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Abstract

This study aims to develop a closed-form methodology for estimating the resultant forces in a finite composite plate,
weakened by the presence of elliptical cutouts, under membrane loads. Following an innovative approach, the developed
methodology can deal, in the presence of cutouts, with a non-uniform lay-up distribution in the plate. To this end,
different laminate features, including the stacking sequence, thickness, and even local reinforcements, will be considered
as variable inputs. The main motivation behind this research is to increase the range of applicability of the closed-form
methodologies devoted to the structural analysis of composite plates with cutouts, with the purpose of using the present
methodology in the first phases of component design.
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1. Introduction

Recent developments in the aeronautic industry demon-
strate an increasing tendency to use carbon fibre rein-
forced polymer (CFRP). The outstanding specific mechan-
ical properties of these materials make them the perfect5

candidates to fulfil the tough lightweight requirements of
this sector. In this regard, the optimum design for the pri-
mary structures of aircrafts may induce great weight sav-
ings, which will result in considerable reductions in fuel
consumption and operational costs.10

Most internal and external aircraft structures utilise 2D
plate and shell components. It is common to find that
these structural elements are weakened by the presence
of cutouts, which are required to give access to internal
systems and structures, allow system integration, or sim-15

ply decrease the structure’s weight. Stress concentrations
arise around these cutouts, which generally lead to impor-
tant reductions in the structure’s strength. Therefore, the
stress distributions around such cutouts must be quanti-
fied in order to provide a safe design for the structure.20

Allow it to just focus on plates weakened by circular or
elliptical cutouts under membrane loads. In this case, the
stresses in the component at the region near the cutout
could be estimated using two different approaches. First,
finite element formulations offer accurate solutions for a25

wide range of available options regarding modelling strate-
gies, hypotheses, and simplifications. In the peer-reviewed
literature, these formulations have been widely applied to
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the problem under study following different approaches.
For instance, Hu et al. [1] estimated the 3D field of stresses30

around a cutout and compared them to those predicted us-
ing an analytical method. Nonetheless, the high compu-
tational capacity required to perform parametric studies,
together with the need to re-mesh the model (and per-
form mesh surveillance) with each parameter change, pre-35

vent them from being the optimum methods to use in the
initial phases of structural design. In addition, the finite
element method (FEM) requires a mesh refinement in the
cutout region, which increases the computation time.

In the second approach, closed-form formulations offer,40

by contrast, a computationally faster solution that is suit-
able for launching parametric studies, which are common
in the first phases of component design. Such formula-
tions are the optimum means for conducting stress anal-
yses around cutouts because specific approximation func-45

tions are used for the fast convergence of a solution in
the vicinity of a cutout. Thus, the specific problem under
review has been studied by multiple authors, including
Lekhnitskii [2], Savin [3], and Hwu [4].

To the best of the authors’ knowledge, the application50

range of closed-form formulations is limited to plates com-
posed of a unique laminate (and henceforth no changes in
thickness or stacking sequence are allowed). Generally, it
is only valid in a few limited areas of the structure because
the whole panel is usually divided into regions with differ-55

ent stacking sequences. For instance, just to mention two
aerospace applications, (1) the thickness of a wing spar
constantly decreases from the wing root to tip because of
the load relief at the tip, and (2) it is common to find
reinforcements surrounding cutouts to compensate for the60
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concentration of stresses around them.
Therefore, the present article aims to increase the ap-

plication range of closed-form formulations for the struc-
tural analysis of composite plates with cutouts, by con-
sidering regions with different laminate properties. For65

instance, Figure 1 shows an outline of a component with
the previously mentioned features. For the time being,
only membrane loads are considered, although the exten-
sion to bending is straightforward. To the best knowledge
of the authors, the closed-form formulations offered in the70

peer-reviewed literature were not designed to deal with the
previously mentioned applications.

The motivation for the present research is to offer a fast
and accurate tool capable of solving hundreds of cases with
different loadings, geometries, stacking sequences, etc. for75

the outlined structures within a few minutes. Thus, the
developed methodology could be used for the first phases
when designing a certain component, while the FEM could
be used to complement the results with a detailed analysis
of a set of selected candidates.80

Fig. 1. Outline of the proposed component.

