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Abstract. In this article, we prove the existence of a saddle-node bifurcation

of limit cycles in continuous piecewise linear systems with three zones. The
bifurcation arises from the perturbation of a non-generic situation, where there

exists a linear center in the middle zone. We obtain an approximation of the
relation between the parameters of the system, such that the saddle-node bifur-

cation takes place, as well as of the period and amplitude of the non-hyperbolic

limit cycle that bifurcates. We consider two applications, first a piecewise lin-
ear version of the FitzHugh-Nagumo neuron model of spike generation and

second an electronic circuit, the memristor oscillator.

1. Introduction. Bifurcations are qualitative changes in the phase portrait of fam-
ilies of differential equations as the parameter varies. The simplest cases are those
involving equilibria. The next level of complexity would be bifurcations where limit
cycles are involved. In particular, in a planar saddle-node bifurcation of limit cy-
cles, also called fold of limit cycles, the phase portrait passes from exhibiting two
hyperbolic limit cycles of different stability surrounding an equilibrium point, to the
disappearance of such cycles through their collision in a non-hyperbolic semistable
limit cycle.

This bifurcation is very common in applications. Specifically, the bistable con-
figuration, where the equilibrium point in the interior of both limit cycles and the
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P12-FQM-1658. The third author is supported by Ministerio de Economı́a y Competitividad
through the projects MTM2014-54275-P and MTM2017-83568-P (AEI/ERDF, EU).

∗ Corresponding author: V. Carmona.

1

http://dx.doi.org/10.3934/dcds.2019215
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outer limit cycle are stable, whereas the inner limit cycle is unstable. In this config-
uration, the basin of attraction of both attractors are bounded by the unstable limit
cycle, which can be considered as a threshold between the resting regime and the os-
cillatory one. These bistable systems are ubiquitous in biology [45], and saddle-node
bifurcation is then a route for explaining some phenomena, for instance annihila-
tion and single-pulse triggering [26]. In such phenomenon, an oscillatory behavior
is ceased by injecting a sub-threshold pulse, and then, the activity is restarted by
injecting a supra-threshold pulse. Annihilation has been described in several biolog-
ical oscillators, such as the activity of the sinoatrial node [27], the eclosion rhythm of
fruit flies, the circadian rhythm of bioluminescence in marine algae and biochemical
oscillators, see [45]. Moreover, saddle-node bifurcation is also involved in the build-
ing of the elliptic bursting [30], a bursting mechanism (a type of oscillatory behavior
of excitable systems whose main characteristic is an alternation of quiescent phases,
and rapid oscillations phases [29]), which takes place in rodent trigeminal neurons
[15]. Also in electronic circuits, phenomena involving saddle-node bifurcations can
appear, see [1, 43]. In particular, they are observed in the well-known Chua’s circuit
[23, 24]. This phenomenon is of a great interest for the control system designer.

We can find very few works about the proof of the existence of saddle-node
bifurcation of limit cycles in general nonlinear systems. In [12], it was shown that
this bifurcation occurs in a generic two parameter unfolding of a homoclinic orbit
with resonant eigenvalues. In [31, Th 3.6], authors prove the existence of a curve
of saddle-node of limit cycles in canard regime in a family of slow-fast systems.
However, it is not an easy task to give an expression, in the parameter space,
where this bifurcation takes place. Alternatively, numerical methods can be used
to analyze the saddle-node bifurcation of limit cycles. In fact, new methods and
continuation packages have been developed with this goal [25].

From their appearance in the book of Andronov, Vitt and Khaikin [2], piecewise
linear (PWL) systems have shown their capability not only to capture different
behaviors coming from a wide class of applications [17, 32], but also to reproduce
a large amount of aspects of nonlinear dynamics. Furthermore, these systems show
new behaviors, impossible to obtain under differentiability hypothesis [16, 17, 32].
Together with the property of mimicking the richness of nonlinear dynamics, PWL
systems exhibit a simpler analytical treatment. This property allows, in many cases,
to obtain quantitative information of the analyzed dynamical objects (for instance,
the period and amplitude of limit cycles, [18, 22, 28]) and to explain the way some
bifurcations take place [6].

Saddle-node bifurcation of limit cycles in the PWL context has been reported
in different publications. In [35], the authors prove the existence of a codimension-
1 manifold of saddle-node of limit cycles in a family of planar continuous PWL
systems with three zones and symmetry coming from a heteroclinic connection. In
[34], the authors study the number of limit cycles and prove the existence of two
hyperbolic limit cycles with different stability surrounding one equilibrium point
in a non-symmetric family of PWL systems. Even when this configuration is close
to a saddle-node bifurcation as, for instance, we can observe in Figure 1 c) of
[34], where two limit cycles are close one another, the saddle-node bifurcation is
not reported in this paper. In [40], boundary equilibrium bifurcations in planar
continuous PWL systems with two and three zones are studied. They find situations
with two limit cycles and in this case the authors conjecture the existence of a saddle-
node bifurcation of limit cycles. Regarding three dimensional PWL systems with
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two zones, in [23, 24], the authors analyze the existence of a saddle-node of limit
cycles as a degeneration of a focus-center-limit cycle bifurcation. Furthermore, they
apply these results to the Chua’s circuit. In [6, 10], the authors describe a noose
bifurcation in a PWL version of the Michelson system; such structure involves a
saddle-node bifurcation, which is also analyzed. We finish this literature revision
with [7, 8], where a generalization of the Melnikov theory to non-smooth systems
was developed and applied to prove the existence of saddle-node bifurcations of
limit cycles in discontinuous and hybrid PWL systems.

