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1. Introduction: 19 

Deployable structures are mechanisms that have the property to be folded in a 20 

compact module when its transport or storage is required and they will be deployed in 21 

the destination place. Due to the importance of this type of structures, numerous 22 

researchers and designers have developed novel methods to achieve a better 23 

prediction of the behaviour of the structure during the deployment process [1] [2] [3]. 24 

 25 

Although the world of deployable structures is enormous, a basic classification based 26 

on deployable structures of plates and deployable structures of elements can be 27 

proposed. The first group is composed of the deployable Origami (the deployment is 28 

obtained bending the surface) [4] [5] [6] and the deployable Kirigami (the deployment 29 

is obtained cutting the surface) [7] [8]. The most important property of these 30 

structures is that the joints are lines instead of points and the most famous example of 31 

deployable Origami is the Miura pattern where a flat shape can be folded in a small 32 

package (Fig. 1). 33 

 34 
Fig. 1. Deployment process of a flat Miura pattern. 35 

The second group is composed of the deployable grid systems [9] [10] and the 36 

deployable scissor systems [11] [12] [13] (this paper will be focused on the scissor 37 

mechanisms). Basically, the scissors mechanisms are a crank mechanism [14] [15] with 38 
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a geometric extension of the axes of all elements and this extension is going to be used 39 

to connect the next scissor and to get a transmission of the movement: Fig. 2 40 

 41 
 42 

 43 
 44 

Fig. 2. (a) Basic crank mechanism; (b) Scissor mechanism based on a crank mechanism. 45 

An application of this design strategy can be obserbed in Figure 3, where a deployable 46 

surface using translational units [16] [17] has been designed to cover a space. The 47 

deployment process of the structure is an important aspect that must be considered 48 

during the design process to evaluate possible collisions between the scissors. 49 

 50 

 51 
 52 

Fig. 3. Deployment process of a surface using translational units. 53 

Another parameter that is usually considered to clasificate the deployable structures 54 

with scissors is the bistability. In function of this property,  two types of structures can 55 

be created: Bistable and non-bistable. 56 

 57 

a) b) 
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The main difference between both is the existence of a geometric incompatibility 58 

during the deployment process. In non – bistable structures, this incompatibility is null 59 

and there are no forces in the elements during the deployment process due to the 60 

elastic deformation. However, in bistable structures [18] [19] [20], there is a geometric 61 

incompatibility during the deployment process with an elastic deformation of the 62 

elements. This situation means that the structure is going to have two positions of 63 

stability: the folded position and the unfolded position. 64 

 65 

Despite of the wide range of design possibilities (bistability, angle between the 66 

elements [21] [22] [23] [24], etc.), a question that has not still answered in the 67 

deployable structure world is the following: Which types of deployable structures can 68 

be obtained if the length of all elements is identical? and, are there infinite design 69 

possibilites or just a few design options?. The interest in this geometrical constraint is 70 

because this property can provide the following advantages: 71 

 72 

a) The natural frequencies of the structure will be higher: the use of elements with an 73 

identical length will allow the creation of deployable structures with a higher stiffness 74 

and, in consequence, with less horizontal displacements. 75 

b) The manufacturing and construction process may be simpler when the length of the 76 

elements is a critical point: the worker does not need to change the cut length of the 77 

elements and its transport would be easier. However, the position of the middle joint 78 

will be different in each element and, in consequence, necessary measures must be 79 

taken in order to avoid an incorrect orientation of the elements.  80 

 81 
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Two designers who have already proposed this type of structures were Félix Escrig 82 

Pallarés and Jose Sánchez Sánchez. These authors manufactured a certain quantity of 83 

elements with the same length and with an excentricity in the middle joint. The 84 

connection of these elements gave the final geometry. A result of their works can be 85 

observed in Fig. 4, where a sphere with elements of the same length has been 86 

designed (the cables are attached after the deployment process). 87 

 88 

   
 89 

Fig. 4. Model of a sphere with elements of the same length and with cables to get 90 

rigidization. 91 

Consequently, the goal of this paper will be to obtain the bistable and non-bitable 92 

geometries that can be designed as depoyable if the next condition is established: The 93 

length of all elements must be the same in all scissors of the structure. It is important 94 

to highlight that the work of this research is not a method to design deployable 95 

structures and what is going to be developed here are the shapes that can be created 96 

having in consideration this geometric constraint.  97 

 98 

 99 

 100 

 101 
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2. Methodology: 102 

 103 

The methodology that is going to be developed in this research is the following:  104 