The closed-form methods for the structural analysis of
anisotropic plates with cutouts are based on complex vari-
able formulations. These methods were first introduced
by Lekhnitskii [2] and Savin [3], based on the approach
of Muskhelishvili [5] for isotropic materials and assumed85

that the dimensions of the plate were infinite with respect
to the cutout. Alternatively, an array-based formalism is
also found in the literature, which is usually referred to as
the Stroh formalism (see Ting [6] and Hwu [4]).

To consider finite plate effects, the boundary conditions90

at the outer edges of a plate should be satisfied (instead
of at infinity). Two different approaches are found in the
literature. To this end, Xiong [7] makes use of an ener-
getic procedure (the minimum potential energy theorem)
to account for the finite boundaries. Lin and Ko [8], Xu95

et al. [9], and Hufenbach et al. [10] use boundary colloca-
tion points in conjunction with the least squares method.

In addition, there have been interesting investigations
on this topic with the aim of increasing the application

range of the original methodology. For example, Mao100

and Xu [11] presented a solution for the bending consid-
ering multiple cutouts, Hufenbach et al. [12] developed
a formalism for thick laminates that considers a first-
order shear deformation theory for the laminate bend-
ing, Ukadgaonker and Rao [13] introduced hole geome-105

tries other than the elliptical by defining a customised
conformal mapping for each geometry, and Ko and Lin
[14] defined a methodology to estimate the layerwise 3D
full stress tensor from the solution of the 2D membrane
model.110

In summary, there are numerous articles in the peer-
reviewed literature that develop closed-form formulations
for finite anisotropic plates with cutouts under a large va-
riety of conditions. Nonetheless, no studies were found re-
lated to anisotropic plates involving regions with different115

laminate mechanical properties. Hence, the present article
introduces an appreciable enhancement to the application
coverage of the method.

To close the introduction, the document structure is pro-
vided. First, the proposed closed-form methodology is pre-120

sented in section 2. The model is then validated by means
of a comparison of benchmark exercises with respect to
the FEM in section 3. Some parametric analyses are con-
ducted and discussed in section 4. Finally, a summary of
the article and some of the conclusions drawn are presented125

in section 5.

2. Closed-form methodology

The methodology to be developed will be based on the
Lekhnitskii formalism [2], because most of the theories for
finite plate analysis are based on it. The finite dimensions130

of the plate are considered through the use of boundary
collocation points, as developed in [8].

First, let it be assumed that the entire component is
decomposed into M regions, which have different values
for the laminate extensional stiffness matrix (A) (i.e. a135

different stacking sequence, thickness, and/or material),
and let each region be denoted by m = 1, 2...M . Here-
after, equations will be defined in terms of m for a general
formulation.

As proposed in Figure 1, each region may have a cutout140

or not. If a cutout is reinforced, the reinforcement region
shall be considered a different region.

2.1. Hypotheses
• The behaviour of each composite laminate is repre-

sented by its equivalent orthotropic material using the145

extensional stiffness matrix (A), in accordance with
the classical laminate theory.

• The methodology herein presented only considers the
membrane loading of the plate. No body forces are
considered to be acting on the component.150

• The out-of-plane stress components are not consid-
ered in the present formulation, i.e. σiz ≈ 0.
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2.2. Governing equations
It should be noted that theories dealing with composite

laminates usually deal with the resultant forces Nij (force
per unit width) instead of stresses σij , which are defined
as follows:  Nx

Ny
Nxy

 =

∫ h/2

−h/2

 σx
σy
τxy

 dz, (1)

where h represents the thickness of the plate.
The equilibrium, constitutive, and compatibility equa-

tions shall be formulated under the previous assumptions.
First, the equilibrium of the resultant forces gives rise, in
the absence of body forces, to the following:

∂Nx
∂x

+
∂Nxy
∂y

= 0, (2a)

∂Nxy
∂x

+
∂Ny
∂y

= 0, (2b)

with the classical meaning for Nij , as stated in (1). Sec-
ond, assuming that the laminate is symmetric, the consti-
tutive law relating the resultant forces Nij and strains εij
results in the extensional stiffness matrix (A), Nx

Ny
Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66

 εx
εy
γxy

 , (3)

where Aij are the components of matrix A for a gener-155

alised plane stress. The inverse relation is defined by the
components aij , which will be used hereinafter.

