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a b s t r a c t 

Resting-state functional magnetic resonance imaging (rs-fMRI) has been successfully employed to un- 

derstand the organisation of the human brain. Typically, the brain is parcellated into regions of interest 

(ROIs) and modelled as a graph where each ROI represents a node and association measures between 

ROI-specific blood-oxygen-level-dependent (BOLD) time series are edges. Recently, graph neural networks 

(GNNs) have seen a surge in popularity due to their success in modelling unstructured relational data. 

The latest developments with GNNs, however, have not yet been fully exploited for the analysis of rs-fMRI 

data, particularly with regards to its spatio-temporal dynamics. In this paper, we present a novel deep 

neural network architecture which combines both GNNs and temporal convolutional networks (TCNs) in 

order to learn from both the spatial and temporal components of rs-fMRI data in an end-to-end fashion. 

In particular, this corresponds to intra-feature learning (i.e., learning temporal dynamics with TCNs) as 

well as inter-feature learning (i.e., leveraging interactions between ROI-wise dynamics with GNNs). We 

evaluate our model with an ablation study using 35,159 samples from the UK Biobank rs-fMRI database, 

as well as in the smaller Human Connectome Project (HCP) dataset, both in a unimodal and in a multi- 

modal fashion. We also demonstrate that out architecture contains explainability-related features which 

easily map to realistic neurobiological insights. We suggest that this model could lay the groundwork for 

future deep learning architectures focused on leveraging the inherently and inextricably spatio-temporal 

nature of rs-fMRI data. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Resting-state functional magnetic resonance imaging (rs-fMRI) 

s one of the most commonly used, noninvasive imaging tech- 

iques employed to gain insight into human brain function. The 

se of rs-fMRI data has proven extremely useful as an investiga- 

ive tool in neuroscience and, to some extent, as a biomarker of 

rain disease diagnosis and progression ( Fornito et al., 2015 ). Typi- 

al use of rs-fMRI data often involves using graph-theoretical mea- 
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ures (such as centrality measures and community structures) to 

ummarise high-dimensional, whole-brain data for use in down- 

tream tasks. As part of this process, it is common practice to re- 

uce the dimensionality of the data in one of three main ways: (1) 

y collapsing the temporal dimension (e.g., into connectivity ma- 

rices between brain regions), (2) by reducing the spatial dimen- 

ion (e.g., by aggregating voxelwise signals into predefined brain 

egions) ( Wang et al., 2019 ), and (3) by employing approaches that 

ollapse both the temporal and spatial dimensions (e.g., in inde- 

endent component analyses) ( Beckmann et al., 2005 ). These fea- 

ure engineering steps are performed mostly due to the consider- 

ble volume of data in a typical rs-fMRI dataset and its relatively 

ow signal-to-noise ratio ( Smith and Nichols, 2018 ). 
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Although computationally beneficial, such dimensionality re- 

uction steps inevitably involve disregarding large amounts of in- 

ormation which can be useful depending on the analysis task. 

or instance, collapsing the temporal dimension of rs-fMRI data 

educes the brain to a static volume where the interactions be- 

ween different brain regions are fixed over time. This stands in 

ontrast to a growing body of research which shows that func- 

ional connectivity in the brain is dynamic and constantly changes 

ver time ( Avena-Koenigsberger et al., 2017; Liao et al., 2017 ). As 

nother example, association measures most commonly used are 

till based on linear models, while it is well known that neu- 

omonitoring data and brain signals, in particular, interact nonlin- 

arly ( Duggento et al., 2018; Goelman et al., 2018 ). 

To overcome such limitations, a different approach to the anal- 

sis of rs-fMRI data would be to devise a model that is able 

o combine both feature engineering and the learning of a low- 

imensional representation of the brain’s functional activity. Such a 

odel would need to be able to accommodate both the spatial and 

emporal complexities of rs-fMRI data. To date, deep learning ar- 

hitectures have had great success at leveraging specific inductive 

iases from complex high-dimensional data. Convolutional neural 

etworks (CNNs), for instance, are extremely effective at extracting 

hared spatial features such as corners and edges from grid-like 

ata (e.g., 2D and 3D images). These features can then be com- 

ined into more complex concepts deeper within the network ar- 

hitecture ( Spasov et al., 2019 ). Recurrent neural networks (RNNs), 

n the other hand, are able to learn features from data that are 

emporally organised as a sequence of steps ( Duggento et al., 2019; 

vornek et al., 2017 ). In contrast to both CNNs and RNNs, graph 

eural networks (GNNs) can learn from data that do not have a 

igid structure like a grid or a sequence, and can be depicted in the 

orm of unordered entities and relations which constitute graphs. 

he formulation of GNN models that deal with complex data struc- 

ures has recently seen fast developments ( Zhou et al., 2018; Wu 

t al., 2019 ) - such models are therefore strong candidates for the 

nalysis of rs-fMRI data. 

In this work, we propose a model that uses GNNs to account 

or spatial inter-relationships between brain regions, and temporal 

onvolutional networks (TCNs) to capture the intra-temporal dy- 

amics of blood-oxygenated-level-dependent (BOLD) time series. 

y incorporating GNNs and CNNs in the same end-to-end archi- 

ecture, we essentially combine intra- and inter-feature learning. 

n particular, GNNs can lift the limitation of assuming linearity in 

he interactions between brain region-specific time series by cap- 

uring higher-order interactions between regions of interest (ROIs). 

e further engineered our architecture to specifically retain edge 

eights (hence circumventing the common and arbitrary practice 

f thresholding and binarising adjacency matrices) and to contain 

lements of explainability ( Arrieta et al., 2020; Samek et al., 2019 ). 

his was done specifically to provide advantages when a neurosci- 

ntific explanation of the inner model workings is desirable. To test 

ur architecture, we use the publicly available UK Biobank dataset, 

hich provides rs-fMRI scans from more than 30,0 0 0 distinct peo- 

le. This dataset offers a unique opportunity to formulate novel 

rchitectures, while supporting the need of large datasets for re- 

roducible findings with minimal statistical errors ( Marek et al., 

020 ). We also conduct an ablation analysis on a proof-of-concept 

inary sex prediction task to better evaluate the different contribu- 

ions of each component of our model. Finally, to assess the effec- 

iveness and flexibility of our architecture, we retrain it using the 

ultimodal Human Connectome Project (HCP) dataset in two dis- 

inct experiments, one of which contains multimodal neuroimag- 

ng data (i.e., rs-fMRI and structural adjacency matrices derived 

rom diffusion-weighted imaging). 

A very preliminary version of this work, based on a 30-fold 

maller dataset, was recently presented as a conference contribu- 
2 
ion ( Azevedo et al., 2020 ). In this current paper, in addition to 

mploying a significantly larger dataset, we expand the choices in 

he graph threshold hyperparameter, and analyse the effect of in- 

luding edge weights. Further, the previous contribution only used 

D-CNNs and a graph convolutional networks (GCNs) with binary 

raphs, as opposed to a general GNN architecture allowing the in- 

lusion of edge weights. In addition, no explainability analysis was 

erformed in the previous conference paper. We release all the 

ode used to develop this work in a public repository for easier 

doption by the community (see “Data and Code Availability” sec- 

ion). 

