Chemistry

Elsevier Editorial System(tm) for Food

Manuscript Draft

Manuscript Number: FOODCHEM-D-20-04996R3

Title: Impact of a double post-fermentative maceration with ripe and overripe seeds on the phenolic composition and color stability of Syrah red wines from warm climate

Article Type: Research Article (max 7,500 words)

Keywords: sun-dried grapes; overripe seeds; phenolic composition; red wine color; post-fermentative maceration

Corresponding Author: Dr. M. Lourdes González-Miret, PhD

Corresponding Author's Institution: Universidad de Sevilla

First Author: Belén Gordillo, PhD

Order of Authors: Belén Gordillo, PhD; Francisco J. Rivero, PhD; M. José Jara-Palacios, PhD; M. Lourdes González-Miret, PhD; Francisco J. Heredia, PhD

Abstract: The post-fermentative double addition of Pedro Ximénez cv seeds obtained from natural matured grapes (ripe seeds, RS) and postharvest sun-dried grapes (overripe seeds, OS) were studied as sustainable enological alternatives to conventional vinification (CW) to improve the stability of Syrah wines produced in a warm climate. The phenolic composition was assessed by rapid resolution liquid chromatography, copigmentation/polymerization processes by spectrophotometry, and color quality and stability by Differential Colorimetry. OSW and RSW wines enriched their total phenolic content, being the effect more pronounced with overripe seeds (by 23% versus 10%). OSW differences were found for gallic acid, monomeric flavan-3-ols, and procyanidins compared to CW, and for (+)-catechin, procyanidin B2-3-0-gallate and the tetramer to RSW. Phenolic changes were related to higher color intensity in seed-added wines. OSW having higher percentage of polymeric pigments maintained for longer time the chromatic improvement, being visually darker and more intense than final CW and RSW.

1	Impact of a double post-fermentative maceration with ripe and overripe seeds on
2	the phenolic composition and color stability of Syrah red wines from warm climate
3	
4	Belén Gordillo, Francisco J. Rivero, M. José Jara-Palacios, M. Lourdes González-
5	Miret*, and Francisco J. Heredia.
6	
7	Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla,
8	41012 Sevilla, Spain
9	
10	Belén Gordillo: bgordillo@us.es
11	Francisco J. Rivero: frivero@us.es
12	M. José Jara-Palacios: <u>mjara@us.es</u>
13	M. Lourdes González-Miret: miret@us.es
14	Francisco J. Heredia: <u>heredia@us.es</u>
15	
16	* Corresponding author:
17	M. Lourdes González-Miret
18	Food Colour & Quality Lab., Área de Nutrición y Bromatología. Facultad de Farmacia.
19	Universidad de Sevilla. 41012-Sevilla, Spain
20	Tel.: +34 955420938

21 e-mail: miret@us.es

22 ABSTRACT

23 The post-fermentative double addition of Pedro Ximénez cv seeds obtained from natural matured grapes 24 (ripe seeds, RS) and postharvest sun-dried grapes (overripe seeds, OS) were studied as sustainable 25 enological alternatives to conventional vinification (CW) to improve the stability of Syrah wines produced in 26 a warm climate. The phenolic composition was assessed by rapid resolution liquid chromatography, 27 copigmentation/polymerization processes by spectrophotometry, and color quality and stability by 28 Differential Colorimetry. OSW and RSW wines enriched their total phenolic content, being the effect 29 more pronounced with overripe seeds (by 23% versus 10%). OSW differences were found for gallic 30 acid, monomeric flavan-3-ols, and procyanidins compared to CW, and for (+)-catechin, procyanidin B2-31 3-O-gallate and the tetramer to RSW. Phenolic changes were related to higher color intensity in seed-32 added wines. OSW having higher percentage of polymeric pigments maintained for longer time the chromatic improvement, being visually darker and more intense than final CW and RSW. 33

34

Keywords: sun-dried grapes; overripe seeds; phenolic composition; red wine color; post-fermentative
 maceration.

37

38

39 **1. Introduction**

40 The production of full-bodied red wines with stable and deep color is a major challenge for the wine 41 industry. This sensory and quality attribute is directly related to the phenolic composition of wines. 42 During maceration process, wines acquire the phenolic structure and, hence, the capability to perform a 43 proper aging process since, among other important factors such as formation of low and high molecular 44 weight polymeric pigments, complexation of phenolics (polysaccharides, sugars, etc.) or rearrangements 45 and oxidation of tannins, the copigmentation is crucial in this stage. From the early stages of 46 vinification, copigmentation, a non-covalent phenomenon occurring between anthocyanins and colorless phenolics (copigments), can enhance the color intensity of young wines by 30-50% and confers greater 47 48 stability to anthocyanins due to the formation of more stable pigments (Boulton, 2001). This chemical 49 conversion causes in most cases the evolution of the wine color, being the first step to its stabilization 50 (De Feitas & Mateus, 2011; Trouillas, Sancho-García, De Freitas, Gierschner, Otyepka & Dangles, 51 2016). Thus, it is interesting to develop oenological strategies focused on the exogenous addition of 52 phenolics to allow modulating the levels and types of copigments and, therefore, the copigmentation 53 equilibria (Schwarz, Picazo-Bacete, Winterhalter & Hermosín-Gutiérrez, 2005). In this respect, the use 54 of wood chips, enzymes, and enological tannin from seed and skins, are some examples of 55 internationally approved enological practices (OIV, 2012) to improve the sensory profile of wines and to 56 reduce defects.

Grape byproducts, especially those from white grapes, are powerful phenolic sources that can be reused with the aim of promoting higher levels of copigmentation in wines and favor more stable colors (Jara-Palacios, Gordillo, González-Miret, Hernanz, D. Escudero-Gilete & Heredia, 2014a; Pedroza, Carmona, Alonso, Salinas & Zalacain, 2013; Nicolle, Marcotte, Angers & Pedneaulta, 2018). In addition to the potential benefits on color, the use of grape byproducts during vinification has economic and environmental repercussion on winemaking regions.

63 Seeds obtained from grape pomace have been used in red winemaking by adding during the process to 64 enhance color and tannin extraction due to their richness in monomeric flavanols, catechins, and 65 procyanidins. These phenolic substances have also been shown to have antioxidant properties and 66 potential benefits to human health contributing to the global quality of wines (Jara-Palacios, Hernanz, Cifuentes-Gomez, Escudero-Gilete, Heredia & Spencer, 2015; Jara-Palacios, Hernanz, Escudero-Gilete 67 68 & Heredia, 2016). However, the content and proportions of the different flavanols in seeds, as well as 69 their polymerization grade, considerably vary with the ripeness grade of the grape (Perez-Magariño & 70 San José, 2006). This factor can influence the capability of seeds to modulate the sensory quality of red 71 wines such as the color enhancement and sensation of astringency. The exogenous addition of seeds 72 from high maturation level (overripe) grapes could be a good strategy for increasing the extraction of 73 adequate antioxidant copigments in wines for color stabilization purposes (Alcalde-Eon, García-Estévez, 74 Ferreras-Charro, Rivas-Gonzalo, Ferrer-Gallego, Escribano-Bailón, 2014; Rivero, Gordillo, Jara-75 Palacios, González-Miret & Heredia, 2017; Rivero, Jara-Palacios, Gordillo, Heredia & González-Miret, 76 2019; Rivero et al., 2020). In particular, overripe seeds obtained from high-mature white grapes 77 summited to intensive dehydration by postharvest sun-drying have been proposed as alternative sources 78 of copigments capable to stabilize wine anthocyanins (Rivero et al., 2019). This technological strategy 79 has been shown to be useful in warm climate regions. Jones, White, Cooper, & Storchmann (2005) 80 studied the average temperature during growing season (April-October in the Northern Hemisphere) to 81 define the climate of different regions, suggesting a range of 16.5-19.5 °C for warm climate. In such 82 warm regions, the extreme climate conditions (high night temperatures and severe light exposures 83 intensified by the effect of climate change) cause time discrepancy between the technological ripeness 84 (sugars/acids ratio) and the phenolic ripeness of grapes, leading to unbalanced ripening. Consequently, 85 red grapes usually do not reach sufficient phenolic maturity at harvest (occurring typically earlier in the 86 summer) and the copigmentation and the color stabilization processes in wines do not always occur 87 favorably (Gordillo et al., 2012; Rivero et al., 2017).