Finally, the compatibility equation in terms of the
strains is given by the following:

∂2εx
∂y2

+
∂2εy
∂x2

− ∂2γxy
∂x∂y

= 0. (4)

2.3. Lekhnitskii formalism (anisotropic regions with
cutout)

Lekhnitskii [2] proposed an analytical formalism to solve
the problem of an anisotropic plate with an elliptical
cutout under a wide range of conditions, but assuming
that the plate was infinite. An Airy stress function (φ)
is introduced to automatically fulfil the equilibrium equa-
tions,

N (m)
x =

∂2φ(m)

∂y2
N (m)
y =

∂2φ(m)

∂x2
N (m)
xy = −∂

2φ(m)

∂x∂y
, (5)

where (m) represents a specific region of the model. Mak-
ing use of (5), the equilibrium equations (2) are fulfilled,
and substituting into (3) and (4), the membrane charac-
teristic equation is found as follows:

a
(m)
22

∂4φ(m)

∂x4
− 2a

(m)
26

∂4φ(m)

∂x3∂y
+
(
2a

(m)
12 + a

(m)
66

) ∂4φ(m)

∂x2∂y2

− 2a
(m)
16

∂4φ(m)

∂x∂y3
+ a

(m)
11

∂4φ(m)

∂y4
= 0. (6)

The dependence on the extensional stiffness matrix A of160

(6) is remarkable. Hence, a different characteristic equa-
tion should be defined and solved for each region (m).
Following [2], a solution for (6) is found using the complex
roots µjm and introducing complex functions φ(m)

j (zjm),
where zjm = x+ µjmy:165

φ(m) = 2Re


2∑
j=1

φ
(m)
j (zjm)

 . (7)

Let ψ be the elliptical eccentric angle that sweeps the
contour, and let a and b be the semi-axes of the ellipse.
Thus, the coordinates of the cutout contour are defined as
follows:

x = acos (ψ) , (8a)

y = bsin (ψ) . (8b)

Hereafter, a conformal mapping is performed to convert
the elliptical cutout contour into a unitary radius circle in
the complex plane. This conformal mapping is defined as
follows:

zjm =
a− ibµjm

2
ζjm +

a+ ibµjm
2

ζ−1
jm, (9)

where ζjm is the complex coordinate after the conformal
mapping.

In this way, ζjm = eiψ at the cutout boundary. Sub-
sequently, the formulation is redefined in order to operate
with the functions Φ(m)

j , which are the derivatives of φ(m)
j :

Φ
(m)
j =

dφ(m)
j

dzjm
. (10)

In order to consider the plate to be finite (i.e. the exter-
nal edges are not considered to be far enough away to have
negligible effects), it is usual to use a Laurent series to ap-
proach Φ

(m)
j functions, as seen in most of the references

(e.g. [7, 8, 9, 10]). Hence,

Φ
(m)
j (ζjm) = C

(m)
0j + C

′(m)
0j ln (ζjm)+

N∑
n=1

(
C

(m)
nj ζ−njm + C

∗(m)
nj ζnjm

)
, (11)

where C ′
0j , Cnj , and C∗

nj are unknown coefficients that will
be estimated by satisfying the boundary conditions.

The scalar N (not to be confused with the components170

of the resultant forces Nij) is used in (11) as the approx-
imation order and will be used later to tune the accuracy
of the developed method. In addition, the free term C0j

affects only the displacements (not the resultant forces),
while the logarithmic term C ′

0j ln (ζjm) is associated with175

the unbalanced loads around the cutout.
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2.4. Anisotropic regions without cutout

A model to describe the field of the resultant forces and
displacements in a region without cutouts is developed in
an analogous fashion. First, based on (6-10), an approxi-
mation function for Φ

(m)
j is considered,

Φ
(m)
j (zjm) = C

(m)
0j +

N∑
n=1

(
C

∗(m)
nj znjm

)
. (12)

Note here that Φ
(m)
j (zjm) is analogous to Φ

(m)
j (ζjm) of

(11), with the main difference that here zjm is the depen-
dent variable (because ζjm does not have meaning without180

a cutout). Additionally, it should be noted that no log-
arithmic or negative exponential terms are used in (12),
with respect to (11), given that it does not make sense to
consider them without a cutout.

