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Geometric method to design bistable and non - bistable 
deployable structures of straight scissors based on the 
convergence surface 

 
Abstract 

Since Leonardo Da Vinci designed the first deployable structure with scissors some centuries 
ago, many authors have tried to improve its designs using new geometries. However, these 
strategies to make deployable structures have limits because they can only be applied in some 
geometries and the level of the resolution obtained is limited. In this paper a new geometric 
method to design bistable and non  bistable deployable structures with straight scissors is 
going to be developed. Using this method, the only limit in the design of deployable structures 
with straight scissors is the designer  imagination, for example, with this method the designer 
will be able to design as deployable the Sydney Opera House or a common building with 
pillars, etc
the structure. An application example is the figure attached in this Abstract where the reader 
can see the Manantiales Restaurant in Xochimilco designed with straight scissors and without 
any geometric incompatibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

In 1985 Felix Escrig Pallares discovered that a deployable structure of straight scissors will be 
geometrically convergent (all rods will be a single rod in the folded position) if equation 1 is 
satisfied in Figure 1 [1] [2] [3] [4]. 

 

 

 

 

 

 

Fig. 1. Geometrically convergence condition in a deployable structure with straight scissors developed by Felix 
Escrig Pallares in 1985. 

k1 + k2 = k3 + k4 

Luis Sánchez Cuenca [5] discovered some years later that Eq. (1) can be satisfied if the 
deployable structure is designed using the following ellipse property (Fig. 2): In any point of an 
ellipse, the addition of the lenghts of its vector  radios is a constant number and this number 
is equal to the longer axis, Eq. (2). 

 

 

 

 

 

Fig. 2. Fundamental property of the ellipse. 

t1 + t2 = t3 + t4 = Longer axis 

The affirmation done by Luis Sanchez Cuenca was correct and this idea allowed the design of 
innovative deployable structures [6] (Fig. 3). 

 

 

 

 

 

 

Fig. 3. 
 

(2)

(1)



The main researcher who continued the trajectory of Luis Sanchez Cuenca was Niels De 
Temmerman. This researcher developed the first equations to design deployable structures 
with straight rods using ellipsoids. This work can be read in his PhD [7]. 

Later, this researcher and a PhD student (Kelvin Roovers) published two interesting papers 
where they develop particular strategies to design deployable structures in two situations: The 
axis of the scissors are parallel (Translational units) [8] [9] or the axis of the scissors are not 
parallel (Polar units) [10] [11]. 

Also, they design a deployable structure with a conic shape in the paper of the translational 
units. This structure is composed with triangles. Consequently, the rods of the 2nd. frequency 
are going to have a deformation (Blued rods in Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) and (b) Deployment process at 0%; (c) and (d) Deployment process at 50%; (e) and (f) Deployment process 
at 100%. 

Other authors who have also researched in the field of straight scissors are Félix Escrig 
Pallares, Jose Sánchez Sánchez and Juan Pérez Valcárcel [12] [13]. They have published several 
papers about transformable structures and their most important project is the roof for the 
olympic pool in the San Pablo sports center (Seville, 1997). 

This roof is composed of two modular spheres. Consequently, one module can be connected 
with the next one changing the size of the space that is covered by the structure. In Figure 5 
we can see 3 connected modules (Fig. 5). 

To avoid instability problems, the designers put a rod in the diagonal of each module when the 
structure was in its final position. This rod allows increasing the rigidity of the structure. 

 

 

 

 

a) b) 

c) d) 

e) f) 



 

 

 

 

 

Fig. 5. Deployable roof that is composed of straight scissors, 3 spheres and rods in the diagonals to increase the 
stability.  

Once each sphere had been built in a workshop, the spheres were transported to the sports 
center in the folded position. In the olympic pool the structure was deployed with a hoist. 

 

 

 

 

 

Fig. 6. (Left figure) Test of the deployment process; (Right figure) Deployment process in the olympic pool. 

When the deployment process was finished, the structure was fixed to the ground and the 
lighting was installed (Fig. 7). 

 

 

 

 

Fig. 7. (Left figure) Interior space that is created by the structure; (Right figure) Exterior space that is created by the 
structure. 

However, not all scissors that are currently used are composed of straight rods. Some years 
ago, Chuck Hoberman discovered angulated scissors, where the middle articulation does not 
belong to the line that joins the extreme articulations [14]. Likewise, the lengths from this 
middle point to the extreme points have to be the same. This situation means that the 
extreme articulations are going to be in the same line during the deployment process (Fig. 8). 

 

 

 

 

 

Fig. 8. (a) Straight rods with a parallel axis (Translational units); (b) Straight rods with no parallel axis (Polar units); 
Angulated scissors. 

a) b) c) 



The Hoberman sphere is the most famous work of Chuck Hoberman in this field [15]. In this 
deployable structure, all scissors target the same point during the deployment process (the 
sphere  center) (Fig. 9).  

 

 

 

 

 

 

 

Fig. 9. (a) Hoberman sphere in folded position; (b) Hoberman sphere in unfolded position. 