88 Even so, the impact on the levels of pigments and copigments in wines, as well as on the 89 copigmentation/polymerization processes, significantly vary depending on the dose applied and the 90 stage of vinification in which such as overripe byproducts are applied, with important consequences on 91 the color quality and stability. Jara-Palacios et al. (2016) confirmed that the addition of overripe seeds 92 during the fermentation improved the phenolic and antioxidant potential of a young red wine. 93 Notwithstanding, these effects were more notable with single seed additions than with double ones (450 94 g and 950 g seeds/150 kg of grapes). Likewise, Rivero et al. (2017) confirmed that the fermentative 95 addition of overripe seeds (3 g/L) led to red wines with significant higher content of anthocyanins and 96 procyanidins than the wines traditionally produced. As consequence, higher color stability and bluish 97 hues was achieved by increasing the pool of copigments and polymerization, although this effect was 98 visually limited. More recently, Rivero et al. (2019) assessed the impact of a post-fermentative 99 maceration with different doses (single and double) and contact time (30/60 days) of such as overripe 100 seeds. Interestingly, a double post-maceration process during 60 days was more effective to increase the 101 content of some copigments in wines (flavanols, benzoic acids and procyanidins) than single maceration 102 during 30 days. In this case, although partial absorption of anthocyanins was observed, wines produced 103 by double seed addition demonstrated visually perceptible color changes compared to control wines 104 (without overripe seed addition).

105 Thus, in the case of using overripe seeds during the first stages of vinification, controlling the conditions 106 of the seed addition is crucial to optimize the potential benefits on structure and color stability compared 107 to traditional maceration.

Studies focused on elaborate wines added with overripe seeds in comparison with seeds obtained from natural ripeness process are useful to elucidate the components responsible for these effects. The aim of this work was to evaluate the impact on the phenolic composition and color of red wines from warm climate by the post-fermentative double addition of seed byproducts having different ripeness grade 112 (ripe seeds obtained from grapes submitted to on-vine natural maturation and overripe seeds from grapes

submitted to off-vine postharvest sun-drying), in comparison to traditional maceration.

114 **2. Material and methods**

115 **2.1.** Grape seed byproducts and winemaking protocols

The grape seeds used as natural sources of copigments in the winemaking experiments were obtained from the pomaces of Pedro Ximénez (PX) white grape summited to different ripening processes (onvine natural maturation and off-vine postharvest sun-drying) in the Montilla-Moriles Designation of Origin (D.O). The Montilla-Moriles D.O (Córdoba, southwestern Spain) is classified as a semicontinental Mediterranean climate winemaking region with short winters and long, dry, hot summers (the diurnal temperature can reach 40 °C) where traditional sweet wines from Pedro Ximénez (PX) white grapes are elaborated (Rivero et al., 2020).

123 Ripe seeds (RS) proceeded from the pomace of PX mature grapes exposed to natural on-vine ripening 124 until reach 16 °Bé of sugar content, and overripe seeds (OS) from the pomace of high-mature PX dried 125 grapes exposed to 10 days off-vine over-ripening by postharvest sun-drying until reach 23 °Bé of sugar 126 content. Pomaces from PX mature and overripe grapes were provided in enough amounts by a local 127 winemaking Cooperative of the Montilla Moriles D.O., after the elaboration of their respective sweet 128 wines from PX white grapes. The separation procedure consisted of sifting the pomaces (rest of skins, 129 pulp, and seeds) through a mesh (70 cm x 120 cm, approx.) that allowed the RS and OS seeds to be 130 quickly separated from the rest of the pomaces. Once the seeds were separated through the mesh, they 131 were manually cleaned from small rest of solid parts. Around 4 kg of each type of seeds (RS and OS with similar moisture content) were obtained and stored frozen (-20 °C) until used for the vinification 132 133 assays.

A young red wine made from *Vitis vinifera* var. Syrah cultivated in Condado de Huelva Designation of Origin (D.O) was used for the post-maceration experiments with ripe and overripe PX seeds. The "Condado de Huelva" D.O. is a restricted wine-producing zone in southwestern Spain with climatological conditions of warm climate (average T^a of growing season 16.9-25.4 °C). It includes
approximately 6000 ha of neutral or slightly alkaline soil having a typical Mediterranean climate with a
clear Atlantic influence: gentle winters and springs, long and warm summers (average temperature 18
°C, minimum over 10 °C in winter and over 40 °C in summer), relative humidity ranging between 60%
and 80%, and mean rainfall around 700 mm year⁻¹ (Gordillo et al., 2012).

142 Syrah grapes, harvested at optimum technological maturity (density = 13.1 °Be; total acidity = 5.51 g/L; 143 pH = 3.61) and good sanitary conditions, were destemmed and crushed, and then the crushed mass (must 144 and solid parts) was distributed into tanks for maceration. Alcoholic fermentation was induced by 145 inoculating selected yeast (Saccharomyces cerevisiae 25 g/hL, Viniferm BY, Agrovin, Ciudad Real, 146 Spain) and occurred at controlled temperature (20-25 °C). Fermentation caps were punched down once a 147 day during the on-skin maceration period (6 days). After this, the mash was drawn off to remove the 148 solid parts, and the free run wine was racked to nine 50 L stainless steel tanks to finish the fermentation. 149 To ensure that malolactic fermentation occurs, selected lactic acid bacteria (Oenococcus oeni 150 VINIFERM Oe 104, 14 mL/hL, Agrovin, Ciudad Real, Spain) were inoculated at the end of alcoholic 151 fermentation. When fermentative processes finished, sulfur dioxide levels were adjusted (total sulfur 152 dioxide about 100 mg/L and free sulfur dioxide about 60 mg/L in all wines).

Based on results from previous studies (Rivero et al., 2019), which proved that to ensure a real double addition of seeds, in contrast to single addition, the best way was adding twice, three types of experimental post-fermentative treatments were performed:

156 - CW (control wine, 3 tanks 50 L): wines made by traditional winemaking (without seed addition).

- RSW (Ripe seed wine, 3 tanks 50 L): wines made by double post-fermentative maceration with PX
 ripe seeds. This procedure consisted in the addition of 600 g of ripe seeds per tank, macerated during
 30 days, and after removing the seeds, a further second addition of 600 g RS, macerated 30 days more
 (12 g/L of first seed addition and a second addition of 12 g/L seeds).
- 161 OSW (Overripe seed wine, 3 tanks 50 L): wines made by double post-fermentative maceration with

PX overripe seeds. This procedure consisted of the addition of 600 g of overripe seeds per tank, macerated during 30 days, and after removing the seeds, a further second addition of 600 g RS, macerated 30 more days (12 g/L of first seed addition and a second addition of 12 g/L seeds).

Wine samples (50 mL) were taken at day 1 (first seed addition, 12 g/L), day 30 (seed removal and
second seed addition, 12 g/L), day 60 (end of the post-fermentative seed maceration), and along 5
months of stabilization in 50 L stainless steel tanks (90, 120, 140, and 150 days after seed addition).

168 **2.2. Oenological parameters**

The conventional oenological parameters of wines (pH, total and volatile acidity, free and total SO₂, malic and lactic acids, and Alcohol degree) were performed according to the Official Methods established by European Union (Table 1).

172 **2.3.** Phenolic extraction from ripe and overripe PX seeds

173 Ripe and overripe PX seeds obtained from the pomaces were extracted with methanol:water (750/250 174 mL/mL) according to the methodology described by Rivero et al. (2017) to assess and compare their 175 phenolic composition and content. The extraction procedure was made in triplicate as follows: 50 g of the homogeneous lyophilized powder of RS and OS seeds were individually homogenized in 250 mL of 176 177 solvent for 1 h in a shaking apparatus (VWR Incubating minishaker, Barcelona, Spain), and further 178 centrifuged at 4190 g for 15 min. The supernatant was collected and the residue was submitted twice to 179 the same process. Finally, the supernatants were combined and the methanolic extract was concentrated 180 to dryness and freeze dried until the analyses.

181 2.4. Copigmented and polymerized anthocyanin determination

The contribution of copigmented anthocyanins to the total wine color at pH 3.6 (% copigmented anthocyanins; %CA) and the degree of anthocyanin polymerization (% polymeric pigments; %PP) were determined following the method proposed by Boulton (1996). The pH values of wine samples were first adjusted to 3.6 using 1M NaOH or HCl.

