
 

 

                                              

 

        Depósito de investigación de la Universidad de Sevilla  

 

                                  https://idus.us.es/ 

 

Esta es la versión aceptada del artículo publicado en:  

This is an accepted manuscript of a paper published in: 

   Automation in Construction (vol. 122): February 2021  

DOI: https://doi.org/10.1016/j.autcon.2020.103488 

Copyright:  

El acceso a la versión publicada del artículo puede requerir la suscripción de la 

revista.  

Access to the published version may require subscription. 

 

 “This is an Accepted Manuscript of an article published by Elsevier in                
Automation in Construction on February 2021, available 

at: https://doi.org/10.1016/j.autcon.2020.103488” 

https://idus.us.es/


The convergence surface method for the design of 1 

deployable scissor structures 2 

 3 

 4 
Abstract  5 
 6 
In this paper, the operability of the most recent method to design bistable and non-bistable 7 
deployable scissors structures (the method of the convergence surface) is extended and this 8 
operability will be divided into two types of formulas: The exact formula and the approximate 9 
formulas. The exact formula involves the obtaining of the convergence surface using its own 10 
equations and this paper will prove that this surface is a triaxial two-leaf hyperboloid (for 11 
translational units) and a non-standard surface (for polar units). On the other hand, the 12 
approximate formulas are designed due to the need to obtain the convergence surface when 13 
the exact formula cannot be used. Finally, this research will demonstrate the potential of these 14 
approximate strategies to compete against the exact formulas and to boost an improvement in 15 
the mathematical results in terms of precision in the scissor design and speed in the 16 
calculation process. 17 
 18 
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 40 
Abbreviations 41 

In this paper, the notation "CE" will sometimes be used due to the abbreviation (CE = 42 
Convergence ellipsoid). 43 



1. Introduction  44 
 45 
Historically, the first author who designed a deployable structure with straight scissors was 46 
Leonardo Da Vinci [1]. This inventor developed a scissor system that was controlled using a 47 
screw and it was used to lift a weight (Fig. 1). Although this structure was quite simple, this 48 
was the first deployable structure with straight scissors and to design this mechanism 49 
Leonardo used design concepts of symmetry or geometric compatibility. 50 

 51 

  

 

Fig. 1. Original drawings of the Leonardo Da Vinci design and three dimensional perspective of the mechanism [1]. 52 

Many centuries later, Emilio Pérez Piñero (1935 – 1972) revolutionized the realm of the 53 
deployable systems with his system of “Triaspas and Tetraspas” (Three-scissors Four-scissors) 54 
and [2] [3] and with such innovative projects as the famous “Teatro Ambulante” (Mobile 55 
Theater) [4] [5] [6] [7] or the order done by Salvador Dalí to design the “Vidriera Hipercúbica” 56 
(Hypercubic Stained Glass) (Fig. 2). 57 

 58 

  
Fig. 2. (Left) Deployable structure with a doublé curvature for a Mobile Theater (Right) Emilio Pérez Piñero 59 
presenting the Hypercubic Stained Glass to Salvador Dalí. 60 

The difference between the Three-scissors and the Four-scissors in comparison with the 61 
straight scissors is quite considerable. However, Emilio Pérez Piñero designed an effective 62 
design method that allowed him to create deployable structures in a relative short time period 63 
(without using any computer tools). 64 
 65 
Some years later, in the 1990s, a new generation of authors began the extension of this 66 
method with the creation of new technologies: The straight scissors, whose main designer was 67 
Félix Escrig Pallarés (1950 - 2013) [8] [9] [10], and the angulated scissors, whose main designer 68 



was Chuck Hoberman (1956) [11] [12] (The study of the angulated scissors is beyond the topic 69 
of this paper). 70 
 71 
The design methods that were later developed using the studies of Félix Escrig have the goal of 72 
obtaining a compactness level of 100%. This situation means that in the next scissors structure 73 
(Fig. 3): 74 
 75 

 76 
 77 

Fig. 3. Deployable structure composed with some straight scissors. 78 

The following equations must be satisfied: 79 
 80 

𝑘1 + 𝑘2 = 𝑘3 + 𝑘4 (1) 

 81 
𝑘5 + 𝑘6 = 𝑘7 + 𝑘8 (2) 

 82 
𝑘9 + 𝑘10 = 𝑘11 + 𝑘12 (3) 

 83 
This condition can be summarized in: 84 
 85 

𝑘𝑖1 + 𝑘𝑖2 = 𝑘𝑗1 + 𝑘𝑗2 (4) 

 86 
Another important aspect of this kind of mechanisms is the degrees of freedoms. The 87 
deployable structure will have 1 degree of freedom if the joints are defined using a point. 88 
However, if joints are defined with a displacement of each scissor the number of degrees of 89 
freedoms will be infinite (this situation could be avoid by blocking some axes of rotations). The 90 
study of the degrees of freedoms has been developed by Alexey Fomin in [13] and [14].  91 
 92 
It is important to highlight that the previous information is only focused on the fulfilment of 93 
geometric conditions to guarantee a full deployment process. However, a different way to 94 
study this type of structures is from the energy point of view and, in consequence, two groups 95 
can be identified: bistable and non-bistable deployable structures. Basically, the main 96 
difference between both is the existence of geometric incompatibilities during the deployment 97 
process:  98 
 99 
- Bistable structure: the rods are going to have elongations and reductions of the length due to 100 
a geometric incompatibility and, in consequence, the structure will accumulate energy of 101 
deformation during a part of the deployment process. This energy of deformation will be null 102 
in two positions of the deployment process (the folded position and the unfolded position) 103 
because the rods will not have variations of the length in these two cases. An example of a 104 
bistable deployable structure with the evolution of the energy of deformation has been 105 
represented in Figure 4 and more information about the optimisation of these structures can 106 
be found in [15] [16]. 107 
 108 



 109 

 110 
 111 

Fig. 4. (Left) Evolution of the energy of deformation in a spherical deployable structure (Right) Deployment process. 112 

- Non-bistable structure: the rods will not have a deformation of the length during the 113 
deployment process and, in consequence, the energy of deformation will be null if the weight 114 
of the structure is not considered. 115 
 116 
Thereby, a design method to create these deployable structures (bistable and non bidtables) is 117 
required. Firstly, this research will develop a brief description of the most important methods 118 
to obtain deployable structures with straight scissors and the advantages and disadvantages of 119 
each one will be underlined. This section will be called as “Previous methods to design 120 
deployable scissor structures”. 121 
 122 
The last method that will be introduced in this section is the Method of the convergence 123 
surface, which is not only quite useful but also complex. The research works that have been 124 
proposed previously only develop basic equations and general ideas about the practical 125 
applications but they don’t consider important factors such as the automation of the method 126 
using an algorithm or the obtaining of approximate solutions where the loss of resolution is 127 
not important. 128 
 129 
To improve and to enhance this situation, this research will develop the whole formulas that 130 
guarantee the operability and the practical use of the method of the convergence surface. 131 
These formulas can be divided into two groups: 132 
 133 
- Exact formula: This process is based on the obtaining of the convergence surface equation. 134 
The paper will demonstrate that this equation is a two-leaf hyperboloid in case of translational 135 
units and there is not a standard geometric shape in case of polar units. The exact formula is 136 
useful when the designer wants a high level in the resolution of the scissor length. 137 
 138 
- Approximate formulas: This section is the most important contribution of this research. The 139 
exact formula is important from a curious point of view but a calculation program must do a 140 
huge work, in terms of calculation, to obtain the convergence surface. The goal of the 141 
approximate formulas is to reduce and to simplify the obtaining of the convergence surface in 142 
exchange of a little loss of resolution. This research will develop two approximate formulas, 143 
the first one is focused on the resolution of a determinant and the second one is based on the 144 
creation of the convergence surface using level curves. 145 
 146 
The use of these formulas allows the immediate application of external programs to obtain the 147 
convergence surface in a short time. Once this surface is created, all geometric solutions in the 148 
space that satisfy Eq. (4) are available. 149 



2. Previous methods to design deployable scissor structures 150 
 151 
2.1. Method of the spheres (1990) (Félix Escrig Pallarés, Jose Sánchez Sánchez and Juan Pérez 152 
Valcárcel): 153 
 154 
This method [17] [18] is based on the assumption that the end of each scissor has an 155 
associated sphere (with radius r) with a center at the midpoint of its focal length (focal length = 156 
c). The cut point of the scissors will be in the tangency between two spheres. In the case of a 157 
cylindrical surface, it is possible to work with circles instead of spheres due to the parallelism 158 
between planes (Fig. 5). 159 
 160 

 161 
 162 
Fig. 5. Deployable structure of a circumference arc with the spheres method (Magenta curve = Curve to design as 163 
deployable; Orange curve = Convergence curve; Black lines = Scissors). 164 

a) Advantages of the method: 165 
 166 
- The value of the focal distance is independent of the value of the radius of the sphere. 167 
- It is a very simple method because the designer only need to copy and paste the same 168 
spherical module and the focal distance of each scissor will be in the intersection point 169 
between the spherical modules and the original surface (surface that is going to be converted 170 
to a scissor mechanism). 171 
- There is little previous knowledge required to apply this method because the designer only 172 
needs the commands “sphere”, “intersect”, “copy-paste” and “line” from a graphic program. 173 
Therefore, people who have never designed a deployable structure should begin with this 174 
method. 175 
 176 
b) Disadvantages of the method:  177 
 178 
- The sphere and the focal distance associated with the end of each rod must be the same in 179 
the complete structure. Otherwise, the structure will not fold entirely. 180 
- It can only be applied in the following cases (the use of this method on any other surface not 181 
mentioned below will cause a non-complete deployment process): 182 
 * Flat surfaces. 183 

* Straight extrusion surfaces with a circular guideline (cylinders with a circular base 184 
and with the focal distance oriented to the center of each scissor plane). 185 

 * Spherical surfaces (With the focal distance oriented to the center of the sphere). 186 
- The control of the relative position between the structure and the surface that is going to be 187 
designed as deployable is not allowed because the middle point of the focal distance will 188 
always be in this surface. 189 



- The position of a scissor in a singular point (boundaries of the surface, supports of the 190 
surface, etc.) is not allowed and, in consequence, the tessellation cannot be regulated because 191 
for each pair of blades there is a unique mathematical solution. 192 
 193 
2.2. Method of constant ellipsoids (1996) (Luis Sánchez Cuenca): 194 
 195 
The constant ellipsoid method [19] [20] has been created as a consequence of the limited 196 
cases where the sphere method can be used. This new method considers that the end of each 197 
scissor has an associated ellipsoid with a circular revolution (a = major axis, b = minor axis, c = 198 
focal distance), where the focal distance of the ellipsoid coincides with the focal distance of 199 
the end of the scissor. To get a complete deployable process of the structure, the cross point 200 
between the two rods of each scissor must belong to the surface of the ellipsoid. This method 201 
uses the property of the ellipse (Eq. (5)) (Fig. 6) to satisfy Eq. (4). 202 