2.5. Resultant forces and displacements from Φ
(m)
j func-185

tions

Once Φ
(m)
j are defined, the resultant forces are easily

obtained using the equations shown in (5):

N (m)
x = 2Re


2∑
j=1

[
µ2
jm

dΦ(m)
j

dzjm

] , (13a)

N (m)
y = 2Re


2∑
j=1

[
dΦ(m)

j

dzjm

] , (13b)

N (m)
xy = −2Re


2∑
j=1

[
µjm

dΦ(m)
j

dzjm

] . (13c)

Similarly, the displacements are estimated by substitut-
ing both the stress-strain relations shown in (3) and com-
patibility equations shown in (4) into the equations shown
in (5),

u(m) = 2Re


2∑
j=1

[
pjmΦ

(m)
j

] , (14a)

v(m) = 2Re


2∑
j=1

[
qjmΦ

(m)
j

] , (14b)

where pjm and qjm are defined as follows:

pjm = a
(m)
11 µ2

jm + a
(m)
12 − a

(m)
16 µjm (15a)

qjm = a
(m)
12 µjm +

a
(m)
22

µjm
− a

(m)
26 . (15b)

2.6. Boundary conditions
Additionally, boundary conditions can be defined using

pairs of equations in view of the nature of the conditions
applied (loads or displacements). First, following [2], if
loads are applied,

∓
∫ s

0

Ynds+ c1 = 2Re


2∑
j=1

(
Φ

(m)
j

) , (16a)

±
∫ s

0

Xnds+ c2 = 2Re


2∑
j=1

(
µjmΦ

(m)
j

) . (16b)

Similarly, in terms of displacements,

ũ = 2Re


2∑
j=1

(
pjmΦ

(m)
j

) , (17a)

ṽ = 2Re


2∑
j=1

(
qjmΦ

(m)
j

) , (17b)

where Xn and Yn are the projected external forces applied
at boundaries on the x and y axes, respectively, while ũ
and ṽ are the prescribed displacements.190

The boundary conditions will be defined at a discrete
number of collocation points, giving rise to equations that
will be used to estimate the coefficients C(m)

nj and C
∗(m)
nj

of (11) and (12).

2.6.1. Cutout boundary195

Generally, there is no need to place collocation points
along the internal contour of the cutout, because it is
sufficient to approximate the boundary conditions at the
contour (i.e. replacing the left-hand side of the equations
shown in (16)) by the Fourier series (see [2]). In this way,
(16) becomes a relation of Φ(m)

1 and Φ
(m)
2 ,

Φ
(m)
2 = f(Φ

(m)
1 ). (18)

In addition, it is possible to substitute ζjm = eiψ in
(11) or (12), and subsequently the expressions of Φ(m)

1 and
Φ

(m)
2 obtained on the right-hand side of (16). Finally, by

grouping terms with the same power of ζj in (18), a total of
2N +1 equations are obtained, which reduces the number
of unknowns to one half,

For n = 0 : C02(m) = f(C
(m)
01 ).

For n = 1, 2, ...N − 1, N : C
(m)
n2 = f(C

(m)
n1 , C

∗(m)
n1 ),

C
∗(m)
n2 = f(C

(m)
n1 , C

∗(m)
n1 ).

(19)
Although it does not fall within the scope of this arti-

cle, it is important to note the reduction of the unknowns
because it will affect the computational time.
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2.6.2. External/restrained boundary
The load and/or displacement conditions at external or200

restrained (i.e. located at an interface between two re-
gions) boundaries should be defined and utilised at each
collocation point. The equations to be used for external
and restrained collocation points will be different, as de-
scribed below.205

Fig. 2. Boundary condition definition based on location of collocation
point.

Let us consider a component composed of two adjacent
regions denoted by (m) and (m′), as in Figure 2. Thus,
for each collocation point belonging to an external edge,
two equations will be obtained, one in the x direction and
the other in the y direction. The equations for the load210

and/or displacement boundary conditions will be defined
using (16-17).

If a collocation point is situated at an interface between
two different regions, the equilibrium of the forces and
continuity of the displacements must be established at the215

interface between regions (m) and (m′), giving rise to

Re


2∑
j=1

(
Φ

(m)
j − Φ

(m′)
j

) = 0, (20a)

Re


2∑
j=1

(
µjmΦ

(m)
j − µjm′Φ

(m′)
j

) = 0, (20b)

Re


2∑
j=1

(
pjmΦ

(m)
j − pjm′Φ

(m′)
j

) = 0, (21a)

Re


2∑
j=1

(
qjmΦ

(m)
j − qjm′Φ

(m′)
j

) = 0. (21b)

In this case, four equations are used at each collocation
point. The conditions defined in (20) guarantee the equi-
librium of the forces through the joint between two dissim-220

ilar regions (m and m′). Similarly, the displacements must
be restricted to be continuous at the interface according
to the expressions shown in (21).