186 2.5. HPLC-DAD analysis of phenolic compounds

187 The monomeric anthocyanins and flavonols of samples were determined in triplicate according to the 188 method reported by Rivero et al. (2019). The chromatographic separation and quantification of 189 compounds were performed in an Agilent 1200 chromatographic system, equipped with quaternary 190 pump, UV-VIS diode-array detector, automatic injector, and ChemStation software (Agilent 191 Technologies, Palo Alto, USA). The wine samples were filtered through a 0.45 µm Nylon filter prior to 192 direct injection; then, a volume of 50 µL was injected onto a Zorbax C18 column (250 x 4.6 mm, 5 µm 193 particle size). Acetonitrile, formic acid and water were used as solvents, being 3:10:87 solvent A and 194 50:10:40 solvent B (mL:mL:mL). The elution profile was 0-10 min with 6% B; 10-15 min with 11% B; 195 15-20 min with 20% B; 20-25 min with 23% B; 25-30 min with 26% B; 30-35 min with 40% B; 35-38 196 min with 50% B; 38-46 min with 60% B; and 46-47 min with 6% B. The temperature was set at 40 °C 197 and 0.63 mL/min flow rate. All UV-Vis spectra were recorded from 200 to 800 nm with a bandwidth of 198 2.0 nm, using the external calibration method for the quantification of anthocyanins (520 nm) and 199 flavonols (360 nm) by comparing the areas with the standards malvidin 3-O-glucoside and quercetin, 200 respectively. The concentration of compounds in wine samples was expressed as mg/L.

201 The analyses of flavan-3-ols (monomeric and procyanidins), as well as the hydroxycinnamic and 202 benzoic acids were performed, in triplicate, according to Jara-Palacios, Gordillo, Gonzalez-Miret, 203 Hernanz, Escudero-Gilete & Heredia (2014b) by rapid resolution liquid chromatography (RRLC). After 204 filtration through a 0.45 µm Nylon filter, samples were injected (0.5 µL injection volume) in an Agilent 205 1290 chromatographic system, equipped with quaternary pump, UV-VIS diode-array detector, automatic 206 injector, and ChemStation software (Agilent Technologies, Palo Alto, USA). A C18 Poroshell 120 207 column (2.7 µm, 5 cm x 4.6 mm) was used. The solvents were formic acid and water (1:999 mL:mL) as 208 solvent A, and acetonitrile as solvent B at the following gradients: 0-5 min of 5% B linear; 5-20 min of 209 50% B linear; and 20-25 min of washing, which was followed by re-equilibration of the column. The flow-rate was 1.5 mL/min, and the column temperature was set to 25 °C. Identification of phenolics was 210

performed according to the retention times of the standards (when available), UV-vis spectra and mass spectra, as described by Jara-Palacios et al. (2014b). The quantification was made at 280 nm (flavan-3ols, procyanidins and benzoic acids) and 320 nm (hydroxycinnamic acids) by external calibration comparing the areas with the gallic acid, *p*-coumaric acid and catechin standards. The concentration of compounds was expressed as mg/L for wine samples and mg/100 g of dry seeds for PX ripe and overripe seeds.

In addition, the total anthocyanin, flavonol, phenolic acids, monomeric flavan-3-ol and procyanidin contents were calculated as the sum of individual phenolic compounds identified by HPLC. The Total phenolic content of samples was determined in triplicate by the Folin-Ciocalteau method (Singleton & Rossi, 1965) using an Agilent 8453 UV-Vis spectrophotometer (Agilent Technologies, Palo Alto, USA).

221 **2.6. Colorimetric measurements**

222 The absorption spectra (380- 770 nm) of wines were recorded at constant intervals ($\Delta\lambda$ =2 nm) with an 223 Agilent 8453 UV-Vis spectrophotometer (Agilent Technologies, Palo Alto, USA), using 2 mm path 224 length glass cells and distilled water as reference. The CIELAB parameters were calculated from the absorption spectra by using the original software CromaLab[®] (Heredia, Álvarez, González-Miret & 225 226 Ramírez, 2004), following the recommendations of the Commission International de L'Eclairage: the 227 CIE 1964 10° Standard Observer and the Standard Illuminant D65, corresponding to the natural daylight 228 (CIE, 2004). CIELAB parameters were calculated: L* (the correlate of lightness; ranging from 0, black, 229 to 100, white), and two color coordinates, a* (which takes positive values for reddish colors and 230 negative values for greenish ones) and b* (positive for yellowish colors and negative for bluish ones). 231 From these coordinates, correlates of the perceived attributes (that is, with a psychophysical meaning), are calculated: the hue angle (h_{ab} , the correlate of chromatic tonality) and the chroma (C^*_{ab} , the correlate 232 233 of saturation).

By applying Differential Colorimetry (Gordillo et al., 2015), the color differences (ΔE^*_{ab}) among wines during vinification were calculate by the Euclidean distance between two points in the three-dimensional space defined by L*, a*, and b*: $\Delta E^*_{ab} = [(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2]^{1/2}$. In addition, the relative contribution of lightness (% ΔL), chroma (% ΔC) and hue (% ΔH), that makes a given color difference (ΔE^*_{ab}) expressed as percentages, were calculated as follows:

- 239 Relative contribution of lightness: $\% \Delta L = [(\Delta L^*)^2 / (\Delta E^*_{ab})^2] \times 100$
- 240 Relative contribution of chroma: $\% \Delta C = [(\Delta C_{ab}^*)^2/(\Delta E_{ab}^*)^2] \times 100$
- 241 Relative contribution of hue: $\% \Delta H = [(\Delta H)^2 / (\Delta E_{ab}^*)^2] \times 100$
- 242 being ΔH mathematically deduced from: $\Delta H = [(\Delta E^*_{ab})^2 ((\Delta L)^2 + (\Delta C)^2)]^{1/2}$

243 **2.7. Statistical analysis**

All statistical analyses were performed using Statistica[®] 8.0 software (Stat Soft). Univariate analysis of variance (Tukey test, p < 0.05) was applied to establish statistical differences for the chemical and colorimetric characteristic of samples.

247 3. **Results and discussion**

248 **3.1. Phenolic composition of wines**

249 The impact of the post-fermentative addition of ripe and overripe PX seeds on the phenolic composition 250 (mg/L) and the percentages of copigmentation and polymerization of Syrah wines (mean \pm SD, n= 3) are 251 showed in Table 2. Data are reported at seed addition (day 0), at the end of the post-fermentative 252 maceration (60 days) and after 5 months of stabilization (150 days), showing the statistical differences 253 among treatments. At the end of the post-fermentative maceration, wines added with PX seeds (RSW60 254 and OSW60) significantly (p<0.05) enriched their total phenolic content in relation to control wines 255 (CW60), whose concentration slightly decreased. However, the magnitude of the positive effect varied 256 depending on the ripeness grade of seeds, which also dissimilarly affected the contents of the different 257 phenolic families. Wines macerated with overripe seeds increased the total phenolic content by 23% 258 (3356.9 versus 2711.09 mg/L, in OSW60 and CW0, respectively). At the same amount added, the 259 increase in Total phenolics reached in wines treated with ripe seeds was comparatively lower (by 10%, 260 2976.2 versus 2711.09 mg/L, in RSW60 and CW0, respectively). This observation can be considered a positive effect on the phenolic composition; however, from a global sensory perspective the impact of the seeds addition on the perceived bitterness and astringency of wine could result undesirable, because excessive phenolic extraction could increase these characteristics, and so, it should be assessed.