 105 

- Step 1: The geometric constraints that scissors with same length elements must 106 

satisfy will be imposed. This section is going to be called: “Mathematical 107 

development”. 108 

 109 

- Step 2: The geometric constraints of step 1 will be applied to a curve and the limits in 110 

the design of the deployable curve will be obtained. This section is going to be called: 111 

“Application to a curve”. 112 

 113 

- Step 3: The geometric constraints of step 1 will be applied to a surface and the limits 114 

in the design of the deployable surface will be obtained. This section is going to be 115 

called: “Application to a surface”. 116 

 117 

- Step 4: A comparison between a deployable structure with indentical elements and a 118 

deployable structure with different length of the elements will be developed. This 119 

section is going to be called: “Results”. The goal is to discover which advantages and 120 

disadvantages have the use of identical elements in terms of structural behaviour 121 

(vertical deformations and natural frequencies). 122 

 123 

 124 

 125 
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3. Mathematical development: 126 

 127 

The situation of geometric convergence where the cross point between the elements 128 

is in the tangency point between the ellipses has been represented in Fig. 5. 129 

 130 

 131 
 132 

Fig. 5. Convergence situation for two ellipses in the plane. 133 

P1 = (0,−c1) (1) 
 134 

P2 = (0,0) (2) 
 135 

P3 = (0, c1) (3) 
 136 

P8 = (
sin(t)

k
,
cos(t)

k
) (parametric equation of an ellipse) (4) 

 137 

Where: 138 

 139 

k = √[
cos(t)

a1
]

2

+ [
sin(t)

b1
]

2

         with 0 ≤ t ≤ 2 ∙ π (5) 

 140 

In addition, the geometric conditions of Fig. 6 and Fig. 7 must be satisfied: 141 

 142 
 143 



8 
 

 144 

 Fig. 6. Distance between points in the element P1P8P7. 145 

P7x

P8x
=

L

dP1P8
→ P7x = P8x ∙

L

dP1P8
     with L = Length of the element P1P8P7 (6) 

 146 
P7y + c1

P8y + c1
=

L

dP1P8
→ P7y = (P8y + c1) ∙

L

dP1P8
− c1     with L = Length of the element P3P8P4 (7) 

 147 

 148 
Fig. 7. Distance between points in the element P3P8P4. 149 

P4x

P8x
=

L

dP3P8
→ P4x = P8x ∙

L

dP3P8
 (8) 

 150 
c1 − P4y

c1 − P8y
=

L

dP3P8
→ P4y = (P8y − c1) ∙

L

dP3P8
+ c1 (9) 

 151 

Consequently: 152 

 153 

P4 = (P8x ∙
L

dP3P8
, (P8y − c1) ∙

L

dP3P8
+ c1) (10) 

 154 

P7 = (P8x ∙
L

dP1P8
, (P8y + c1) ∙

L

dP1P8
− c1) (11) 

 155 

Then: 156 

 157 
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P5 = (
P4x + P7x

2
,
P4y + P7y

2
) (12) 

 158 

P6 = (P5x + ∆lx, P5y + ∆ly) = (
P4x + P7x

2
+ ∆lx,

P4y + P7y

2
+ ∆ly) (13) 

 159 

On the other hand: 160 

 161 

dP3P8 = √[
sin(t)

k
]

2

+ [
cos(t)

k
− c1]

2

 (14) 

 162 

dP1P8 = √[
sin(t)

k
]

2

+ [
cos(t)

k
+ c1]

2

 (15) 

 163 

Finally, if Eq. (10), Eq. (11), Eq. (12), Eq. (13), Eq. (14) and Eq. (15) are combined, the 164 

equation of the convergence curve is obtained: Eq. (16) and Eq. (17). 165 

 166 

x(t) = P6x(t) =
n1 ∙ L

2
∙ [

1

√n1
2 + (n2 − c1)

2
+

1

√n1
2 + (n2 + c1)

2
] + ∆lx (16) 

 167 

y(t) = P6y(t) =
L

2
∙ [

n2 − c1

√n1
2 + (n2 − c1)

2
+

n2 + c1

√n1
2 + (n2 + c1)

2
] + ∆ly (17) 

 168 

Where: 169 

 170 

n1 =
sin(t)

k
 (18) 

 171 

n2 =
cos(t)

k
 (19) 