Later, Sergio Pellegrino developed the limit positions of the Hoberman scissors [16]. In this 
research, the maximum radius and the minimum radius of deployment are obtained (The 
Hoberman scissors have not a convergence in a line in the folded position). Also, the joints 
effect in the deployable structure was investigated. 

Likewise, Pellegrino developed the design of cover elements in deployable structures of 
scissors. These elements allow a real application of this type of structures. 

On the other hand, when the researchers of this field speak about Hoberman scissors we think 
normally about scissors that aren't straight. However, a modification of the Hoberman scissors 
is the curved scissors. Marios C. Phocas investigated this type of scissors to design a deployable 
structure with a cylindrical shape and with a cover element [17]. 

Another important author in this field was Charis Gantes. The most important deployable 
structure designed by this research was a deployable sphere where the main directions have 
only one degree of freedom. The rest of the space of the dome is covered with auxiliar scissors 
(Fig. 10). This structure is developed in the publications of this researcher [18]. 

 

 

 

 

Fig. 10. Deployable structure designed by Charis Gantes. (a) Floor view, (b) Section view, (c) Perspective view. The 
blue lines are the scissors of the main directions. The red lines are the rods for the rigidity. The green lines are the 
scissors to close the space. 

a) b) 

a) b) c) 



Yenal Akgün did an important work in the field of the geometric calculus of depoyable 
structure with straight scissors [19]. In this paper, this research develops different equations 
for the design of flat deployable structures. This work and the work of Niels de Temmerman 
and Kelvin Roovers are the origin of the research of this paper. 

The main difference between these researches (Yenal Akgün and Niels de Temmerman - Kelvin 
Roovers) is that the first one develops the calculus using the geometry of the scissor and the 
second one uses an ellipse as a tool to obtain the final equations. 

The research of this paper has a relationship with the work of Niels de Temmerman and Kelvin 
Roovers because the equations are also obtained using an ellipse in the plane or an ellipsoid in 
the space. However, these researches don't obtain the set of points of the space that satisfies 
the Escrig equation. The strategy of the previous works is based on iterative methods that give 
an approximate solution. 

In this paper the iterative methods and the equations for an exact solution are going to be 
developed using a different mathematical process. 

Also, Niels de Temmernan and Kelvin Roovers obtained the relationship between two ellipses 
if the axes are paralell (Translational units) [8] [10] (Proportionality ratio). However, the 
relationship between two ellipses if the axes are not paralell (Polar units) has been never 
developed. In this paper the relationship for translational units and for polar units is going to 
be developed using differential geometry. 
 
On the other hand, an important aspect that has to be considered in the life of a deployable 
structure is the behaviour in the final position. In this state, the structure needs to support 
loads and new forces are going to have an important influence. 
 
Juan Perez-Valcarcel is a research that has done an important work in this field.This autor 
develops different methods to calculate deployable structures [2] in function of: 
 
a) Straight rods with the middle articulation in a fixed position. 
b) Straight rods with the middle articulation in a variable position. 
c) Curved rods. 
 
This is an interesting field of research because allow us to go from the line model (Used during 
the design process) to the real mode. 
 

 

 

 

 

 

 

 

 



2. Application of the method for deployable structures of straight scissors to a curve 

2.1. Mathematical development 

The goal of this method in a curve is to design as deployable any curve in the plane or in the 
space with the condition that all scissors have to be a line in the folded position. This situation 
means that the associated ellipse of each scissor has to be a tangent during the deployment 
process and the cross point between the rods has to be in this tangent (consequently the Felix 
Escrig equation is going to be satisfied in all scissors). 

going to be developed is Fig.11 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Convergence between two ellipses in the plane. 

Fig. 11 shows how there are three types of geometrical parameters where each one is going to 
have a physical meaning: 

- The input parameters: These parameters are defined by the initial ellipse. There are 3: 

* a1 = This variable is the semimajor axis of the initial ellipse. 

* b1 = This variable is the semiminor axis of the initial ellipse. 

* c1 = This variable is the focal distance of the initial ellipse. 

- The parameters that can be controlled by the designer or the control parameters: The 
designer can give a value to these parameters to obtain different results in the output 
parameters. There are 4: 

* d = This variable is the distance between the center of the initial ellipse and the point that 
depends on the  value. 



*  = This variable is the minor angle between the axis of the initial ellipse and the line that is 
 

*  = This variable is the angle between the axis of the initial ellipse and the axis of the final 
ellipse. 

*  = This is the most important parameter that can be controlled by the designer because this 
parameter allows modifying the relative position of the scissor with respect to the curve that 
we want to design as deployable. Its value can be from - to wever, there are 3 values 
that are the most important. 

The first one is  = -c2. This value means that the inferior focus of the final ellipse will be in the 
curve that we want to design as deployable (the P6 point will be in the P4 position and both 
points will be in the curve). 

The second one is  = 0. This value means that the center of the final ellipse will be in the curve 
that we want to design as deployable (the P6 point will be in the P5 position and both points 
will be in the curve). 