. Related work 

Previous work using deep learning for analysing rs-fMRI can 

e broadly grouped by how the spatial and temporal dimen- 

ions are processed. For the vast majority of methods, rs-fMRI 

s treated as euclidean data arranged on a image grid. A com- 

only used image representation within this domain is the func- 

ional connectivity matrix (FCM): a 2D matrix constructed by us- 

ng a statistical measure of similarity between ROI-derived time 

eries ( Wang et al., 2014 ). Both multilayer perceptrons (MLPs) 

nd CNNs have been used extensively on FCMs to learn features 

n order to classify autism spectrum disorder ( Heinsfeld et al., 

017; Eslami et al., 2019 ) and attention deficit hyperactivity dis- 

rder ( Riaz et al., 2020 ). A major drawback of using FCMs is that

hey require an a priori choice of similarity measure, possibly in- 

roducing unrealistic bias into the data. For example, the often em- 

loyed Pearson correlation coefficient can only measure linear as- 

ociations between BOLD signals. More recently, in line with grow- 

ng interest in dynamic functional connectivity ( Allen et al., 2014; 

reti et al., 2017 ), CNNs have been combined with RNNs to learn 

rom time windowed FCMs for tasks such as fluid intelligence 

rediction ( Fan et al., 2020 ) as well as identifying major depres- 

ion ( Yan et al., 2020 ). However, in addition to the choice of simi-

arly measure, the construction of classical, dynamic FCMs requires 

he selection of a window length, which again is arbitrary and not 

rivial ( Hutchison et al., 2013 ). An alternative to the FCM repre- 

entation is to use the entire 4D brain volume timeseries as input 

o convolutional RNNs ( Bengs et al., 2020; El-Gazzar et al., 2020; 

armar et al., 2020 ). Processing voxelwise fMRI data, however, ig- 

ores the empirical evidence that functional brain activity may be 

ocalised depending on the task and exhibit very strong spatial cor- 

elations ( Sporns, 2011 ). This would result in learning computa- 

ionally expensive features which likely contain largely redundant 

nformation. 

In line with the view of the human brain as a dynamical func- 

ional connectome, more recent deep learning approaches treat 

s-fMRI data as a graph. Within this approach, ROIs are com- 

only employed to represent graph nodes, and edges between 

odes are determined by a choice of similarity measure as per 

CMs ( Sporns, 2011; 2018 ). In this framework, GNNs can be used 

o learn features between neighbouring ROIs by propagating infor- 

ation through the edges which connect them. Due to their scal- 

bility and interpretability, GNNs for rs-fMRI analysis have been 

idely used to model tasks such as gender classification ( Arslan 

t al., 2018; Kim and Ye, 2020; Gadgil et al., 2020 ), age predic-

ion ( Gadgil et al., 2020 ), as well as to find imaging biomarkers 

or brain disorders such as cognitive impairment ( Wen et al., 2018 ) 

nd autism spectrum disorder ( Li et al., 2020 ). To date, the most 

ommon type of graph convolution used for rs-fMRI analysis has 

een spatial convolutions ( Gadgil et al., 2020; Li et al., 2021 ) al-

hough spectral ( Parisot et al., 2017; Ktena et al., 2018 ) and edge

onvolutions ( Wang et al., 2021 ) have also proven successful for 

lassification tasks. A major limitation of existing works is that 

raph topology is estimated by taking a group average of FCMs 
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 Kim and Ye, 2020; Wang et al., 2021 ). As a result, connectivity

etween subjects is assumed to be invariant. Furthermore, the ini- 

ial choice of features used to represent ROIs is not trivial, ranging 

rom graph theoretic measures to connectivity differences. We ad- 

ress these limitations through our novel combined GNN and CNN 

odel architecture which is capable of learning from individual 

raph topologies as well as learning its own nodes features. 

. Methods 

.1. Problem definition 

To represent rs-fMRI data as an undirected weighted graph, the 

rain is spatially parcellated into N regions of interest (ROIs) repre- 

enting graph nodes indexed by the set V = { 1 , . . . , N} . Let x i ∈ R 

T 

epresent the features of node i corresponding to the BOLD time 

eries of length T . The connections between ROIs are represented 

y an edge set E ⊂ V × V composed of |E| unordered pairs (i, j) ,

here for every edge k connecting two nodes (i, j) ∈ E the con- 

ection strength is defined as e k ∈ R . Let the tuple G = (V, E ) de-

ote the resulting graph. Given the graph structure G, let X ∈ R 

N×T , 

 ∈ R 

|E|×1 , and A ∈ R 

N×N denote the nodes features, edge features 

nd adjacency matrix, respectively. 

.2. Temporal convolutional networks 

There has been evidence that a convolutional operator could 

erform equally well (or even better) as compared to RNNs for 

equential data. Some advantages of the convolutional operator 

re, for instance: (1) lower requirements for long input sequences, 

specially compared to LSTMs and GRUs, which commonly con- 

ume big chunks of memory to store partial results for the mul- 

iple gates (convolutional kernels, in contrast, are shared across a 

ayer), (2) better parallelisation because a TCN/CNN layer is pro- 

essed as a whole instead of sequentially as in RNNs, and (3) eas- 

er to train (e.g., it is known that LSTM training can commonly 

ncounter issues with vanishing gradients). Other teams in indus- 

ry and academia have found similar results when using convolu- 

ional operations for sequential data, for instance, in sequence-to- 

equence prediction/learning ( Elbayad et al., 2018; Gehring et al., 

017 ), machine translation ( Kalchbrenner et al., 2016; Kaiser et al., 

018 ), and others ( Chen et al., 2020 ). In summary, there is evi-

ence that although LSTMs have historically been used for sequen- 

ial data, CNNs can achieve similar or better performance at a sig- 

ificantly lower cost. 

In order to learn a representation of the temporal dynam- 

cs contained in rs-fMRI time series, we use temporal convolu- 

ional networks (TCNs) ( Bai et al., 2018 ). These are a simplifica- 

ion over the original WaveNet architecture used for audio synthe- 

is ( van den Oord et al., 2016 ), which has been seen to provide

ignificantly better results for sequence modelling in comparison 

o more traditional RNN architectures (e.g., LSTMs) across a range 

f tasks and datasets. In particular, Bai et al. (2018) posit that con- 

olutional networks should be seen as the natural starting point 

or sequence modelling tasks, which makes them ideal for extract- 

ng information from rs-fMRI time series. 

TCNs are based on dilated causal convolutions ( Yu and 

oltun, 2016 ), which are special 1D filters where the size of the re-

eptive field exponentially increases over the temporal dimension 

f the data as the depth of the network increases. The padding of 

he convolution is ‘causal’ in the sense that an output at a specific 

ime step is convolved only with elements from earlier time steps 

rom the previous layers, thus preserving temporal order. More for- 

ally, given a single ROI time series x i ∈ R 

T and a filter f ∈ R 

K , the

ilated causal convolution operation of x with f at time t is repre- 
3 
ented as 

 i ∗ f (t) = 

K−1 ∑ 

s =0 

f (s ) x i (t − d × s ) , (1) 

here d = 2 l−1 is the dilation factor which, depending on the layer 

controls the number of time steps successively skipped. This rela- 

ion between the dilation factor and the layer l is the one defined 

n the original paper ( Bai et al., 2018 ), which we follow in this

ork. In contrast to the original TCN architecture, we use batch 

ormalisation instead of weight normalisation because it empiri- 

ally provided a more stable training procedure in terms of loss 

volution. 

.3. Graph network block 

Battaglia et al. (2018) formalise a graph network (GN) frame- 

ork through the definition of functions that work on graph- 

tructured representations. The main unit of computation in the 

N framework is called the GN block and contains two update 

unctions and one aggregation function working on the edge and 

ode levels. 

