, despite
the high mean values and the large ranges of variation among geno-
types, the relative differences between both methods (on-ground mea-
sures and OBIA estimations) for both years were only significant

Fig. 2. Intensive open vase system trial January 2017: mean values per genotype of field-measured and OBIA-estimated traits. The genotypes are ordered according
to the values measured in the field. The bar represents the mean squared error (MSE).
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between the genotypes with the furthest mean values. For example,
when measuring the tree height in 2017, the relative differences were
only significant between the genotypes with the lowest values (highest
accuracy) (‘Manzanilla Cacereña, 0 %, and ‘Aggezi Shami’ 1 %) com-
pared to the genotypes with the highest relative field-OBIA differences
(lowest accuracy) (06−1176, 30 %, and 06−1577, 50 %). The accu-
racy of the estimated tree height in the remaining 25 genotypes did not
differ significantly. Similar conclusions may be obtained for the rest of
the traits for both years. The differences were positive in all cases,
showing in the intensive trial that the UAV workflow underestimates all
the studied traits.

In the hedgerow trial (Table 4), the relative differences in the first

year (2017) were similar to those observed in the intensive trial
(Table 3), with the exception of the crown diameter: tree height (mean
20 %; range −7 to 38 % among genotypes), crown diameter (44 %;
range -128 to 60 %), crown area (65 %; 25–84 %) and crown volume
(82 %; 46–95 %). Again, during the second year of the study, the re-
lative differences between field measurements and OBIA estimations
were remarkably reduced for the tree height (mean 9 %; range 5–16 %
among genotypes), crown diameter (4 %; −8 to 6 %), crown area (10
%; 3–18%) and crown volume (14 %; −14 to 35 %). There was a
particularly noticeable reduction in the values of the relative differ-
ences in the crown volume (mean 14 %, Table 4) with respect to the
intensive trial (mean 68 %, Table 3). As previously shown in the

Fig. 3. Super high-density hedgerow system trial January 2017: mean values per genotype of field-measured and OBIA-estimated traits. The genotypes are ordered
according to the values measured in the field. The bar represents the mean squared error (MSE).
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intensive trial, significant differences in the accuracy of the OBIA es-
timation were only found between genotypes with the furthest values of
the relative differences, and in 2018, no differences at all were found
among the genotypes for the crown area and volume, i.e., the same
“relative estimation error” was made in every genotype.

The linear fits and correlation coefficients (r) of the measured vs the
estimated tree heights for each genotype are shown in Fig. 6 (intensive
trial) and 7 (hedgerow trial). During the first year of the study, the r
values were very different depending on the genotype, ranging between
0.04 (06-1176) and 0.97 (06-1388) in the intensive trial. Lower values
were observed in the hedgerow trial, ranging between 0.08 (‘Manza-
nilla Cacereña’) and 0.86 (08-507 and 07-192). Nevertheless, for most

genotypes, the r was above 0.5 (21 out of 25 in the intensive trial and 9
out of 14 in the hedgerow). Better linear fits were obtained the fol-
lowing year, with correlation coefficients reaching values above 0.75 in
all the genotypes of the hedgerow trial (ranging from 0.77 to 0.97,
Fig. 7), and above 0.7 in 21 out of 25 genotypes of the intensive trial
(range 0.28−0.97, Fig. 6)

3.3. Genotype rankings correlations

Spearman’s rank correlation coefficients (rs) (Table 5) measure the
statistical dependence between the rankings of genotypes achieved by
ordering the mean values according to the field measurements and the

Fig. 4. Intensive open vase system trial January 2018: mean values per genotype of field-measured and OBIA-estimated traits. The genotypes are ordered according
to the values measured in the field. The bar represents the mean squared error (MSE).
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OBIA estimates. In both trials and years, the obtained coefficient values
were very high for all the studied traits, although slight differences
were found. During the first year of the study, the rs ranged from 0.69 to
0.87 in the intensive trial, and from 0.79 to 0.97 in the hedgerow trial,
showing the lowest values for the crown volume in both trials. The
following year, all the coefficients were above 0.91 and 0.85 in the
intensive and hedgerow trials, respectively.