264 The differences found between OSW60 and RSW60 wines were mainly due to the higher contents of 265 total monomeric flavan-3-ols (404.3 versus 322.12 mg/L) and total procyanidins (10.7 versus 8.6 mg/L) 266 in the formers. The changes in the individual compounds agreed with those observed for the groups of 267 phenolics. Wines macerated with overripe seeds (OSW60) had significant (p<0.05) highest contents of 268 most of monomer, dimmer and oligomeric flavan-3-ols than control wines (CW60); and the differences 269 compared to those treated with ripe seeds (RSW60) were significant (p < 0.05) for (+)-catechin, 270 procyanidin B2-3-O-gallate, and the tetramer. These results disagree with the phenolic composition of 271 PX seeds, in quantitative terms. Ripe seeds had higher contents of total phenolics (3246.4 versus 2984.4 272 mg/100 g dry seed), total phenolic acids (92.36 versus 80.24 mg/100 g dry seed) and total monomeric 273 flavan-3-ols (38.62 versus 34.47 mg/100 g dry seed) than overripe seeds, although the difference was 274 significant (p < 0.05) only for the phenolic acids. On the other hand, the different proportions of the 275 individual phenolic compounds found between PX seeds (OS and RS) could be related to the effect 276 observed in their respective wines (OSW and RSW). As showed in Figure 1, overripe seeds were 277 proportionally richer (p<0.05) in protocatechnic acid derivative, (+)-catechin, procyanidin B2-3-O-278 gallate and the trimer than ripe seeds. Factors such as seeds protein or polysaccharide can affect the 279 phenolic content of wines. Additionally, the dehydration of grapes and the extreme temperature during 280 the overripening process are factors that irreversible affect the cell structure and textural properties of 281 overripe seeds (Ruiz, Moyano & Zea, 2014; Serratosa, Marquez, Moyano, Zea & Merida, 2014), which 282 could favor a higher extractability and diffusion of some different types of phenolics to wines compared 283 to not overripe seeds.

On contrast, the content of total monomeric anthocyanins, which are the compounds directly responsible of color, was found to be lower in seed-treated wines than control ones, being the differences significant

286 (p < 0.05) for wines macerated with overripe seeds (158.8, 151.8 and 125.6 mg/L in CW60, RSW60 and 287 OSW60, respectively). These results are in agreement with those of Rivero et al. (2019) but disagree 288 those of Canals et al. (2008), Rivero et al. (2017) and Alcalde-Eon, Ferreras-Charro, Ferrer-Gallego, 289 Rivero, Heredia and Escribano-Bailón (2019), which confirm the controversial effects of the pre and 290 post-fermentative addition of grape seeds on the pigment contents of wines. In addition to the grape 291 cultivar and the sun overripe duration, different factors can affect the anthocyanin composition during 292 the seed-added maceration such as the dose, contact time, and vinification stage. According to Gordillo 293 et al., (2014), the partial elimination by adsorption, transformation into new polymeric compounds by 294 polymerization with wine copigments, as well as the degradation by oxidative processes are 295 physicochemical transformations in which anthocyanins can be involved during the addition of grape 296 byproducts to wine. At this respect, wines macerated with PX seeds showed lower percentages of 297 copigmentation (%CA) but higher of polymeric pigments (%PP) than control wines (%CA= 18%, 298 18.3% and 21%; %PP= 43%, 41%, and 39% in OSW60, RSW60 and CW60, respectively). The higher 299 contents of several colorless phenolic copigments (gallic acid, monomer, dimmer, and oligomeric flavan-3-ols) reached in seed-treated wines (especially in OSW) could have favored the interactions with 300 301 anthocyanins during the post-fermentative maceration period (60 days in this study) and thus, the 302 formation of aggregates among them. This could partially explain the higher values of %PP and lower of 303 monomeric anthocyanins observed at the end of the seed-added maceration.

In the case of flavonols, which have been described as effective phenolic copigments, the contributions of overripe and ripe seeds on the total contents of wines were almost negligible due to their scarce presence, in agreement with the findings by Rivero et al. (2019) and Alcalde-Eón et al. (2019).

307 After seed removal, most of the aforementioned pigments and phenolic copigments decreased in all 308 wines (except for gallic acid and EC-gallate), but the stability of the different phenolic families varied 309 among treatments over time. Regarding colorless phenolics, wines added with overripe seeds showed 310 significant (p<0.05) higher losses of total monomeric flavan-3-ols and procyanidins during the 311 stabilization period (from seed removal to 150 days of storage) than control wines and those treated with 312 ripe seeds, specially the monomeric forms (by 27%, 12% and 6% in OSW, CW and OSW, respectively). 313 On contrast, the global losses of flavonols were similar between RSW and CW but higher than OSW (by 314 31-29% versus 21%, respectively), although these differences were not significant. Likewise, the 315 behavior of anthocyanin pigments showed that RSW and CW had higher losses of total monomeric 316 forms than OSW (22% versus 19% and 16%, respectively). Especially, RSW stated for suffering the 317 highest reductions of all the anthocyanin groups (by 17% of the non-acylated, 21% of the acetated and 318 39% of the coumaroilated derivatives), being the differences significant (p < 0.05) for the acetated 319 derivatives. Based on the phenolic contents at the seed-removal (day 60), and the subsequent changes 320 previously described, the control wines at the end of the study (CW150) maintained significant (p < 0.05) 321 higher contents of monomeric anthocyanins (mainly acetylated and *p*-coumaroilated derivatives) than 322 the wines added with seeds (RSW150 and OSW150). However, they were comparatively poorer in 323 copigments such as gallic acid, (+)-catechin, (-)-epicatechin, procyanidin B2-3-O-gallate, and the trimer. 324 On the other hand, OSW150 maintained higher contents of phenolic acids (mainly gallic acid) and 325 procyanidins than RSW150, which was richer in anthocyanins pigments, (-)-epicatechin and EC-gallate. 326 The gradual formation of polymeric pigments during the storage period was confirmed in all the wines 327 by an increase of the bisulphite-stable color (% PP). Among treatments, OSW had the significant 328 (p<0.05) highest values (%PP= 52% versus 46-47% in RSW and CW, respectively), which indicates a 329 higher proportion of more stable pigments in wines with overripe seeds.

330 3.2. Color evolution during vinification

The evolution of the CIELAB psychophysical color parameters (L* C*_{ab} and h_{ab}) in wines during 60 days of post-fermentative seed-added maceration and 150 days of stabilization is shown in Figure 2. As observed, the addition of ripe and overripe PX seeds had a significant (p<0.05) impact on the quantitative (L* and C*_{ab}) and qualitative (h_{ab}) color attributes of wines, leading to different color characteristics and stability during vinification. Comparing the color at the end of the post-fermentative 336 seed-added maceration (day 60), wines treated with PX seeds had significant (p<0.05) lower values of lightness and higher chroma than control wines (L*=72.5, 73.19 and 75.05; $C*_{ab}=25.5$, 24.4 and 22.7 in 337 338 RSW, OSW, and CW, respectively). The magnitude of this effect was more noticeable with ripe seeds. The differences for the L* and C*_{ab} values between RSW and OSW were no significant (ΔC^*_{ab} 339 340 increased by 10% and 7%; ΔL^* decreased by 3% and 2.5%, respectively). Although wines treated with 341 seeds had lower contents of monomeric anthocyanins than control wines at the end of the maceration 342 period (Table 2), the effect observed on the chroma and lightness values could be attributed to an 343 increase in the percentage of new polymeric anthocyanins (%PP), which also contribute to the changes 344 in the wine chromatic characteristics (Alcalde-Eón et al., 2019; Jiménez-Martínez, Bautista-Ortín, Gil-345 Muñoz & Gómez-Plaza, 2019). With regard to the hue, all the wines showed increases from negative 346 towards positive values during the post-fermentative period, which denote a reduction of the blue 347 component of the red color. After 60 days of seed-added maceration, the three wines had very similar h_{ab} 348 values (close to 2°), which confirms that the seed addition had not an immediate effect on the qualitative 349 attribute of color.

350 During the stabilization period (150 days), the quantitative colorimetric parameters evolved in similar 351 way in all the wines, but seed-added wines maintained higher values of chroma and lower of lightness than control wines over time. However, the differences for L* and C*_{ab} values between OSW and CW 352 353 tended to increase along the storage while decrease between RSW and CW, indicating different 354 chromatic stability of the treatments. The fact that a higher intensity of color was kept for a longer time 355 in OSW than in RSW wines could be related to the higher enrichment of some phenolic copigments 356 achieved with overripe seeds from the earlier stages of vinification, and the higher proportion of more 357 stable pigments (%PP) along the time. These results agree with those of Rivero et al. (2019), who 358 confirmed the effectiveness of the double post-fermentative maceration of overripe seeds to produce 359 wines chromatically more stable than the wines traditionally produced by increasing the content of some 360 flavanols, benzoic acids and procyanidins.