In this article, we focus our attention on the proof of the existence of a saddle-
node bifurcation of limit cycles in continuous PWL systems with three zones. A
branch of saddle-node of limit cycles is proved to start at a degeneration of a focus-
center-limit cycle bifurcation. This conclusion is established through the application
of the Implicit Function Theorem to the closing equations together with a non-
hyperbolicity condition. This technique has been previously used to prove the
existence of limit cycles in [3, 5, 22, 23, 36] and global connections in [9], but we
remark that here it is applied not only to the set of closing equations, but also
to the non-hyperbolicity condition. The starting point for applying the Implicit
Function Theorem is, often, in the perturbation of a linear center, either in the plane
[3, 7, 21], or in the space [4, 6, 22]. Moreover, the piecewise linear perturbation can
be continuous [6, 21, 22], or discontinuous [3, 7].

We consider two applications of our theoretical result. First, the McKean model,
a PWL version of the FitzHugh-Nagumo system [20, 38]. As far as we are con-
cerned, the existence of the saddle-node bifurcation of limit cycles in the original
differentiable FitzHugh-Nagumo system has not been proved yet, although there
exist numerical evidences of its existence [41, 42]. In [44], the author consider a dis-
continuous version of the McKean model with two zones and proves the existence
of a saddle-node bifurcation of limit cycles. In the present paper, we consider a
continuous version of the McKean model with four zones of linearity, three zones
to mimic the cubic, and one small extra zone in one of the folds in order to capture
the passing of the solutions through the fold, see [19]. From our main result we
conclude the existence in this model of a saddle-node bifurcation and derive explicit
expressions for both the curve of saddle-nodes and period of the saddle-node limit
cycle. The obtained result is compatible with those in [44]. As a second application,
we consider the memristor oscillator [14]. For this electronic circuit, we analyze the
version of the model that was considered in [34]. Although in [34] they find cases
where two limit cycles exist, they do not focus their attention on the existence of
the saddle-node bifurcation of limit cycles.

The paper is outlined as follows. In Section 2, we introduce the target system and
the main result. After that, Section 3 is devoted to the application of our result
to first a PWL version of the FitzHugh-Nagumo neuron model and second the
memristor oscillator. Subsequently, in Section 4 we include the proofs of the result
established in Section 2. In Section 5 we state some conclusions and perspectives.
Finally, we include two appendices. Appendix A is devoted to the most technical
details of the proof of the main result and in Appendix B, we include an algorithm
for fine tuning of the external impulse in order to facilitate annihilation/regeneration
in a voltage trace of the McKean model.
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2. PWL system with three zones. Main result. We focus our attention on
the continuous planar piecewise linear (PWL) system with three zones of linearity

u̇ = F (u) (1)

where u = (u1, u2)T , the dot denotes the derivative with respect to the variable s
and the piecewise linear vector field F is given by

F (u),=


MLu + nL if u1 ≤ v,
MCu + nC if v < u1 < w,

MRu + nR if u1 ≥ w,
(2)

being v, w ∈ R, v < w, nL,nC ,nR ∈ R2 and ML,MC ,MR 2 × 2 real matrices.
The existence and uniqueness of solutions for the initial value problem associated
to system (1) comes from the fact that F is a Lipschitz function.

Note that, inter alia, matrices ML,MC and MR have to share their second
columns due to the hypothesis of continuity of the vector field F . This shared
column will be denoted by (m12,m22)T , where the superscript T denotes the trans-
posed. When m12 = 0, the variable u1 is decoupled and the dynamical behavior of
the system (1) is not strictly bidimensional. We say, following [4], that system (1)
is not observable. When the system is observable, an adequate change of variable
allows to write the system into the canonical Lienard form. We enunciate this fact
in the following result where we also transform the values v and w into −1 and 1,
respectively. The proof of this result is direct.

Proposition 1. Suppose that m12 6= 0. Then, the change of variables(
X
Y

)
= Pu + c,

with

P =

(
2

w−v 0

− 2m22

w−v
2m12

w−v

)
and c = v+w

w−v

(
−1
m22

)
transforms system (1) into the system

(
Ẋ

Ẏ

)
=



NL

(
X
Y

)
+ dL if X ≤ −1,

NC

(
X
Y

)
+ dC if −1 < X < 1,

NR

(
X
Y

)
+ dR if X ≥ 1,

(3)

where

Nk =

(
Tk 1

−Dk 0

)
and dk = Pnk −Nkc for k ∈ {L,C,R},

being Tk = trace(Mk) and Dk = det(Mk) for k ∈ {L,C,R}.