4. Discussion

The development of airborne methodologies based on UAV coupled
to different sensors offers an extraordinary opportunity for the im-
plementation of fast, accurate and affordable screening strategies in
plant breeding programs, and so they are increasingly being used for
phenotyping genetic trials on different crops, including some tree spe-
cies, such as Pinus halepensis (Santini et al., 2019); citrus varieties and
rootstocks (Ampatzidis and Partel, 2019) and apples (Virlet et al.,
2016). Nevertheless, the particular use of UAV platforms for

Fig. 5. Super high-density hedgerow system trial trial January 2018: mean values per genotype of field-measured and OBIA-estimated traits. The genotypes are
ordered according to the values measured in the field. The bar represents the mean squared error (MSE).
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phenotyping olive breeding trials has barely been studied (Diaz-Varela
et al., 2015; De Castro et al., 2019).

In the present study, information is given on the feasibility of a high-
throughput system based on UAV imagery and a robust point cloud-
based OBIA algorithm recently developed by our group (De Castro
et al., 2019) to be used as a tool to support olive breeder’s decision
making. Particularly, we have explored its ability to classify and select
the best performing genotypes efficiently according to four archi-
tectural traits, namely tree height, crown diameter, projected crown
area and canopy volume.

In the first year of the study (2017) (Figs. 2 and 3 and Tables 3 and
4), the UAV estimations differed moderately from the on-ground mea-
surements: the mean relative differences ranged from 18 % for the tree

height to 82 % for the crown volume. A general underestimation of tree
heights through UAV-based platforms has been reported in other tree
species (Kattenborn et al., 2014; Peña et al., 2018), particularly in
young plantations. Regarding crown parameters, estimation errors were
higher since the small size of the trees during the first year hampered
the reconstruction of the canopies. However, it should be stressed that
for the calculation of the crown area and volume in the field, geome-
trical assumptions need to be made, for example, the crown area was
assimilated to an ellipse, and the crown volume was likened to a cone.
Although these assumptions are widely used (Ben Sadok et al., 2015),
they produce inexact field-based estimations compared to the data
obtained through airborne imagery that allows for the reconstruction of
the entire tree crown (Torres-Sanchez et al., 2015). In fact, similar traits

Table 3
Intensive open vase system trial: mean relative differences (%) between field-measured and OBIA-estimated values for each genotype and year.