361 The behavior of hue, however, was quite similar between seed-added wines (OSW and SRW), which 362 tended to decrease at the end of the storage period, making the difference compared to the higher value 363 in control wines. The representation in the (a*b*) color diagram of the three wines from the end of seed 364 maceration (day 60) to the end of stabilization period (day 150) allows to observe a trend in the 365 evolution of color (Figure 3). It can be noticed that practically all CW samples are located in the first 366 quadrant (positive values of a* and b*), which correspond to the redness area of the (a*b*)-plane (h_{ab} = 367 0-10°), whereas RSW and OSW tended to displace to the fourth quadrant (positive values of a* and 368 negative of b^*), which correspond to the red-bluish color region. At the same time, a net rise in the 369 chroma C*_{ab} values was observed in all the wines, being more pronounced in OSW than in CW and 370 RSW. According to this evolution, the color of wines macerated with overripe seeds (OSW) was more 371 intense, darker and red-bluish than control wines (CW) at the end of the storage period, that is, 372 quantitatively and qualitatively different (p < 0.05). In comparison, the color of wines macerated with ripe 373 seeds was similar in color intensity and lightness than control wines but showed bluer tonality, that is, 374 comparable quantitatively but qualitatively different (p<0.05).

375 With the aim of evaluating whether the observed colorimetric changes were visually relevant, the mean 376 color differences (ΔE^*_{ab}) among the vinification treatments (CW-RSW; CW-OSW; RSW-OSW) were 377 calculated at each step of the study (30, 60, 90, 120, 140, and 150 days) and showed in Figure 4. 378 Moreover, the relative contributions of lightness ($\%\Delta L$), chroma ($\%\Delta C$), and hue ($\%\Delta H$) to each color 379 difference (ΔE^*_{ab}) was calculated to assess the color attribute most influenced by the vinification 380 treatment. At the end of the maceration period (day 60), higher color differences were found between 381 CW-RSW than CW-OSW (ΔE^*_{ab} = 3.8 versus 2.5, respectively), which confirmed that ripe seeds 382 produced a higher effect on the wine color during the maceration period than overripe seeds. According to Martinez, Melgosa, Pérez, Hita, and Negueruela (2001), ΔE^*_{ab} around or higher than 3 units indicates 383 384 color differences perceived by the human eye (average observer, non-trained human eye). Based on this 385 premise, the colorimetric effect produced by ripe seeds can be considered visually appreciable at seed removal compared to overripe seeds. In both cases, results showed that lightness and chroma were the most overall influential parameter ($\%\Delta L=45-54\%$, $\%\Delta C=44-55\%$) whereas the weights of the hue modifications were in general comparatively much lower ($\%\Delta H=1.3-1.5\%$), which is consistent with the changes observed in the CIELAB color parameters among the three wines. In contrast, the color difference between RSW-OSW was not discernible at this moment ($\Delta E_{ab}^*=1.3$).

391 The evolution of the color differences between the vinification treatments during the stabilization period 392 support the different colorimetric stability of wines added with ripe and overripe seeds. In general, the 393 ΔE^*_{ab} values between CW-RSW decreased over time while increased in the case of CW-OSW, which 394 means that the color of wines macerated with ripe seeds tended to be similar to control wines along the 395 time of stabilization studied and those macerated with overripe ripe seed tended to differentiate. In 396 particular, the color difference between final CW-OSW could be considered visually discernible 397 $(\Delta E^*_{ab} = 3.5 - 4.5)$ but not between CW-RSW ($\Delta E^*_{ab} = 1.2 - 2.5$). Similar results were obtained by Rivero et 398 al., (2019), which compared the effectiveness of the post-fermentative maceration of single and double 399 doses of overripe seeds to improve and stabilize the color of wines. At the end of the stabilization period 400 (150 days), it can be observed that the maceration of wines with overripe seeds affected the color in a 401 quantitative and qualitative way, with higher and similar relative variations of lightness and chroma 402 (% Δ L=44%, % Δ C=47%) but also an increase of the weight of hue modification (% Δ H=8%) compared 403 to control wines. Likewise, the higher weight of the hue variation in final wines was confirmed with ripe 404 seeds ($\Delta H=50\%$), but the overall color differences compared to control ones are virtually negligible in 405 this case.

406 The comparison of the ΔE^*_{ab} values between RSW-OSW also proved that the color of wines macerated 407 with ripe and overripe seeds tended to be visually different over time ($\Delta E^*_{ab}>4.5$), but the color 408 differences were mainly quantitative ($\%\Delta L=55\%$, $\%\Delta C=43\%$ versus $\%\Delta H=2\%$ at day 150) in this case.

409 **4.** Conclusions

410 Depending on their ripeness grade, grape seeds from Pedro Ximénez cv. wine byproducts demonstrated 411 different ability to modulate the content and the types of phenolic compounds in Syrah wines from warm 412 climate. The increasing effects on the phenolic composition was achieved by a double post-fermentative 413 maceration of ripe and overripe seeds during 60 days and consisted of the enrichment of total phenolics 414 by increasing the pool of some colorless copigments such as phenolic acids, and most of monomeric 415 flavan-3-ols and procyanidins. Results showed that these effects were more pronounced with overripe 416 seeds obtained from grapes submitted to postharvest sun-drying than with ripe seeds from grapes 417 submitted to on-vine natural maturation. The changes produced in the phenolic composition were 418 reflected in the color of the wines macerated with PX seeds, which were darker and more intense than 419 those elaborated conventionally (without seed addition). Moreover, the addition of ripe and overripe PX 420 seeds provoked a positive effect on the color stability of wines. Differential Colorimetry demonstrated 421 that the effect on the color was higher and more durable (was kept longer over time) in the case of 422 adding overripe seeds, leading to differences visually discernible regarding both conventional and ripe-423 seeds wines. Nevertheless, further studies could be performed to assess the global impact of the seed 424 addition on others sensory properties, mainly on possible increment of astringency prior to recommend 425 the technique at industrial scale.

426 Acknowledgments

427 Authors thank the assistance of the technical staff of Biology Service (SGI, Universidad de Sevilla,
428 Spain).

429 Funding sources

This research was financially supported by the Ministerio de Economía y Competitividad, Spain,
Gobierno de España (projects AGL2014-58486-C2; AGL2017-84793-C2) and the V PPI of the
Universidad de Sevilla (Acción II.3).

433 Conflict of interest statement

18

436 **References**

- Alcalde-Eon, C., Ferreras-Charro, R., Ferrer-Gallego, R., Rivero, F. J., Heredia, F. J., & EscribanoBailón, M. T. (2019). Monitoring the effects and side-effects on wine colour and flavonoid
 composition of the combined post-fermentative additions of seeds and mannoproteins. *Food Research International*, *126*, 1-14.
- Alcalde-Eon, C., García-Estévez, I., Ferreras-Charro, R., Rivas-Gonzalo, J.C., Ferrer-Gallego, R., &
 Escribano-Bailón, M. T. (2014). Adding oenological tannin vs. overripe grapes: Effect on the
 phenolic composition of red wines. *Journal of Food Composition and Analysis*, 34, 99-113.
- Boulton, R. (1996). A method for the assessment of copigmentation in red wines. In 47th annual
 meeting of the American society for enology and viticulture. Reno, NV.
- Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: A critical
 review. *American Journal of Enology and Viticulture*, 52, 67-87.
- Canals, R., Llaudy, M. C., Canals, J. M., & Zamora, F. (2008). Influence of the elimination and addition
 of seeds on the colour, phenolic composition and astringency of red wine. *European Food Research and Technology*, 226, 1183-1190.
- 451 CIE. 2004. Technical Report Colorimetry; Commission Internationale de l'Eclairage Central Bureau:
 452 Vienna, Austria.
- De Freitas, V. A. P., & Mateus, N. (2011). Formation of pyranoanthocyanins in red wines: a new and
 diverse class of anthocyanin derivatives. *Analytical and Bioanalytical Chemistry*, 40, 1467-1477.
- 455 Gordillo, B., Rodríguez-Pulido, F.J., Mateus, N., Escudero-Gilete, M.L., Gonzalez-Miret, M.L.,
- Heredia, F.J., & De Freitas, V. (2012). Application of LC–MS and tristimulus colorimetry to
 assess the ageing aptitude of Syrah wine in the Condado de Huelva D.O. (Spain), a typical warm
 climate region. *Analytica Chimica Acta*, 732, 162-171.
- 459 Gordillo, B., Cejudo-Bastante, M. J., Rodríguez-Pulido, F. J., Jara-Palacios, M. J., Ramírez-Pérez, P.,
- 460 González-Miret, M. L., & Heredia, F. J. (2014). Impact of adding white pomace to red grapes on