 203 

 204 
Fig. 6. Fundamental property of the ellipse. 205 

𝑓1 + 𝑓2 = 𝑓3 + 𝑓4 = 2 ∙ 𝑎 (5) 

 206 
The ellipsoids must be constant because Luis Sánchez Cuenca only used the same ellipsoid 207 
which was repeated on the entire surface. An example of an application to a curve can be seen 208 
in Fig. 7 (in the case of a surface, the method is used with the same strategy but using two 209 
ellipsoids simultaneously). 210 

 211 
 212 

Fig. 7. Deployable structure of a random curve with the constant ellipsoids method (Magenta curve = Curve to 213 
design as deployable; Orange curve = Convergence curve; Black lines = Scissors). 214 
 215 



a) Advantages of the method: 216 
 217 
- It can be applied to any surface because the non-constant curvature of the ellipsoid allows 218 
the adaptation on any shape. 219 
- As in the previous case, it is a very simple method to use: just copy and paste the same 220 
ellipsoid and the middle point of each scissor will be in the intersection points. 221 
- Little previous knowledge is required to apply this method. The disadvantage that can be 222 
found here in comparison with the previous method is the use of ellipsoids instead of spheres 223 
(There are design programs where the command ellipsoid is not available). 224 
 225 
b) Disadvantages of the method:  226 
 227 
- The ellipsoid associated with the end of each rod must be the same in the complete 228 
structure. Otherwise, the structure will not fold entirely. 229 
- The position of a scissor in a singular point (boundaries of the surface, supports of the 230 
surface, etc.) is not allowed and, in consequence, the tessellation cannot be regulated because 231 
for each pair of blades there is a unique mathematical solution. 232 
- The control of the relative position between the structure and the surface that is going to be 233 
designed as deployable is not allowed because the middle point of the focal distance will 234 
always be in this surface. 235 
- Only translational units can be used (the focal distance of all ellipsoids is parallel) and, in 236 
consequence, the size of the structure in the folded position will be bigger in comparison with 237 
the use of polar units. 238 
 239 
2.3. Method of proportional ellipsoids (2017) (Niels De Temmerman and Kelvin Roovers): 240 
 241 
An extension of the constant ellipsoid method is the proportional ellipsoid method [21] [22] 242 
[23]. With this new design system, the tessellation of the structure can be regulated by the 243 
designer (different mathematical solutions are obtained when changing the proportionality 244 
constant). Like its predecessor, this method can only be used for translational units. The 245 
reason for this situation is, as is going to be demonstrated later in the convergence surface 246 
method, if the units are translational it is mandatory that all the ellipsoids have to be 247 
proportional. An example of an application to a curve can be seen in Fig. 8 (in the case of a 248 
surface, the method is used with the same strategy but using two ellipsoids simultaneously). 249 
 250 



 251 
 252 

Fig. 8. Deployable structure of a random curve with the proportional ellipsoids method (Magenta curve = Curve to 253 
design as deployable; Orange curve = Convergence curve; Black lines = Scissors). 254 

a) Advantages of the method: 255 
 256 
- It can be applied to any surface because the non-constant curvature of the ellipsoid allows 257 
the adaptation on any shape. 258 
- It is a very simple method to use. As in the previous cases, the designer has to copy and paste 259 
an ellipsoid but having in mind that he/she can change the size of this ellipsoid using a 260 
constant of proportionality. 261 
- Little previous knowledge is required to apply this method. As in the previous case, the 262 
graphic program must have the command “ellipsoid” to use this method. 263 
- The tessellation can be controlled: the variation of the constant of proportionality allows the 264 
change of the size of the ellipsoid and, in consequence, more than one mathematical solution 265 
can be obtained for one input. 266 
 267 
b) Disadvantages of the method: 268 
 269 
- The control of the relative position between the structure and the surface that is going to be 270 
designed as deployable is not allowed because the middle point of the focal distance will 271 
always be in this surface. 272 
- Only translational units can be used (the focal distance of all ellipsoids is parallel) and, in 273 
consequence, the size of the structure in the folded position will be bigger in comparison with 274 
the use of polar units. 275 
- The position of a scissor in a singular point (boundaries of the surface, supports of the 276 
surface, etc.) must be done using an iterative process and the final solution will never belong 277 
to the boundary of the surface, the support of the surface, etc. The reason for this situation is 278 
that this method only gives a unique mathematical solution for each proportionality constant. 279 
 280 
 281 
 282 



2.4. Method of the convergence surface (2019) (Carlos José García Mora): 283 
 284 
The convergence surface method [24] is the maximum generalization of the previous methods 285 
because it considers all solutions of the previous methods and the solutions that the previous 286 
methods are not able to calculate. This method allows the determination of the surface where 287 
each one of its points will have an associated focal distance value. This value will allow the 288 
satisfaction of (Eq. (4)) simultaneously between two ellipsoids in space. If a point that does not 289 
belong to this surface is chosen, there will be no focal distance value associated with this point 290 
that satisfies (Eq. (4)) simultaneously between two ellipsoids in space. Consequently, two 291 
ellipsoids in space will always define a unique convergence surface. 292 
 293 
This method establishes that given an ellipsoid in the space, this ellipsoid will have associated a 294 
family of curves with the shape of ellipsoids proportional to the initial ellipsoid (convergence 295 
ellipsoids), where each one of these convergence ellipsoids will have associated a value of the 296 
focal distance of the final ellipsoid (for an ellipsoid of convergence, the focal distance of any of 297 
its points has the same value). In the case of spatial deployable structures, the design process 298 
is always done simultaneously between two ellipsoids in the space (ellipsoid 11 and ellipsoid 299 
12). Consequently, the equation of the family of convergence ellipsoids for ellipsoid 11 and for 300 
ellipsoid 12 is Eq. (6) and Eq. (7) [24] (Fig. 9). 301 
 302 

𝐹𝑜𝑟 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 11 → (
𝑧11 − 𝑓11
𝑓21

)
2

+ (
𝑥11
𝑓31

)
2

+ (
𝑦11
𝑓31

)
2

= 1 (6) 

 303 

𝐹𝑜𝑟 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 12 → (
𝑧12 − 𝑓12
𝑓22

)
2

+ (
𝑥12
𝑓32

)
2

+ (
𝑦12
𝑓32

)
2

= 1 (7) 

 304 
Where: 305 

 306 

𝑓11 = −
ℎ1 ∙ 𝑢

2 + 𝑐11 ∙ 𝑢 − ℎ1 ∙ 𝑣 − ℎ1 ∙ 𝑣
2

(1 + 𝑣)2 − 𝑢2
   𝑎𝑛𝑑   𝑓12 = −

ℎ2 ∙ 𝑢
2 + 𝑐12 ∙ 𝑢 − ℎ2 ∙ 𝑣 − ℎ2 ∙ 𝑣

2

(1 + 𝑣)2 − 𝑢2
  (8) 

 307 

𝑓21 = [
𝑎11

(1 + 𝑣)2 − 𝑢2
] ∙ [1 + 𝑣 +

𝑢 ∙ ℎ1
𝑐11

]    𝑎𝑛𝑑   𝑓22 = [
𝑎12

(1 + 𝑣)2 − 𝑢2
] ∙ [1 + 𝑣 +

𝑢 ∙ ℎ2
𝑐12

] (9) 

 308 

𝑓31 = [
𝑏11

(1 + 𝑣)2 − 𝑢2
] ∙ [1 + 𝑣 +

𝑢 ∙ ℎ1
𝑐11

]    𝑎𝑛𝑑   𝑓32 = [
𝑏12

(1 + 𝑣)2 − 𝑢2
] ∙ [1 + 𝑣 +

𝑢 ∙ ℎ2
𝑐12

] (10) 

 309 

𝑢 =
𝑐2
𝑛
   𝑎𝑛𝑑   𝑣 =

ℓ

𝑛
 (11) 

 310 
The figure that is associated with Eq. (6) and Eq. (7) is Fig. 9. 311 
 312 



 313 
 314 

Fig. 9. Two ellipsoids in the space and their respective convergence ellipsoids for a value of the parameter "u". 315 
 316 
Where: 317 
 318 
- a11 and a12 = These variables are the semimajor axes of the initial ellipses. 319 
- b11 and b12 = These variables are the semiminor axes of the initial ellipses. 320 
- c11 and c12 = These variables are the focal distances of the initial ellipses. 321 
- h1 and h2 = Distance from the center of the initial ellipsoids to the cross point of their axes. 322 
- c2 = Focal distance of the final ellipsoid. 323 
- u = Parameter to iterate. For each value of “u”, a different convergence ellipsoid with a value 324 
of c2 is obtained. 325 
- v = Parameter of position of the deployable structure with respect to the surface that is going 326 
to be designed as deployable. Controlling this parameter, the surface will be at the middle 327 
points of all scissors, at the top points of all scissors or at the bottom points of all scissors. 328 
- α = Parameter of orientation between both ellipsoids. For α = 0 the situation is translational 329 
units (Axes of both ellipsoids are parallel) and for α = 0 the situation is polar units (Axes of both 330 
ellipsoids are not parallel). 331 
 332 
It is important to mention that the use of the parameters "u" and "v" is more complex. More 333 
information about these variables is in [24]. 334 
 335 
Likewise, this method develops the relationship that two ellipsoids in the space must satisfy 336 
(irrespective of their orientations) for the convergence surface to be able to exist. This 337 
relationship is: 338 

 339 
𝑡1
2 ∙ 𝑡3 + 𝑡4 ∙ 𝑡5

2 + 𝑡1 ∙ 𝑡2 ∙ 𝑡5 + 4 ∙ 𝑡3 ∙ 𝑡4 ∙ 𝑡6 = 𝑡6 ∙ 𝑡2
2 (12) 

 340 
Where: 341 
 342 

𝑡1 = 2 ∙ 𝑧𝑜 ∙ [1 − (
𝑐12
𝑎12

∙ 𝑐𝑜𝑠 𝛼)
2

] + (
𝑐12
𝑎12

)
2

∙ 𝑥𝑜 ∙ 𝑠𝑖𝑛(2 ∙ 𝛼) (13) 



 343 

𝑡2 = −(
𝑐12
𝑎12

)
2

∙ 𝑠𝑖𝑛(2 ∙ 𝛼) (14) 

 344 

𝑡3 = (
𝑐12
𝑎12

∙ 𝑠𝑖𝑛 𝛼)
2

 (15) 