The third one is  = +c2. This value means that the superior focus of the final ellipse will be in 
the curve that we want to design as deployable (the P6 point will be in the P7 position and both 
points will be in the curve). 

- The output parameters: These parameters are obtained once the input parameters and the 
control parameters are defined. The value of the output parameters gives us a scissor that 
satisfies the geometric convergence. There are 3: 

* a2 = This variable is the semimajor axis of the final ellipse. 

* b2 = This variable is the semiminor axis of the final ellipse. 

* c2 = This variable is the focal distance of the final ellipse. 

In Fig. 11 2

can be obtained as a function of ,  and 
interpretation of the mathematical development. 

Consequently, each point will have the next position: 

 

 

 

 

 

 

 

 

The goal is to obtain the cross point between the r1 and r2 lines and after that we will set that 
this point has to belong to the ellipse with a1, b1 and c1 parameters. We haveto do 4 steps: 

(3)

(4)

(5)

(6)

(7)

(8) 

(9)

(10)



Step 1: The c2 value will be obtained using the equations developed at the end of this section, 
Eq. (21), Eq. (22) and Eq. (23). 

Step 2: The a2 value will be obtained using the fundamental ellipse equation: 
 

Step 3: Once the c2 value and the a2 value are calculated, the b2 value can be obtained as: a2
2 = 

b2
2 + c2

2 

Step 4: Ellipse 2 will be ellipse 1 and we have to do the previous steps again to obtain the new 
ellipse. 

Consequently, r1 is defined by the fundamental equation of a line, Eq. (11).   

 

If we replace the points positions in Eq. (11) we obtain:  

 

 

Consequently: 

 

If we do the same process with r2 we obtain: 

 

We know that P1x = 0 and P3x = 0. If we replace these conditions we obtain:  

 

 

The cross point between r1 and r2 is xc and yc:  

 

 

 

 

 

 

 

(11)

(12)

(13)

(14)

(15)

(16) 

(17)

(18)

(19)

(20)



Once the cross point between r1 and r2 has been obtained we replace the points value: Eq. (21) 
and Eq. (22).  

 

 

 

If  = 0 (the axes of both ellipses are parallel), the previous equation can be simplified as:  

 

To show the practical use of Eq. (23), some examples have been done. In these examples a 
random curve has be designed as deployable with straight scissors using different  values (Fig. 
12.). Also, the  value can change during the design process; for example, we can design a 
scissor with  = 0 and the next scissor can be designed with  = c2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. (a) Deployable curve with  = -c2; (b) Deployable curve with  = 0; (c) Deployable curve with  = c2;  (d) 
Deployable curve with  = -c2; (e) Deployable curve with  = 0; (f) Deployable curve with  = c2 

 

 

 

c) 

b) a) 

d) 

e) 
f) 

(21) 

(22) 

(23) 

(24) 



2.2. Geometrical interpretation of the mathematical development 

The equation that has been obtained in the previous section allows us to calculate the scissor 
that satisfies the convergence for a position and an orientation. 

However, this strategy is not suitable if we want to design a surface as deployable with straight 
scissors because the equations are quite big, and we have to solve this using iteration 
methods. 

To avoid this situation a geometrical extrapolation is going to be developed using the equation 
of the previous section. Consequently, we are going to obtain an equivalence between the 
mathematical tool and the geometrical tool to do the design process easier. 

From Figure 11 we can obtain: 

 

The following step is to obtain the  value in function of the input parameters. Using Eq. 
(25) we can derive: 

 

 

Also, from Eq. (25) can be derived:  

 

Replacing Eq. (28) in Eq. (27):  

 

If Eq. (28) is replaced in Eq. (21) we obtain Eq. (30)  

 

And if Eq. (28) and Eq. (29) are replaced in Eq. (22) we obtain Eq. (31)    

 

Where: 

 

 

and -
will be a parameter with the same function of the  parameter. This situation means: If v = -u 
has the same meaning in comparison with  = -c2 or if v = 0 has the same meaning in 
comparison with  = +c2 

(25)

(26)

(27)

(28)

(29)

(30) 

(31)

(32)

(33)



Eq. (30) and Eq. (31) are in polar units. To translate these equations to Cartesian units we are 
going to use Eq. (34) and Eq. (35)  

 

 

If Eq. (34) and Eq. (35) are replaced in Eq. (30) and in Eq. (31) we obtain:   

 

 

We cannot forget that xc and yc belong to Eq. (23). Consequently, if Eq. (36) and Eq. (37) are 
replaced in Eq. (23) and after some calculus we obtain Eq. (38)  

 

Where: 

If the axes of the ellipses are not parallel (Translational units): 

 

 

 

If the axes of the ellipses are parallel (Polar units): 

 

 

 

Eq. (38) is the equation of a family of ellipses that are displaced in their axis direction in 
function of the 
an ellipse such that all of its points will satisfy the Felix Escrig equation from the initial ellipse, 
Eq. (1). 

In Figure 13 the convergence ellipse for u = 0.2 and v = 0 has been represented. In this figure it 
can be observed that for any point of this ellipse (yellow ellipse) the cross point of each scissor 
belongs to the initial ellipse (blue ellipse). 