- the phenolic composition and color stability of Syrah wines from a warm climate. *Journal of Agricultural and Food Chemistry*, 62, 2663-2671.
- Gordillo, B., Rodríguez-Pulido, F. J., González-Miret, M. L., Quijada-Morín. N., Rivas-Gonzalo, J. C,
 Gracía-Estevez, I., Heredia, F. J., & Escribano-Bailón, M. T. (2015). Application of differential
 colorimetry to evaluate anthocyanin-flavonol-flavanol ternary copigmentation interactions in
 model solutions. *Journal of Agriculture and Food Chemistry*, 63, 7645-7653.
- Heredia, F. J., Álvarez, C., González-Miret, M. L., & Ramírez, A. (2004). CromaLab, análisis de color.
 In: Registro General de la Propiedad Intelectual (SE-1052-04), Seville, Spain.
- Jara-Palacios, M. J., Gordillo, B., González-Miret, M. L., Hernanz, D., Escudero-Gilete, M. L., &
 Heredia, F. J. (2014a). Comparative study of the enological potential of different winemaking
 byproducts: Implications in the antioxidant activity and color expression of red wine anthocyanins
 in a model solution. *Journal of Agriculture and Food Chemistry*, 62, 6975-6983.
- 473 Jara-Palacios, M. J., Hernanz, D., González-Manzano, S., Santos-Buelga, C., Escudero-Gilete, M. L., &
- 474 Heredia, F. J. (2014b). Detailed phenolic composition of white grape by-products by RRLC/MS
 475 and measurement of the antioxidant activity. *Talanta*, *125*, 51-57.
- Jara-Palacios, M. J., Hernanz, D., Cifuentes-Gomez, T., Escudero-Gilete, M. L., Heredia, F. J., &
 Spencer, J. P. E. (2015). Assessment of white grape pomace from winemaking as source of
 bioactive compounds, and its antiproliferative activity. *Food Chemistry*, *183*, 78-82.
- Jara-Palacios, M. J., Hernanz, D., Escudero-Gilete, M. L., & Heredia, F. J. (2016). The use of grape seed
 byproducts rich in flavonoids to improve the antioxidant potential of red wines. *Molecules*, *21*,
 1526.
- Jiménez-Martínez, M. D., Bautista-Ortín, A. B., Gil-Muñoz, R., & Gómez-Plaza, E. (2019). Fining with
 purified grape pomace. Effect of dose, contact time and varietal origin on the final wine phenolic
 composition. *Food Chemistry*, 271, 570-576.

- Jones, G.V., White, M.A., Cooper, O.R., & Storchmann, K. (2005). Climate change and global wine
 quality. *Climatic Change*, *73*, 319-343.
- Martínez, J. A., Melgosa, M., Pérez, M. M., Hita, E., & Negueruela, A. I. (2001). Visual and
 instrumental color evaluation in red wines. *Food Science and Technology International*, 7, 439444.
- 490 Nicolle, P., Marcotte, C., Angers, P., & Pedneaulta, K. (2018). Co-fermentation of red grapes and white
 491 pomace: A natural and economical process to modulate hybrid wine composition. *Food*492 *Chemistry*, 242, 481-490.
- Pedroza, M. A., Carmona, M., Alonso, G. L., Salinas, M. R., & Zalacain, A. (2013). Pre-bottling use of
 dehydrated waste grape skins to improve colour, phenolic and aroma composition of red wines. *Food Chemistry*, 136, 224-236.
- 496 Pérez-Magariño, S., & González-San José, M. L. (2006). Polyphenols and colour variability of red
 497 wines made from grapes harvested at different ripeness grade. *Food Chemistry*, *96*, 197-208.
- 498 Rivero, F. J., González-Miret, M. L., Jara-Palacios, M. J., García-Estevez, I., Escribano-Bailón, M. T.,
- Heredia, F. J., & Gordillo, B. (2020). Copigmentation potential of overripe seeds from sun-dried
 White grapes on anthocyanins colour and stability by differential colorimetry. *International Journal of Food Science and Technology*, 55, 389-396.
- Rivero, F. J., Gordillo, B., Jara-Palacios, M. J., González-Miret, M. L., & Heredia, F. J. (2017). Effect of
 addition of overripe seeds from white grape by-products during red wine fermentation on wine
 colour and phenolic composition. *LWT Food Science and Technology*, *84*, 544-550.
- 505 Rivero, F. J., Jara-Palacios, M. J., Gordillo, B., Heredia, F. J., & González-Miret, M. L. (2019). Impact
- of a post-fermentative maceration with overripe seeds on the color stability of red wines. *Food Chemistry*, 272, 329-336.

- Ruiz, M. J., Moyano, L., & Zea, L. (2014). Changes in aroma profile of musts from grapes cv. Pedro
 Ximenez chamber-dried at controlled conditions destined to the production of sweet Sherry wine.
- 510 *LWT-Food Science and Technology*, 59, 560-565.
- Schwarz, M., Picazo-Bacete, J. J., Winterhalter, P., & Hermosín-Gutiérrez, I. (2005). Effect of
 copigments and grape cultivar on the color of red wines fermented after the addition of
 copigments. *Journal of Agriculture and Food Chemistry*, 53, 8372-8381.
- Serratosa, M. P., Marquez, A., Moyano, L., Zea, L., & Merida, J. (2014). Chemical and morphological
 characterization of Chardonnay and Gewürztraminer grapes and changes during chamberdrying
 under controlled conditions. *Food Chemistry*, *159*, 128-136.
- 517 Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-518 phosphotungstic acid reagents. *American Journal of Enology and Viticulture*, *16*, 144-158.
- 519 StatSoft Inc. STATISTICA (data analysis software system), v 8; StatSoft Inc.: Tulsa, OK, 2007.
- 520 Trouillas, P., Sancho-García, J. C., De Freitas, V., Gierschner, J., Otyepka, M., & Dangles, O. (2016).
- 521 Stabilizing and modulating color by Copigmentation: Insights from theory and experiment.
 522 *Chemical Reviews*, *116*, 4937-4982.

523

524 FIGURE CAPTIONS

Figure 1. Proportions (%) of the phenolic compounds identified in ripe and overripe PX seeds (RS and
OS, respectively). Abbreviations: GALL (gallic acid), PROT and PROTdv (protocatechuic acid and

528 (procyanidin dimmers), TRIM (procyanidin trimer). Asterisk indicate significant differences (p<0.05,

derivative), SIR (syringic acid), CAT ((+)-catechin), EC ((-)-epicatechin), B2, B2-GAL, B7

529 Tukey test).

527

- **Figure 2.** Changes in the psychophysical color parameters (means±SD, n=3) for control wines (CW) and wines macerated with ripe and overripe PX seeds (RSW and OSW, respectively) along the vinification process. (a) L*, lightness; (b) C*_{ab}, chroma; (c) h_{ab}, hue. Asterisk indicates significant differences (p<0.05, Tukey test) compared to control wines.
- **Figure 3.** CIELAB color space (a*b*)-plane for control wines (CW) and wines macerated with ripe and overripe PX seeds (RSW and OSW, respectively) from the end of seed maceration (day 60) to the end of stabilization period (day 150).
- **Figure 4**. Color differences (ΔE^*_{ab}), with the relative contribution of lightness, chroma, and hue (% ΔL ,
- 538 % ΔC , % ΔH), between control wines (CW) and wines macerated with ripe and overripe PX seeds (RSW
- and OSW, respectively) at different stages of the vinification (30, 60, 90, 120 and 150 days).

540

Analytical data	CW	RSW	OSW
pH	$3.85 \pm \ 0.05$	3.86 ± 0.07	3.84 ± 0.01
Total acidity (g/L as tartaric acid)	5.75 ± 0.17	5.04 ± 0.20	$5{,}05\pm0.07$
Volatile acidity (g/L as acetic acid)	0.53 ± 0.02	0.48 ± 0.03	0.52 ± 0.05
Free SO ₂ (mg/L)	7.75 ± 0.50	7.80 ± 0.60	9.5 ± 2.53
Total SO ₂ (mg/L)	31.00 ± 1.00	32.33 ± 4.51	36.00 ± 7.81
Malic acid (g/L)	0.06 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
Lactic acid (g/L)	1.22 ± 0.03	1.22 ± 0.07	1.21 ± 0.05
Alcohol by volume (% v/v)	13.50 ± 0.18	13.50 ± 0.18	13.50 ± 0.18

Table 1. Conventional analytical data (Mean \pm SD, n=3) of final red wines (day 150).