 172 

The most common design case that can be found is having the centres of all ellipsoids 173 

in the surface that is going to be designed as deployable (P5 will belong to the surface). 174 

To achieve that, the following values shall be considered: l = 0 → Δlx = 0 and Δly = 0. 175 

The parameters that can be controlled by the designer are: a1, b1 and L (c1 is a function 176 

that depends on a1 and b1). Likewise, the L parameter is obtained by multiplying Eq. 177 

(16) and Eq. (17). Consequently, the L parameter is going to influence the size of the 178 

convergence curve but not its shape. This situation means that the parameters that 179 
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have an influence on the shape of the curve are just a1 and b1. The relationship 180 

between a1, b1 and the shape of the convergence curve for l=0 can be seen in Table 1. 181 

 182 

b1/a1 1 0.9 0.8 

Convergence 
curve 

 

 
 

  

b1/a1 0.7 0.6 0.5 

Convergence 
curve 

 

 
 

  

b1/a1 0.4 0.3 0.2 

Convergence 
curve 

 

 
 

  

b1/a1 0.1 0 [1,0] 

Convergence 
curve 

 

 
 

 

 

 
 

 183 

Table 1. Evolution of the convergence curve in function of b1/a1 for l = 0. 184 
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In the following image, an example of some scissors that belong to the convergence 185 

curve can be observed (Fig. 8): 186 

 187 
Fig. 8. 12 scissors obtained in the convergence curve for l = 0 and for b1/a1 = 0.5 188 

(elements of same colour belong to the same scissor) (elements of all scissors have the 189 

same length). 190 

However, the previous design condition has a considerable disadvantage: the final 191 

shape will not be the original surface if a textile is hold using the superior or inferior 192 

joints of the structure. To solve that, it is necessary that the superior joints (P3 and P7) 193 

or the inferior joints (P1 and P4) belong to the original surface. In terms of equations:  194 

- For the first case (superior joints), the next conditions are mandatory: l = c2 → Δlx = 195 

P7x - P5x and Δly = P7y - P5y (Fig. 9) 196 

  
 197 

Fig. 9. (a) Convergence curve for l = c2 (blue circle with centre in the bottom focus of 198 

the original ellipse); (b) 8 scissors that belong to the convergence curve for l = c2 199 

a) b) 
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- For the second case (inferior joints), the next conditions are mandatory: l = -c2 → Δlx = 200 

P4x - P5x and Δly = P4y - P5y (Fig. 10) 201 

  
 202 

Fig. 10. (a) Convergence curve for l = -c2 (blue circle with centre in the top focus of the 203 

original ellipse); (b) 8 scissors that belong to the convergence curve for l = -c2 204 

When the convergence curve is obtained for any of the previous cases, the scissor in 205 

one point of this curve is going to be defined by 2 parameters: orientation (h1) and the 206 

value of the focal distance in the point of the convergence curve (c2): 207 

 208 

a) Orientation = h1 (for any value of l parameter): 209 

 210 

The line that is defined by P4 and P7 is: 211 

 212 

y =
P4y − P7y

P4x − P7x
∙ x + P7y − P7x ∙

P4y − P7y

P4x − P7x
 (20) 

 213 

In addition, h1 = y(x = 0). If this condition is replaced in Eq. (20), Eq. (10) and Eq. (11), 214 

the h1 equation is obtained. 215 

 216 
 217 
 218 
 219 
 220 

a) b) 
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b) Focal distance = c2 (for any value of l parameter): 221 

The next equation is obtained from Fig. 5: 222 

c2 = dP7P5 = √(P7x − P5x)
2 + (P7y − P5y)

2
= √(

P7x − P4x

2
)
2

+ (
P7y − P4y

2
)

2

 (21) 

 223 

If Eq. (10) and Eq. (11) are replaced in Eq. (21), the equation of focal distance is 224 

obtained. Equations of orientation (h1) and focal distance (c2) will be used in the 225 

Chapter 5: Application to a surface. 226 

 227 

 228 
 229 
 230 
 231 
 232 
 233 
 234 
 235 
 236 
 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 
 253 
 254 
 255 
 256 
 257 
 258 
 259 
 260 
 261 
 262 
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4. Application to a curve: 263 

 264 

The first application case that is going to be solved is the situation with l = 0 (the centre 265 

of all ellipsoids is in the curve that is going to be designed as deployable) (Fig. 11). 266 