Our interest begins under the assumption that system (3) possesses a center
configuration in the central zone |X| ≤ 1. This fact implies DC > 0 and the

existence of a unique equilibrium point (X̄C , ȲC) for the linear system (Ẋ, Ẏ )T =
NC(X,Y )T +dTC . Now, we establish a result, whose proof is straightforward, where
one can get, with a suitable change of variables, DC = 1 and ȲC = 0.
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Proposition 2. Assume that DC > 0. Then, the change of variables

x = X, y =
1√
DC

(
Y +

(
1, TCDC

)T
· dC

)
, t =

√
DC s

transforms system (3) into the system

(
x′

y′

)
=



AL

(
x
y

)
+ bL if x ≤ −1,

AC

(
x
y

)
+ bC if −1 < x < 1,

AR

(
x
y

)
+ bR if x ≥ 1,

(4)

where the prime denotes the derivative with respect to t,

AL =

(
tL 1
−dL 0

)
, AC =

(
−m 1
−1 0

)
, AR =

(
tR 1
−dR 0

)
, (5)

bL =

(
tL +m(aC + 1)
aC + 1− dL

)
, bC =

(
maC
aC

)
, bR =

(
m(aC − 1)− tR
aC − 1 + dR

)
, (6)

being
tL = TL√

DC
, dL = DL

DC
, m = − TC√

DC
,

tR = TR√
DC

, dR = DR
DC

, aC = (0, 1) · dC .

We remark that system (4) can be written in the form{
x′ = y + f(x; aC , tL,m, tR),
y′ = g(x; aC , dL, dR),

(7)

where

f(x; aC , tL,m, tR) =

 tLx+m(1 + aC) + tL, if x < −1,
m(aC − x), if − 1 < x < 1,
tRx+m(aC − 1)− tR, if x ≥ 1,

and

g(x; aC , dL, dR) =

 −dL(x+ 1) + aC + 1, if x < −1,
aC − x, if − 1 < x < 1,
dR(1− x) + aC − 1, if x ≥ 1.

The phase space is splited into the lateral half-planes L = {(x, y) : x ≤ −1}, R =
{(x, y) : x ≥ 1} and the central band C = {(x, y) : −1 ≤ x ≤ 1}.

To begin with, in the following result, whose proof is direct, we impose the
conditions for the existence of a continuum of periodic orbits of system (7) with
two tangency points.

Proposition 3. If aC = m = 0, then system (7) has a continuum of periodic orbits
in the central zone. Moreover, the most external orbit Γ0 of this continuum has
two tangency points with the separation lines x = −1 and x = 1, at the points,
q0 = (−1, 0) and q1 = (1, 0), respectively.

By perturbing this non-generic situation, we will look for non-hyperbolic periodic
orbits Γ, which lives in the three regions L,C and R, coming from the most exter-
nal orbit of the continuum Γ0. In particular, in Section 4 we prove the following
result, which is the main result of this work, about the existence of a saddle-node
bifurcation of limit cycles.
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Theorem 2.1. Consider system (7) with fixed values of the parameters tL, tR,
dL, and dR. If tL · tR < 0 and tL + tR 6= 0, then there exists a function a∗C(m),

analytic as function of m1/3, and defined in the neighborhood of the origin satisfying
m · tR(t2L − t2R) > 0, with a∗C(0) = 0, and such that, for 0 < |m| � 1, system (7)
has a saddle-node bifurcation of limit cycles when aC = a∗C(m).

Specifically, if tLtR(t2L−t2R)(aC−a∗C(m)) < 0, then the system has two three-zonal
limit cycles with opposite stability and close to the periodic orbit Γ0; if tLtR(t2L −
t2R)(aC − a∗C(m)) > 0, then the system has no limit cycles close to Γ0; and if
aC = a∗C(m), then the system has a unique three-zonal semi-stable limit cycle Γ
close to Γ0.

Moreover, approximations of the function a∗C(m), the period and amplitude of
limit cycle Γ are given by,

a∗C(m) =

(
3π

16

)2/3(
1

t2R
− 1

t2L

)1/3

m2/3 +O(m), (8)

T = 2π +
(1− dR)t3L + (dL − 1)t3R

tLtR(t2L − t2R)
πm+O(m2), (9)

and

A =

(
3π

2

)1/3
(tL − tR)2/3

(tL tR)1/3(tL + tR)1/3
m1/3 +O(m2/3), (10)

where the amplitude A has been measured as the difference between the intersection
of the orbit with the separation line x = −1 with a positive y−coordinate minus the
intersection of the orbit with the separation line x = 1 with a negative y−coordinate.

Remark 1. Note that, with the definition of the amplitude considered in Theorem
2.1, the tangent orbit Γ0 of the unperturbed case of Proposition 3 has amplitude
equal to zero.