 345 

𝑡4 = −[1 − (
𝑐12
𝑎12

∙ 𝑐𝑜𝑠 𝛼)
2

− (
𝑏11
𝑎11

)
2

] (16) 

 346 

𝑡5 = −[2 ∙ 𝑥𝑜 ∙ [1 − (
𝑐12
𝑎12

∙ 𝑠𝑖𝑛 𝛼)
2

] + (
𝑐12
𝑎12

)
2

∙ 𝑧𝑜 ∙ 𝑠𝑖𝑛(2 ∙ 𝛼)] (17) 

 347 

𝑡6 = 𝑏11
2 − 𝑎12

2 + 𝑐12
2 + (1 − 𝑡3) ∙ 𝑥𝑜

2 + [(
𝑏11
𝑎11

)
2

− 𝑡4] ∙ 𝑧𝑜
2 − 𝑥𝑜 ∙ 𝑧𝑜 ∙ 𝑡2 (18) 

 348 
If in Eq. (12) the condition: α = 0 is satisfied (the axes of the ellipsoids are parallel= 349 

Translational units), the condition of proportionality between the ellipsoids is obtained (Eq. 350 

(19)): 351 

𝑎11
𝑎12

=
𝑏11
𝑏12

=
𝑐11
𝑐12

 (19) 

 352 
Consequently, if there are infinite solutions of scissors for each ellipsoid of convergence where 353 
Eq. (4) is satisfied with the same value of c2, the intersection between the convergence 354 
ellipsoids with the same value of "u" will give us a set of convergence curves for each value of 355 
"u". The surface that is composed with these curves is the convergence surface. 356 
 357 
The intersection of the convergence surface with the surface that is going to be designed as 358 
deployable will give a curve that belongs to both surfaces. 359 
 360 
Any point on this curve will give a scissor that satisfies Eq. (4) simultaneously between the 361 
initial ellipsoids and that will also belong to the surface that is going to be designed as 362 
deployable. In this paper, some application examples are going to be developed. 363 
 364 
a) Advantages of the method: 365 
 366 
- It can be applied to any surface because the non-constant curvature of the ellipsoid allows 367 
the adaptation on any shape. 368 
- The tessellation can be controlled. This method gives all mathematical solutions in the space 369 
that satisfy Eq. (4) and, in consequence, the designer can choose the scissor that fits better in 370 
function of boundary conditions, behaviour of the structure, etc. 371 
- The relative position between the structure and the surface that is going to be designed as 372 
deployable can be controlled because this method introduces the use of a new parameter: “ℓ” 373 
for translational units and “v” for polar units. This variable allows changing the position of 374 
scissors with respect of the surface that is going to be designed as deployable and, 375 
consequently, all superior or inferior points of scissors can belong to the surface instead of the 376 
middle point of the focal distance. More information about the use of these parameters can be 377 
found in [24]. 378 
 379 
 380 
 381 



- Translational units and polar units can be used. The use of this method guarantees Eq. (4) for 382 
any orientation of the ellipsoids and, in consequence, polar units can also be used. The design 383 
of a deployable structure with polar units allows a smaller size in the folded position in 384 
comparison with the use of translational units. 385 
- The position of the scissor in a singular point (boundaries of the surface, supports of the 386 
surface, etc.) is obtained without any iterative process and the final solution will belong exactly 387 
to the boundary of the surface, the support of the surface, etc. This is one of the most 388 
important advantages of this method because the previous case (Method of proportional 389 
ellipsoids) required a huge number of iterations to get the solution and the Method of the 390 
convergence surface iterates only one time to get the final solution. 391 
 392 
b) Disadvantages of the method: 393 
 394 
- The method requires automation to be operational (this operability is going to be developed 395 
in this paper) because the most complicate step is the obtaining of the convergence surface. 396 
This surface needs a high resolution to be useful and the research developed in [24] does not 397 
guarantee enough accuracy. To solve that, this article will propose some formulas that can be 398 
easily introduced in a design program to avoid the manual process of creating the convergence 399 
surface.   400 
- Considerable previous knowledge is required to use this method. This method gives all 401 
possible solution of the space and, in consequence, the designer should have a basic 402 
background in the field of deployable structures to know the meaning and the influence of 403 
each geometric parameter. Otherwise, the designer will not use the full potential of this 404 
Method. 405 
 406 
In [24] the mathematical development of this method was defined in a conceptual way. 407 
However, the manual creation of the convergence surface is quite tedious and it takes so much 408 
time. In this article, two strategies are going to be proposed to solve this situation: the use of 409 
an exact formula and the used of approximate formulas. 410 
 411 
The goal of the exact formula is to obtain the equation of the convergence surface, but, as the 412 
reader will find out in this paper, this equation cannot be always defined. On the other hand, 413 
the approximate formulas allow the obtaining of the convergence surface when the exact 414 
formula cannot be applied or when the designer does not want to use the analytic equation. 415 
 416 
In this paper, two approximate formulas are going to be developed. The first supposes that the 417 
convergence surface has the shape of a two-leaf hyperboloid. As will be demonstrated later, 418 
this situation only can happen when the designer is using translational units. Although the 419 
shape of the convergence surface using polar units is not exactly a two-leaf hyperboloid, the 420 
similarity between both can be assumed because the difference is quite small. Authors such as 421 
the mathematicians Paul Breiding, Bernd Sturmfels and Sascha Timme propose a similar 422 
method in [25]. 423 
 424 
The second approximate formula is the obtaining of the convergence surface using 425 
convergence curves. In [24] it was developed that these curves are obtained with the iteration 426 
of the “u” parameter. In this paper, the maximum and minimum values of the “u” parameter 427 
for all possible orientations between two ellipsoids in the space are going to be obtained. If the 428 
designer uses a value of “u” that is out of this interval, the length of the rods will be negative. 429 
To obtain the values, many concepts of tangency between conics and the study of singular 430 
points are going to be used [26] [27] [28]. 431 
 432 



Lastly, it is important to highlight that this paper is focused on the extension of a recent design 433 
method based on a geometric and mathematical analysis. This situation means that no finite 434 
elements simulations [29] [30] have been running and that the joints are going to be designed 435 
as a point and not as a real joint [31] [32] during the whole study. 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
 460 
 461 
 462 
 463 
 464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 



3. Exact formula of the convergence surface 485 
 486 
3.1. For u = 0 (translational units = the axes of the ellipsoids are parallel) 487 
 488 
If in Eq. (11) the next condition is satisfied: 489 

 490 

𝑢 = 0 →
𝑐2
𝑛
= 0 → 𝑛 = ∞ (20) 

 491 
Consequently: 492 
 493 

𝑣 =
𝑙

𝑛
→ 𝑣 =

𝑙

∞
= 0 (21) 

 494 
Also, if n = ꚙ the value of h1 is going to be ꚙ, and therefore, n = h1. Substituting and avoiding 495 
the indeterminations of type 0 · ꚙ: 496 

 497 

𝑓11 = −
ℎ1 ∙ (

𝑐2
ℎ1
)
2

+ 𝑐11 ∙
𝑐2
ℎ1
− ℎ1 ∙

𝑙
ℎ1
− ℎ1 ∙ (

𝑙
ℎ1
)
2

(1 + 0)2 − 02
= −𝑙 

(22) 

 498 

𝑓21 = [
𝑎11

(1 + 0)2 − 02
] ∙ [1 + 0 +

𝑐2
ℎ1
∙ ℎ1

𝑐11
] = 𝑎11 ∙ (1 +

𝑐2
𝑐11
) (23) 

 499 

𝑓31 = [
𝑏11

(1 + 0)2 − 02
] ∙ [1 + 0 +

𝑐2
ℎ1
∙ ℎ1

𝑐11
] = 𝑏11 ∙ (1 +

𝑐2
𝑐11
) (24) 

 500 
Substituting Eq. (22), Eq. (23) and Eq. (24) in Eq. (6): 501 

 502 

[
𝑧11 − 𝑙

𝑎11 ∙ (1 +
𝑐2
𝑐11
)
]

2

+ [
𝑥11

𝑏11 ∙ (1 +
𝑐2
𝑐11
)
]

2

+ [
𝑦11

𝑏11 ∙ (1 +
𝑐2
𝑐11
)
]

2

= 1 (25) 

 503 
If the same process is done with Eq. (7): 504 

 505 

[
𝑧12 − 𝑙

𝑎12 ∙ (1 +
𝑐2
𝑐12
)
]

2

+ [
𝑥12

𝑏12 ∙ (1 +
𝑐2
𝑐12
)
]

2

+ [
𝑦12

𝑏12 ∙ (1 +
𝑐2
𝑐12
)
]

2

= 1 (26) 

 506 
The next step will be to refer these two equations to the same coordinate system, for example, 507 
to the coordinate system of ellipsoid 11. In this case the axes of the ellipsoids are parallel and, 508 
consequently, the introduction of a rotation matrix will not be necessary (only a translational 509 
matrix is going to be needed) (Fig. 10).  510 
 511 

𝑥12 = 𝑥11 − 𝑥𝑜    𝑤𝑖𝑡ℎ   𝑦12 = 𝑦11   𝑎𝑛𝑑 𝑤𝑖𝑡ℎ   𝑧12 = 𝑧11 − 𝑧𝑜  (27) 

 512 
 513 

 514 
 515 



 516 
 517 

Fig. 10. Minimum geometric convergence situation for two ellipsoids in the space with u = 0. 518 
 519 
After this change has been done, Eq. (28) is:  520 

 521 

[
𝑧11 − 𝑙 − 𝑧𝑜

𝑎12 ∙ (1 +
𝑐2
𝑐12
)
]

2

+ [
𝑥11 − 𝑥𝑜

𝑏12 ∙ (1 +
𝑐2
𝑐12
)
]

2

+ [
𝑦11

𝑏12 ∙ (1 +
𝑐2
𝑐12
)
]

2

= 1 (28) 

 522 
Consequently, and in function of the “l” value, the most important situations that can be found 523 
are: 524 
 525 
3.1.1. l = Constant with l ≠ -c2 and l ≠ c2  526 
 527 
If c2 is isolated in Eq. (25) and in Eq. (28): 528 
 529 

𝑐2 = 𝑐11 ∙ [√(
𝑧11 − 𝑙

𝑎11
)
2

+ (
𝑥11
𝑏11

)
2

+ (
𝑦11
𝑏11

)
2

− 1] (29) 

 530 

𝑐2 = 𝑐12 ∙ [√(
𝑧11 − 𝑙 − 𝑧𝑜

𝑎12
)
2

+ (
𝑥11 − 𝑥𝑜
𝑏12

)
2

+ (
𝑦11
𝑏12

)
2

− 1] (30) 