 267 
 268 

Fig. 11. Deployable structure using an identical length in all elements and with l = 0 269 

(purple curve = original curve; discontinuous blue curve = convergence curve). 270 

The second case that will be developed is the situation with l = c2 (the top point of all 271 

scissors is going to be in the curve that is going to be designed as deployable) (Fig. 12). 272 
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 273 
Fig. 12. Deployable structure using an identical length in all elements and with l = c2 274 

(purple curve = original curve; discontinuous blue curve = convergence curve). 275 

The last case is the situation with l = -c2 (the bottom point of all scissors is going to be 276 

in the curve that is going to be designed as deployable) (Fig. 13). 277 

 278 

 279 
 280 

Fig. 13. Deployable structure using an identical length in all elements and with l = -c2 281 

(purple curve = original curve; discontinuous blue curve = convergence curve). 282 

 283 

 284 

 285 
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5. Application to a surface: 286 

 287 

The application of this mathematical development to a surface is more complex and, in 288 

consequence, the following considerations are going to be taken: 289 

 290 

a) When a curve is designed as deployable, the designer always works using one 291 

ellipsoid (or ellipse in case of a flat curve). However, when a surface is designed as 292 

deployable, the designer always works using two ellipsoids simultaneously in the 293 

space. The equation of c2 gives a different value for each point of the convergence 294 

surface and when a surface is designed as deployable, c2 must simultaneously have the 295 

same value between both original ellipsoids. This situation can only happen in two 296 

cases: 297 

 298 

a1) Both original ellipsoids are symmetric or they are obtained using a rotation. 299 

In this case, the convergence surfaces will be symmetric and the intersection 300 

between them will give a curve where all of its points will have the same c2 301 

value between both ellipsoids. The problem is that these geometric conditions 302 

hugely limit the design possibilities. 303 

 304 

a2) The existence of a relationship between input parameters that allows the 305 

creation of a convergence surface where all points will have the same c2 value. 306 

This assumption implies that: 307 

 308 
c2(t = ti) = c2(t = ti+1) (22) 
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 309 

Eq. (22) must be satisfied in all points of the convergence surface. In 310 

consequence, Eq. (23) can be defined: 311 

 312 

c2(t = 0o) = c1 = c2(t = 90o) = L ∙
c1
a1

− c1 (23) 

 313 

Then: 314 

 315 

c1 = L ∙
c1
a1

− c1 → L = 2 ∙ a1 (24) 

 316 

If Eq. (24) is satisfied: 317 

 318 
c2(L = 2 ∙ a1 for any value of t) = c1 (25) 

 319 

Consequently, if the length of all elements is equal to 2 ∙ a1, the c2 value is going 320 

to be constant in all points of the convergence surface for any orientation of 321 

both original ellipsoids.  322 

 323 

Also, an aspect that is important to highlight is that the expression of c2 does 324 

not depend on the “l” parameter and, consequently, Eq. (24) and Eq. (25) are 325 

going to be satisfied for any value of “l”. Finally, the following relationships are 326 

satisfied: 327 

 328 
dP3P8 + dP1P8 = 2 ∙ a1 = L = dP3P8 + dP4P8 = dP1P8 + dP7P8 (26) 

 329 
dP7P8 + dP4P8 = 2 ∙ a2 (27) 

 330 

If Eq. (27) is replaced in Eq. (26): 331 

 332 
2 ∙ L − 2 ∙ a2 = L → L = 2 ∙ a2 → a1 = a2 → b1 = b2 → c1 = c2 (28) 

 333 

 334 

 335 
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b) Not only c2 value has to be the same between both original ellipsoids, but also the 336 

orientation of c2 between both ellipsoids must be the same. This situation means that 337 

h1 value between both original ellipsoids must be the same. To study this situation, 338 

two cases can be found: 339 

 340 

b1) h1 value will be the same between both original ellipsoids if the ellipsoids 341 

are symmetric or if they have a relationship of a rotation. However, these 342 

geometric conditions hugely limit the design possibilities. 343 

 344 

b2) The existence of a relationship between input parameters that allows the 345 

creation of a convergence surface where all points will have the same h1 value. 346 

This assumption implies that: 347 

 348 
h1(t = ti) = h1(t = ti+1) (29) 

 349 

Eq. (29) must be satisfied in all points of the convergence surface. In 350 

consequence, Eq. (30) can be defined: 351 

 352 

h1(t = 0o) = L − a1 = h1(t = 90o) = c1 ∙ [
L

a1
− 1 −

2 ∙ (1 −
L
a1

)