Remark 2. Condition tL · tR < 0 in Theorem 2.1 is a necessary condition to prove
the existence of a saddle-node bifurcation of limit cycles perturbing from the tangent
orbit Γ0, see expression of τ̄L in (22). Hence, we conclude that this bifurcation is
only possible under the condition of having f(x; aC , tL,m, tR) a quadratic shape.
This conclusion does not contradict the existence of saddle-node limit cycles when
f(x; aC , tL,m, tR) has a cubic shape, (see, for instance, [35]), provided that in such
case the saddle-node limit cycle perturbs from a heteroclinic connection.

Remark 3. Statements (d) and (e) of Theorems 5 and 6 in [34] provide condi-
tions about the traces and determinants of the coefficient matrices of the system,
including the inequality tL · tR < 0, such that there exists at most one limit cycle,
which precludes the presence of a saddle-node bifurcation of limit cycles. Note that
conditions in [34] are not satisfied under the hypotheses of Theorem 2.1, as it is
assumed that the trace of the coefficients matrix in central zone tC = −m is small
enough in absolute value.

Remark 4. With respect to the cases not included in Theorem 2.1, we can provide
the following information. The symmetric case (tL = tR and aC = 0), has been
studied in [22] and only the existence of a limit cycle that perturbs from the linear
center appears. This does not mean that the saddle-node bifurcation can not be
obtained from other configurations, (see, for instance, [8, 35]) and, as far as we
are concerned, the analysis of the saddle-node bifurcation in the symmetric case is
not closed. The reversible case (tL = −tR, m = aC = 0) implies an unbounded
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center. If tL = −tR 6= 0, propositions 4 and 5, provide us the existence of a family
of non-hyperbolic periodic orbits with m = aC = 0, corresponding to that of the
unbounded center. In the case tL = −tR, m 6= 0 and/or aC 6= 0, there could be a
saddle-node that do not emerge from the tangent, but instead arise from any three-
zonal periodic orbit. This study requires a different analysis, such as the Melnikov
theory used in [3, 8].

In Fig. 1 we plot an schematic representation of the bifurcation diagram in m, aC
parameter plane in case tLtR(t2L−t2R) < 0 for m and aC sufficiently small. Solid line
represents the saddle-node curve aC = a∗C(m). In the region aC > a∗C(m), two limit
cycles with opposite stability and close to Γ0 exist and in the region aC < a∗C(m)
no limit cycles close to Γ0 exist.

m

aC

aC = a∗C(m)

Figure 1. Schematic representation of the bifurcation diagram in
m, aC parameter plane in case tL < 0, tR > 0, and tLtR(t2L−t2R) < 0
for m and aC sufficiently small. Solid line represents the saddle-
node curve aC = a∗C(m). In the region aC > a∗C(m), two limit
cycles with opposite stability and close to Γ0 exist and in the region
aC < a∗C(m) no limit cycles close to Γ0 exist.

3. Applications. In this section we consider two applications of our theoretical
result. First subsection is devoted to a PWL version of the FitzHugh–Nagumo
model, the McKean model. Second subsection is focused on the memristor oscillator.

3.1. The McKean model. The McKean model is a simplified piecewise linear
model of neuronal activity with regular firing, [37]. This model can be derived from
the FitzHugh–Nagumo model just by considering a piecewise linear approximation
of the cubic nullcline of the voltage V . Let us consider the differential system{

CV̇ = f(V )− w + I,
ẇ = V − βw − w0,

(11)

where C > 0 is the capacitance and the cubic nullcline of V is given here by the
piecewise linear function

f(V ) =


−V V ≤ a

2 − δ,
tcV + (δ − a

2 )(tc + 1) a
2 − δ ≤ V ≤

a
2 + δ,

trV + δ(2tc + 1− tr)− a
2 (1 + tr)

a
2 + δ ≤ V ≤ a+1

2 ,
−V + δ(2tc + 1− tr) + 1

2 (1 + tr) V ≥ 1+a
2 ,

with 0 < δ � 1/2, tr > 0 and β2 < 1/C.
Some differences with respect to the standard McKean model are remarkable. In

first place, the cubic nullcline of the FitzHugh-Nagumo model is here approximated
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by a four-linear-segments polygonal curve. The idea is to mimic, locally, one of
the quadratic folds by three linear pieces (with a close to flat central slope, namely
tc) instead of a corner. Occasionally, this approximation gives results fitting better
with the ones exhibited by the FitzHugh-Nagumo model, see [19]. In second place,
in the classical McKean model, the slope tr of the segment defined in the strip
V ∈ (a/2 + δ, (a + 1)/2) is set equal to one, while in our version of the model it is
an independent parameter, that can be changed.