(34) 

(35)

(36)

(37) 

(38)

(39)

(40) 

(41)

(42)

(43)

(44)



  

Fig. 13. Graphical representation of scissors with u = 0.2 and = 0 

2.3. Step by step examples 

The goal of these examples is to find the scissor in the final point of a curve (O point in Figure 
14) that completes the structure of the example and that satifies the geometrical convergence.

Consequently, the values of the initial ellipse (a1, b1 and c1) and the position parameters (d and 
) are going to be the same in all the examples. 

The parameters that are going to change in each example are  (the angle between the 
ellipses axes) and  (the relative position of the scissor with respect to the curve that is going 
to be designed as deployable). 

The reader (Table 1) can see in these examples how the process is to use this method in a 
curve. Also, the numerical values are given for other persons to be able to reproduce the 
examples.  

The initial structure of scissors is shown in Figure 14. 

 

Fig. 14. Problem that has to be solved in each example: To find the scissors that finish in point O and that satisfy the 
. 

The following values will be the same in all the examples: 

a1 = 289.93109809 mm 
b1 = 279.15357736 mm 
c1 = 78.31552776 mm 
d = 573.75929178 mm 

 = 22.21730152o 

 
Each example will be solved using at first the geometrical interpretation of the mathematical 
development and later using the equation of the mathematical development. 

 



Also, the main advantage of the geometrical interpretation of the mathematical development 
is that it does not need any mathematical software because it only uses displaced ellipses in 
the axis direction. However, its main disadvantage is the imprecision that the designer is going 
to have when he/she wants to put a scissor in an exact point of the curve (he/she has to 

si  or the c2 value if ). 

On the other hand, the main advantage of the equation of the mathematical development, Eq. 
(21), Eq. (22) and Eq. (23), is that the designer has the exact solution without any iteration. 
However, its main disadvantage is that this equation has to be solved using a mathematical 
software if  because the equation is implicit. 

Step by step example 1 (  and ) Step by step example 2 (  and )
Geometrical  

interpretation 
Mathematical 
development 

Geometrical 
interpretation 

Mathematical 
development 

 

 
 

 

1º Iteration (purple ellipse): 
c

2
 = 30 mm 

c
2
 = 77.53659728 mm 1º Iteration (purple 

ellipse): c
2
 = 25 mm 

c
2
 = 62.21825402 mm

2º Iteration (green ellipse): c
2
 

= 60 mm 

With this c
2
 value:  + 

 =  +   
Where: 

 mm      
 mm      
 mm 
 mm 

2º Iteration (green 
ellipse): c

2
 = 50 mm 

With this c
2
 value: + 

 =  +   
Where: 

 mm     
 mm     
 mm
 mm

Step by step example 3 ( and ) Step by step example 4 ( and )
Geometrical  

interpretation 
Mathematical 
development 

Geometrical 
interpretation 

Mathematical 
development 

 

 

 

 

1º Iteration (purple ellipse):  
u = 0.1 

u = 0.19531353 and c2 = 
48.92845405 

1º Iteration (purple 
ellipse): u = 0.075 

u = 0.14987326 and c2 = 
37.54510325 mm  

2º Iteration (green ellipse):  
u = 0.15 

With this c
2
 value:  + 

 =  +   
Where: 

 mm      
 mm      
 mm 
 mm 

2º Iteration (green 
ellipse): u = 0.1 

With this c
2
 value: + 

 =  +   
Where: 

 mm     
 mm     
 mm
 mm

 

Table 1. Step by step examples. 

 



2.4. Application examples 

The goal of this section is to use the method that is developed in this paper to design 2 curves 
as deployable: The Fermat spiral and the Lemniscata. In both examples the mathematical 
method is going to be used. 

2.4.1. Application example 1: Fermat spiral 

a) Definition: The Fermat spiral is a plane and transcendent curve. Also, this curve is unlimited, 
continuous and has a double mirror with respect to the geometric center. The discoverer of 
this curve was Menealo de Alejandria and the equation was developed by Pierre de Fermat. 
This spiral is considered as an evolution of the Archiimedes spiral. 

b) Equation: 

 

 

c) Graphic representation (Fig. 15): 

 

 

 

 

 

Fig. 15. (a) Graphic representation with  (b) Graphic representation with ; (c) Graphic 
representation with . 

d) Values of the deployment parameters: 

- In the concave sections: l = c2 

- In the convex sections: l = -c2 

- In the center of the curve: l = 0 

- In the complete curve:  

 

 

 

 

 

 

 

 

a) b) c) 

(45) 



e) Deployable structure of a Fermat spiral with  (Fig. 16):  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. (a) Deployment process: 0%; (b) Deployment process: 17%; (c) Deployment process: 34%; (d) Deployment 
process: 51%; (e) Deployment process: 68%; (f) Deployment process: 85%; (g) Deployment process: 100%. 

2.4.2. Application example 2: Lemniscata 

a) Definition: The Lemniscata or infinite curve is a plane and limited curve with a double 
mirror. 