The first operation of this GN block, which can be broadly de- 

ned as the edge model , concerns the update function φe , which 

omputes updated edge attributes for each edge k based on the 

riginal edge’s attributes e k and the features of the connected 

odes i and j: 

 

′ 
k = φe 

(
e k , x i , x j 

)
. (2) 

Note that for rs-fMRI graph representations, each edge origi- 

ally contains a single value (i.e., e k ∈ R ), but after this operation 

e , the resulting dimensionality can be different: e ′ k ∈ R 

M , where 

 > = 1 . Then, in what can be broadly defined as the node model ,

he block computes updated node features. Firstly, for each node i , 

t aggregates the edge features per node: 

 

′ 
i = ρe → v 

(
E ′ i 

)
, (3) 

here E ′ 
i 

= { ( e ′ k , i, j ) } E k =1 is the set of edges starting in node i , with

ode j connected with node i through edge k . Importantly, ρe → v 

eeds to be invariant to edge permutations to account for the un- 

rdered structure of the data. Averaging and summation are exam- 

les of such operations invariant to edge permutations. 

Finally, the updated node features are computed using another 

pdate function at the node level, for each node i : 

 

′ 
i = φv 

(
e 

′ 
i , x i 

)
. (4) 

The aggregation function ρe → v needs to be invariant to edge 

ermutations, but the update functions (i.e., φe and φv ) are more 

exible. For example, if the features are vectors in 1D space, the 

pdate functions could be implemented as multi-layer perceptrons 

MLPs); however, a CNN or RNN could be more suitable if the fea- 

ures represent images or sequences, respectively. Section 4.2 de- 

ails how these functions were implemented in this paper. 

Although the rs-fMRI graph representation contains undirected 

dges, the GN block requires directed edges. To overcome this is- 

ue, every time there is a connection between any two nodes i and 

j, we assume the existence of two edges ( e k , i, j) and ( e k , j, i ) , one

or each direction. The original GN block ( Battaglia et al., 2018 ) fur-

her contains one update function and two aggregation functions 

or global (i.e., graph-level) features; however, we do not use this 

ormalisation as it is not applicable in the fMRI data representation 

f this paper. 

.4. Graph pooling 

After the neural network processes the input as described in the 

revious sections, each node in the graph will contain a node-wise 
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epresentation (i.e., a feature vector) as a result. For the prediction 

ask described in this paper, where a graph-level (as opposed to 

ode-level) prediction is required, these representations need to be 

ooled (i.e., collated) to be used for a final downstream prediction 

ask. 

To this end, it is common practice to employ a global pooling 

echanism, in which node features are pooled across the graph 

e.g., by averaging or concatenating all node features), thus creating 

 final, low-dimensional embedding representation of the graph it- 

elf. Given the graphs used in this paper all have the same number 

f nodes, a concatenation pooling mechanism is indeed possible. 

However, assuming that distinct nodes (i.e., brain regions in this 

aper) have different levels of importance for the downstream pre- 

iction task ( Kiebel et al., 2008; Hilgetag and Goulas, 2020 ), we as-

umed that a hierarchical (as opposed to flat) pooling mechanism 

ould create richer embeddings. To this end, we employ the dif- 

erentiable pooling operator introduced by Ying et al. (2018) , com- 

only called DiffPool, which learns how to sequentially collapse 

odes into smaller clusters until only a single node with the final 

mbedding exists. 

When describing a Graph Network (GN) block, a sparse repre- 

entation of nodes and edges is used to describe the operations 

hat a GN block can have; however, DiffPool works on dense rep- 

esentations of a graph. In other words, a graph G is represented by 

 dense adjacency matrix A ∈ R 

N×N and a feature matrix X ∈ R 

N×F , 

here N is the number of nodes and F the number of features in 

ach node. 

The DiffPool operator, at layer l, thus receives both an adjacency 

atrix and a node embedding matrix, and computes updated ver- 

ions of both: 

 

(l+1) 
, X 

(l+1) = DiffPool 
(
A 

(l) 
, X 

(l) 
)
. (5) 

To achieve this, the DiffPool operator uses a graph neural net- 

ork (GNN) architecture. Specifically, the same GNN architecture is 

uplicated to compute two distinct representations: a new embed- 

ing Z ∈ R 

N (l) ×F ′ and an assignment matrix S ∈ R 

N (l) ×N (l+1) : 

 

(l) = GNN l, embed 

(
A 

(l) 
, X 

(l) 
)

(6) 

 

(l) = softmax 
(
GNN l, pool 

(
A 

(l) 
, X 

(l) 
))

, (7) 

here N (l) is the number of nodes in layer l, N (l+1) the new num-

er of nodes, each corresponding to a cluster ( N (l+1) < N (l) ), and F ′ 
he number of features per node, which can be different from the 

riginal size F from the matrix X . 

The operator ends with the creation of the new node embed- 

ing matrix and adjacency matrix, to be inputted to the next layer: 

 

(l+1) = S (l) T Z 

(l) (8) 

 

(l+1) = S (l) T A 

(l) S (l) 
, (9) 

here X 

(l+1) ∈ R 

N (l+1) ×F ′ and A 

(l+1) ∈ R 

N (l+1) ×N (l+1) . Overall, 

qs. (6) –(9) are the ones responsible to implement Eq. (5) . 

. Experiments overview 

.1. Main dataset - UK biobank 

Subject-level structural T1 and T2-FLAIR data as well as ICA- 

IX ( Salimi-Khorshidi et al., 2014 ) denoised rs-fMRI data were ob- 

ained from UK BioBank (application 20904) ( Bycroft et al., 2018 ) 1 . 
1 https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain _ mri.pdf 

4

ll data were acquired on a standard Siemens Skyra 3T scan- 

er running VD13A SP4, with a standard Siemens 32-channel RF 

eceive head coil. The structural data were further preprocessed 

ith Freesurfer (v6.0) 2 using the T2-FLAIR weighted image to im- 

rove pial surface reconstruction, similarly to Glasser et al. (2013) ’s 

ipeline. Reconstruction included bias field correction, registration 

o stereotaxic space, intensity normalisation, skull stripping, and 

hite matter segmentation. When no T2-FLAIR data were avail- 

ble, Freesurfer reconstruction was done using the T1 weighted 

mage only. 

Following surface reconstruction, the Desikan-Killiany at- 

as ( Desikan et al., 2006 ) was aligned to each individual struc- 

ural image, and ROIs were mapped into each individual’s space 

or subsequent time series extraction. To this end, the same at- 

as was aligned to the functional denoised rs-fMRI data (490 

olumes TR/TE = 735/39.00 ms, multiband factor 8, voxel size: 

.4 × 2.4 × 2.4, FA = 52 deg, FOV 210x210 mm) using the warp- 

ng parameters computed during the structural-to-functional align- 

ent obtained using FSL’s linear registration (FLIRT), and mean 

OLD time series (490 timepoints per scan) were extracted for 

ach ROI. The time series were then scaled subject-wise using 

he median and interquartile range according to the RobustScaler 

mplementation in the scikit-learn ( Pedregosa et al., 2011 ) python 

ackage. Edge weights were defined as full correlations calculated 

ith the Ledoit Wolf covariate estimator using the nilearn python 

ackage 3 . Figure 1 shows an example scaled time series and the 

esulting example graph from a single subject. The total number 

f subjects used from the UK Biobank was 35,159, in which 18,649 

ere females and 16,510 were males ( 18 , 649 / 16 , 510 ≈ 1 . 13 ). The

edian age was 64, with a minimum age of 44 and a maximum 

f 81. 