It has been shown that different equations will define the
boundary conditions for the different types of collocation225

points. Thus, each collocation point may be distinguished
by whether it belongs to an interface between regions (i.e.
(20) and (21)), or not (i.e. (16) or (17)).

2.7. Collocation points and least squares
Finally, a set of collocation points is defined at the230

boundaries of each region (m) to obtain the boundary
equations. These collocation points will be evenly dis-
tributed over the edges, including points at the corners
of the component. For the case under consideration, this
uniform distribution of the points is the most efficient way235

to perform the calculation because of the smooth evolution
of the resultant forces and displacements. In contrast, in
a case with load concentrations at the external boundary
(e.g. point loads), a different distribution of points might
be preferable.240

Normally, the number of equations will outnumber the
unknowns. Thus, the system of equations will be solved
using the least squares method to obtain the best fit solu-
tion. The number of collocations points to be used will be
discussed later.245

3. Model validation - benchmark

The methodology explained in the previous section has
been implemented and tested using the mathematical soft-
ware Matlab, and this section presents the solutions of
three benchmark exercises to demonstrate the capabilities250

of the methodology. Furthermore, for comparison pur-
poses, the benchmark exercises will be solved using the
Abaqus 6.14 finite element software with S8R quadratic
shell elements.

It should be noted that the usual procedure will be to255

plot the resultant forces tangent to the cutout boundary
(Ns) as a function of the polar angle χ. As long as no load
is applied at the cutout boundary, the other components of
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the forces (Nn and Nns) will remain null. Figure 3 shows
the definition of the geometric angle χ for an arbitrary260

point P over the cutout boundary, as well as the normal
n⃗ and tangential s⃗ directions.

Fig. 3. Definition of n⃗ − s⃗ directions and χ polar angle at ellipse
boundary.

With regard to the material, the lamina properties of
the standard CFRP defined in Table 1 will be used for all
the exercises.

Table 1. Mechanical properties of lamina.

E11(GPa) E22(GPa) G12(GPa) ν12 t(mm)

140 9 4.65 0.3 0.184

265

3.1. Parameter selection - benchmark exercise 1
In the first exercise, a geometry composed of two regions

with different stacking sequences is proposed in Figure 4.
One of these regions is weakened by the presence of an
elliptical cutout.270

Fig. 4. Geometry and loads of benchmark exercise 1.

In the first place, it is necessary to carry out an analysis
to set the parameters of the tool. To this end, the number
of collocation points and the order of approximation N
will be varied to check the convergence of the solution.

The procedure used consists of estimating the resultant
forces Ns along the cutout contour (as a function of the
χ angle), and then comparing the results with those of an
established reference. The maximum absolute difference
in resultant force Ns(χ) between each test and reference,

for any χ, is adimensionalised with the maximum resul-
tant force of the reference. Thus, the relative difference
parameter Rd(%) is defined as follows:

Rd (%) =
Max

{∣∣∣Ns (χ)−N
(ref)
s (χ)

∣∣∣}
Max

{∣∣∣N (ref)
s (χ)

∣∣∣} . (22)

Figure 5 is obtained by varying the number of colloca-275

tion points. All of the results have been calculated using
the order of approximation N = 40. For comparison
purposes, a model with N = 40 and 21000 collocation
points is considered as a reference.
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Fig. 5. Relative difference Rd(%) around cutout with respect to
reference (N = 40, 21000 collocation points). Constant order of
approximation (N = 40). Benchmark exercise 1.

It is appreciated that the solution practically converges280

even for the lowest number of collocation points, with Rd
below 0.002%.

Similarly, let us modify the order of approximation N ,
while maintaining the number of collocation points con-
stant at 21000. A model with an order of approximation285

N = 100 and 21000 points is used as a reference. The re-
sults obtained are plotted in Figure 6. An acceptable level
of convergence is evident from N = 20 (Rd < 0.5%), and
a practically converged solution is reached from N = 40
(Rd < 0.01%) onwards.290

Because the number of collocation points is constant,
the number of equations will also be constant for all of
the cases simulated, whereas the number of unknowns will
increase with the order of approximation N . Thus, the
solution converges as shown in Figure 6, although a non-295

monotone evolution of Rd(%) is found.
It is inefficient to use a constant number of collocation

points for each order of approximation. On the contrary,
it is more natural to always use the same unknowns-to-
equations ratio. In this way, a lower order of approxima-300

tion N will require less collocation points. Figure 7 plots
the solutions for different orders of approximation N using
a ratio of two equations per unknown. The reference used
is a model with an order of approximation N = 100 and
21000 collocation points.305
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Fig. 6. Relative difference Rd(%) around cutout with respect to
reference (N = 100, 21000 collocation points). Constant number
of collocation points (21000). Benchmark exercise 1.
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Fig. 7. Relative difference Rd(%) around cutout with respect to
reference (N = 100, 21000 collocation points). Constant unknowns-
to-equations ratio = 2. Benchmark exercise 1.