This curve can be obtained doing an inverse transformation of the hyperbola if the inverse 
circle is in the hyperbola center. 

The discoverer of this curve was Jakob Bernoulli, and unlike with the ellipse (the addition 
between the focal distances is constant), in the Leminiscata the product between the focal 
distances is constant. 

b) Equation: 

 

c) Graphic representation (Fig. 17): 

c) b) a) 

e) d) 

g) f) 

(46) 



 

Fig. 17. Graphic representation of the Lemniscata. 

d) Values of the deployment parameters: 

- In the complete curve: l = -c2 

- In the complete curve the focal distance is going to be perpendicular in each point of the 
curve where the scissor is drawn. 

e) Deployable structure of a Lemniscata with  (Fig. 18): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. (a) Deployment process: 0%; (b) Deployment process: 10%; (c) Deployment process: 20%; (d) Deployment 
process: 30%; (e) Deployment process: 40%; (f) Deployment process: 50%; (g) Deployment process: 60%; (h) 
Deployment process: 70%; (i) Deployment process: 80%; (j) Deployment process: 90%; (k) Deployment process: %. 

 

 

 

 

 

d) c) b) a) 

e) 

j) 

h) g) 

f) 

i) k) 



3. Application of the method for deployable structures of straight scissors to a surface 

3.1. Extrapolation of the method from a curve to a surface 

Eq. (38) was obtained in the geometric interpretation of the mathematical development of a 
curve. This equation is the equation of a displaced ellipse in its axis direction. 

If we want to design a surface as deployable with straight scissors the initial ellipse is going to 
be an ellipsoid with a circle revolution. Consequently, the family of ellipses that satisfies the 

circle revolution. 

Then the family of ellipsoids that satisfies the convergence for an ellipsoid in the space will 
have the following equation: 

 

The f1, f2 and f3 equations have been already defined previously. 

Also, the axis of the ellipse has the Y axis direction in Eq. (38). To work in a standard system the 
axis of the ellipsoid has the Z axis direction in Eq. (47). 

convergent ellipsoids will be obtained. This situation has been shown in Figure 19. In this 
Figure the initial ellipsoid is the gray ellipsoid and the rest of the ellipsoids are obtained giving 

 

Consequently, Eq. (47) shows that this family of ellipsoids is going to be composed of 
proportional ellipsoids with a displacement in their axis direction (Fig. 19, b)): 

 

 

 

 

 

 

 

Fig. 19. (a) Perspective of the convergent ellipsoid family; (b) Top view of the convergent ellipsoid family. 

However, the previous mathematical development is only focused on a single ellipsoid. When 
we want to design a surface as deployable, we always use two ellipsoids in the space. 

Consequently, we must extrapolate the previous method to another method that satisfies the 
geometric convergence simultaneously between two ellipsoids in the space. 

This geometric convergence will be satisfied in a set of space points where the focal distance 
obtained (c2 value) has to be the same between the two ellipsoids. This situation means that 

(t  

a) b) 

(47)



The result of this process is a set of curves in the space. The distance between these curves is 
going to be very small if: . 

The surface that is created using these curves will be a convergent surface. Then a point of this 
surface will have the same associated c2 between the two ellipsoids and this c2 value will 
satisfy the geometric convergence. 

An example of this situation can be seen in Figure 20 where the red curves are obtained with 
, the dark blue 

surfaces are the initial ellipsoids and the light blue surface is the convergent surface. 

 

 

 

 

 

 

Fig. 20. (a) Perspective 1 of the convergent surface (b) Perspective 2 of the convergent surface. 

Figure 21 shows this situation if we intersect both initial ellipsoids with a plane that contains 
the axes of these ellipsoids. 

 

Fig. 21. Intersection between the plane that contains the axes of the two initial ellipsoids and the convergent 
 

3.2. Geometric relationship between the ellipsoids in the space to obtain a convergent surface 

The previous section has developed that the intersection between two convergent ellipsoids 
(w s us a curve where a point of this curve 
will have the same c2 value between the two initial ellipsoids. An example of this situation has 
been represented in Figure 22. 

a) b) 



 

Fig. 22. Scissor for a point in the curve that has been obtained with the intersection between two convergent 
ellipsoids (p  

In Figure 22 we can see that the intersection between the rods is in the initial ellipses (C and D 
points) but we can also see that:  +   + . Consequently, the Felix Escrig equation is 
not satisfied, and the scissors will have a limited deployment. 

Then the question is: Why is this situation happening if the c2 value has been obtained with the 
 

The answer to this question is because the initial ellipsoids cannot be random ellipsoids. This 
situation means that there is a geometric relationship between the two initial ellipsoids. 

Consequently, the goal will be to obtain the geometric relationship between the two initial 
ellipsoids. 

Then, if we intersect two random ellipsoids in the space, we are going to have a curve with the 
shape of Figure 23 b). 

 

 

 

 

 

 

 

Fig. 23. (a) Two random ellipsoids in the space (b) Curve obtained from the intersection between the random 
ellipsoids in the space. 