.2. Model implementation 

The neural network architecture depicted in Fig. 2 was im- 

lemented using Pytorch ( Paszke et al., 2019 ), and Pytorch Geo- 

etric ( Fey and Lenssen, 2019 ) for the specific graph neural net- 

ork components. The edge feature matrix E ∈ R 

E×1 defined in 

ection 3.1 was implemented as two sparse matrices: a sparse rep- 

esentation of the adjacency matrix E i ∈ R 

2 ×E , and a sparse repre- 

entation of the edge features E a ∈ R 

E×1 (i.e., there was only one 

eature per edge corresponding to the correlation value). The num- 

er of nodes N was 68 (corresponding to each brain region from 

he Desikan-Killiany atlas), the number of node features F was the 

umber of timepoints (i.e., 490), and E is the number of edges in 

he graph. The number of edges depends on the threshold percent- 

ge used to retain only the strongest correlations. Given the non- 

onclusive evidence on the optimal threshold percentage in the 

ast majority of functional connectivity literature ( Garrison et al., 

015 ), in this work this threshold was included in the hyperpa- 

ameters to be optimised. 

The full list of hyperparameters and respective value ranges 

ere as follows: 

• dropout : [ 0 , 0 . 5 ] (uniform distribution) 
• threshold : { 5 , 10 , 20 , 30 , 40 } (categorical) 
• learning rate : [ 1e −5 , 1e −1 ] (log uniform distribution) 
• weight decay : [ 1e −12 , 1e −1 ] (log uniform distribution) 

The model starts by employing a temporal convolutional net- 

ork (TCN) architecture ( Bai et al., 2018 ) to extract a lower- 

imensional embedding representation from the rs-fMRI time se- 

ies in each node. This was implemented by using three blocks, 
2 http://surfer.nmr.mgh.harvard.edu/ 
3 https://nilearn.github.io/ 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
http://surfer.nmr.mgh.harvard.edu/
https://nilearn.github.io/
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Fig. 1. Left: Mean BOLD time series extracted from four brain regions (see legend) from one subject’s data, after scaling. Right: Graph representation of the same subject’s 

data, at 10% threshold as described in Section 4.2 . Thicker edges represent a stronger correlation between nodes, in this case with values between approximately 0.54 and 

0.87. Each node is labelled and coloured according to the brain region it represents (i.e., T/F/O/P/I correspond to T emporal, F rontal, O ccipital, P arietal, and I nsula). 

Fig. 2. Main working blocks of the spatio-temporal model. The temporal model creates an initial representation from the original node features X (i.e., temporal dynamics). 

This is followed by transformations operated by the Graph Network Block which leverages the structure of data represented in edge features E a and its sparse connectivity 

E i . Finally, a Pooling mechanism (either DiffPool or concatenation) creates a graph representation which is flattened and employed for a final prediction task. 
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ach of which containing two layers of 1D convolutions, 1D batch 

ormalisation, ReLU activation , and dropout . Each block uses a ker- 

el with size 7 (i.e., K = 7 in Eq. (1) ), containing a skip connection,

nd increases the number of output channels at each block, specif- 

cally 8, 16, and 32. Dilation factor d was set to d = 2 l−1 , where l is

he block (i.e. l ∈ { 1 , 2 , 3 } ). After these three blocks (i.e., six layers),

ode features from all channels are flattened to form the input to 

 linear transformation which reduces each node representation to 

 fixed embedding of size 16. These transformations thus reduce 

he original node feature matrix from size N × T to size N × 32 × T 

fter the three blocks, and finally to size N × 16 , corresponding to 

he final embedding. 

The Graph Network (GN) block is then applied, in which the 

pdate functions φe and φv in Eqs. (2) and (4) are multi-layer per- 

eptrons (MLPs), and the function ρe → v in Eq. (3) is a set of aggre- 

ators following Corso et al. (2020) ’s work (i.e., edge-wise mean, 

in, max, standard deviation, and sum). We stack 3 GN blocks, 

fter each of which we apply an 1D batch normalisation over the 

ode’s features and a ReLU activation . The original dimensions of 

 , E i , and E a before the GN block are kept after these transforma- 

ions. 

We employed two types of pooling mechanisms, both of which 

educe the node feature matrix from a size of N × 16 to a size

f 1 × 16 : a concatenation over all node’s features followed by a 

ingle-layered MLP, and the hierarchical pooling mechanism (i.e., 

iffPool). For DiffPool, which expects a dense graph representa- 

ion, data are first transformed into a symmetric adjacency ma- 

w

5 
rix A ∈ R 

N×N , which is a weighted matrix when considering edge 

eatures, and binary otherwise. Similarly to the original DiffPool 

aper ( Ying et al., 2018 ), we employed three layers of the graph

eural network operator from Morris et al. (2019) (to make use of 

eighted adjacency matrices) followed by a 1D batch normalisation , 

ith a final skip connection. 

We empirically evaluated various architectural choices on a sin- 

le training fold of the dataset, and how they influenced per- 

ormance on the corresponding validation fold. This ad-hoc eval- 

ation showed that a higher number of TCN layers and overall 

odel complexity slightly improves performance. However, given 

hat some of these parameter choices (e.g. with 4 TCN blocks) pro- 

uced a significantly higher number of learnable parameters and 

rohibitive GPU memory constrains, effectively inhibiting experi- 

entation, the final TCN architecture was chosen as described in 

his section (with 3 TCN blocks and a final embedding size of 16). 

A conceptual summary of the whole model is shown in Fig. 2 . 

.3. Training procedure 

In order to assess the validity of our model, we performed 

roof-of-concept experiments through the well-known binary sex 

rediction task ( Jiang et al., 2019; Weis et al., 2019 ). We used a 5-

old stratified cross-validation procedure: the UK Biobank dataset 

as divided into training and test sets five times, in which each 

est set corresponds to 20% of the original size, and a sample 

ould only belong to a test set once (i.e., all test sets are mutually 



T. Azevedo, A. Campbell, R. Romero-Garcia et al. Medical Image Analysis 79 (2022) 102471 

Fig. 3. Values of hyperparameters corresponding to each validation loss achieved for one illustrative inner sweep of one fold. For each one of the 25 training runs (each 

represented by a curved line), a set of random values is chosen for dropout, learning rate, edge threshold and weight decay, which ultimately results in the model’s validation 

loss. 
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xclusive). This division was done in a stratified fashion consid- 

ring the sex label, bucketised age, and bucketised BMI measures 

for each variable we created 8 equal-sized buckets based on sam- 

le quantiles). For each test set, the training set is further divided 

nce to generate single inner training and validation sets, using the 

ame stratification strategy as for the training/test case. 

The neural network was trained over 150 epochs with the RM- 

prop optimiser ( Tieleman et al., 2012 ) and Binary Cross-Entropy 

oss function. The training procedure was set to stop early if 

he validation loss did not reduce further after 33 consecutive 

pochs. Learning rate is reduced by a factor of 0.1 with patience 

f 30. A hyperparameter search was included in the inner train- 

ng/validation sets, in which 25 random runs were launched ex- 

loring random values of dropout, edge threshold, learning rate, 

nd weight decay (see Section 4.2 for ranges explored). In each 

andom run, the model with the smallest validation loss was saved, 

nd the model with the smallest validation loss across the 25 runs 

as selected to be evaluated in the test set. This procedure is done 

eparately for each test set, and metrics are then averaged across 

he five test sets. 

We used Weights & Biases Biewald (2020) to log our training 

rocedure and generate the random hyperparameters for all the 25 

odels in each inner sweep. These inner sweeps were run across 

wo different servers, and each model took between 20 min and 

1 h to train depending on GPU type and early stopping. All these 

etails are stored using Weights & Biases , and can be accessed 

hrough our public repository (see “Data and Code Availability”). 

igure 3 shows the results for the inner sweep of one of the folds

or illustrative purposes. While a certain amount of variability is 

isible, some trends are evident in this particular split: the best 

odels (i.e., with lower validation loss) tend to be achieved with 

igher edge thresholds, higher learning rates, and lower dropout 

ates. We highlight that different sweeps could result in different 

rends. 