In this case, the number of equations and unknowns
will increase with the order of approximation N . Here,
the quasi-horizontal character of Rd(%) for N > 40 in-
dicates that the maximum convergence is reached. Likely,
increasing the equations-to-unknowns ratio will improve310

the accuracy.
The solutions obtained are similar to those of Figure 6,

but the computational time is considerably reduced. A so-
lution that finds a compromise between the accuracy and
computational time is reached for an order of approxima-315

tion N = 20 and an equations-to-unknowns ratio of two,
which from now on are the parameters to be used (unless
otherwise specified).

To illustrate the convergence of the results, Figure 8
shows the resultant tangential forces Ns around the cutout320

using the present method for order of approximation val-
ues N = 4, 8, 12, & 20, with an equations-to-unknowns
ratio of 2. In addition, FEM reference results have been
added for comparison. In this case, an Abaqus model with
S8R quadratic elements and 3.11 · 105 degrees of freedom325

(DOFs) has been solved.

0 45 90 135 180 225 270 315 360
Angle  (deg)

-400

-200

0

200

400

600

R
es

ul
ta

nt
 fo

rc
es

 N
S

 (
N

/m
m

)

FEM
N = 4
N = 8
N = 12
N = 20

Fig. 8. Resultant forces around cutout boundary. Present method
& FEM. Benchmark exercise 1.

As seen in Figure 8, when N = 12, the solution is
almost indistinguishable from the FEM result, which is
taken in this case as a reference.

3.2. Benchmark exercise 2330

In this case, three different regions are defined with one
particularity with respect to the first exercise, namely a
local reinforcement around the hole is simulated. The
boundary conditions and geometry are presented in Fig-
ure 9. Please note that the simulation includes not only335

the load boundary conditions (in bluish colour) but also a
prescribed deformation along two boundaries (in reddish
colour).

Fig. 9. Geometry and loads of benchmark exercise 2.

As in the previous exercise, the resultant forces around
the cutout against the FEM results are shown in Figure340

10. Excellent agreement of the resultant forces is obtained
with respect to the FEM results.

The present model has been launched with an order of
approximation N = 20 and an equations-to-unknowns
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ratio of 2. The FEM model has Abaqus S8R elements and345

3.02 · 105 DOFs.
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Fig. 10. Resultant forces around cutout boundary. Present method
& FEM. Benchmark exercise 2.

3.3. Benchmark exercise 3

Finally, a last benchmark exercise is presented. In
this case, a component composed of four regions and two
cutouts is presented in Figure 11. The boundary condi-350

tions are defined in terms of the loads and displacements.

Fig. 11. Geometry and loads of benchmark exercise 3.

The resultant forces around the lowest (1) and top
(2) cutouts are shown in Figure 12 for both the present
methodology and FEM.

The present model has been launched with an order of355

approximation N = 20 and an equations-to-unknowns
ratio of 2. The FEM model has Abaqus S8R elements and
5.25 · 105 DOFs.
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Fig. 12. Resultant forces around cutout boundary: (1)lowest and
(2)top cutouts. Present method & FEM. Benchmark exercise 3.

4. Parametric analysis

Given that the present methodology targets the initial360

phases of the design, it is interesting to perform parametric
studies on a particular component in order to optimise its
structural performance, which is why the method has been
conceived. In this regard, let us again solve benchmark
exercises after modifying certain selected parameters to365

demonstrate the capabilities of the methodology.

4.1. Parametric exercise 1

Going back to benchmark exercise 1 (Figure 4), let it be
assumed that the following features are adjustable:

• The y coordinate of the centre of the elliptical370

cutout is variable between 180 and 240 mm, i.e.
ycϵ [180, 240]mm.

• The cutout can be tilted with respect to the horizontal
x axis by an angle αϵ [−90, 90]

◦.