 531 
In addition, ellipsoids 11 and 12 must be proportional. In consequence: 532 

 533 
𝑐12
𝑐11

=
𝑎12
𝑎11

=
𝑏12
𝑏11

= 𝑘 (31) 

 534 
Then, if Eq. (31) is replaced in Eq. (30) and after that Eq. (29) is equaled with Eq. (30): 535 

 536 
𝑘1 ∙ 𝑥11

2 + 𝑘2 ∙ 𝑦11
2 + 𝑘3 ∙ 𝑧11

2 + 𝑘4 ∙ 𝑥11 ∙ 𝑧11 + 𝑘5 ∙ 𝑥11 + 𝑘6 ∙ 𝑧11 = 𝑘7 (32) 

Where: 537 
 538 

𝑘1 = [
𝑥0

𝑏11
2 ∙ (1 − 𝑘)

]

2

−
1

𝑏11
2  (33) 

 539 

𝑘2 = −
1

𝑏11
2  (34) 



 540 

𝑘3 = [
𝑧0

𝑎11
2 ∙ (1 − 𝑘)

]

2

−
1

𝑎11
2  (35) 

 541 

𝑘4 =
2 ∙ 𝑥𝑜 ∙ 𝑧𝑜

𝑎11
2 ∙ 𝑏11

2 ∙ (1 − 𝑘)2
 (36) 

 542 

𝑘5 =
2 ∙ 𝑥𝑜

𝑏11
2 ∙ [1 −

𝛿

1 − 𝑘
] (37) 

 543 

𝑘6 =
2

𝑎11
2 ∙ [𝑙 + 𝑧𝑜 −

𝛿 ∙ 𝑧𝑜
1 − 𝑘

] (38) 

 544 

𝑘7 = (
𝑥𝑜
𝑏11

)
2

+ (
𝑙 + 𝑧𝑜
𝑎11

)
2

− 𝛿2 (39) 

 545 
Where: 546 

 547 

𝛿 =
1

2 ∙ (1 − 𝑘)
∙ [(

𝑥𝑜
𝑏11

)
2

+ (
𝑧𝑜
𝑎11

)
2

+
2 ∙ 𝑙 ∙ 𝑧𝑜

𝑎11
2 + (1 − 𝑘)2] (40) 

 548 
As can be seen, Eq. (32) is the equation of a revolutionized conic whose axis is not parallel with 549 
respect to the axes of the reference system due to the term x11 · z11 550 
To eliminate this rotation, a change of reference system must be done. The goal is to obtain 551 
the value of the angle "ƞ" that guarantees the para parallelism between X’11 and the axis of the 552 
hyperboloid. Consequently: 553 

 554 
𝑥11 = 𝑥11

′ ∙ 𝑐𝑜𝑠(𝜂) − 𝑧11
′ ∙ 𝑠𝑖𝑛(𝜂) (41) 

 555 
𝑧11 = 𝑥11

′ ∙ 𝑠𝑖𝑛(𝜂) + 𝑧11
′ ∙ 𝑐𝑜𝑠(𝜂) (42) 

 556 
𝑦11 = 𝑦11

′  (43) 

 557 
The parallelism between X’11 and the axis of the hyperboloid is going to be obtained for the 558 
value of “ƞ” that makes: X'11 · Y’11 = 0. Then: 559 
 560 

−2 ∙ 𝑘1 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂) − 𝑘4 ∙ 𝑠𝑖𝑛
2(𝜂) + 𝑘4 ∙ 𝑐𝑜𝑠

2(𝜂) +2 ∙ 𝑘3 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂) = 0 (44) 

 561 
Using the equations of the double angle for the sine and the cosine: 562 

 563 
𝑘3 − 𝑘1
𝑘4

=
𝑠𝑖𝑛2(𝜂) − 𝑐𝑜𝑠2(𝜂)

2 ∙ 𝑠𝑖𝑛(𝜂) ∙ 𝑐𝑜𝑠(𝜂)
= −

𝑐𝑜𝑠(2 ∙ 𝜂)

𝑠𝑖𝑛(2 ∙ 𝜂)
= −

1

𝑡𝑎𝑛(2 ∙ 𝜂)
 (45) 

 564 
Consequently: 565 

 566 

𝜂 =
1

2
∙ 𝑡𝑎𝑛−1 (

𝑘4
𝑘1 − 𝑘3

) (46) 

 567 
If Eq. (41), Eq. (42), Eq. (43) and Eq. (46) are replaced in Eq. (32): 568 

 569 



[𝑘1 ∙ 𝑐𝑜𝑠
2(𝜂) + 𝑘3 ∙ 𝑠𝑖𝑛

2(𝜂) + 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)] ∙ 𝑥11
′2 + 𝑘2 ∙ 𝑦11

′2 +

+[𝑘1 ∙ 𝑠𝑖𝑛
2(𝜂) + 𝑘3 ∙ 𝑐𝑜𝑠

2(𝜂) −𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)] ∙ 𝑧11
′2 +

+[𝑘5 ∙ 𝑐𝑜𝑠(𝜂) + 𝑘6 ∙ 𝑠𝑖𝑛(𝜂)] ∙ 𝑥11
′ + [𝑘6 ∙ 𝑐𝑜𝑠(𝜂) − 𝑘5 ∙ 𝑠𝑖𝑛(𝜂)] ∙ 𝑧11

′ = 𝑘7

 (47) 

 570 
The next step is to balance Eq. (47). If this process is done using the isolation of two auxiliary 571 
variables and these variables are added to Eq. (47) in a square form, the final equation is 572 
obtained: Eq. 51 573 
 574 

[
𝑥11
′ − 𝑑1
𝑑2

]

2

− [
𝑦11
′

𝑑3
]

2

− [
𝑧11
′ − 𝑑4
𝑑5

]

2

= 1 (48) 

 575 
Where: 576 

 577 

𝑑1 = −
𝑘5 ∙ 𝑐𝑜𝑠(𝜂) + 𝑘6 ∙ 𝑠𝑖𝑛(𝜂)

2 ∙ [𝑘1 ∙ 𝑐𝑜𝑠
2(𝜂) + 𝑘3 ∙ 𝑠𝑖𝑛

2(𝜂) + 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
 (49) 

 578 

𝑑2 =

√
  
  
  
  
  
  
  
  
  
 

[
1

𝑘1 ∙ 𝑐𝑜𝑠
2(𝜂) + 𝑘3 ∙ 𝑠𝑖𝑛

2(𝜂) + 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)
] ∙

∙ [𝑘7 +
[𝑘5 ∙ 𝑐𝑜𝑠(𝜂) + 𝑘6 ∙ 𝑠𝑖𝑛(𝜂)]

2

4 ∙ [𝑘1 ∙ 𝑐𝑜𝑠
2(𝜂) + 𝑘3 ∙ 𝑠𝑖𝑛

2(𝜂) + 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
+

+
[𝑘6 ∙ 𝑐𝑜𝑠(𝜂) − 𝑘5 ∙ 𝑠𝑖𝑛(𝜂)]

2

4 ∙ [𝑘1 ∙ 𝑠𝑖𝑛
2(𝜂) + 𝑘3 ∙ 𝑐𝑜𝑠

2(𝜂) − 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
]

 (50) 

 579 

𝑑3 =

√
  
  
  
  
  
 
−
1

𝑘2
∙ [𝑘7 +

[𝑘5 ∙ 𝑐𝑜𝑠(𝜂) + 𝑘6 ∙ 𝑠𝑖𝑛(𝜂)]
2

4 ∙ [𝑘1 ∙ 𝑐𝑜𝑠
2(𝜂) + 𝑘3 ∙ 𝑠𝑖𝑛

2(𝜂) + 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
+

+
[𝑘6 ∙ 𝑐𝑜𝑠(𝜂) − 𝑘5 ∙ 𝑠𝑖𝑛(𝜂)]

2

4 ∙ [𝑘1 ∙ 𝑠𝑖𝑛
2(𝜂) + 𝑘3 ∙ 𝑐𝑜𝑠

2(𝜂) − 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
]

 (51) 

 580 

𝑑4 = −
𝑘6 ∙ 𝑐𝑜𝑠(𝜂) − 𝑘5 ∙ 𝑠𝑖𝑛(𝜂)

2 ∙ [𝑘1 ∙ 𝑠𝑖𝑛
2(𝜂) + 𝑘3 ∙ 𝑐𝑜𝑠

2(𝜂) −𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
 (52) 

 581 

𝑑5 =

√
  
  
  
  
  
  
  
  
  
 

− [
1

𝑘1 ∙ 𝑠𝑖𝑛
2(𝜂) + 𝑘3 ∙ 𝑐𝑜𝑠

2(𝜂) −𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)
] ∙

∙ [𝑘7 +
[𝑘5 ∙ 𝑐𝑜𝑠(𝜂) + 𝑘6 ∙ 𝑠𝑖𝑛(𝜂)]

2

4 ∙ [𝑘1 ∙ 𝑐𝑜𝑠
2(𝜂) + 𝑘3 ∙ 𝑠𝑖𝑛

2(𝜂) + 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
+

+
[𝑘6 ∙ 𝑐𝑜𝑠(𝜂) − 𝑘5 ∙ 𝑠𝑖𝑛(𝜂)]

2

4 ∙ [𝑘1 ∙ 𝑠𝑖𝑛
2(𝜂) + 𝑘3 ∙ 𝑐𝑜𝑠

2(𝜂) − 𝑘4 ∙ 𝑐𝑜𝑠(𝜂) ∙ 𝑠𝑖𝑛(𝜂)]
]

 (53) 

 582 
Eq. (48) is the equation of a triaxial two-leaf hyperboloid. Likewise, if "l" were 0, the axis of the 583 
convergence surface would pass through the midpoint of the line that joins the centers of the 584 
two ellipsoids and the vertex of this hyperboloid would be in this point.   585 
 586 
Another important aspect is that the “ƞ” angle is an angle with orientation. Two situations can 587 
be defined: 588 



- If the “ƞ” value is positive, the orientation of this angle is counter-clockwise, taking the X11 589 
axis as the origin of the angle and taking the X’11 axis as the end of the angle. 590 
- If the “ƞ” value is negative, the orientation of this angle is clockwise, taking the X11 axis as the 591 
origin of the angle and taking the X’11 axis as the end of the angle. 592 
 593 
3.1.2. l = -c2  594 
 595 
Eq. (32) will be obtained if the previous process is repeated with this value of “l” parameter, 596 
but, in this case, the values of ki are going to have the following equations: 597 
 598 

𝑘1 = [
𝑎11 ∙ 𝑥𝑜

𝑎11
2 ∙ (𝑘 − 1) + 𝑐11 ∙ 𝑧𝑜

]