.4. Evaluation 

As shown in Fig. 2 , our model consists of (1) a TCN block that

earns intra-temporal features from the mean BOLD time series of 

ach ROI, followed by (2) a GN block which leverages the spa- 

ial inter-relationships between ROIs, and finally (3) a hierarchical 

ooling mechanism which leverages all the information in the in- 
6 
ut, from the temporal rs-fMRI dynamics to the graph structure 

nd the edge features of that graph. 

To understand the inner workings of this combination, we con- 

ucted an ablation analysis to quantify the contributions of each 

omponent of our model for the specific prediction task. Firstly, we 

onsider two cases where the GN block is not used, hence essen- 

ially evaluating the importance of edge weights for this prediction 

ask. In one case the graph structure is completely ignored (i.e., no 

N block and concatenation pooling), and in another case a binary 

raph is used only for the final hierarchical pooling part (i.e., no 

N block and DiffPool applied to a binary graph). 

In order to investigate the influence of the different GN compo- 

ents, we consider not only the case where both node model and 

dge model are used in the GN Block, but also a case where only 

he node model is applied. For each of these two cases, both a con- 

atenation pooling and DiffPool with weighted adjacency matrices 

re considered. 

We compare our approach to two deep learning models. The 

rst one, by Gadgil et al. (2020) (which we named CNSLAB) 

s based on a voting scheme across timesteps, and the second, 

y Wang et al. (2021) , named cGCN, uses averaged FCMs. For 

oth we used the best hyperparameters selected from each pa- 

er/repository and trained those models on our preprocessed data. 

We also compare our approach to baseline models where data 

tructure is not leveraged; here, the entire data representation is 

attened and fed into two non-deep learning models. To this end, 

e employed: (1) a support vector machine (SVM) classifier with 

 linear kernel and hyperparameter search over the regularisation 

arameter, and (2) a XGBoost ( Chen and Guestrin, 2016 ) classifier 

ith hyperparameter search over several parameters. 

.5. External multimodal dataset - human connectome project 

To further evaluate the effectiveness and flexibility of our end- 

o-end architecture, we analysed its behaviour in a multimodal set- 

ing, i.e. when adjacency matrices and timeseries are derived from 

istinct imaging procedures (fMRI and diffusion-weighted MRI, re- 

pectively). We employed the preprocessed Human Connectome 

roject (HCP) fMRI Data. This dataset consists of four 15-minute- 

ong fMRI sessions (TR = 0.72s) per subject, acquired on a 3T 

canner with isotropic spatial resolution of 2mm in 1003 healthy 

ubjects, and preprocessed according to Glasser et al. (2013) . For 

ach subject, this results in 4 distinct sessions/samples per sub- 
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Table 1 

Ablation analysis, with metrics averaged across the five test sets, with standard deviation in parenthesis. Aggregator on the right-hand side 

of the arrow, “N” corresponds to only node model , and “N + E” corresponds to full Graph Network block. Params stands for number of 

parameters. 

Model AUC Accuracy Sensitivity Specificity Params 

N + E → Concat 0.92 (0.004) 0.85 (0.006) 0.85 (0.006) 0.84 (0.012) 291,898 

N + E → DiffPool 0.82 (0.020) 0.75 (0.016) 0.72 (0.030) 0.77 (0.025) 287,420 

N → Concat 0.92 (0.003) 0.84 (0.004) 0.84 (0.028) 0.85 (0.029) 291,337 

N → DiffPool 0.84 (0.020) 0.76 (0.020) 0.75 (0.013) 0.77 (0.038) 286,859 

→ DiffPool 0.84 (0.010) 0.76 (0.008) 0.75 (0.019) 0.77 (0.023) 278,843 

→ Concat 0.92 (0.012) 0.84 (0.013) 0.84 (0.024) 0.84 (0.023) 283,321 

CNSLAB ( Gadgil et al., 2020 ) 0.86 (0.003) 0.78 (0.005) 0.76 (0.024) 0.79 (0.018) 198,937 

cGCN ( Wang et al., 2021 ) 0.77 (0.021) 0.70 (0.018) 0.66 (0.028) 0.74 (0.040) 45,065 

XGBoost 0.89 (0.003) 0.81 (0.005) 0.80 (0.008) 0.82 (0.006) - 

SVM 0.79 (0.015) 0.79 (0.017) 0.82 (0.098) 0.76 (0.101) - 
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ect with 1200 timesteps for each sample and component. In or- 

er to ensure comparability to the UK Biobank experiments, every 

imeseries was truncated to 490 timepoints. Similarly to the steps 

escribed in Section 4.1 , the Desikan-Killiany atlas ( Desikan et al., 

006 ) was aligned to each individual structural image, warped 

nto single subject space, and employed to extract ROI- and 

ubject-wise timeseries which were scaled subject-wise. Diffu- 

ion data was processed locally using multi-tissue, multishell con- 

trained spherical deconvolution ( Jeurissen et al., 2014 ) to ob- 

ain orientation distribution function estimates, which were then 

assed to probabilistic fiber tracking (10 8 tracks, subsampled to 

0 7 tracks through Spherical-deconvolution Informed Filtering of 

ractograms Smith et al., 2013 ). Structural connectivity matrices 

ere obtained by length-normalised streamline counts between 

he same ROIs described above. A total of 3668 graphs were 

sed (1692 males and 1976 females), where nodes correspond 

o Desikan-Killiany ROIs, node features correspond to 490 time 

oints, and the adjacency matrix corresponds to the structural con- 

ectivity extracted from probabilistic tractography. 

All training and evaluation steps were kept identical across all 

atasets. 

. Results 

.1. General results 

Table 1 shows the results of our ablation analysis across three 

ifferent backbones - no graph block, only node model , and full 

raph network block - each with two different aggregators (i.e., 

oncatenation and DiffPool). We identify each one of these cases 

sing a “Backbone → Aggregator” notation, in which Aggregator 

an be “Concatenation” or “DiffPool”, and Backbone can be “N” for 

nly node model , “N + E” for both node model and edge model (i.e., 

ull GN Block), and empty otherwise. We also include results from 

he baselines experiments. 

Our model performs significantly better as compared to all 

aselines but in which the model without a GNN block (i.e., 

→ Concat’) is similarly good. The SVM baseline performs worse 

verall and involves an increase in the standard deviation of per- 

ormance parameters, possibly indicating that our model is more 

obust to different dataset divisions (i.e., folds), while retaining the 

exibility and representation ability described above. Using Diff- 

ool as a final aggregator appears to result in worse overall per- 

ormance when compared to the concatenation counterpart and, 

n some metrics, to some baselines. Using the edge model did not 

ring significantly better results when compared to using the node 

odel only, possibly indicating that the information contained in 

he edge attributes is successfully leveraged by the node model 

lone for this particular prediction task. 
7 
The results presented so far consider an adjacency matrix 

hreshold below 50% as a hyperparameter at training time, a com- 

on data reduction practice in the connectivity analysis field. We 

urther analysed the results of using no threshold at all, and ex- 

lored the type of activation function as a hyperparameter in- 

tead (i.e., ReLU or tanh activations). This choice was made ex- 

licitly since retaining 100% of the adjacency matrix elements re- 

ults in a share of negative correlation elements, whose physio- 

ogical significance is likely to be important in brain connectiv- 

ty ( Zhan et al., 2017 ). The results of this analysis are presented in

able 2 . 

The performance was slightly lower for most cases which did 

ot include a threshold, especially for the N + E → DiffPool model. 

 possible explanation would be the excessive “noise” (i.e., low, 

ossibly spurious correlations) not allowing the graph’s dominat- 

ng spatial structure to be successfully leveraged in a practical 

imeframe, in turn possibly resulting in some degree of overfit- 

ing. However, performance metrics remain comparable or better 

o what is illustrated in Table 1 , suggesting that these models are 

till able to extract spatial information from the data after training 

espite of the significant increase in memory usage. 