In Figure 23 we can see that the intersection curve is three-dimensional and it does not belong 
to a plane. However, if we obtain two ellipsoids that satisfy the geometric relationship sought 
using approximate numerical methods and we intersect the convergent ellipsoids (with the 

, we can see that th
value are always contained in parallel planes. Also, these planes will be perpendicular to the 
plane that contains the axes of the initial ellipsoids. This situation is shown in Figure 24. 

a) b) 



 

 

 

 

 

Fig. 24. (a) Perspective view of the curves that are obtained with the intersection of the convergent ellipsoid with 
(b) Top view of (a) where the reader can see the parallelism between the intersection curves.

Consequently, this property is going to be used to find the geometric relationship that the two 
initial ellipsoids must satisfy. 

At first, we are going to define two random ellipsoids in the space in Figure 25. 

 

Fig. 25. Two random ellipsoids in the space. 

The equation of ellipsoid 1 will be Eq. (48)  

 

And the equation of ellipsoid 2 will be Eq. (49)  

 

In Figure 25 we can see that: 

 

Consequently, Eq. (48) and Eq. (49) can be combined to obtain Eq. (51)   

 

The next step is to convert the x2 and z2 variables to x1 and z1 variables with the following 
equations: 

a) b) 

(48) 

(49) 

(50)

(51)



 

Also, we have Eq. (54):  

 

If Eq. (52), Eq. (53) and Eq. (54) are replaced in Eq. (51) we obtain Eq. (55):    

 

Where: 

 

 

 

 

 

 

Eq. (55) is the projection of the intersection curve in the XZ plane for any geometric 
relationship between the two initial ellipsoids (the red curve of the Figure 25). The goal is to 
obtain the geometric relationship that allows converting this red curve into the orange curve in 
Figure 25: A line. 

Then, the equation of the curvature of a parameterized curve is: 

 

The curve sought has the shape of a line, consequently its curvature is 0: 

 

parameterize the curve obtained: 

 

Then: 

 

 

This equation gives us two solutions. The correct solution is Eq. (67):  

 

(52)

(53)

(54)

(55) 

(56)

(57) 

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66) 

(67)



Where: 

 

Consequently, the parameterized curve is: 

 

 

 

 

Where: 

 

 

Solving the determinant of the vector product: 

 

The solution of the previous determinant is: 

 

If the previous expression is simplified, we obtain Eq. (76): 

 

We know that the curve sought has the shape of a line. Then, its curvature must be constant 

Eq. (76) 
we obtain: 

 

Eq. (77) is the geometric relationship that must satisfy two ellipsoids in the space for any 
orientation to obtain a convergent surface that satisfies the Felix Escrig equation. 

If in Eq. (77)  (Translational units):   

 

 

If Eq. (78) and Eq. (79) are replaced in Eq. (77):  

 

 

(68)

(69) 

(70) 

(71) 

(72)

(73)

(74) 

(75) 

(76)

(77)

(78)

(79)

(80) 



If Eq. (54) is replaced in Eq. (80):  

 

The meaning of Eq. (81) is that if  (Translational units), the geometric relationship 
between the initial ellipsoids is the proportionality.  

3.3. Step by step examples 

3.3.1. Step by step example 1: 

An ellipsoid in the space will have the following values: 

a11 = 40 cm  
b11 = 30 cm  
c11 = 26.457513 cm 
 
Tasks: 

a) To obtain the properties of another ellipsoid that will allow the existence of a convergence 
surface. The values of the position and orientation parameters are: 

xo = 100 cm  
zo = 120 cm  

 = 60o 

 
Also, any scissor that is drawn in this new ellipsoid has to have the same focal distance as 
ellipsoid11 (c12 = c11) 

b) To obtain the convergence surface that is created by the two previous ellipsoids with u = 0.

c) To draw a scissor in any point of the convergence surface. 

d) To check the convergence for the scissor of c). 

* Task a) 

The situation of this problem is the most common situation that we can find during the design 
process. This situation means that one of the initial ellipsoids is fully defined and we know the 
position (the xo and zo parameters), the orientation ( parameter) and the focal distance of 
the second ellipsoid. The focal distance is going to be half of the thickness of the deployable 
structure. 

All the parameters of Eq. (77) give this problem with the exception of a12. So, the strategy is to 
obtain this variable from Eq. (77). The result of this step is: a12 = 53.85711 cm 

Also: a12
2 = b12

2 + c12
2  b12 = 46.910428 cm 

Consequently, the parameters that define the ellipsoid soughthave been already obtained. The 
result is shown in Figure 26. 

(81)



 

Fig. 26. Final ellipsoids of task a) of the 3.3.1. example. 

* Task b) 

To obtain the convergence surface between the ellipsoids of task a) we intersect the 

process can be seen in Figure 27 where the red curves are the intersection curves. 

 

 

 

 

 

 

Fig. 27. Front view and perspective view of task b) of the 3.3.1. example. 