Alcohol by volume (% V/V)13.50 ± 0.1815.50 ± 0.1815.50 ± 0.18Abbreviations: CW (control wines), RSW (wines added with ripe PX seeds), OSW (wines added with overripe seeds).

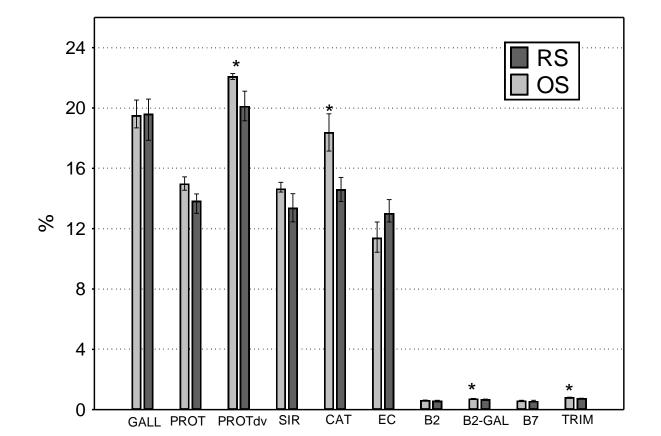
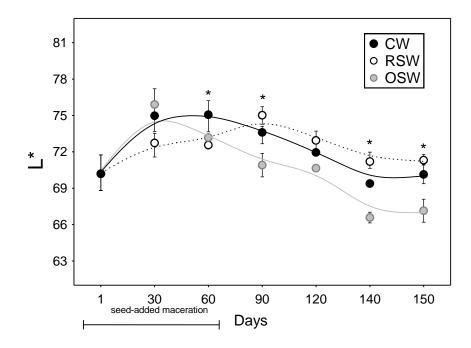
Table 2. Mean values and standard deviations (n=3) of the phenolic composition (mg/L), and the percentage of copigmentation (%CA) and polymerization (%PP) of control wines (CW) and wines with the post-fermentative addition of Pedro Ximénez seeds (RSW: wines macerated with PX ripe seeds); OSW (wines macerated with PX overripe seeds); at seed addition (0 day), seed removal (60 days) and at the end of stabilization stage (150 days).

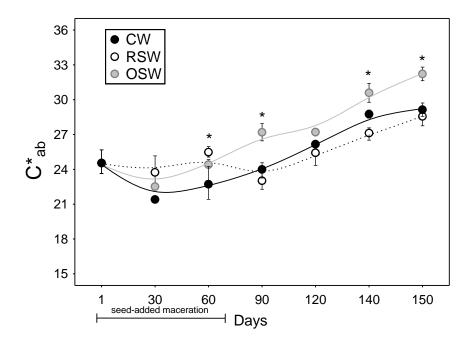
	CW0	CW60	RSW60	OSW60	CW150	RSW150	OSW150
Total phenolics (Folin Ciocalteau)	2711.09 ± 109.2	2667.8 ± 20.3 a	2976.2 ± 65.3 b	3356.9 ± 142.1 c	2543.8 ± 35.4 a	2875.5 ± 32.6 ab	$2913.0\pm97.9~\text{b}$
Total monomeric anthocyanins	179.16 ± 0.97	158.80 ± 9.33 b	151.75 ± 0.99 b	125.56 ± 8.40 a	128.43 ± 0.13 c	118.31 ± 2.87 b	105.35 ± 2.39 a
Total non-acylglc anthoc.	115.54 ± 0.18	96.59 ± 2.84 b	$93.88\pm0.32~b$	79.58 ± 3.97 a	$84.10\pm0.46~b$	77.71 ± 1.69 b	68.54 ± 1.36 a
Total acetylglc anthoc.	33.18 ± 0.19	30.42 ± 2.27 b	$28.45\pm0.01\ b$	23.91 ± 1.61 a	$24.02\pm0.09~c$	22.64 ± 1.11 b	21.11 ± 0.70 a
Total <i>p</i> -coumgle anthoe.	34.44 ± 0.60	31.80 ± 4.27 b	$29.41\pm1.00\ b$	22.07 ± 2.82 a	30.30 ± 0.42 c	17.97 ± 0.39 b	15.70 ± 0.32 a
Total phenolic acids	132.69 ± 0.44	139.77 ± 4.79 a	152.23 ± 4.33 b	156.64 ± 3.83 b	147.19 ± 1.19 a	$151.42 \pm 0.75 \text{ b}$	$161.89 \pm 0.59 \text{ c}$
Total monomeric flavan-3-ols	425.1 ± 8.72	320.38 ±7.84 a	322.12 ± 4.66 a	$404.27 \pm 10.04 \; b$	281.51 ± 3.72 a	303.94 ±2.54 b	291.55 ± 7.42 ab
Total procyanidins	8.73 ± 0.22	8.55 ± 0.20 a	8.59 ± 0.17 a	10.66 ± 1.19 b	$8.19\pm0.10\ b$	$7.88\pm0.02~a$	$8.01\pm0.11~b$
Total flavonols	28.71 ± 2.22	27.11 ± 080 a	27.07 ± 1.27 a	23.05 ± 2.40 a	18.78 ± 0.39 a	19.14 ± 0.47 a	18.21 ± 0.81 a
% CA	14.83 ± 1.04	21.34 ± 2.22 a	18.30 ± 0.19 a	17.93 ± 2.73 a	17.74 ± 1.35 b	11.67 ± 0.16 a	9.76 ± 0.65 a
% PP	39.98 ± 1.12	39.13 ± 0.53 a	41.06 ± 1.92 a	43.80 ± 3.23 a	46.64 ± 0.88 a	46.31 ± 0.19 a	$51.57\pm0.94~b$
Monomeric anthocyanins							
Dp-3-glc	7.95 ± 0.16	7.16 ± 0.03 b	7.11 ± 0.17 b	6.06 ± 0.25 a	6.18 ± 0.05 b	6.28 ± 0.13 b	5.14 ± 0.03 a
Cy-3-glc	1.91 ± 0.27	1.65 ± 0.19 a	1.55 ± 0.03 a	1.41 ± 0.07 a	1.69 ± 0.21 a	1.51 ± 0.29 a	1.27 ± 0.06 a
Pt -3-glc	12.10 ± 0.02	10.12 ± 0.18 b	10.22 ± 0.05 b	8.42 ± 0.43 a	9.64 ± 0.13 c	8.72 ± 0.05 b	7.87 ± 0.13 a
Pn- 3-glc	9.12 ± 0.04	8.06 ± 0.31 b	7.91 ± 0.27 b	6.47 ± 0.21 a	6.85 ± 0.02 c	6.18 ± 0.39 b	5.20 ± 0.12 a
Mv-3-glc	80.45 ± 0.58	69.59 ± 2.68 b	$67.07 \pm 0.03 \text{ b}$	57.20 ± 3.02 a	59.72 ± 0.08 c	55.02 ± 1.52 b	49.07 ± 1.02 a
Pt-3-acetylglc	2.53 ± 0.16	2.19 ± 0.11 b	$2.29\pm0.07~b$	1.88 ± 0.07 a	2.15 ± 0.09 a	2.05 ± 0.58 a	1.90 ± 0.08 a
Pn-3-acetylglc	4.74 ± 0.19	4.30 ± 0.20 c	$3.91\pm0.10~b$	3.17 ± 0.10 a	3.56 ± 0.18 a	3.70 ± 0.27 a	3.85 ± 0.09 a
Mv-3-acetylglc	25.91 ± 0.16	23.94 ± 2.18 b	22.25 ± 0.04 b	18.87 ± 1.44 a	18.31 ± 0.36 c	16.88 ± 0.34 b	15.34 ± 0.53 a
Pt -3- <i>p</i> -coumglc	3.46 ± 0.03	3.49 ± 0.56 a	3.17 ± 0.03 a	2.60 ± 0.43 a	2.31 ± 0.06 b	2.01 ± 0.20 ab	1.71 ± 0.01 a
Pn- 3- <i>p</i> -coumglc	5.74 ± 0.01	$5.12\pm0.80 b$	4.92 ± 0.25 ab	3.66 ± 0.43 a	$3.36\pm0.29~b$	2.92 ± 0.21 ab	2.74 ± 0.01 a