.2. Evaluating architectural choices 

To better understand the utility of TCNs when compared to 

he more traditional LSTMs, we reran six ablations using the UK 

iobank dataset, in which we substituted the TCN block with a 

STM block. Striving for a fair comparison between LSTM and TCN, 

e used the same number of layers in both (i.e., three layers), and 

hose the feature dimension in the hidden state such that the to- 

al number of learnable parameters would be similar. We made 

ure that the 25 runs per fold would have the same hyperparam- 

ter ranges in both the TCN and LSTM cases. Table 3 shows that 

he LSTM models achieve similar performance to the TCN models; 

owever, this comes at a significantly higher computational cost. 

ue to computational constraints, we are not able to fairly com- 

are the runtimes among all models because of the use of differ- 

nt servers with different GPU cards (see Section “Acknowledge- 

ents”). However, for representation purposes, there are two folds 

n the “N → DiffPool” model (i.e., folds 4 and 5) which were run 

n the same GPU for both the TCN and LSTM cases; in this case, 

he average runtime per model training went from 1 h and 35 min 

fold 4) and 1 h and 38 min (fold 5) in the TCN case, to an average

f 3 h and 14 min (fold 4) and 2 h and 47 min (fold 5) in the case

f the LSTM. Given that these experiments were run on the most 

ecent NVIDIA A100 GPUs, which are able to speedup runtimes by 

 large factor when compared to older GPUs, we expect these dif- 

erences to be more striking when running the models on more 

ommonly used hardware. 
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Table 2 

Results with no thresholded graphs, with metrics averaged across the five test sets, with standard deviation in parenthesis. Aggregator on 

the right-hand side of the arrow, “N” corresponds to only node model , and “N + E” corresponds to full Graph Network block. 

Model AUC Accuracy Sensitivity Specificity 

N + E → Concat 0.92 (0.002) 0.84 (0.004) 0.85 (0.014) 0.83 (0.017) 

N + E → DiffPool 0.77 (0.012) 0.70 (0.011) 0.68 (0.080) 0.72 (0.067) 

N → Concat 0.93 (0.003) 0.85 (0.003) 0.83 (0.017) 0.86 (0.019) 

N → DiffPool 0.85 (0.007) 0.77 (0.008) 0.77 (0.026) 0.77 (0.017) 

Table 3 

Results when using an LSTM instead of a TCN in the temporal block (UK Biobank fMRI dataset). 

Model AUC Accuracy Sensitivity Specificity 

N + E → Concat 0.93 (0.002) 0.85 (0.004) 0.85 (0.006) 0.85 (0.005) 

N + E → DiffPool 0.84 (0.014) 0.76 (0.015) 0.74 (0.051) 0.77 (0.031) 

N → Concat 0.93 (0.004) 0.85 (0.007) 0.85 (0.020) 0.86 (0.019) 

N → DiffPool 0.84 (0.020) 0.76 (0.017) 0.78 (0.025) 0.74 (0.035) 

→ DiffPool 0.82 (0.035) 0.73 (0.034) 0.73 (0.083) 0.74 (0.090) 

→ Concat 0.91 (0.003) 0.83 (0.003) 0.82 (0.020) 0.83 (0.012) 

Table 4 

Results when no TCN block is used to train and evaluate on the UK Biobank dataset. 

Model AUC Accuracy Sensitivity Specificity Params (Before) 

N → Concat 0.93 (0.004) 0.85 (0.004) 0.85 (0.014) 0.86 (0.013) 23,541,071 (291,337) 

N + E → Concat 0.93 (0.002) 0.85 (0.003) 0.84 (0.017) 0.86 (0.015) 24,022,742 (291,898) 
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Fig. 4. Weights of the kernels in the first TCN convolutional layer in a N + E → Con- 

cat model. Rows correspond to the 8 output channels of this layer, and each column 

is a position in the kernel array of size 7. 
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In summary, our experiments confirm findings that RNNs and 

NNs can provide similar performance, but the former come with 

 significantly higher computational cost. 

We further evaluated the impact of including the TCN block in 

he model. In this “no TCN” experiment, we omitted the TCN block 

nd therefore only the GNN components are present, with a much 

arger temporal feature representation (i.e., 490 raw timepoints in- 

tead of the 16 features created by the TCN block). Table 4 shows 

hat performance metrics were similar between the TCN and no 

CN versions, but the latter resulted in an almost 100-fold increase 

n the number of parameters. This means that removing the TCN 

lock came at a very significant cost of an unnecessary explosion 

n the number of learnable parameters, making the model unnec- 

ssarily complex both at training and test time. The important task 

f finding a good representation in machine learning goes there- 

ore beyond the simple performance analysis (i.e., metrics), and by 

sing a TCN block we are able to find a lower embedding in a re-

listic time/complexity frame. 

.3. Visualisation of TCN kernels 

The weights of the TCN layers can be visually inspected. We 

isualised the first two layers of one of the trained N + E → Con-

at models. Fig. 4 shows the weights learned from the first TCN 

ayer (each row corresponding to one of the 8 output channels of 

hat layer), while Fig. 5 depicts the same for the second TCN layer 

each row corresponding to one of the 8 output channels and the 

olumns corresponding to the 8 kernels of size 7 coming from the 

revious 8 channels). 

In both figures, and with little exceptions, it can be seen that 

he output channels in the first two TCN convolutional layers will 

e a non-trivial weighted multiplication of input channels, as illus- 

rated by the non-trivial patterns in the kernel weights. Given the 

ualitative variability observed in these weights (which are learned 

t training time), we argue that these kernels are likely filtering 

nd selecting different, non-mutually redundant patterns present 

n the original time series. One possible counterexample is the ker- 

el for the 7th output channel in the first TCN convolutional layer 

llustrated in Fig. 4 , which is essentially applying a simple low pass 

lter by smoothing the original time series from the input chan- 
8 
el. It is likely that quantitative analysis and comparison of the 

ernel weights has the potential to yield interpretable information 

n which type of brain dynamics may contribute most to the final 

rediction. Given that these weights are also influenced by addi- 

ional factors such as normalisation strategy and subsequent non- 

inear operations, further research is needed in order to establish a 

ramework to fully exploit this information. 

.4. Explainability of DiffPool clusters 

Although deep neural networks are usually regarded as “black 

oxes”, in this paper we strived to inject explainability elements 

y inspecting which mechanisms were learned during training. To 

his end, we designed a strategy to inspect the hierarchical spa- 

ial pooling mechanism provided by the DiffPool architecture. We 

nalysed the assignment matrices from the first DiffPool layer S (1) 
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Fig. 5. Weights of the kernels in the second TCN convolutional layer in a N + E → Concat model. Rows correspond to the 8 output channels of this layer, and each column 

is a position in the 8 kernels of size 7 that come from the 8 input channels (56 columns in total). 
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see Eq. (7) ), over all participants across all test sets. This is of par-

icular interest because it corresponds to an aggregation of sub- 

ets of brain regions which our architecture has considered optimal 

hile learning a particular prediction task. These aggregations can 

herefore be considered “optimal” for that task within this archi- 

ecture, and provide insight into the neurophysiology which may 

rive the formation of such patterns. An assignment matrix corre- 

ponds to how the original nodes in the graph will be mapped into 

ew nodes. In this respect, a simple and useful way of summaris- 

ng this behaviour across individuals is to count how many times 

wo ROIs have ended up in the same cluster, regardless of cluster 

ize and number. More formally, we create an association matrix 

 

′ ∈ R 

68 ×68 , where each element S ′ 
i, j 

is the number of times brain 

egions i and j have been assigned together in the first DiffPool 

ayer. This means that the higher the value of S ′ 
i, j 

, the more often

nformation from brain regions i and j is pooled when learning 

o predict binary sex. It is important to note that matrix thresh- 

lding (see threshold hyperparameter in Section 4.2 ) can - and 

ften will - introduce disconnected nodes in the graph. Since the 

umber of disconnected nodes would vary across individuals, this 

ould introduce unrealistic imbalances/biases in the association 

atrix S ′ ; therefore, in this section, we only employed unthresh- 

lded matrices. In specific, we used the best performing DiffPool 

odel (i.e., N → DiffPool) described in Section 4.2 . 