GENOTYPE Tree height Crown diameter Crown area Crown Volume

2017 2018 2017 2018 2017 2018 2017 2018

05-389 22 abcd 4 abc 44 abcde 11 abc 68 bcde 31 bcd 77 abc 73 def
06-1158 19 abcd 5 abc 49 bcde 4 ab 77 cde 21 abcd 93 c 68 abcdef
06-1176 30 cd 17 d 62 de 11 abc 82 cde 33 cd 86 bc 74 f
06-1308 13 abc 8 abc 34 abc 16 c 53 abcd 35 d 76 abc 74 ef
06-1388 18 abcd 6 abc 48 abcde 13 abc 74 cde 34 cd 88 bc 74 def
06-1439 7 abc 2 ab 30 ab 7 abc 62 abcde 21 abcd 79 bc 58 a
06-1476 13 abc 10 bcd 39 abcd 10 abc 67 abcde 28 abcd 83 bc 70 bcdef
06-1510 9 abc 6 abc 38 abcd 6 abc 64 abcde 17 abc 82 bc 63 abcde
06-1577 51 d 7 abc 51 abcde 12 abc 75 bcde 29 abcd 90 abc 72 cdef
06-1590 7 abc 7 abc 27 ab 5 ab 51 abcd 20 abcd 69 abc 60 ab
06-194 20 abcd 7 abc 47 bcde 10 abc 70 bcde 29 abcd 74 abc 73 def
07-038 26 bcd 8 abc 46 abcde 9 abc 77cde 26 abcd 93 c 70 bcdef
07-083 22 abcd 11 cd 68 e 11 abc 90 e 30 bcd 95 c 68 abcdef
Aggezi Shami 1 ab 4 abc 29 ab 4 ab 53 abcd 12 a 67 abc 67 abcdef
Ascol Tenera 20 abcd 9 abc 47 bcde 11 abc 71 cde 31 bcd 89 bc 73 def
Belluti 28 bcd 1 ab 35 abcd 11 abc 53 abcd 27 abcd 72 abc 74 def
Hojiblanca 7 abc 1 ab 39 abcd 5 abc 68 bcde 19 abcd 80 bc 67 abcdef
Imperial 21 abcd 3 abc 15 a 4 ab 30 a 15 ab 41 a 60 ab
Kalamon 24 abcd 4 abc 35 abcd 7 abc 53 abcd 21 abcd 72 abc 67 abcdef
M Cacereña 0 a 2 ab 23 ab 3 ab 52 abc 15 ab 74 abc 63 abcd
M Sevilla 21 abcd 6 abc 60 cde 14 bc 85 de 36 d 93 c 75 f
Memecik 26 abcd 7 abc 38 abcd 3 ab 57 abcd 14 ab 73 abc 66 abcdef
Pichol Marroc 14 abc 1 a 25 ab 5 abc 38 ab 19 abcd 62 abc 61 abc
Toffahi 12 abc 5 abc 30 abc 2 a 54 abcde 14 ab 56 ab 60 ab
Uovo Piccione 20 abcd 7 abc 44 abcde 9 abc 71 cde 25 abcd 84 bc 67 abcdef
Mean* 18 6 40 8 64 24 78 68

Different letters indicate significant differences among genotypes for the relative difference according to Tukey (p≤0.05).
* Absolute values were considered to calculate the mean.

Table 4
Hedgerow trial: mean relative differences (%) between field-measured and OBIA-estimated values for each genotype and year.

GENOTYPE Tree height Crown diameter Crown area Crown Volume

2017 2018 2017 2018 2017 2018 2017 2018

06-1158 29 def 6 ab −53 b −7 a 84 e 3 a 95 c 2 a
06-1173 41 g 5 a −19 bcd −2 ab 80 e 10 a 95 c 21 a
06-999 26 def 10 cde −46 bc −1 ab 72 bcde 14 a 88 bc 2 a
07-078 18 cd 7 abc −46 bc −5 ab 73 cde 3 a 90 bc −14 a
07-192 38 fg 8 abcde 12 cde −2 ab 73 bcde 18 a 94 bc 35 a
07-214 18 cd 10 cde 20 de −3 ab 75 de 9 a 90 bc 22 a
08-463 12 bc 11 de −128 a −8 a 61 bcde 3 a 78 bc −8 a
08-507 12 bc 16 f 13 de −2 ab 50 abc 14 a 70 b 17 a
Ascol Tenera 22 cde 8 abcd −22 bcd −4 ab 84 e 11 a 95 c 17 a
Hojiblanca 5 ab 12 e −54 b −3 ab 48 ab 7 a 71 b 0 a
M Cacereña −7 a 6 ab −51 bc −5 ab 51 abcd 3 a 80 bc −2 a
M Sevilla 20 cd 9 bcde −62 b 3 ab 63 bcde 18 a 85 bc 21 a
Memecick 34 efg 7 abc 32 de 6 b 72 bcde 17 a 73 bc 25 a
Toffahi 19 cd 8 abcd 60 e −2 ab 25 a 8 a 46 a 12 a
Mean* 20 9 44 4 65 10 82 14

Different letters indicate significant differences among genotypes for the relative difference according to Tukey (p≤0.05).
* Absolute values were considered to calculate the mean.
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such as the crown projection area in peach trees (Mu et al., 2018) or the
canopy cover in maize field trials (Makanza et al., 2018) were assessed
in a more objective manner using UAV platforms, compared to visual
assessment.