By setting the values of the parameters C, β, w0, a and δ, in the following result
we prove the existence, in the parameter space (tc, I), of a saddle-node bifurcation
of limit cycles in the McKean model. Additionally, approximated expressions for
the bifurcation curve and for the period and amplitude of the saddle-node limit
cycle are provided. We recall that in [44] the author proves a similar result, but in
a discontinuous version of the McKean model with two zones of linearity.

In Figure 2, we illustrate the passing through the saddle-node bifurcation in
the case (βC + 1)(tr + 1)(tr − 2βC − 1) < 0. When the parameter I is smaller
than the bifurcation value I∗, then no limit cycles exist near the equilibrium point
which, locally, is an attractor, see panel (a). In panel (b), the parameter is just on
the bifurcation value, I = I∗, and a non-hyperbolic limit cycle appears, so-called
saddle-node limit cycle. This limit cycle is stable from the outside and unstable from
the inside. After passing through the bifurcation value, two concentric limit cycles
perturb from the non-hyperbolic one. The outer limit cycle is stable whereas the
inner one is unstable, see panel (c). Even when the bifurcation takes place involving
three zones, some configurations exhibiting by the system are originated at the
bifurcation. In particular, when the parameter increases far from the bifurcation
value, the size of the inner limit cycle decreases and it becomes a two zones limit
cycle, whereas the size of the outer limit cycle increase and it becomes a four zones
limit cycle. Panel (d) shows this configuration for the parameter I larger enough
than I∗.

Corollary 1. Consider system (11) with fixed values of the parameters C, β, w0,
tr, a and δ. If (1 + βC)(tr − βC) > 0 and tr − 2βC − 1 6= 0, then there exists a
function I∗(tc), defined for tc in a neighborhood of the value t∗c = βC and such that
(tc − βC)(1 + tr)(tr − βC)(tr − 2βC − 1) > 0, which corresponds to a saddle-node
of limit cycles of the system. Specifically, if (1 + βC)(1 + tr)(tr − βC)(tr − 2βC −
1)(I−I∗(tc)) < 0, then the system exhibits two three-zonal limit cycles with opposite
stability; if (1 +βC)(1 + tr)(tr−βC)(tr−2βC−1)(I− I∗(tc)) > 0, then the system
has no limit cycles; and if I = I∗(tc), then the system has a unique three-zonal
semi-stable limit cycle. Approximations for function I∗(tc) and the period of the
saddle-node limit cycle are given by

I∗(tc) = −2w0 − (β + 1)a+ 2βδ(βC + 1)

2β
+(

3π

16

)2/3
δ(β2C − 1)(t2r − 2βCtr − 2βC − 1)1/3

(βC + 1)2/3(tr − βC)2/3
(tc − βC)2/3 +O(tc − βC) (12)

and

T ∗(tc) = 2π +
βπ

β2C − 1
(tc − βC) +O((tc − βC)2).

Proof. Following propositions 1 and 2, the change of coordinates and time

x =
1

δ

(
V − a

2

)
, y =

1

δ
√
r

(
β
(
V − a

2

)
− w

C

)
− y0, τ = t

√
dc,
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Figure 2. Saddle-node bifurcation in the McKean model (11) with
C = 0.25, β = 0.5, w0 = 0, a = 1, δ = 0.25, tc = 0.1 and tr =
0.8. According to Corollary 1, the bifurcation takes place at I∗ =
1.263 . . . In panel (a), the parameter I = 1.2 is smaller than the
bifurcation value, then no limit cycles exit near the equilibrium
point which is a local attractor. In panel (b) the parameter is
just on the bifurcation, I = I∗, and a non-hyperbolic limit cycle
appears. This limit cycle is stable from the outside and unstable
from the inside. In panel (c) the parameter I = 1.265 is greater
than the bifurcation value and then two concentric limit cycles
perturb from the non-hyperbolic one. The outer limit cycle is stable
whereas the inner one is unstable. The limit cycles perturbing
from the saddle-node limit cycle move away one each other as the
parameter increases far from the perturbation value I∗. In panel
(d), for I = 1.3, the inner limit cycle becomes a two zonal limit
cycle whereas the outer one becomes a four zones limit cycle.

where r = (1− βtc)/C > 0 and

y0 = − (2w0 − a)(tc − βC) + (1− β2C)(2I + 2δ + 2δtc − a)

2δ
√
C(1− βtc)3/2

,

transforms system (11) into the following one


dx

dτ
= f̃(x) + y,

dy

dτ
= g̃(x),

(13)
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where

f̃(x) =


TL(x+ 1) +m(aC + 1) x ≤ −1,
m(aC − x) −1 ≤ x ≤ 1,
TR(x− 1) +m(aC − 1) 1 ≤ x ≤ 1

2δ ,
TLx+m(aC − 1) + 1

2δ
1+tr√

C
√

1−βtc
− TR x ≥ 1

2δ ,

with

aC =
2w0 + 2βδtc − βa− a+ 2βI + 2βδ

2δ(1− βtc)
,

m =
βC − tc√
C
√

1− βtc
, TL =

−1− βC√
C
√

1− βtc
, TR =

tr − βC√
C
√

1− βtc
,

and

g̃(x) =


−DL(x+ 1) + aC + 1 x ≤ −1,
aC − x −1 ≤ x ≤ 1,
−DR(x− 1) + aC − 1 1 ≤ x ≤ 1

2δ ,

DLx+DR + aC − 1− β
2δ

tr+1
βtc−1 x ≥ 1

2δ ,

with

DL =
β + 1

1− βtc
, DR =

1− βtr
1− βtc

.