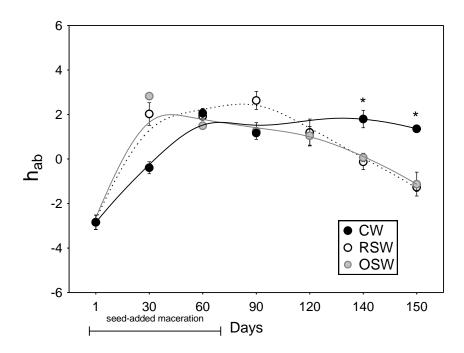
Mv -3- <i>p</i> -coumglc	25.23 ± 0.62	23.19 ± 2.19 b	$21.33 \pm 0.72 \text{ b}$	15.80 ± 1.96 a	14.63 ± 0.64 c	$13.04\pm0.18\ b$	11.26 ± 0.29 a
Benzoic acids							
Gallic acid	77.44 + 0.22	86.08 ± 4.86 a	98.59 ± 4.26 b	103.30 ± 4.07 b	93.66 ± 1.15 a	97.61 ± 0.68 b	108.72 ± 0.53 c
Protocatechuic acid	17.44 ± 0.22 17.47 ± 0.30	17.35 ± 0.04 a	17.45 ± 0.17 a	103.30 ± 4.07 0 17.33 ± 0.07 a	17.28 ± 0.04 b	17.30 ± 0.04 b	108.72 ± 0.03 c 17.08 ± 0.04 a
Syringic acid	17.47 ± 0.30 18.64 ± 0.19	17.35 ± 0.04 a 17.45 ± 0.04 a	17.44 ± 0.07 a	17.60 ± 0.19 a	17.20 ± 0.04 0 17.52 ± 0.08 a	17.91 ± 0.07 a	17.55 ± 0.20 a
Symigle dela	10.04 ± 0.17	17.45 ± 0.04 a	17.44 ± 0.07 a	17.00 ± 0.17 a	17.52 ± 0.00 a	17.91 ± 0.07 a	17.55 ± 0.20 a
Hydroxycinnamic acids							
Caffeic acid	19.13 ± 0.04	18.89 ± 0.08 b	18.71 ± 0.13 b	18.56 ± 0.17 a	18.76 ± 0.07 a	18.60 ± 0.04 a	18.54 ± 0.15 a
Monomeric flavan-3-ols							
(+)-Catechin	244.32 ± 3.74	221.94 ± 4.46 b	201.47 ± 33.20 a	266.53 ± 1.49 c	188.49 ± 2.23 a	202.12 ± 4.78 b	199.64 ± 3.93 b
(-)-Epicatechin	164.81 ± 3.09	81.46 ± 2.23 a	97.08 ± 8.18 ab	106.53 ± 11.23 b	66.14 ± 1.56 a	74.28 ± 2.27 b	66.35 ± 3.09 a
EC Gallate	15.87 ± 5.45	16.97 ± 3.19 a	23.57 ± 2.06 b	25.72 ± 0.57 b	26.88 ± 0.56 ab	27.54 ± 0.59 b	25.56 ± 0.47 a
Procyanidins							
Procyanidin B2	1.33 ± 0.19	3.49 ± 0.06 a	3.68 ± 0.15 a	4.76 ± 1.19 a	3.27 ± 0.09 c	1.69 ± 0.01 a	2.36 ± 0.08 b
Procyanidin B2-3-O-gallate	3.46 ± 0.02	1.23 ± 0.05 a	1.31 ± 0.03 a	$2.22\pm0.05 b$	1.20 ± 0.02 a	$2.19\pm0.02~c$	1.34 ± 0.03 b
Trimer	1.30 ± 0.05	1.57 ± 0.13 b	$1.30\pm0.02~a$	1.25 ± 0.03 a	1.51 ± 0.02 a	$1.77\pm0.02\ b$	2.09 ± 0.03 c
Tetramer	2.74 ± 0.05	2.26 ± 0.05 a	$2.31\pm0.02~a$	$2.41\pm0.08~b$	2.27 ± 0.03 a	$2.22\pm0.02~a$	2.23 ± 0.03 a
Flavonols							
Myricetin-3-glucuronide	tr.	tr	tr	tr	tr	tr	tr
Myricetin-3-glc	9.97 ± 0.55	9.52 ± 0.29 a	9.53 ± 0.39 a	$8.25\pm0.62~a$	7.37 ± 0.07 a	7.43 ± 0.13 a	7.14 ± 0.38 a
Quercetin-3-glucuronide	5.56 ± 0.51	5.26 ± 0.44 a	$5.57\pm0.22~a$	$4.87\pm0.82~a$	3.50 ± 0.12 a	3.74 ± 0.12 a	3.64 ± 0.27 a
Quercetin-3-glc	7.18 ± 0.36	6.23 ± 0.01 a	6.30 ± 0.11 a	5.62 ± 0.39 a	4.00 ± 0.15 a	$4.11\pm0.08~a$	3.97 ± 0.07 a
Laricitrin-3-glc	1.96 ± 0.27	$2.02 \pm 0.06 \text{ b}$	$1.79\pm0.01\ b$	$1.27\pm0.15~a$	1.26 ± 0.08 a	$1.27\pm0.03~a$	1.13 ± 0.06 a
Kaempferol-3-glc	tr	tr	tr	tr	tr	tr	tr
Isorhamnetin-3-glc	1.45 ± 0.21	1.30 ± 0.15 a	$1.34\pm0.26~a$	$0.98\pm0.17~a$	0.92 ± 0.05 a	$0.88\pm0.05~a$	$0.74\pm0.04~a$
Syringetin-3-glc	2.59 ± 0.35	2.76 ± 0.19 a	$2.55\pm0.29~a$	$2.05\pm0.25~a$	1.73 ± 0.05 a	$1.73\pm0.06~a$	$1.60\pm0.08~a$

Abbreviations: Dp: delphinidin; Cy: cyanidin; Pt: petunidin; Pn: peonidin; Mv: malvidin; glc: glucose; non-acylglc anthoc.: non-acyl glucoside anthocyanins; acetylglc anthoc.: acetylglucoside anthocyanins; *p*-coumglc anthoc.:*p*-coumaroylglucoside anthocyanins; tr: traces. Different letter for the same row indicates significant differences according to Tukey test (p<0.05) between CW, RSW, and OSW at day 60; and between CW, RSW, and

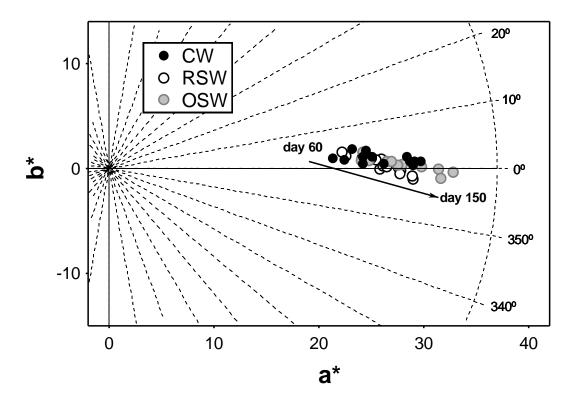
OSW at day 150.


Figure 1.



Α.



Β.

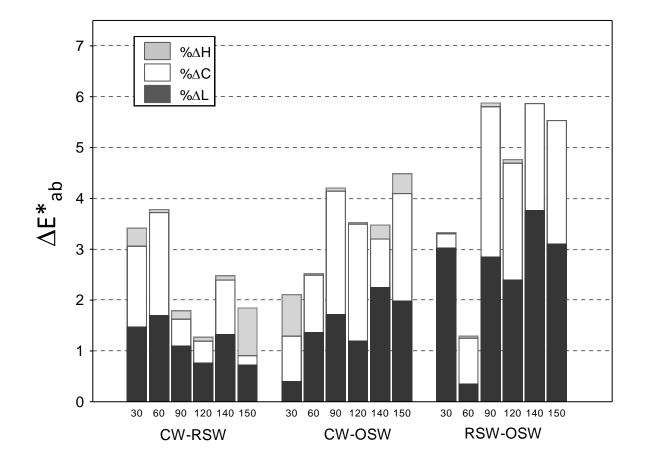


Figure 4.