Figure 13 shows the two parameters to be modified dur-375

ing this experiment. Subsequently, the results of the para-
metric analysis are shown in Figure 14. It could be con-
cluded that, for the proposed load case, the dominant pa-
rameter is the angle α, which may induce a reduction of
the maximum resultant force by 18.8% with respect to the380

original solution using α = 30◦. Note that this optimum
orientation of the cutout is consistent with the normal and
shear loading that are applied. Thus, the cutout is aligned
with the diagonal of the rectangle, which suffers more elon-
gation under a shear load.385

A total of 148 different configurations have been tested
to obtain the graph of Figure 14, with a mean computa-
tional time of 1.41 s per configuration, and a total time of
207.94 s. The details of the computer used for the calcu-
lations are listed in Table 2.390

8



Fig. 13. Geometry and loads of benchmark exercise 1. Parametric
analysis of yc and α.
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Fig. 14. Maximum absolute Ns around cutout as function of α angle
and yc. Benchmark exercise 1.

4.2. Parametric exercise 2
Given that the second benchmark exercise represented

in Figure 4 is the only exercise that considers cutout re-
inforcement, let us modify the following parameters of the
reinforcement:395

• The major semiaxis (ar) of the reinforcement ellipse
is varied from 62.5 to 85 mm, where ar was equal to
78 mm in the original exercise.

• The eccentricity of the reinforcement is given by the
following formula:

e =

√
a2r − b2r
ar

, (23)

where ar and br are respectively the major and minor
semi-axes of the reinforcement. Thus, e = 0 repre-400

sents a perfect circumference, while e = 1 plots a
line. The eccentricity of the reinforcement ellipse was
0.745 in the original exercise.

The results when varying the aforementioned parame-
ters are plotted in Figure 15. It is appreciated that the405

maximum resultant forces around the cutout are reduced
by increasing the width of the reinforcement (by increasing
ar). In comparison with the original exercise, a reduction
of the maximum resultant forces of only 1.6% is reached
by increasing ar from 78 to 85 mm. From a design point of410

view, this is a very important argument for the structural
role of the cutout reinforcement.

Regarding the eccentricity, the effect is less pronounced,
because most of the graphics are practically overlapped
(except for e = 0.75 with low ar). Let it be noted that only415

the results compatible with the component geometry have
been plotted in Figure 15, i.e. the reinforcement contour
cannot exceed the domain of the plate.

The entire analysis requires 1208 s of computational
time to complete. Thus, a mean execution time of 7.69 s420

was obtained for each of the 157 configurations tested.
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e = 0.60
e = 0.75
Original solution
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Fig. 15. Maximum absolute Ns around cutout as function of re-
inforcement major semiaxis (ar) and eccentricity (e). Benchmark
exercise 2.

4.3. Parametric exercise 3
Let us assume that the component of the third bench-

mark exercise (Figure 11) is susceptible to having the an-
gle of all the ±45◦ plies modified to an undetermined ±θ.425

Looking for a minimum absolute value for the resultant
forces around the cutout, the methodology herein devel-
oped is applied to optimise angle θ.

The absolute maximum Ns is plotted as a function of
θ in Figure 16. The figure reveals that for this particular430

case, it is optimal to align the fibres to ±60◦ instead of
±45◦, which reduces the maximum Ns values by 8.2% and
11.3% around the lowest and top cutouts, respectively.

In this case, the mean computational time for each con-
figuration is 3.37 s, with a total time of 64.2 s for the 19435

configurations tested.
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Fig. 16. Maximum absolute Ns around cutout as function of angle
θ: (1)lowest and (2)top cutouts. Benchmark exercise 3.

5. Discussion and conclusions

An innovative approach for including regions with dif-
ferent laminate properties, based on closed-form method-
ologies for the structural analysis of composite plates with440

cutouts, has been presented and verified in comparison
with FEM results. Regarding the contribution of this
methodology with respect to the present state of the art, it
increases the application range of the closed-form method-
ologies based on the Lekhnitskii formalism, which allows445

the extension of these methods to models with local rein-
forcements, changes in laminate properties, etc.

The results from tests were proven to be fast and ac-
curate when using a constant order of approximation
N = 20. As a summary, Table 2 collects the results ob-450

tained from the three benchmark exercises presented in
this article for different orders of approximation N .