Note that, restricted to the bands {x < −1}, {|x| ≤ 1} and {1 < x ≤ 1/2δ}, this
system coincides with system (7), where tL = TL, tR = TR, dL = DL, dR = DR.
Moreover, as δ is fixed, the dynamics of the fourth zone {x ≥ 1/2δ} does not
influence the analysis around the tangent periodic orbit that exists for I = 0 and
tc = βC. Therefore, the rest of the proof is a consequence of Theorem 2.1.

Saddle-node of limit cycles exhibited by the McKean model can be used to ex-
plain the switching between resting and spiking activity by injecting an external
impulse, see Figure 3. In fact, from the approximation of the bifurcation value
I∗(tc), obtained in Corollary 1, we propose a first proof of concept to address the
tuning of the external impulse I, in order to facilitate annihilation/regeneration
in a voltage trace. The starting point is the assumption that the system is close
to a saddle-node limit cycle. The proposed solution switches between the resting
and spiking activity by injecting an external impulse during a fixed time window,
depending on the parameters of the system. The algorithm is stated in Appendix
B. In Figure 3, we illustrate the result of this algorithm, the oscillatory behavior is
annihilated and restarted again just by injecting a single pulse.

3.2. The memristor oscillator. Memristors are two-terminal electronic passive
devices where charge and electric flux are related through a nonlinear function,
called the characteristic of the memristor. This device was firstly introduced by
Chua [13]. These class of new generation oscillators have potential to model the be-
havior of synapse connections in neurons. In [34], the authors propose the following
modification for the nonlinear flux-charge characteristic of the memristor oscillator
appearing in [14], namely,

fM (x) =

 bL(x+ u)− au if x ≤ −u,
ax if −u < x < v,
bR(x− v) + av if x ≥ v.
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Figure 3. Fine tuning of the external impulse, I, in order to
facilitate annihilation and single-pulse triggering in the McKean
model (13) with C = 0.25, β = 0.5, w0 = 0, a = 1, δ = 0.25, tc = 0.1
and tr = 0.8, see Appendix B. (a) An oscillatory behavior is ceased
by injecting a pulse, see panel (b). The activity is restarted again
by injecting a new pulse.

The state equations of the system of the mathematical model of the memristor
oscillator are given by {

x′ = vx− fM (x)− y,
y′ = v(Gx− fM (x)),

(14)

where the constants a, bL, bR, G, u and v depend on the components of the circuit.
Under the hypothesis v(G−a) > 0 and by means of the application of the changes

of the variables stated in propositions 1 and 2, system (14) can be transformed into
the form (4), where

tL = v−bL√
v(G−a)

, dL = G−bL
G−a , m = − v−a√

v(G−a)
,

tR = v−bR√
v(G−a)

, dR = G−bR
G−a , aC = u−v

u+v .

The next result is a direct consequence of Theorem 2.1.

Corollary 2. Consider system (14) with fixed values of the parameters G, bL, bR,
and a. If a(G − a) > 0, (a − bL) · (a − bR) < 0 and 2a − bL − bR 6= 0, then there
exists a function u∗(v) defined for v− a sufficiently small and (v− a)(v− bR)(bL −
bR)(bL + bR − 2v) < 0, such that system (14) has a three-zonal saddle-node limit
cycle when u = u∗(v). Specifically, if (bR − bL)(a − bL)(a− bR)(2a− bR − bL)(u−
u∗(v)) < 0, the system exhibits two three-zonal limit cycles with opposite stability;
if (bR − bL)(a− bL)(a− bR)(2a− bR − bL)(u− u∗(v)) > 0, then the system has no
limit cycles; and if u = u∗(v), the system has a unique three-zonal semi-stable limit
cycle. Approximations for the function u∗ and the period of the saddle-node limit
cycle are given by

u∗(v) = a+

(
3π

2

)2/3
a

2

(
(bL − bR)(bL + bR − 2a)

(bL − a)2(bR − a)2

)1/3

(v − a)2/3 +O(v − a)
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and

T ∗(v) = 2π +
π

G− a
(v − a) +O

(
(v − a)2

)
.

4. Proof of main result. This section is devoted to the proof of Theorem 2.1. By
perturbing the non-generic situation described in Proposition 3, in a first subsection
we will look for a non-hyperbolic periodic orbit Γ, which intersects the three regions
L,C and R, coming from the most external orbit of the continuum Γ0. In a second
subsection we will prove that it corresponds to a saddle-node bifurcation.