2

− 1 (54) 

 599 
𝑘2 = −1 (55) 

 600 

𝑘3 = [
𝑎11 ∙ [𝑐11 ∙ (𝑘 − 1) + 𝑧𝑜]

𝑎11
2 ∙ (𝑘 − 1) + 𝑐11 ∙ 𝑧𝑜

]

2

− 1 (56) 

 601 

𝑘4 =
2 ∙ 𝑥𝑜 ∙ 𝑎11

2 ∙ [𝑐11 ∙ (𝑘 − 1) + 𝑧𝑜]

[𝑎11
2 ∙ (𝑘 − 1) + 𝑐11 ∙ 𝑧𝑜]

2
 (57) 

 602 

𝑘5 = 2 ∙ 𝑥𝑜 ∙ [1 −
𝑎11 ∙ 𝛿

𝑎11
2 ∙ (𝑘 − 1) + 𝑐11 ∙ 𝑧𝑜

] (58) 

 603 

𝑘6 = 2 ∙ [𝑧𝑜 + 𝑘 ∙ 𝑐11 −
𝑎11 ∙ 𝛿 ∙ [𝑐11 ∙ (𝑘 − 1) + 𝑧𝑜]

𝑎11
2 ∙ (𝑘 − 1) + 𝑐11 ∙ 𝑧𝑜

] (59) 

 604 
𝑘7 = 𝑥𝑜

2 + (𝑧𝑜 + 𝑘 ∙ 𝑐11)
2 − 𝛿2 (60) 

 605 
Where: 606 
 607 

𝛿 =
𝑎11 ∙ [𝑥𝑜

2 − 𝑐11
2 + (𝑧𝑜 + 𝑘 ∙ 𝑐11)

2]

2 ∙ [𝑎11
2 ∙ (𝑘 − 1) + 𝑐11 ∙ 𝑧𝑜]

+
1

2
∙ [𝑎11 ∙ (𝑘 − 1) +

𝑐11 ∙ 𝑧𝑜
𝑎11

] (61) 

 608 
3.1.3. l = c2  609 
 610 
Doing the same steps that have been developed in the previous section, the values of ki will 611 
be: 612 

 613 

𝑘1 = [
𝑎11 ∙ 𝑥𝑜

𝑎11
2 ∙ (𝑘 − 1) − 𝑐11 ∙ 𝑧𝑜

]

2

− 1 (62) 

 614 
𝑘2 = −1 (63) 

 615 

𝑘3 = [
𝑎11 ∙ [𝑐11 ∙ (𝑘 − 1) − 𝑧𝑜]

𝑎11
2 ∙ (𝑘 − 1) − 𝑐11 ∙ 𝑧𝑜

]

2

− 1 (64) 

 616 

𝑘4 = −
2 ∙ 𝑥𝑜 ∙ 𝑎11

2 ∙ [𝑐11 ∙ (𝑘 − 1) − 𝑧𝑜]

[𝑎11
2 ∙ (𝑘 − 1) − 𝑐11 ∙ 𝑧𝑜]

2
 (65) 

 617 

𝑘5 = 2 ∙ 𝑥𝑜 ∙ [1 +
𝑎11 ∙ 𝛿

𝑎11
2 ∙ (𝑘 − 1) − 𝑐11 ∙ 𝑧𝑜

] (66) 



 618 

𝑘6 = 2 ∙ [𝑧𝑜 − 𝑘 ∙ 𝑐11 −
𝑎11 ∙ 𝛿 ∙ [𝑐11 ∙ (𝑘 − 1) − 𝑧𝑜]

𝑎11
2 ∙ (𝑘 − 1) − 𝑐11 ∙ 𝑧𝑜

] (67) 

 619 
𝑘7 = 𝑥𝑜

2 + (𝑧𝑜 − 𝑘 ∙ 𝑐11)
2 − 𝛿2 (68) 

 620 
Where: 621 

 622 

𝛿 =
𝑎11 ∙ [𝑥𝑜

2 − 𝑐11
2 + (𝑧𝑜 − 𝑘 ∙ 𝑐11)

2]

2 ∙ [𝑐11 ∙ 𝑧𝑜 − 𝑎11
2 ∙ (𝑘 − 1)]

+
1

2
∙ [
𝑐11 ∙ 𝑧𝑜
𝑎11

− 𝑎11 ∙ (𝑘 − 1)] (69) 

 623 
3.2. For u ≠ 0 (The axes of all the ellipsoids are not parallel) 624 
 625 
If in Eq. (6) the “u” variable is isolated, a full 4-degree equation is obtained. Only one of these 4 626 
values is going to be the correct one. To get this correct value the Descartes Method is going to 627 
be used: 628 
 629 
a) The 4o degree term is modified with a multiplication by 1. 630 
b) The 3o degree term is eliminated from the equation with a change of a variable. 631 
c) The previous expression is factored to obtain a 6o degree equation with only even powers. 632 
d) A variable change is made to convert the 6o degree equation from the previous section to a 633 
3o degree grade equation with the full terms. 634 
e) The 3o degree equation is solved using the Cardano Method. 635 
f) With the results of this 3o degree equation, the calculation process must go back to find the 636 
solutions of the full 4-degree equation. 637 
 638 
Once the value of “u” is isolated, this process must also be done with Eq. (7) in combination 639 
with Eq. (27) and, after that, the equation of the convergence surface will be obtained if the 640 
previous two equations are equalized. The final result will be: 641 
 642 
- A huge equation with an extension of more than 200 pages (this equation is not operative). 643 
 644 
- The shape of the convergence surface is similar in comparison with the shape of a triaxial 645 
two-leaf hyperboloid: the lower the angle between the ellipsoids (close to translational units), 646 
the better this approximation. This is the basis of the approximate formula 1. 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 



4. Approximate formula 1 of the convergence surface: Numerical approximation 665 
 666 
The approximate formula 1 can be used in the following cases: 667 
 668 
- When the designer is working with translational units but he/she does not want to use the 669 
analytic equation. 670 
- When the designer is working with polar units and he/she wants to approximate the 671 
convergence surface to a triaxial two-leaf hyperboloid (this is only recommended if the angle 672 
between the ellipsoids is small = less than 10o). 673 
 674 
The goal of this formula is to obtain 6 random points that belong to the convergence surface 675 
using the intersection of convergence ellipsoids with the same “u” value (The relationship 676 
between these points cannot be a lineal combination). The next step is the calculation of a 677 
determinant to obtain the ki parameters. Once these parameters are calculated, the values of 678 
the di parameters are automatic using Eq. (48), Eq. (49), Eq. (50), Eq. (51), Eq. (52), Eq. (53). 679 
 680 
To obtain the value of ki parameters, a system with 7 equations and 7 variables must be 681 

solved: Eq. (70) 682 

(

 
 
 
 
 
 

𝑥111
2      𝑦111

2      𝑧111
2      𝑥111 ∙ 𝑧111     𝑥111     𝑧111     − 1 

𝑥112
2      𝑦112

2      𝑧112
2      𝑥112 ∙ 𝑧112     𝑥112     𝑧112     − 1 

𝑥113
2      𝑦113

2      𝑧113
2      𝑥113 ∙ 𝑧113     𝑥113     𝑧113     − 1 

𝑥114
2      𝑦114

2      𝑧114
2      𝑥114 ∙ 𝑧114     𝑥114     𝑧114     − 1 

𝑥115
2      𝑦115

2      𝑧115
2      𝑥115 ∙ 𝑧115     𝑥115     𝑧115     − 1 

𝑥116
2      𝑦116

2      𝑧116
2      𝑥116 ∙ 𝑧116     𝑥116     𝑧116     − 1 

𝑥117
2      𝑦117

2      𝑧117
2      𝑥117 ∙ 𝑧117     𝑥117     𝑧117     − 1 )

 
 
 
 
 
 

∙

(

 
 
 
 

𝑘1
𝑘2
𝑘3
𝑘4
𝑘5
𝑘6
𝑘7)

 
 
 
 

= 0 (70) 

 683 
However, the previous system just gives the trivial solution. To avoid this situation, the next 684 

determinant must be solved: Eq. (71) 685 

|

|

|

𝑥11
2        𝑦11

2        𝑧11
2        𝑥11 ∙ 𝑧11       𝑥11       𝑧11       1

𝑥111
2      𝑦111

2      𝑧111
2      𝑥111 ∙ 𝑧111     𝑥111     𝑧111     1

𝑥112
2      𝑦112

2      𝑧112
2      𝑥112 ∙ 𝑧112     𝑥112     𝑧112     1

𝑥113
2      𝑦113

2      𝑧113
2      𝑥113 ∙ 𝑧113     𝑥113     𝑧113     1

𝑥114
2      𝑦114

2      𝑧114
2      𝑥114 ∙ 𝑧114     𝑥114     𝑧114     1

𝑥115
2      𝑦115

2      𝑧115
2      𝑥115 ∙ 𝑧115     𝑥115     𝑧115     1

𝑥116
2      𝑦116

2      𝑧116
2      𝑥116 ∙ 𝑧116     𝑥116     𝑧116     1

|

|

|

= 0 (71) 

 686 
If the previous determinant is calculated, a polynomial equation is going to be obtained and ki 687 

parameters can be solved using the comparison with Eq. (32). 688 

The last step is to calculate di parameters to get the equation of the hyperboloid. With all the 689 

terms of the hyperboloid, its geometry can be represented using a graphic program. 690 

 691 

 692 

 693 

 694 



5. Approximate formula 2 of the convergence surface: Geometrical approximation 695 
 696 
The goal of the approximate formula 2 is to make the proposed method in [24] operative: to 697 
find the interval of the “u” parameter where the length of the rods has a positive value. 698 
 699 
To achieve this goal, the equation of the convergence ellipsoid 11 is going to be used (the 700 
results are the same if the equation of the convergence ellipsoid 12 is used instead of that of 701 
ellipsoid 11). 702 
 703 
Likewise, if translational units are used, the limits will be those of the c2 parameter and if polar 704 
units are used, the limits will be those of the “u” parameter. 705 
 706 
5.1. Maximum value of the iteration interval: Maximum growth of the convergence surface 707 
 708 
5.1.1. For u = 0 (the axes of the ellipsoids are parallel or translational units): 709 

The maximum value of c2 will cause the semi-axes of the convergence ellipsoid 11 to grow to 710 

∞. If this situation is graphed, the following figure is obtained (Fig. 11) where the value of c2 711 

has been plotted against the semi-major axis of the convergence ellipsoid 11, keeping the 712 

values of a11, c11 constant. 713 

 714 

Fig. 11. Evolution of the semi-major axis of the convergence ellipsoid 11 as a function of c2 value. 715 
 716 
Consequently, using this curve the value of c2max can be obtained with Eq. (72): 717 
 718 