Besides, when analyzing the results at the genotype level, the above-
mentioned differences between the field and OBIA values were only
significant among a few individuals for each trait, namely those with
the furthest relative errors (Tables 3 and 4). This means that for most

Fig. 6. Tree height correlation between field and OBIA-estimated data for each genotype in the intensive open vase system trial. a) January 2017; b) January 2018.

Fig. 7. Tree height correlation between field and OBIA-estimated data for each genotype in the super high-density hedgerow system trial. a) January 2017; b)
January 2018.
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individuals, the relative error in the estimation was similar, and thus,
the relative comparison among genotypes would not be affected. This
idea is particularly important for phenotyping purposes in breeding
programs, i.e., that the value of the trait itself is not as decisive in the
selection process as the relative performance of the genotypes for the
target trait.

The OBIA estimations largely improved the second year of the study
(2018), as evidenced by the notable reduction in the relative differences
for all the traits in both trials (Figs. 4 and 5), although it was especially
remarkable in the hedgerow trial when estimating crown area and
volume (Table 4). In fact, no significant differences were found among
the genotypes for the relative error in any of the crown traits studied
here. The lower relative differences observed in the crown volume from
the hedgerow trial seem to indicate that the cone shape assumption
made for the calculation of volume fits better for trees trained to a
central leader in the hedgerow trial compared to the open vase trees.
The influence of higher plant densities on the canopy volume and ve-
getative growth traits has been previously reported in olive hedgerow
trials (Gomez-del-Campo et al., 2017; Trentacoste et al., 2015).

As mentioned above, the tree height was the best estimated trait
during both years and trials, showing the lowest mean relative differ-
ence between the field and OBIA data (Tables 3 and 4). For most
genotypes, the estimation error was the same, and significant differ-
ences were only found between the shortest genotype (06-1176) and
the tallest ones (‘Manzanilla Cacereña’, ‘Hojiblanca’, 06-1439), which
showed significantly lower relative differences (Table 3 and Fig. 4). The
loss of accuracy in the height estimation for the shortest trees has been
already observed (Torres-Sanchez et al., 2015). The linear regression
figures (Figs. 6 and 7) show very good fits for this trait at the genotype
level during the second year of the experiment, with correlation coef-
ficients (r) above 0.8 in most cases. Diaz-Varela et al. (2015) reported
very similar values regarding the determination coefficient in an olive
hedgerow trial (R2 = 0.66) and much lower results (R2 = 0.14) in an
open vase trial. By contrast, lower r coefficients were observed in the
present study during the previous year, with no linear adjustment
(r< 0.5), although only in particular genotypes, with five out of 25 in
the intensive trial and four out of 14 in the hedgerow.

Finally, Spearman’s rank coefficient correlations were used to check
if similar genotype rankings could be created from either field-mea-
sured or OBIA-estimated data (Table 5). The high values obtained for all
the traits and years (above 0.85 in most cases), ranging between 0.69
for the crown volume in the intensive trial the first year of study (2017)
and 0.97 in the hedgerow trial for the same year highlights that both
methodologies could be used to assess the significant differences among
genotypes, leading to very similar rankings, even though errors would
be made in the estimation of particular trait values (Tables 3 and 4).
Although high accuracy could be desirable in estimating the trait via
UAV technology in other types of field trials, regarding breeding goals,
it is more important to achieve a good relative classification (ranking)
of the plant material in order to select the genotypes with the best
performance, rather than the absolute value of the trait itself, as pre-
viously mentioned.

5. Conclusions

The present study reports the usefulness of UAV-imagery, an image
analysis based on photogrammetric point clouds and an automated
OBIA algorithm, previously developed by our group (De Castro et al.,
2019), to assess individual genotype performance in detail, and to de-
velop an effective ranking of genotypes that would allow for the se-
lection of the best performing individuals in terms of tree architecture.
The results here presented confirm the reliability and robustness of this
approach to support olive breeder’s decision making. UAV-based
monitoring may dramatically reduce the time and cost of evaluating in
the field the large number of progenies that are generated in olive
breeding programs, thus speeding up the selection process and in-
creasing the overall efficiency of these programs.
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