Additionally, Table 2 includes the results and compu-
tational times of two FEM models per benchmark exer-
cise. First, the exercise was modelled and simulated with a455

coarse mesh of S4R linear shell elements. Here, a computa-
tion time analogous to that of the closed-form formulation
with an order of approximation N = 20 was pursued for
comparison purposes. Such a time reduction was reached
at the expense of the accuracy of the analysis.460

Second, the results of the FEM models used as references
in section 3 were shown. These models were solved with a
high level of accuracy using a fine optimised mesh of S8R
quadratic shell elements.

The present methodology allows not only a competitive465

computing time, but also a minimised time for preparing
and launching the model. Thus, for instance, based on
the authors’ experience, the cases presented here required
a time on the order of minutes for the data introduction
and program launch, while standard FEM software might470

require approximately five times more. This is even more

advantageous when launching parametric studies, because
the closed-form method allows immediate changes to be
carried out, and does not require mesh control and surveil-
lance.475

It should be noted that the present methodology is
not intended to compete with FEM formulations but to
complement them for specific analyses. One of its key
strengths is the possibility of launching parametric stud-
ies to allow a fast optimisation of a particular component480

during the first phases of the design to be performed. In
this regard, the following can be said:

• The closed-form methodology was particularly con-
ceived for the structural analysis of plates with
cutouts, giving rise to a fast convergence of the prob-485

lem for a low order of approximation N (see Figure
7). Thus, it has been shown that the computational
time of this method is quite competitive.

• For an equivalent level of accuracy, the computational
time of the closed-form formulation is lower than that490

for the FEM. Hence, the present methodology is quite
suitable for performing fast and accurate parametric
studies, as shown in section 4.

• The methodology was implemented in mathematical
software. Hence, it is quite straightforward to pre-495

pare, launch, and represent a customised paramet-
ric analysis, which was the major motivation of this
study. Because there is no mesh, it has a great advan-
tage compared to the FEM. The closed-form method-
ology does not require mesh control and surveillance500

after every loop.

• The methodology is suitable for implementation in
any programming language with a mathematical
module, because no complex functions are required
(e.g. thePython or C++ languages). Thus, it is pos-505

sible to program and run it without requiring any li-
censed software.

• The present method outputs a closed-form function
that is used to define the force-displacement field for
the entire region of a component, making it beneficial510

in some particular cases.

In addition, it is important to mention the industrial
applicability of the present methodology. In fact, it was
conceived to be implemented in the calculation tools of
the aeronautics industry, under the supervision of Air-515

bus. The aforementioned calculation tools are tradition-
ally used during the first phases of the design of structural
components.

In spite of all this, it should be noted that the research
line started in this document could be enhanced, including520

the addition of features to the computational tool. The
following are some immediate areas of improvement:

• Consideration could be given not only to membrane
loads but also to bending. The procedure to solve
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Table 2. Results of benchmark exercises.

Benchmark Formulation N/DOFs (1) min Ns Max Ns t(2)

(N/mm) (N/mm) (sec)

1
Closed-form

10 −288.89 483.45 0.57
20 −318.15 500.96 1.77
30 −318.30 500.94 3.68

FEM 3.74 · 104 (S4R) −287.75 479.11 3
3.11 · 105 (S8R) −317.82 500.77 21

2
Closed-form

10 −1087.87 2331.91 3.13
20 −1093.09 2346.61 10.07
30 −1093.33 2346.92 21.78

FEM 3.8 · 104 (S4R) −1001.92 2238.33 7
3.02 · 105 (S8R) −1091.74 2346.80 30

3(3)
Closed-form

10 −1608.06 1126.00 1.21
20 −1638.85 1143.84 3.95
30 −1639.39 1138.61 8.29

FEM 4.49 · 104 (S4R) −1546.94 1056.76 6
5.25 · 105 (S8R) −1639.66 1139.87 57

(1) Order of approximation (closed-form) / Degrees of freedom (FEM).
(2) Computational time (Intel Core i7-7700 CPU @ 3.60 GHz and 16 GB DDR3 RAM)
(3) Only the lowest cutout results are collected in this table.

the bending should be analogous with respect to the525

membrane formalism.

• In this type of structure, it is normal to find that
the plate mid-plane is not the same for every region.
Thus, this will cause a membrane-bending coupling
that will affect the global behaviour of the component.530

The methodology herein presented is only applicable
to a unique global mid-plane shared by all the regions,
and consequently this is a clear area of improvement.
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