𝑐2 = 𝑐2𝑚𝑎𝑥    𝑖𝑓 𝑙𝑖𝑚
𝑎11∙(1+

𝑐2
𝑐11

)→∞
[𝑎11 ∙ (1 +

𝑐2
𝑐11
)]  𝑎𝑛𝑑  𝑐2 = 𝑐2𝑚𝑎𝑥   𝑖𝑓 𝑙𝑖𝑚

𝑏11∙(1+
𝑐2
𝑐11

)→∞
[𝑏11 ∙ (1 +

𝑐2
𝑐11
)] (72) 

 719 
This equation implies that: 720 

𝑎11 ∙ (1 +
𝑐2𝑚𝑎𝑥
𝑐11

) = 𝑏11 ∙ (1 +
𝑐2𝑚𝑎𝑥
𝑐11

) = ∞   →    𝑐2𝑚𝑎𝑥 = ∞ (73) 

 721 
The reader can notice that this result is valid for -ꚙ < l < ꚙ because the expression of the 722 
semi-major axis and the semi-minor axis do not depend on the parameter “l”. 723 
 724 



Furthermore, the displacement of the convergence ellipsoid 11 for c2 = c2max will be the value 725 
of "l" because this function does not depend on the value of c2. 726 
 727 
5.1.2. For u ≠ 0 (the axes of the ellipsoids are not parallel or polar units)  728 

a) If - ∞ ≤ v ≤ ∞ with v ≠ u and with v ≠ -u  729 

The maximum value of “u” will cause the semi-axes of the convergence ellipsoid 11 to grow to 730 

∞. This can be seen in the following graph where the value of “u” has been plotted against the 731 

semi-major axis of the convergence ellipsoid 11, keeping the values of a11, c11 and h1 constant 732 

and varying the value of the parameter “v” (Fig. 12). 733 

 734 

Fig. 12. Evolution of the semi-major axis of the convergence ellipsoid 11 as a function of the value of “u” for - ∞ ≤ v 735 
≤ ∞ with v ≠ u and with v ≠ -u.  736 
 737 
Three curves can be differentiated from the previous graph: 738 
 739 
- The curve on the left is negligible because “u” can never have negative values. 740 
- The center curve is the only one that can give coherent values of "u" and of the semi-major 741 
axis of the ellipsoid. 742 
- The curve on the right is also negligible because its interval is composed of negative values of 743 
the semi-major axis of the ellipsoid. 744 
 745 
Consequently, the analysis is going to be focused on the center curve. In this curve there is a 746 

value of “u” where the axes of the convergence ellipsoid 11 grow to ∞ (This curve is 747 

asymptotic). Mathematically this can be represented with the following equation Eq. (74). 748 

𝑢 = 𝑢𝑚𝑎𝑥    𝑠𝑖  𝑙𝑖𝑚
𝑓21→∞

[𝑓21] = 𝑙𝑖𝑚
𝑓31→∞

[𝑓31] (74) 

Consequently: 749 

[
𝑎11

(1 + 𝑣)2 − 𝑢𝑚𝑎𝑥
2

] ∙ [1 + 𝑣 +
𝑢𝑚𝑎𝑥 ∙ ℎ1
𝑐11

] = ∞  𝑎𝑛𝑑 [
𝑏11

(1 + 𝑣)2 − 𝑢𝑚𝑎𝑥
2

] ∙ [1 + 𝑣 +
𝑢𝑚𝑎𝑥 ∙ ℎ1
𝑐11

] = ∞ (75) 

 750 
If the value of umax is isolated: 751 

𝑢𝑚𝑎𝑥 = |1 + 𝑣| (76) 

 752 



The previous expression must have an absolute value because umax can only have positive 753 
values. 754 
 755 
The displacement of the convergence ellipsoid 11 for u = umax (f11max) is: 756 

 757 

𝑓11𝑚𝑎𝑥 = 𝑙𝑖𝑚
− ∞ ≤ 𝑣 ≤ ∞
𝑢→|1+𝑣|

[𝑓11] = 𝑙𝑖𝑚
− ∞ ≤ 𝑣 ≤ ∞
𝑢→|1+𝑣|

[−
ℎ1 ∙ 𝑢

2 + 𝑐11 ∙ 𝑢 − ℎ1 ∙ 𝑣 − ℎ1 ∙ 𝑣
2

(1 + 𝑣)2 − 𝑢2
] = ∞ (77) 

 758 
b) If v = -u 759 
 760 
As in the previous case, the maximum value of “u” is the value that causes a growth of the 761 

semi-axes of the convergence ellipsoids to ∞. The reason of this situation can be seen in the 762 

next graph where the value of “u” has been represented against the semi-major axis (Fig. 13). 763 

 764 

Fig. 13. Evolution of the semi-major axis of the convergence ellipsoid 11 as a function of the value of “u” for v = -u.  765 

Two curves can be differentiated from the previous graph: 766 
 767 
- The curve on the left can be divided into two parts: The first is composed of the negative 768 

values of “u” and, in consequence, this part of the curve is not acceptable (“u” cannot be 769 

negative). The second is composed of the positive values of “u” and, in consequence, this part 770 

of the curve is the right one. 771 

- The curve on the right is not acceptable because in its interval the value of the semi-major 772 

axis is negative for any value of “u” and this situation is not possible. 773 

Consequently, the analysis will focus on the part of the left curve where there are positive 774 

values of "u". Mathematically, the condition of this curve can be represented with the 775 

following equation Eq. (78). 776 

𝑢𝑚𝑎𝑥 = 𝑙𝑖𝑚
𝑓21(𝑢=𝑢𝑚𝑎𝑥)→∞

[𝑓21(𝑢 = 𝑢𝑚𝑎𝑥)] = 𝑙𝑖𝑚
𝑓31(𝑢=𝑢𝑚𝑎𝑥)→∞

[𝑓31(𝑢 = 𝑢𝑚𝑎𝑥)] (78) 

 777 
Eq. (79) implies that: 778 

[
𝑎11

(1 − 𝑢𝑚𝑎𝑥)
2 − 𝑢𝑚𝑎𝑥

2
] ∙ [1 − 𝑢𝑚𝑎𝑥 +

𝑢𝑚𝑎𝑥 ∙ ℎ1
𝑐11

] = ∞ (79) 



 779 

[
𝑏11

(1 − 𝑢𝑚𝑎𝑥)
2 − 𝑢𝑚𝑎𝑥

2
] ∙ [1 − 𝑢𝑚𝑎𝑥 +

𝑢𝑚𝑎𝑥 ∙ ℎ1
𝑐11

] = ∞ (80) 

 780 
If umax is isolated: 781 

𝑢𝑚𝑎𝑥 = 0.5 (81) 

 782 
The displacement of the convergence ellipsoid 11 for u = umax (f11max) is: 783 

 784 

𝑓11𝑚𝑎𝑥 = 𝑙𝑖𝑚
𝑢→0.5

(𝑓11) = 𝑙𝑖𝑚
𝑣→−𝑢
𝑢→0.5

[−
ℎ1 ∙ 𝑢

2 + 𝑐11 ∙ 𝑢 − ℎ1 ∙ 𝑣 − ℎ1 ∙ 𝑣
2

(1 + 𝑣)2 − 𝑢2
] = ∞ (82) 

 785 
c) If v = u 786 

In this case, the parameter that is used is the maximum value of the semi-axes that causes a 787 

growth of “u” parameter to ꚙ. This situation can be observed in the next graph where the 788 

value of “u” has been represented against the semi-major axis (Fig. 14). 789 

 790 

Fig. 14. Evolution of the semi-major axis of the convergence ellipsoid 11 as a function of the value of "u" for v = u.  791 

Two curves can be differentiated from the previous graph: 792 
 793 
- The curve on the left is not acceptable because all the values of “u” in this curve are negative 794 

and this parameter cannot be negative. 795 

- The curve on the right can be divided into two parts: The first is composed of the negative 796 

values of the semi-major axis and, in consequence, this part of the curve is not acceptable (a 797 

semi-major axis cannot be negative). The second is composed of the positive values of this 798 

parameter and, in consequence, this part of the curve is the right one. 799 

Consequently, the analysis will focus on the part of the right curve where there are positive 800 

values of the semi-major axis. Mathematically, the condition of this curve can be represented 801 

with the following equations: Eq. (83) 802 

𝑎𝑚𝑎𝑥𝑑𝑒𝑙 𝐶𝐸11 = 𝑙𝑖𝑚
𝑢→∞

[𝑓21(𝑣 = 𝑢)]   𝑎𝑛𝑑   𝑏𝑚𝑎𝑥𝑑𝑒𝑙 𝐶𝐸11 = 𝑙𝑖𝑚
𝑢→∞

[𝑓31(𝑣 = 𝑢)] (83) 



 803 
If amax and bmax are isolated: 804 

𝑎𝑚𝑎𝑥𝑑𝑒𝑙 𝐶𝐸11 =
𝑎11
2
∙ (1 +

ℎ1
𝑐11
)    𝑎𝑛𝑑   𝑏𝑚𝑎𝑥𝑑𝑒𝑙 𝐶𝐸11 =

𝑏11
2
∙ (1 +

ℎ1
𝑐11
) (84) 

 805 
In consequence, if v = u, the convergence surface is not going to grow to ∞ because it will have 806 

a limit value from which it will no longer grow. 807 

The displacement of the convergence ellipsoid 11 for u = ∞ (f11max) is: 808 
 809 

𝑓11𝑚𝑎𝑥 = 𝑙𝑖𝑚
𝑣→𝑢
𝑢→∞

[𝑓11(𝑣 = 𝑢)] = 𝑙𝑖𝑚
𝑣→𝑢
𝑢→∞

[−
ℎ1 ∙ 𝑢

2 + 𝑐11 ∙ 𝑢 − ℎ1 ∙ 𝑣 − ℎ1 ∙ 𝑣
2

(1 + 𝑣)2 − 𝑢2
] =

ℎ1 − 𝑐11
2

 (85) 

 810 
5.2. Minimum value of the iteration interval: Minimum growth of the convergence surface 811 
 812 
For any value of “v”, the minimum value of “u” is the value that will cause a tangency between 813 

the convergence ellipsoids 11 and 12. 814 

The most complicated case to study will be the situation of two ellipsoids when they are 815 

neither tangent nor secant. After several iterations have been done, it could be observed that, 816 

if in this situation u = umin, the geometric convergence always happens between the 817 

convergence ellipsoid 11 and the convergence ellipsoid 12; that is, if u = umin, the cross point 818 

between the lines that link the extremes of the focal distances is going to be in the tangency 819 

between the convergence ellipsoids. Consequently, to know the value of umin (or c2min if u = 0), 820 

the strategy is to apply the equations of the convergence between the convergence ellipsoids 821 