1 − 1
] = ∞ (30) 

 353 

The next step is the study of the lateral limits in the previous equation: 354 

 355 
h1(t = 90+) = −∞     and     h1(t = 90−) = +∞ (31) 

 356 

The lateral limits are different and, in consequence, the equation does not 357 

converge either in + ∞ or - ∞. Consequently, there is not a relationship 358 

between the input parameters that allows the existence of a convergence 359 

surface where all of their points have the same h1 value. 360 
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 361 

c) The study will be done for l = c2. “l” is a parameter that allows the control of the 362 

tessellation, but it does not guarantee the geometric convergence. Consequently, the 363 

following study will give the same results for any value of “l” (l = constant, l = c2 or l = -364 

c2. On the other hand, the use of l = c2 has the following mathematical advantages: 365 

 366 

c1) The intersection between both convergence surfaces will be the 367 

intersection between two spheres. This situation means that the intersection 368 

curve will be a circle. 369 

 370 

c2) A sphere has a position in the space but not an orientation. Consequently, 371 

the use of a variable to modify the orientation of the convergence surface is not 372 

necessary. 373 

 374 

d) The angular orientation between both original ellipsoids has an influence on the size 375 

of the convergence curve but not on the solution of the convergence (the angular 376 

position only implies a rotation and not a displacement).  377 

 378 

Once the previous conditions have been established, the goal is to find the set of 379 

points in the space that give a scissor with the same orientation between both original 380 

ellipsoids (the nonexistence of a mathematical relationship between both original 381 

ellipsoids that allows a convergence surface with the same h1 value has been 382 

demonstrated before).  383 

 384 
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This analysis is going to be done using 3 ellipsoids with a rotation of 90o (the results of 385 

this study with another angle will be the same due to the relationship of rotation and 386 

not of translation). As has been established before, the study will use l = c2 and the 387 

centres of the spheres will be in P41 and P42. The intersection between the convergence 388 

surfaces will give the convergence curve (the red and discontinuous curve in the next 389 

figure). The final step is to obtain the scissor from each original ellipsoid and the angle 390 

between the focal distances of the scissors. When this angle is 0, the orientation value 391 

between both original ellipsoids will be the same (Fig. 14). 392 

 393 

 394 
 395 

Fig. 14. Graphic representation where the study of the orientation is developed (β = 0). 396 

P41 y P42 will be the centres of the convergence surfaces of the ellipsoid 1 and 2 (l = c2). 397 

The red and discontinuous curve will be the convergence curve (a circle). 398 

 399 
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The equations that define the position of P41, P71, P42 y P72 have been already obtained 400 

in Eq. (10) and Eq. (11). On the other hand, the intersection between two convergence 401 

surfaces will be the intersection between two spheres with the same radius (Fig. 15). 402 

 403 
 404 

Fig. 15. Relationship between the radius of the convergence curve and the 405 

convergence surfaces. 406 

 407 

Consequently, the radius of the circle will be: 408 

 409 

L2 = R2 + (
dP41P42

2
)
2

→ R = √L2 − (
dP41P42

2
)
2

 (32) 

 410 

The parametric equation of the convergence curve in local coordinates (XL, YL, ZL) is: 411 

 412 

xL(γ) = √L2 − (
dP41P42

2
)
2

∙ cos(γ)     with     0o < γ < 3600 (33) 

 413 

yL(γ) = √L2 − (
dP41P42

2
)
2

∙ sin(γ)     with     0o < γ < 3600 (34) 

 414 
zL(γ) = 0 (35) 

 415 

The goal is to obtain the equation of the convergence curve in global coordinates (XG, 416 

YG, ZG). To achieve that,  ZL must be parallel to the axis of the circle and XL, YL can have 417 

any orientation due to the infinite planes of symmetry. Also, the orientation of XL will 418 

have a value with the component “Y” equal to 0. This decision will allow the 419 
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elimination of one of the rotation matrixes in the transformation of a 3D reference 420 

system. The final expression of the global coordinates is (the development is 421 

demonstrated in appendices): 422 

 423 

(

PfXG

PfYG

PfZG

) =

(

 
 
 

P41X + P42X

2
P41Y + P42Y

2
P41Z + P42Z

2 )

 
 
 

+ (

cos(αX) sin(αX) ∙ sin(αY) − cos(αY) ∙ sin(αX)