4.1. Existence of non-hyperbolic periodic orbits. Let us begin by introducing
some notation. For chosen parameters η = (aC , tL,m, tR, dL, dR) and a point p ∈
R2, we denote by

ϕ(t; p,η) = (x(t; p,η), y(t; p,η))

the solution of system (7) with initial condition ϕ(0; p,η) = p. The coordinates
of ϕ(t; p,η) will be referred to as xi(t; p,η) and yi(t; p,η), with i ∈ {L,C,R},
depending on the region where the solution belongs to, for that value of t.

Consider a point p0 = (−1, y0). Assume that it exists a flight time τCu > 0 such
that xC(τCu; p0,η) = 1 and xC(s; p0,η) ∈ (−1, 1) for all s ∈ (0, τCu). In such a
case, we can define the Poincaré half-map between the switching lines x = −1 and
x = 1 at the point y0 as PCu(y0,η) = yC(τCu; p0,η). Similarly, we can define the
Poincaré half-map between the switching lines x = 1 and x = −1 at the point y2

as PCd(y2,η) = yC (τCd ; p2,η), where τCd > 0 is the flight time and p2 = (1, y2).
On the other hand, consider a point p1 = (1, y1). Assume that it exists a flight
time τR > 0 such that xR(τR; p1,η) = 1 and xR(s; p1,η) > 1 for all s ∈ (0, τR). In
such a case, we can define the Poincaré half-map between the switching line x = 1
and itself at the point y1 as PR(y1,η) = yR (τR; p1,η). Similarly, we can define the
Poincaré half-map between the switching line x = −1 and itself at the point y3 as
PL(y3,η) = yL (τL; p3,η), where τL > 0 is the flight time and p3 = (−1, y3).

At this point, the Poincaré map for system (7) can be defined.

Definition 4.1. The Poincaré map P of system (7) is defined as

P (y0,η) = PL(PCd(PR(PCu(y0,η),η),η),η). (15)

provided the composition of Poincaré half-maps is possible.

A periodic orbit which visits the three regions must satisfy P (y0,η) = y0, (see
Fig. 4), or equivalently, the following eight equations,

xC(τCu; (−1, y0),η) = 1, yC(τCu; (−1, y0),η) = y1,
xR(τR; (1, y1),η) = 1, yR(τR; (1, y1),η) = y2,
xC(τCd; (1, y2),η) = −1, yC(τCd; (1, y2),η) = y3,
xL(τL; (−1, y3),η) = −1, yL(τL; (−1, y3),η) = y0,

(16)

together with the constrains τL, τR, τCu, τCd > 0 and

xC(s; (−1, y0),η) ∈ (−1, 1), for all s ∈ (0, τCu),
xR(s; (1, y1),η) > 1, for all s ∈ (0, τR),
xC(s; (1, y2),η) ∈ (−1, 1), for all s ∈ (0, τCd),
xL(s; (−1, y3),η) < −1, for all s ∈ (0, τL).

(17)

must be satisfied.
Equations (16) and inequalities (17) are the conditions of the existence of a pe-

riodic orbit living in the three regions. To take into account the non-hyperbolicity
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Figure 4. Representation of a three-zonal periodic orbit of system (7).

of the periodic orbit, we consider the derivative of the Poincaré map, which corre-
sponds to the exponential of the integral of the divergence of the system along such
a periodic orbit, see [11]. In the particular case of PWL systems, the integral of the
divergence can be explicitly computed as the sum of the products of the traces and
the flight times in each region of linearity, see [21]. Hence,

∂P

∂y0
(y0,η) = etLτL−m(τCu+τCd)+tRτR .

for a fixed point y0 of Poincaré map P .
Therefore, the condition of non-hyperbolicity in our case reads,

tLτL −m(τCu + τCd) + tRτR = 0. (18)

Now, consider fixed values for the parameters tL, tR, dL, and dR. The existence
of a non-hyperbolic limit cycle arising from the last periodic orbit of the linear center
reduces to the existence of a set of parameters aC ,m ∈ R, τL, τR, τCu, τCd > 0 and
real values y0, y1, y2, y3, so that they satisfy equations (16) and (18) and inequalities
(17). We begin by looking for a solution for the equations and later we will check
that the solution satisfies the required inequalities.

There exists a special solution of system of equations (16) and (18), namely,

aC = m = 0, τCu = τCd = π, τL = τR = 0, y0 = y1 = y2 = y3 = 0. (19)

This solution corresponds with the orbit Γ0 of the non-generic case described in
Proposition 3. Due to the two tangency points of this solution with the separation
lines, it is not possible to apply directly Implicit Function Theorem to system (16)
and (18) at solution (19). First, it is necessary to desingularize 2nd. and 4th.
equations at the first column in (16), and consider the new set of equations,
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xC(τCu; (−1, y0),η) = 1, yC(τCu; (−1, y0),η) = y1,
(xR(τR; (1, y1),η)− 1)/τR = 0, yR(τR; (1, y1),η) = y2,
xC(τCd; (1, y2),η) = −1, yC(τCd; (1, y2),η) = y3,
(xL(τL; (−1, y3),η) + 1)/τL = 0, yL(τL; (−1, y3),η) = y0,

tLτL −m(τCu + τCd) + tRτR = 0.