* Task c) 

Eq. (23) is used in a random point of the convergence surface. The c2 value obtained using this 
equation has to be the same from the two initial ellipsoids. Also, we know that the orientation 
of c2 has to be focused to the cross point between the axes of the initial ellipsoids (Fig. 28). 

 

 

 

 

 

Fig. 28. Front view and perspective view of task c) of the 3.3.1. example. 



* Task d) 

To check the convergence, we measure the following distances: 

 cm 
 cm 
 cm 

 cm 
 cm 
 cm 
 cm 
 cm  

 
We can see that:  +  =  +  ;  +  = 2  a12 ;  +  = 2  a11. Consequently, the Felix 
Escrig equation is satisfied for both scissors (Fig. 29). 

  

Fig. 29. Convergence in the scissors of the task d) of the 3.3.1. example. 

3.3.2. Step by step example 2: 

An ellipsoid in the space will have the following values: 

a11 = 50 cm  
b11 = 25 cm  
c11 = 43.3012702 cm 
 
a) To obtain the properties of another ellipsoid that will allow the existence of a convergence 
surface. The values of the position and orientation parameters are: 

xo = 100 cm  
zo = 0 cm  

 = 0o 

 
Also we want: c12 = 1.5  c11 

b) To obtain the convergence surface that is created by the two previous ellipsoids with u = 0.

c) To draw a scissor in any point of the convergence surface. 

d) To check the convergence for the scissor of c). 

* Task a) 



As in the previous problem, we have in this problem all parameters of one of the initial 
ellipsoids, the parameters of position of the second ellipsoid and his orientation parameter. 
Also the value of the focal distance of the second ellipsoid is known. 

To obtain the a12 and b12 parameters can be used the Eq. (77) (The same strategy that was 
done in the previous problem). However another option is to use Eq. (81) because in this 
problem  = 0o (Translational units). This situation means that both initial ellipsoids have to be 
proportional.  

Then: 

 

Also: a12
2 = b12

2 + c12
2  b12 = 37.5 cm 

With the three parameters that define the second ellipsoid we can represent the following 
configuration (Fig. 30). 

 

Fig. 30. Final ellipsoids of task a) of the 3.32. example. 

* Task b) 

The strategy to solve this section is the same strategy used in the previous example: The 

convergence ellipsoids with the same "u" value give us the convergence curves. The surface 
that contains the intersected curves is the convergence surface (Fig. 31). 

 

 

 

 

 

Fig.31. Front view and perspective view of task b) of the 3.3.1. example. 



* Task c) 

To solve this section a random point of the convergence surface is chosen. In this point Eq. (23) 
is used to obtain the c2 value. Also the cross point between the initial ellipsoids is in the infinite 
so the orientation of c2 is paralel with respect of the axes of the initial ellipsoids (Fig. 32). 

 

 

 

 

 

Fig. 32. Front view and perspective view of the task c) of the 3.3.2. example. 

* Task d) 

To check the convergence, we measure the following distances: 

 cm 
 cm 

 cm 
 cm 
 cm 

 cm 
 cm 
 cm  

 
We can see that:  +  =  +  ;  +  = 2  a12 ;  +  = 2  a11. Consequently, the Felix 
Escrig equation is satisfied for both scissors (Fig. 33). 

  

Fig. 33. Convergence in the scissors of the task d) of the 3.3.2. example. 

 

 

 

 



3.4. Application examples 
 
3.4.1. Manantiales Restaurant: 
 
a) Information: 
- Author: Félix Candela 
- Year of construction: 1958 
- Location: Xochimilco (México) 
- Properties: The building is composed of the intersection with 4 hyperbolic paraboloids. The 
result of this intersection is the 8 sections of the building.  
- Deployment parameters: 
u = 0 
l = c2 

 
b) Views of the geometry to design as deployable (Fig. 34): 

 

 

 

 

 

 

Fig. 34. (a) Top view; (b) Front view; (c) Perspective view. 

% deployed Scissors structure Membrane scissors structure Convergence ellipsoids 

0% 
 
 
 

  

20%    

40% 
   

60% 
   

80% 

 

 

 

 

 

 

100% 

 

 
 

  

 
 

Table 2. Deployment process of Manantiales Restaurant. 

a) b) c) 



3.4.2. Exhibition Pavilion: 
 
a) Information: 
- Author: Paper author 
- Year of design: 2018 
- Location: Ephemeral building 
- Properties: The building is composed of a hexagonal trimmed pyramid with a sphere as 
interior space. 
- Deployment parameters : 

 
v = -u 
All superior joints belong to a plane surface. 
All inferior joints belong to a spherical surface. 
 
b) Views of the geometry to design as deployable (Fig. 35): 

 

 

 

 

 

 

 

Fig. 35. (a) Top view; (b) Section view; (c) Perspective view 

% deployed Scissors structure Membrane scissors structure Convergence ellipsoids 

0% 
   

25% 
   

50% 
  

 

75% 

 

 

 

 

 

 

100% 

 

 

 

 
 

 

Table 3. Deployment process of Exhibition Pavilion 

a) c) b) 



4. Application of the method to a bistable structure and to a non bistable structure 

To show how this method can be used in a bistable structure and in a non bistable structure, 
two examples are going to be developed. 