0 cos(αY) sin(αY)

sin(αX) − cos(αX) ∙ sin(αY) cos(αX) ∙ cos(αY)
) ∙ (

xL(γ)

yL(γ)

zL(γ)
) (36) 

 424 

The next steps will be: 425 

 426 

- Step 1: Equations of ellipsoids 1 and 2 in global coordinates. 427 

- Step 2: Definition of the lines r1 and r2. 428 

- Step 3: Intersection between ellipsoid 1 and r1 (Pa) and between ellipsoid 2 and r2 429 

(Pb). 430 

- Step 4: Line from P71 to Pa with a length of L (Pc) and line from P72 to Pb with a length 431 

of L (Pd). 432 

- Step 5: Angle between the vectors PfPc
⃗⃗⃗⃗⃗⃗  ⃗ and PfPd

⃗⃗ ⃗⃗ ⃗⃗  ⃗ (β). 433 

 434 

It is important to highlight that the domain of t1 and t2 will be: (0o ,180o] (the value of 435 

0o is not included because the solution is a line and not a scissor). Also, the following 436 

study has been developed with L = 2*a1 to guarantee the constant value of the focal 437 

distance.   438 

 439 
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4.1. One “t” value is 90o (in this case t2) and the other “t” value is iterated from 0o to 440 

90o. The values of β and γ for each relationship of b1/a1 have been represented in 441 

Table 2: 442 

 443 

t1=90o and t2=90o t1=80o and t2=90o t1=70o and t2=90o 

 

 
 

 

 

 

 

t1=60o and t2=90o t1=50o and t2=90o t1=40o and t2=90o 

 

 
 

 

 

 

 

t1=30o and t2=90o t1=20o and t2=90o t1=10o and t2=90o 

 

 
 

 

 
 

 

 

 444 
 445 
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 446 

Table 2. Evolution of the orientation of the scissors with a value of "t" fixed at 90o. 447 

 448 

The main property of the Table 2 is the number of times that the graphics cut the 449 

horizontal axis (the number of times with β = 0). For these cases, the orientation 450 

between ellipsoids 1 and 2 will be the same and there will be a geometric solution. This 451 

situation can be represented with the next equation: 452 

 453 
Number of possible solutions = (Number of times with β = 0 ) − 1     (1 = trivial solution) (37) 

 454 

As can be observed in the graphics of Table 2, all curves cut the horizontal axis twice 455 

and there will be only one geometric solution. If the geometric solution is drawn for 456 

each graphic, the final scissor module is always a perpendicular extrusion with respect 457 

to the plane that contains the scissor between ellipsoids 0 and 1. This situation just 458 

allows the design of deployable geometries that are the result of a perpendicular 459 

extrusion with respect to their generatrix: planes and cylinders with a simple 460 

curvature.  It is important to highlight that in case of a flat geometry, the condition of L 461 

= 2*a1 is not necessary because the scissors only have a relationship of a rotation. 462 

However, in the case of a cylindrical geometry, the condition of L = 2*a1 is mandatory 463 

because the relationship between the scissors is more than a rotation. Some examples 464 

of flat deployable structures with elements of the same length can be observed in Fig. 465 

16, Fig. 17 and Fig. 18. 466 

 467 

 468 

 469 
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 470 
 471 

Fig. 16. Flat deployable structure with elements of the same length and with a square 472 

tessellation. 473 

 474 

 475 
 476 

Fig. 17. Flat deployable structure with elements of the same length and with a 477 

triangular tessellation. 478 

 479 

 480 
 481 

Fig. 18. Flat deployable structure with elements of the same length and with a mixed 482 

tessellation. 483 

 484 

Some examples of a cylindrical deployable structure with a simple curvature and with 485 

elements of the same length can be observed in Fig. 19 and Fig. 20. 486 

 487 

 488 
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 489 
 490 

Fig. 19. Cylindrical deployable structure with elements of the same length and with a 491 

circular generatrix. 492 

 493 

 494 
 495 

Fig. 20. Cylindrical deployable structure with elements of the same length and with a 496 

mixed generatrix. 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 
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4.2. One “t” value is different in comparison with 90o (in this case t2 = 20 o) and the 506 

other “t” value is iterated from 0o to 90o. The values of β and γ for each relationship of 507 

b1/a1 have been represented in Table 3: 508 

t1=10o and t2=20o t1=20o and t2=20o t1=30o and t2=20o 

 

 
 

 

 