Figure 6 depicts the association matrix S ′ for the best perform- 

ng DiffPool model (i.e., N → DiffPool) trained on unthresholded 

atrices, with dendrograms resulting from hierarchical clustering 

f this latter matrix (performed for visualisation purposes). The hi- 

rarchical clustering algorithm and the corresponding dendrograms 

re calculated using the seaborn ( Waskom, 2021 ) python package. 

n addition, we generated a more traditional brain connectivity vi- 

ualisation by selecting the four main clusters defined by the den- 

rograms for the N → DiffPool model and overlaying their anatom- 

cal correspondence on a sample brain surface in Fig. 7 . 

An advantage of this explainability strategy (i.e., the use of the 

ssociation matrix S ′ ) is the flexibility inherent in the multiple 

ranularities provided by hierarchical clustering. When choosing 

arge clusters (e.g., four like in Fig. 7 ) one can illustrate the general

ggregation patterns across the brain’s anatomy, while by select- 

ng smaller clusters (e.g. twelve clusters) one can reveal more local 

atterns in the data. In Fig. 8 we depict the brain clusters for the

 → DiffPool model with the remaining different granularities (i.e., 

 and 12). This multiscale explainability framework can provide a 

ignificant advantage in terms of explainability and interpretation, 

nd is only possible when using the DiffPool strategy. 

When looking at how the GNNs clustered the brain regions 

o optimise and achieve best sex prediction, it is possible to find 

hat clustering into four sets of brain regions showed interesting 

roperties in terms of neurobiological explainability. More specifi- 

ally, the brain regions were grouped in a manner that mirrors to 

 certain degree the well-known cytoarchitectural and functional 

roperties of the cerebral cortex. For example, in Fig. 7 cluster 1 

dark blue) included the bilateral frontal cortex as well as occipito- 

arietal regions that have a well-known role in working-memory, 

xecutive functions, and visuo-spatial processing, amongst many 

ther cognitive functions. The left temporal cortex grouped with 
9 
he paracentral lobule, while the right temporal cortex clustered 

ith the pre-cuneus (light green and light blue, respectively). Clus- 

er 3 (dark green) included several midline cortical areas that form 

he classic limbic-emotional system. 

We do not wish to overinterpret our results or make “reverse 

euroscience” inferences in the sense of interpreting post hoc the 

ehavioural meaning of a set of regions without having directly 

nalysed their behavioural relevance. However, we speculatively 

ote that the clusters emerged may have some neurobiological rel- 

vance in terms of explaining some of the behavioural differences 

escribed between males and females in terms of cognitive, mo- 

or and emotional skills ( Nieuwenhuys et al., 2008; Poeppel et al., 

020 ). Future work, particularly directed at investigating the links 

etween brain and behavioural measures, is warranted to confirm 

hether the clustering of regions that our model has generated to 

chieve optimal sex classification is relevant at phenotypical level. 

n summary, these results demonstrate the explainability capacity 

f our model when using the DiffPool aggregator. 

To evaluate the robustness of the DiffPool clusters, we com- 

ared the association matrices S ′ for all the five folds for the best 

erforming DiffPool model (i.e., “N → DiffPool”) trained on the 

nthresholded matrices (see Fig. 9 ). Despite some differences, it 

s possible to see a similar overall qualitative structure across the 

olds. To quantify this difference in a simple way, we calculated the 

ormalised difference between every pair of association matrices i 

nd j as: 

ormalised difference = 

S ′ i − S ′ j 
S ′ i + S ′ j 

. (10) 

The various normalised differences can be seen in Fig. 10 , with 

very pair showing an average normalised different below 30%, 

herefore demonstrating an acceptable stability and robustness of 

he clusters learned by DiffPool across folds. 

.5. Evaluation on an external multimodal dataset 

Table 5 shows the results when training and evaluating our ar- 

hitecture on the Human Connectome Project (HCP) dataset, both 

or the multimodal (rs-fMRI and diffusion data) and unimodal 

only rs-fMRI data) cases. Performance metrics of our model are 

ower, as compared to the UK Biobank analyses, when consider- 

ng only rs-fMRI data (i.e., 3–5% difference for concatenation and 

round 20% difference when using DiffPool). This may illustrate 

nown concerns about the behaviours of deep learning models 

n general, and graph learning models in particular, when data is 

carce; indeed, in the case of rs-fMRI data only, the non-DL base- 

ines reach similar, or slightly better performances when compared 

o all DL models (both our model and the DL baselines), confirming 

hat DL models can struggle with smaller datasets. However, in the 

ultimodal case, when complementary information from both rs- 

MRI (i.e. functional data) and diffusion-weighted MRI (i.e. struc- 

ural data) are used, our model performs notably better than all 

aselines. This highlights how our model can flexibly leverage mul- 

iple data sources, achieving performances that in some cases are 

igher than the unimodal results obtained with the much larger 

K Biobank dataset. This also emphasises the anticipated outcome 
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Fig. 6. Upper-triangle of the association matrix S ′ for N → DiffPool model generated when predicting binary sex on unthresholded matrices, with dendrograms from 

hierarchical clustering. Each element S ′ 
i, j 

indicates how many times brain regions i and j are pooled together. On the lower left corner, a graph representation of the same 

association matrix S ′ , thresholded at 25% with nodes identified and coloured according to their general brain region (i.e., T/F/O/P/I correspond to T emporal, F rontal, O ccipital, 

P arietal, and I nsula); thicker edges represent a higher S ′ 
i, j 

value, in this graph representation ranging from 23,911 to 34,503. 

Fig. 7. Four main brain clusters on association matrix S ′ generated from N → DiffPool model predicting binary sex on unthresholded matrices. Each colour corresponds to 

one cluster. 

10 
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Fig. 8. Main brain clusters on association matrix S ′ generated from N → DiffPool model predicting binary sex on unthresholded matrices. Each colour corresponds to one 

cluster. Left: Eight main clusters. Right: Twelve main clusters. 

Fig. 9. Association matrices S ′ for all the five folds for the model “N → DiffPool” trained on the unthresholded matrices. 

Table 5 

Results when training and evaluating on the HCP dataset, both for the multimodal (rs-fMRI and diffusion data) and unimodal (only rs-fMRI 

data) cases. Metrics averaged across the five test sets, with standard deviation in parenthesis. Aggregator on the right-hand side of the 

arrow, “N” corresponds to only node model , and “N + E” corresponds to full Graph Network block. 