4.1. Application in a bistable structure 

The goal is to find the scissors that born from the peaks of the triangles modules and that end 
in the main direction of the surface (Orange curve) (Fig. 36). The obtained structure is going to 
be bistable. 

 
Fig. 36. Initial bistable structure where the method is going to be applied. 

The first step is to obtain the convergence surface from the yellow ellipsoids (Fig. 37). The 
cross point between the convergence surface and the main direction of the surface that we 
want to design as deployable (Orange curve) is the solution of the problem. 

 
Fig. 37. Obtaining of the convergence surface from the yellow ellipsoids. 

 
Finally the scissors are drawn and the obtained structure is bistable (Fig. 38).  

 
Fig. 38. Bistable structure (The length of the scissors of the main directions are going to be smaller during the 
deployment process). 



4.2. Application in a non bistable structure 
 

In this example, the scissors that close the module of the second frequency have to be 
obtained. Also, each scissor has to be contained in the same plane that the previous scissor 
(Fig. 39). 

 
Fig. 39. Initial non bistable structure where the method is going to be applied. 

Consequently, the convergende surface from the yellow ellipsoids is obtained. After that, the 
surface that we want to design as deployable is intersected with the convergence surface (Red 
surface) and the plane that contains the scissor of the previous frequency (Purple surface) (Fig. 
40). 

 

 

 

 

 

 

 

 
Fig. 40. Obtaining of the convergence surface from the yellow ellipsoids. 

 
The result of this process is a point where the final scissor is obtained (Fig. 41). 

 

 
Fig. 41. Non bistable structure. 

 



5. Built model and designed joint 
 

The model that has been built to check the correct behavior of the method is a section of the 
Manantiales Restaurant. The material of the rods is acrylic using a laser machine for the cut. 

The model has a size of 8 cm x 8 cm in its folded position and a size of 1.2 m x 0.50 m in its 
unfolded position (Fig. 42). 

 

 

 

 

 

Fig. 42. Deployment process of the built model. 

The designed joints are done using an element (a screw, a rivet, etc.) that is connected with 
some plastic tubes. Each rod will be in one plastic tube. This joint will allow all degrees of 
freedom using very cheap materials (Fig. 43) and (Fig. 44). 

 

 

 

 

Fig. 43. Joint using a screw and a nut. 

 

 

 

Fig. 44. Joint using a rivet. 

If a real deployable structure is going to be built, the design of the joints has to be more 
developed. These joints need two free rotations and the connection between the rod and the 
joint has to be stronger. For this paper, three possible real joints have been developed.  

The first one is composed of a part with a U shape and a support (Fig. 45). In this case, one of 
the rotations is between the support and the U shape part and the other one is between the U 
shape part and the rod. 

 

 
  

 

 

Fig. 45. Joint composed of a U shape part and a support. 



The second one is the ball joint (Fig. 46). This connection has three free rotations in the space 
but the geometric restraints of the deployable structure remove the third rotation. 

 

 

 

 

 
Fig. 46. Ball joint. 

The third one is an elastic joint (Fig. 47). The rotations are possible because there is an elastic 
material between the rigid joint and the rod (Color green in Fig. 47). The connection between 
the elastic material and the rod is fixed. 

 

 

 

 

 
Fig. 47. Elastic joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. Conclusions 

The previous methods (Constant ellipsoids method or Luis Sanchez Cuenca method, 
proportional ellipsoids method or Niels De Temmerman method and spheres method or Felix 
Escrig Pallares method) are based on the calculation of a random point that satisfies the 
convergence on the surface that we want to design as deployable. If this point is not the point 
sought, we must do the method again. This situation means that the previous methods are 
iterative methods where we must repeat them until we obtain a solution that is close to the 
solution sought. This iterative process is quite slow, and it is difficult to automate. 
Consequently, the design of the deployable structure needs a lot of work hours using these 
methods. 

On the other hand, the method that has been developed in this paper allows obtaining all 
points of the space that satisfy the convergence directly (without any iteration). The surface 
that contains these points is the convergence surface and the intersection between this 
surface and the surface that we want to design as deployable is a curve where all the points 
will satisfy the convergence between the two initial ellipsoids and will belong to the surface 
that we want to design as deployable. 

Likewise, if we find a point that satisfies the convergence using the Cuenca, Temmerman or 
Escrig method this point will belong to the convergence surface. Consequently, the designer 
directly obtains the set of points of the surface that satisfies the convergence using the 
method only once. The goal of the designer is to choose one point of this set of points. 

Also, the method is not an iterative method and it has an easy automation using a software.  

Another novelty that has been developed in this paper is the use of the  parameter (if ) 
if ). Previously, the scissors were always drawn with the middle 

point between the extreme points in the surface. This situation means that the shape of a 
membrane over the structure will not be the shape that we want to design as deployable. 

The use of these parameters solves this problem allowing a coincidence between the 
membrane shape and the original design shape. 
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