 

 

t1=40o and t2=20o t1=50o and t2=20o t1=60o and t2=20o 

 

 
 

 

 

 

 

t1=70o and t2=20o t1=80o and t2=20o t1=90o and t2=20o 

 

 
 

 

 

 

 

 509 
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 510 

Table 3. Evolution of the orientation of the scissors with a value of "t" fixed at 20o. 511 

 512 

 513 

As can be observed in Table 3, the graphics only cut the horizontal axis two times in 514 

two cases: for t1 = t2 and for t1 ≠ t2 but with one value of “t” equal to 90 o. 515 

 516 

In the rest of the cases, the graphics only cut the horizontal axis once (the trivial 517 

solution). On the other hand, the case of t1 = t2 and of t1 ≠ t2 but with one value of “t” 518 

equal to 90 o have been already studied in Table 2 (planes and cylinders with a simple 519 

curvature). 520 

 521 

Consequently, the only case that shall be analysed is t1 = t2. If both angles (t1 and t2) 522 

have the same value, there is symmetry in the original scissors and in the final scissors. 523 

This situation means that the curvature of the deployable surface is going to be 524 

constant (in the next module, the scissors are going to be the same with the same 525 

rotation between them). The only surface that has a constant curvature in all of its 526 

points is a sphere. Likewise, this deployable structure with the shape of a sphere must 527 

have polar units because it has been demonstrated that only flat deployable structures 528 

are possible for t1 = t2 = 90o. 529 

 530 

If the study of Table 3 is done for the interval from 90o to 180o, the number of 531 

intersections with the horizontal axis will be the same but with different positions. This 532 

part of the study has been removed to avoid an excessive quantity of tables.  533 

 534 
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For t1 = t2, both original scissors are the same and, in consequence, there is a 535 

relationship between them of a rotation (the condition of L = 2*a1 is not mandatory).  536 

Some application examples can be observed in Fig. 21, Fig. 22 and Fig. 23 using 537 

different relationships between L and a1. 538 

 539 

 540 
 541 

Fig. 21. Deployable structure with the shape of a sphere and with all elements of the 542 

same length (L = 0.75*2*a1) 543 

  544 
 545 

Fig. 22. Deployable structure with the shape of a sphere and with all elements of the 546 

same length (L = 2*a1) 547 

 548 

 549 
Fig. 23. Deployable structure with the shape of a sphere and with all elements of the 550 

same length (L = 1.25*2*a1) 551 

 552 

 553 

 554 

 555 

 556 
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6. Results: 557 

 558 

The goal of this section is to evaluate the influence of using elements with identical 559 

length in terms of structural behaviour. To achieve that, two spherical deployable 560 

structures are going to be designed where one model (Model A) is going to have all 561 

elements with the same length (length = 1.675 meters) and the other model (Model B) 562 

is going to have elements with a no identical length. The conditions of the simulation 563 

are going to be the next: 564 

 565 

a) Design conditions: 566 

- Both models will have a distance between supports of 10 meters. 567 

- Both models will have the same number of joints. 568 

- Both models will have the same number of elements. 569 

 570 

b) Calculation conditions: 571 

- Both models will have the same weight of elements, tendons and textile. 572 

Consequently, the price of both models will be the same. 573 

- Both models will have the same cross section for the elements, tendons and textile. 574 

-  Both models will satisfy the maximum vertical displacement expected in the Spanish 575 

regulation of structures against a vertical load of 1 kN/m2 applied on the surface of the 576 

structure. 577 

 578 

 579 
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Model A (all elements with an identical length) (black colour = elements and red colour 580 

= tendons) (Fig. 24): 581 

 582 

 583 

 584 
 585 

Fig. 24. (a) Floor view of Model A; (b) Frontal view of Model A; (c) Perspective view of 586 

Model A. 587 

 588 

Model B (all elements with a different length) (black colour = elements and red colour 589 

= tendons) (Fig. 25): 590 

 591 

 592 

 593 
Fig. 25. (a) Floor view of Model B; (b) Frontal view of Model B; (c) Perspective view of 594 

Model B. 595 

 596 

 597 

 598 

a) b) c) 

a) b) c) 
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6.1. Material and section properties (Table 4 and Table 5): 599 

 Material 
Weight per unit 
volume (kN/m3) 

Coefficient of 
Poisson 

Modulus of 
elasticity (kN/m2) 