Model AUC Accuracy Sensitivity Specificity 

no GNN 

→ Concat 0.89 (0.034) 0.81 (0.038) 0.79 (0.050) 0.83 (0.031) 

Using both rs-fMRI and diffusion data 

N + E → Concat 0.94 (0.010) 0.85 (0.016) 0.83 (0.047) 0.87 (0.058) 

N + E → DiffPool 0.89 (0.019) 0.81 (0.019) 0.78 (0.047) 0.84 (0.053) 

N → Concat 0.95 (0.012) 0.88 (0.018) 0.86 (0.045) 0.90 (0.026) 

N → DiffPool 0.93 (0.018) 0.85 (0.024) 0.79 (0.044) 0.90 (0.035) 

CNSLAB ( Gadgil et al., 2020 ) 0.81 (0.029) 0.74 (0.022) 0.69 (0.051) 0.79 (0.033) 

cGCN ( Wang et al., 2021 ) 0.62 (0.019) 0.57 (0.027) 0.51 (0.205) 0.61 (0.220) 

XGBoost 0.88 (0.018) 0.81 (0.021) 0.77 (0.036) 0.84 (0.017) 

SVM 0.82 (0.020) 0.82 (0.022) 0.79 (0.044) 0.85 (0.058) 

Using only rs-fMRI data 

N + E → Concat 0.88 (0.025) 0.81 (0.030) 0.80 (0.056) 0.82 (0.037) 

N + E → DiffPool 0.63 (0.027) 0.59 (0.012) 0.47 (0.080) 0.70 (0.059) 

N → Concat 0.89 (0.019) 0.82 (0.019) 0.80 (0.046) 0.83 (0.054) 

N → DiffPool 0.68 (0.018) 0.64 (0.014) 0.59 (0.041) 0.68 (0.057) 

CNSLAB ( Gadgil et al., 2020 ) 0.82 (0.031) 0.75 (0.023) 0.70 (0.053) 0.79 (0.040) 

cGCN ( Wang et al., 2021 ) 0.65 (0.039) 0.59 (0.024) 0.41 (0.175) 0.75 (0.167) 

XGBoost 0.89 (0.014) 0.82 (0.019) 0.78 (0.025) 0.85 (0.030) 

SVM 0.83 (0.022) 0.83 (0.024) 0.78 (0.044) 0.87 (0.064) 
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hat even DL models perform better in the presence of richer and 

aried data rather than when merely increasing dataset size, pro- 

ided the model is able to leverage data richness. This does not 

appen with the non-DL baselines, which perform almost equally 

hen comparing unimodal and multimodal data. 

. Discussion 

In this paper we presented a novel deep learning architecture 

hich can successfully use the high-dimensional and noisy rs-fMRI 

ata, by leveraging their temporal dynamics and spatial associa- 

ions represented by what is commonly called the connectivity be- 

ween brain locations. In contrast with previous literature, we use 

CNs to model intra-subject temporal dynamics and combine them 

ith GNNs to model inter-regional associations. We illustrated and 
11 
nalysed the effectiveness of our model in a proof-of-concept bi- 

ary sex prediction task, which also included an ablation analy- 

is with variations of the spatial pooling mechanism. To the best 

f our knowledge, this work is the first to leverage both the spa- 

ial and temporal information in rs-fMRI data in a single, end-to- 

nd framework that: (1) includes temporal convolutions and graph 

eural networks, and (2) provides the flexibility to extract human- 

eadable, explainability-related patterns which are directly related 

o the neurobiology and neuroanatomy of the respective brains. We 

ere able to analyse the clusters created by the graph hierarchi- 

al pooling mechanism which turned out to carry sensible neu- 

obiological insights. Importantly, we included edge features (i.e., 

eights) when leveraging the graph structure in the network; this 

nformation is often ignored in the few papers which currently ap- 

ly GNNs to the study of fMRI data ( Kim and Ye, 2020 ). The abla-
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Fig. 10. Averaged normalised differences between association matrices across the 

five folds of the model “N → DiffPool” depicted in Fig. 9 . 
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ion study showed how the graph network block successfully lever- 

ged the weights of the spatial dynamics, indicating the impor- 

ance of designing an architecture specifically targeted for spatio- 

emporal rs-fMRI data. These results point to an advantage of using 

ubject-specific FCMs because the baseline obtained using group- 

veraged FCMs (i.e. cGCN) consistently performed worse against all 

ther models, including non-DL baselines. Contrary to our initial 

ypothesis, using a hierarchical pooling mechanism (i.e., DiffPool) 

id not provide an improvement in overall performance when 

ompared to concatenation pooling and, in some cases, to base- 

ines. The most notable exception is the multimodal setting with 

he HCP dataset, in which the hierarchical pooling mechanism oc- 

asionally provides similar results to our best model. Still, we posit 

hat the compelling explainability potential of DiffPool is advan- 

ageous in settings like neuroscience investigation. In this context, 

dditional explorations of hierarchical pooling mechanisms could 

epresent an exciting future research direction. 

One of the aims of this paper was to provide additional con- 

ributions beyond the goal of end-to-end modelling of functional 

rain activity, hoping to provide a tool that can be tailored to 

he analysis of medical images. For instance, the set of experi- 

ents using unique multimodal data from the HCP dataset illus- 

rate how our approach can be of interest in the emerging mul- 

imodal brain connectivity community. Also, we are not aware of 

ny other work in the neuroimaging field which uses a hierarchi- 

al pooling mechanism for the purpose of generating explainable 

atterns from fMRI data - a crucial aspect when interacting with 

he neuroscience community. While temporal convolutional net- 

orks (TCNs) and graph neural networks (GNNs) have been suc- 

essfully introduced in previous literature, our contribution in this 

aper also lies in the combined use of these building blocks for the 

pecific case of modelling rs-fMRI data. Importantly, we have also 

otivated our choice of TCN kernels with respect to LSTM models 

hrough a head-to-head comparison in Section 5.2 . 

We hope that this paper can lay the groundwork for future ex- 

loration of flexible architectures which are able to leverage the 

ntirety of neuromonitoring data arising from the extremely com- 

lex spatio-temporal interplay of groups of firing neurons (which, 

n addition, can only be observed indirectly). By demonstrating im- 

roved performance in a proof-of-concept task which is commonly 

mployed in benchmarking models for functional brain data, com- 
12 
aring to both non-DL and DL baselines, and sharing all code and 

mplementation details, we hope that our work will have an im- 

act on future research which will further improve spatio-temporal 

odelling specific to fMRI data. As we demonstrated with the mul- 

imodal Human Connectome Project (HCP) dataset, our architec- 

ure can very easily include other types of data (e.g., multimodal 

tructural and temporal data). The architecture can be further ex- 

ended to include possible confounds (e.g. age, IQ, cognitive status) 

hat could drive the prediction task in other brain disorders. Fur- 

hermore, while this is out of the scope of the present paper, ad- 

itional analyses can be conducted to study the robustness of the 

rchitecture to finer parcellations beside the Desikan-Killiany at- 

as, possibly leading to additional neurobiological insights depend- 

ng on which regions are represented in the parcellations. Another 

xciting recent trend that can be included in our architecture is 

o allow the network to learn the underlying connectivity from 

cratch ( Kazi et al., 2020; Jie et al., 2020 ) instead of computing as-

ociations or other handcrafted features like the ones used in this 

nd other papers ( Li et al., 2021; Li et al., 2020 ). 
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Fig. A.1. Kernels from the first TCN layer of a “N + E → Concat” model trained with three different number of kernels but all remaining hyperparameters the same. Number 

of kernels from left to right: 8, 16, and 32. 
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ppendix A. Influence of Number of Kernels in First TCN Layer 

We selected the hyperparameters of the best “N + E → Concat”

odel for one fold, and trained three different models with differ- 

nt number of kernels in the first layer (i.e., 8, 16, and 32) while

eeping all other hyperparameters fixed. The kernels from the first 

CN layer across these three models can be visualised in Fig. A.1 . 

hile the explicit significance of the kernel weights is hard to as- 

ertain, the kernel weights appear to have large variability and are 

herefore likely selecting different, non-redundant patterns present 

n the original time series. In addition, it is possible to see that the 

hoice of the number of kernels in the first layer influences the 

atterns learned in this first layer. 
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