11 and 12. 822 

5.2.1. For u = 0 (the axes of the ellipsoids are parallel or translational units)  823 

a) If two initial ellipsoids (11 and 12) are neither tangent nor secant: 824 

The convergence ellipsoids 11 and 12 for c2min have been represented in Fig. 15: 825 

 826 

Fig. 15. Minimum geometric convergence situation for two ellipsoids in the space that are neither tangent nor 827 
secant and with u = 0. 828 



The goal is to obtain the value of c2min that causes the situation of the previous figure. Using 829 

Eq. (25) the next equations are satisfied: 830 

𝑎𝐶𝐸11𝑚𝑖𝑛 = 𝑎11 ∙ (1 +
𝑐2𝑚𝑖𝑛
𝑐11

)    𝑎𝑛𝑑   𝑏𝐶𝐸11𝑚𝑖𝑛 = 𝑏11 ∙ (1 +
𝑐2𝑚𝑖𝑛
𝑐11

) (86) 

 831 
Eq. (87) is obtained by applying the Pythagorean Theorem between the axes of the ellipse: 832 

𝑐𝐶𝐸11𝑚𝑖𝑛 = √𝑎𝐶𝐸11𝑚𝑖𝑛
2 − 𝑏𝐶𝐸11𝑚𝑖𝑛

2 = 𝑐11 ∙ (1 +
𝑐2𝑚𝑖𝑛
𝑐11

) (87) 

 833 
The same is done with the convergence ellipsoid 12: 834 

𝑐𝐶𝐸12𝑚𝑖𝑛 = √𝑎𝐶𝐸12𝑚𝑖𝑛
2 − 𝑏𝐶𝐸12𝑚𝑖𝑛

2 = 𝑐12 ∙ (1 +
𝑐2𝑚𝑖𝑛
𝑐12

) (88) 

 835 
The position of the tangent point (xc, zc) between two ellipses that satisfies the geometry 836 

convergence was obtained in [24]: Eq. (89) and Eq. (90) (in [24] the next equation is in function 837 

of “x” and “y”, in this paper this equation is going to depend on “x” and “z”). 838 

𝑥𝑐 =
𝑐𝐶𝐸11𝑚𝑖𝑛 ∙ [(𝑑 ∙ 𝑠𝑖𝑛 𝛾)

2 + (𝑙2 − 𝑐𝐶𝐸12𝑚𝑖𝑛
2 ) ∙ (𝑠𝑖𝑛 𝛼)2 + 2 ∙ 𝑑 ∙ 𝑙 ∙ 𝑠𝑖𝑛 𝛾 ∙ 𝑠𝑖𝑛 𝛼]

𝑐𝐶𝐸11𝑚𝑖𝑛 ∙ (𝑑 ∙ 𝑠𝑖𝑛 𝛾 + 𝑙 ∙ 𝑠𝑖𝑛 𝛼) + 𝑐𝐶𝐸12𝑚𝑖𝑛 ∙ 𝑑 ∙ 𝑠𝑖𝑛(𝛼 + 𝛾)
 (89) 

 839 

𝑧𝑐 =
𝑐𝐶𝐸11𝑚𝑖𝑛

2 ∙ 𝑐𝐶𝐸11𝑚𝑖𝑛 ∙ (𝑑 ∙ 𝑠𝑖𝑛 𝛾 + 𝑙 ∙ 𝑠𝑖𝑛 𝛼) + 2 ∙ 𝑐𝐶𝐸12𝑚𝑖𝑛 ∙ 𝑑 ∙ 𝑠𝑖𝑛(𝛼 + 𝛾)
∙

∙ [𝑐𝐶𝐸12𝑚𝑖𝑛
2 ∙ 𝑠𝑖𝑛(2 ∙ 𝛼) + 2 ∙ 𝑐𝐺𝐶𝐸11𝑚𝑖𝑛 ∙ 𝑐𝐶𝐸12𝑚𝑖𝑛 ∙ 𝑠𝑖𝑛 𝛼 +

+𝑑2 ∙ 𝑠𝑖𝑛(2 ∙ 𝛾) + 2 ∙ 𝑑 ∙ 𝑙 ∙ 𝑠𝑖𝑛(𝛼 − 𝛾) − 𝑙2 ∙ 𝑠𝑖𝑛(2 ∙ 𝛼)]

 (90) 

 840 
The previous equations are for a general situation. In this case: u = 0 → α = 0. In addition, the 841 

“l” parameter depends on the reference system of the initial ellipsoids but it does not depend 842 

on the reference system of the convergence ellipsoids. Consequently, the condition l = 0 is 843 

satisfied. 844 

Then, Eq. (89) and Eq. (90) are transformed to Eq. (91) and Eq. (92): 845 

𝑥𝑐 = (
𝑐𝐶𝐸11𝑚𝑖𝑛

𝑐𝐶𝐸11𝑚𝑖𝑛 + 𝑐𝐶𝐸12𝑚𝑖𝑛
) ∙ 𝑑 ∙ 𝑠𝑖𝑛(𝛾) = (

𝑐11 + 𝑐2𝑚𝑖𝑛
𝑐11 + 𝑐12 + 2 ∙ 𝑐2𝑚𝑖𝑛

) ∙ 𝑑 ∙ 𝑠𝑖𝑛(𝛾) (91) 

 846 

𝑧𝑐 = (
𝑐𝐶𝐸11𝑚𝑖𝑛

𝑐𝐶𝐸11𝑚𝑖𝑛 + 𝑐𝐶𝐸12𝑚𝑖𝑛
) ∙ 𝑑 ∙ 𝑐𝑜𝑠(𝛾) = (

𝑐11 + 𝑐2𝑚𝑖𝑛
𝑐11 + 𝑐12 + 2 ∙ 𝑐2𝑚𝑖𝑛

) ∙ 𝑑 ∙ 𝑐𝑜𝑠(𝛾) (92) 

 847 
The point (xc, zc) must belong to the convergence ellipsoids 11 and 12 simultaneously and that 848 

situation will imply the satisfaction of Eq. (93), where the convergence ellipsoid equation 11 849 

has been used (the use of the convergence ellipsoid equation 12 would give the same result). 850 

[
𝑧𝑐

𝑎11 ∙ (1 +
𝑐2𝑚𝑖𝑛
𝑐11

)
]

2

+ [
𝑥𝑐

𝑏11 ∙ (1 +
𝑐2𝑚𝑖𝑛
𝑐11

)
]

2

= 1 (93) 

 851 



If Eq. (91) and Eq. (92) are replaced in Eq. (93) and c2min is isolated using Eq. (31), Eq. (94) is 852 

obtained: 853 

𝑐2𝑚𝑖𝑛 =
𝑐11
2
∙ [𝑑 ∙ √(

𝑐𝑜𝑠(𝛾)

𝑎11
)

2

+ (
𝑠𝑖𝑛(𝛾)

𝑏11
)

2

− (
𝑘 + 1

𝑘
)] (94) 

 854 
It is important to highlight that Eq. (94) does not depend on the “l” parameter. This situation 855 

means that the value of c2min does not have a relationship with the relative position between 856 

the scissor and the deployable surface and, in consequence, c2min is going to be constant. 857 

b) If two initial ellipsoids (11 and 12) are tangent: 858 

The convergence ellipsoids 11 and 12 for c2min in this situation have been represented in Fig. 859 

16: 860 

 861 

Fig. 16. Minimum geometric convergence situation for two ellipsoids in the space that are tangent with l = 0.5 and 862 
with u = 0. 863 

To know the minimum value of c2, the orientation with c2min = 0 will be obtained. If this 864 

condition is used in Eq. (91) and Eq. (92): 865 

𝑥𝑐 = (
𝑐11

𝑐11 + 𝑐12
) ∙ 𝑑 ∙ 𝑠𝑖𝑛(𝛾)    𝑎𝑛𝑑   𝑧𝑐 = (

𝑐11
𝑐11 + 𝑐12

) ∙ 𝑑 ∙ 𝑐𝑜𝑠(𝛾) (95) 

 866 
The value of xc, with a geometric convergence between two ellipsoids in a plane and with α = 0 867 

is: 868 

𝑥𝑐 =
𝑐11 ∙ [(𝑑 ∙ 𝑠𝑖𝑛 𝛾)

2 + (𝑙2 − 𝑐12
2 ) ∙ (𝑠𝑖𝑛 𝛼)2 + 2 ∙ 𝑑 ∙ 𝑙 ∙ 𝑠𝑖𝑛 𝛾 ∙ 𝑠𝑖𝑛 𝛼]

𝑐11 ∙ (𝑑 ∙ 𝑠𝑖𝑛 𝛾 + 𝑙 ∙ 𝑠𝑖𝑛 𝛼) + 𝑐12 ∙ 𝑑 ∙ 𝑠𝑖𝑛(𝛼 + 𝛾)
= (

𝑐11
𝑐11 + 𝑐12

) ∙ 𝑑 ∙ 𝑠𝑖𝑛(𝛾) (96) 

 869 
As can be seen, Eq. (95) and Eq. (96) are the same equations. On the other hand, if the 870 

expression of yc of [24] is used instead of the expression of xc, Eq. (95) would be obtained. 871 

Consequently, if c2min = 0, the condition of geometric convergence between two ellipsoids in 872 

the space is satisfied. In addition, Eq. (95) and Eq. (96) do not depend on the “l” parameter, so 873 

this minimum value of c2 can be applied to any value of “l”. 874 



c) If two initial ellipsoids (11 and 12) are secants: 875 

The convergence ellipsoids 11 and 12 for c2min have been represented in Fig. 17: 876 

 877 

Fig. 17. Minimum geometric convergence situation for two ellipsoids in the space that are secants with l = 0.75 and 878 
with u = 0. 879 

As can be seen in Fig. 17, if the c2 value is smaller, the convergence ellipsoid of each initial 880 

ellipsoid is also going to be smaller. Finally, both ellipsoids (the initial ellipsoid and its 881 

convergence ellipsoid) would be the same. 882 

When this situation happens, the intersection between the convergence ellipsoid of each 883 

initial ellipsoid will be the interception between the initial ellipsoids (for values of “l” different 884 

from 0, this intersection will be displaced in the direction of the axes of the ellipsoids). For 885 

lower values of c2, this variable will be negative and this situation cannot happen. 886 