Elements Aluminium 26.6018 0.33 69637055 

Tendons Cable 76.9729 0 1.965 x 108 

Surface Textile 12.027 0.3 1 
 600 

Table 4. Material properties. 601 

 Profile Outside diameter (cm) Wall thickness (cm) 

Elements Hollow-circular 6 0.8 

Tendons Solid-circular 1 - 

Surface Shell - 0.053 

 602 

Table 5. Section properties. 603 

6.2. Weight and price of each model (Table 6): 604 

 
Weight of the 
elements (kg) 

Weight of the 
tendons (kg) 

Weight of the 
textile (kg) 

Price of the structure 
(joints not included) 

Model A 897.66 43.35  55.37 kg 1703.31 $ 

Model B 900.13 41.82  54.14 kg 1697.68 $ 
 605 

Table 6. Weight and price of the structure of each model. 606 

6.3. Vertical displacements: 607 

 608 

a) Model A (all elements with the same length) (Fig. 26): 609 

 610 
Fig. 26. Vertical displacements of the structure with the same length in all elements 611 

(scale in meters). (a) Floor view; (b) Frontal view; (c) Perspective view. 612 

 613 

a) b) c) 



33 
 

b) Model B (all elements with a different length) (Fig. 27): 614 

 615 

 616 
Fig. 27. Vertical displacements of the structure with a different length in all elements 617 

(scale in meters). (a) Floor view; (b) Frontal view; (c) Perspective view. 618 

 619 

The comparison of the vertical displacements is represented in Figure 28: 620 

 621 

 622 
 623 

Fig. 28. Comparison of vertical displacements between both models (superior joints). 624 

 625 

a) b) c) 
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In addition, the limit of the vertical displacements in function of the Spanish regulation 626 

for structures is: 627 

 628 
2 ∙ Distance between point A and point B

3
≥ Vert. displac. of point A − Vert. displac. of point B (38) 

 629 

The previous equation must be satisfied for all possible combinations of the points of 630 

the structure. The worst combination for the Model A is: Point A = Joint 6; Point B = 631 

Joint 7 and distance between point A and point B = 1.75 meters 632 

Consequently: 633 

 634 
2 ∙ 1.75

3
≥ 1.55 − 0.4 → 1.16 ≥ 1.15 (39) 

 635 

The worst combination for the Model B is: Point A = Joint 4; Point B = Joint 3 and 636 

distance between point A and point B = 1.59 meters 637 

Consequently: 638 

2 ∙ 1.59

3
≥ 2.88 − 1.84 → 1.06 ≥ 1.04 (40) 

 639 

As can be observed in Figure 28, the behaviour of the Model A (all elements with the 640 

same length) in terms of vertical displacements is worse in comparison with the Model 641 

B (all elements with a different length): only 3 points (joints 4, 7 and 9) have a lower 642 

vertical deformation in the Model A. In conclusion, the vertical displacements of a 643 

spherical deployable structure using the same length in all elements are worse in 644 

comparison with the use of elements with a different length. 645 

 646 

 647 

 648 

 649 
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6.4. Natural frequencies: 650 

 651 

The natural frequencies of both models are: 652 

 653 
 654 

Fig. 29. Natural frequencies and vibration modes for each model. 655 

When the rigidity of a structure is evaluated, M1, M2 and M3 are always the most 656 

important vibration modes and, as can be observed in Figure 29, the Model A has a 657 

better value of the natural frequencies in M1, M2 and M3 (the higher is the natural 658 

frequency, the higher is the rigidity of the structure). 659 

 660 

Therefore, the behaviour of Model A against the loss of stiffness is approximately 40% 661 

- 60% better than Model B and, in consequence, the rigidity of a deployable structure 662 

using the same length in all elements is better in comparison with the use of elements 663 

with a different length. 664 

 665 



36 
 

7. Conclusions: 666 

 667 

The design possibilities and the structural behaviour of deployable structures with 668 

identical elements is a topic that had been never researched in deep. The results of 669 

this paper give an overview of the geometries that can be developed using identical 670 

elements: flat shapes, cylinders with any generatrix, spheres and combinations of 671 

these options. Furthermore, the use of this geometric constraint allows the creation of 672 

deployable structures with higher vertical deformations and natural frequencies 673 

(better stability of the structure against horizontal displacements). Having these 674 

parameters in consideration, the decision of using identical elements will be based on 675 

the requirements of the structure in terms of the geometric complexity and the 676 

structural regulation of the country. 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 
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