Consequently, if two ellipsoids are secant, c2min = 0. In addition, the convergence surface will 887 

not be a continuous surface because it will have a hole. 888 

When a sequential design of a deployable structure is done, the situation of secant ellipsoids is 889 

not common in the first frequencies. However, if the frequencies of the structure are higher, 890 

the curvature of the surface could cause this phenomenon.  891 

5.2.2. For u ≠ 0 (the axes of the ellipsoids are not parallel or polar units) 892 

a) If two initial ellipsoids (11 and 12) are neither tangent nor secant: 893 

The convergence ellipsoids 11 and 12 for umin in this situation have been represented in Fig. 18: 894 



 895 

Fig. 18. Minimum geometric convergence situation for two ellipsoids in the space that are neither tangent nor 896 
secant and with u ≠ 0. 897 

The goal is to obtain the value of umin that causes the situation of the previous figure. In 898 

addition, in Figure 9 the next condition is satisfied: 899 

𝑠𝑖𝑛(∝)

𝑑
=

𝑠𝑖𝑛(𝛾)

ℎ2 − 𝑓12 − 𝑙
=
𝑠𝑖𝑛(180−∝ −𝛾)

ℎ1 − 𝑓11
 (97) 

 900 
The reader can notice that in Eq. (97), the “l” parameter has been used. The reason is to 901 

balance the translations in the initial ellipsoids because this translation will cause a 902 

displacement in the convergence ellipsoids. 903 

If γ is isolated from Eq. (97): 904 

𝑐𝑜𝑠(𝛾) =
1

𝑑
∙ [ℎ1 − 𝑓11 − (ℎ2 − 𝑓12 − 𝑙) ∙ 𝑐𝑜𝑠(∝)] (98) 

 905 
Likewise, the following expressions are obtained from Eq. (8): 906 

ℎ1 − 𝑓11 =
ℎ1 + 𝑢𝑚𝑖𝑛 ∙ 𝑐11 + 𝑣 ∙ ℎ1

(1 + 𝑣)2 − 𝑢𝑚𝑖𝑛
2    𝑎𝑛𝑑   ℎ2 − 𝑓12 =

ℎ2 + 𝑢𝑚𝑖𝑛 ∙ 𝑐12 + 𝑣 ∙ ℎ2
(1 + 𝑣)2 − 𝑢𝑚𝑖𝑛

2  (99) 

 907 
If Eq. (6) with u = umin, Eq. (7) with u = umin, Eq. (98) and Eq. (99) are replaced in Eq. (89): 908 

 909 

𝑥𝑐 =
[𝑐11 ∙ (1 + 𝑣) + 𝑢𝑚𝑖𝑛 ∙ ℎ1] ∙ (ℎ2

2 − 𝑐12
2 ) ∙ 𝑠𝑖𝑛(∝)

[
[𝑐11 ∙ (1 + 𝑣) + 𝑢𝑚𝑖𝑛 ∙ ℎ1] ∙ [ℎ2 ∙ (1 + 𝑣) + 𝑢𝑚𝑖𝑛 ∙ 𝑐12] +

+[𝑐12 ∙ (1 + 𝑣) + 𝑢𝑚𝑖𝑛 ∙ ℎ2] ∙ [ℎ1 ∙ (1 + 𝑣) + 𝑢𝑚𝑖𝑛 ∙ 𝑐11]
]

 
(100) 

 910 
Finally, if Eq. (6) with u = umin, Eq. (7) with u = umin, Eq. (98) and Eq. (99) are replaced in Eq. (90): 911 

𝑧𝑐 = 𝐴 ∙
𝑥𝑐

𝑠𝑖𝑛(∝)
+ 𝐵 (101) 



 912 
Where: 913 

𝐴 = [
(ℎ1 − 𝑐11) ∙ (1 + 𝑣 − 𝑢𝑚𝑖𝑛)

(ℎ2 + 𝑐12) ∙ (1 + 𝑣 + 𝑢𝑚𝑖𝑛)
− 𝑐𝑜𝑠(∝)] (102) 

 914 

𝐵 = [
𝑐11

(1 + 𝑣)2 − 𝑢𝑚𝑖𝑛
2 ] ∙ [1 + 𝑣 +

𝑢𝑚𝑖𝑛 ∙ ℎ1
𝑐11

] (103) 

 915 
The next condition must be satisfied: 916 

∀(𝑥𝑐 , 𝑧𝑐) ∈  [
𝑧𝑐
𝑓21
]
2

+ [
𝑥𝑐
𝑓31
]
2

= 1 (104) 

 917 
If Eq. (9) and Eq. (10) are replaced in Eq. (104) with u = umin: 918 

 919 

𝑏11
2 ∙ 𝑧𝑐

2 + 𝑎11
2 ∙ 𝑥𝑐

2 = [
𝑎11 ∙ 𝑏11

(1 + 𝑣)2 − 𝑢𝑚𝑖𝑛
2 ]

2

∙ [1 + 𝑣 +
𝑢𝑚𝑖𝑛 ∙ ℎ1
𝑐11

]
2

 (105) 

 920 
The final step is the substitution of Eq. (100) and Eq. (101) in Eq. (105). The result of this 921 

process is a 5-degree equation that only depends on umin.  922 

This equation has been represented in Fig. 19: 923 

 924 

Fig. 19. Evolution of the umin parameter (Horizontal axis). 925 

As can be seen in the previous figure, there are 5 cuts between the blue curve and the 926 

horizontal axis (there are two cuts between 0 and -1, but they are very close). However, just 1 927 

of these 5 values is going to be always correct. The rest of the values will be negative or 928 

greater in comparison with the value of umax.  929 

 930 
 931 
 932 
 933 
 934 
 935 



b) If two initial ellipsoids (11 and 12) are tangent: 936 
 937 
The convergence ellipsoids 11 and 12 for umin have been represented in Fig. 20: 938 
 939 

 940 

Fig. 20. Minimum geometric convergence situation for two ellipsoids in the space that are tangent with v = 0.5 and 941 
with u ≠ 0. 942 

To find out the minimum value of “u”, the orientation between the ellipsoids with umin = 0 is 943 
going to be developed. If this value of umin is replaced in Eq. (100): 944 
 945 

𝑥𝑐 =
𝑐11 ∙ (ℎ2

2 − 𝑐12
2 ) ∙ 𝑠𝑖𝑛(∝)

[𝑐11 ∙ ℎ2 + 𝑐12 ∙ ℎ1] ∙ (1 + 𝑣)
 (106) 

 946 
Also, the next condition is satisfied in Fig. 9: 947 

𝑠𝑖𝑛(∝)

𝑑
=
𝑠𝑖𝑛(𝛾)

ℎ2 − 𝑙
=
𝑠𝑖𝑛(180−∝ −𝛾)

ℎ1
 (107) 

 948 
If Eq. (107) is replaced in Eq. (106) and the variables h1 and h2 are converted to other known 949 
variables, Eq. (89) is obtained. If this process is done with the equation of zc, the equation of yc 950 
of [24] is obtained. In [24], the equations of xc and yc were developed to satisfy the tangency 951 
between the ellipsoids and, in consequence, if the ellipsoids are tangent → umin = 0. 952 
 953 
c) If two initial ellipsoids (11 and 12) are secants: 954 
 955 
The convergence ellipsoids 11 and 12 for umin in this situation have been represented in Fig. 21: 956 
 957 



 958 

Fig. 21. Minimum geometric convergence situation for two ellipsoids in the space that are secants with v = 0.5 and 959 
with u ≠ 0. 960 

To find out the value of umin, a geometric argumentation is going to be used due to the 961 

complexity of the equations of this case. 962 

If the value of “u” is lower, the geometry of the convergence ellipsoid is going to be smaller 963 

according to Eq. (6), Eq. (7), Eq. (8), Eq. (9), Eq. (10) and Eq. (11). When “u” has the value of 0, 964 

the convergence ellipsoid will only depend on the “v” parameter. In consequence, this 965 

problem can be solved with the analysis of the cases of “v”: 966 

The first is v = 0. In this case, the convergence ellipsoid would have the same geometry and 967 

position in comparison with the initial ellipsoid. Consequently, umin = 0. 968 

The second is v ≠ 0 (as the situation that is represented in Fig. 21). In this case, the 969 

convergence ellipsoid would have a different geometry and a different position in comparison 970 

with the initial ellipsoid. However, v = l/n, where “n” is the distance between the intersection 971 

of the two convergence ellipsoids and the “l” parameter”. Consequently, if “u” is going to be 0, 972 

the values of “l” are going to be in the intersection points between the initial ellipsoids. 973 

This situation means that the focal distance with a value of 0 will belong to the intersection 974 
between the initial ellipsoids. The “u” parameter cannot be negative, so if the initial ellipsoids 975 
are secants → umin = 0. 976 
 977 
 978 
 979 
 980 



6. Conclusions  981 
 982 
Before the onset of the convergence surface Method, the obtaining of two scissors from two 983 
ellipsoids in the space had to be done using the intersection of 2 proportional ellipsoids and 984 
the result was a unique mathematical solution. If the designer wanted other mathematical 985 
solution, a different peer of ellipsoids had to be intersected using other proportional constant. 986 
In comparison with this situation, the convergence surface Method not only gives all possible 987 
solutions with just one mathematical operation but also this Method allows the use of polar 988 
units and, in consequence, the size of the deployable structure in the folded position will be 989 
smaller. Likewise, the consideration of all solutions of the space enables the design of bistable 990 
deployable structures. 991 
 992 
However, the main drawback of the convergence surface Method is the obtaining of this 993 
surface. To balance this situation, the research of this article has completed the equations that 994 
control the Method of [24] and the results can be summarised into 2 types of formulas: the 995 
exact formula (triaxial two-leaf hyperboloid) and the approximate formulas (determinant and 996 
level curves). 997 
 998 
Before the outcomes of this article, the convergence surface had to be created with the 999 
manual intersection of ellipsoids without knowing the start point of the intersection process 1000 
and the solution that limits the superior interval of valid results. Moreover, the standard shape 1001 
of the convergence surface was a mystery and, consequently, the use of mathematical 1002 
programs (MatLab, Maple, etc.) to create this surface was quite tedious. 1003 
 1004 
The results of this paper have solved these disadvantages so the Method of [24] is now more 1005 
operative and friendly. Once the convergence surface has been obtained, the rest of the 1006 
design process is based on the intersection of this surface with the design surface and the final 1007 
curve will be all possible points where there is a mathematical solution. The aim of the 1008 
designer is the selection of a point of this curve in function of boundary conditions, structural 1009 
behaviour, etc.  1010 
 1011 
Finally, a further extension intended for future work is the incorporation of the formulas 1012 
developed in this research into a design program where the designer will have the 1013 
convergence surface just clicking a button. 1014 
 1015 
 1016 
 1017 
 1018 
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 1022 
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