(20)

Let us now define the function F : R10 → R9, with F = (Fk)9
k=1 and

F1(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = xC(τCu; (−1, y0),η)− 1,
F2(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = yC(τCu; (−1, y0),η)− y1,
F3(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = (xR(τR; (1, y1),η)− 1)/τR,
F4(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = yR(τR; (1, y1),η)− y2,
F5(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = xC(τCd; (1, y2),η) + 1,
F6(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = yC(τCd; (1, y2),η)− y3,
F7(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = (xL(τL; (−1, y3),η) + 1)/τL,
F8(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = yL(τL; (−1, y3),η)− y0,
F9(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = tLτL −m(τCu + τCd) + tRτR.

Thus, to find a solution of the system (20) is equivalent to find a solution of equation

F(τCu, y0, y1, y2, τCd, y3, aC ,m, τL, τR) = 0. (21)

Now, it is possible to prove the following result about the existence of a solution of
system (21).

Proposition 4. If tL 6= 0, there exist an open set U ⊂ R containing τR = 0 and
nine analytic functions τ̄Cu(τR), ȳ0(τR), ȳ1(τR), ȳ2(τR), τ̄Cd(τR), ȳ3(τR), τ̄L(τR),
āC(τR) and m̄(τR) defined in U, such that τ̄Cu(0) = τ̄Cd(0) = π, ȳ0(0) = ȳ1(0) =
ȳ2(0) = ȳ3(0) = τ̄L(0) = āC(0) = m̄(0) = 0, and

F(τ̄Cu(τR), ȳ0(τR), ȳ1(τR), ȳ2(τR), τ̄Cd(τR), ȳ3(τR), āC(τR), m̄(τR), τ̄L(τR)) = 0,

when τR ∈ U. Furthermore, approximations of these functions are given by,

τ̄Cu = π + (tR−tL)τR
2tL

+
(tL−tR)tRτ

2
R

12tL
+

((1−dR)t3L−2t2LtR+(1+dL)t3R)τ3
R

24t3L
+O(τ4

R),

τ̄Cd = π + (tR−tL)τR
2tL

+
(tR−tL)tRτ

2
R

12tL
+

((1−dR)t3L−2t2LtR+(1+dL)t3R)τ3
R

24t3L
+O(τ4

R),

τ̄L = − tRτRtL +
tR(t2L−t

2
R)τ3

R

6t3L
+O(τ4

R),

ȳ0 = − tRτR2tL
+

t2Rτ
2
R

12tL
+

tR(−8t3L+8tLt
2
R+π(5t2L−(5+4dL)t2R))τ3

R

96πt3L
+O(τ4

R),

ȳ1 = τR
2 −

tRτ
2
R

12 +
(8tR(t2L−t

2
R)+π((−3+4dR)t2L+3t2R))τ3

R

96πt2L
+O(τ4

R),

ȳ2 = − τR2 −
tRτ

2
R

12 +
(π((3−4dR)t2L−3t2R)+8tR(t2L−t

2
R))τ3

R

96πt2L
+O(τ4

R),

ȳ3 = tRτR
2tL

+
t2Rτ

2
R

12tL
+

(−8t3LtR+8tLt
3
R+π(−5t2LtR+(5+4dL)t3R))τ3

R

96πt3L
+O(τ4

R),

āC =
(t2L−t

2
R)τ2

R

16t2L
+O(τ4

R),

m̄ =
tR(t2L−t

2
R)τ3

R

12πt2L
+O(τ4

R).

(22)

Proof. Consider J(τCu, y0, y1, y2, τCd, y3, aC ,m, τL) the Jacobian matrix of function
F defined in (21) with respect to the first nine variables. To apply the Implicit
Function Theorem, it is necessary to prove that

det(J(π, 0, 0, 0, π, 0, 0, 0, 0)) 6= 0.
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Taking into account that xC , yC , xR, yR, xL, yL are solutions of their corresponding
differential equation, and solving the necessary variational problems associated to
the derivative with respect to initial conditions and parameters, it is possible to
compute (see Appendix for details),

J(π, 0, 0, 0, π, 0, 0, 0, 0) =

0 0 0 0 0 0 2 −π/2 0
−1 −1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0
0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 2 π/2 0
0 0 0 −1 1 −1 0 0 0
0 0 0 0 0 1 0 1 1/2
0 −1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 −2π tL


(23)

and then, det(J(π, 0, 0, 0, π, 0, 0, 0, 0)) = 2πtL. Hence, when tL 6= 0 the Implicit
Function Theorem yields a solution

(τ̄Cu(τR), ȳ0(τR), ȳ1(τR), ȳ2(τR), τ̄Cd(τR), ȳ3(τR), τL(τR), ā(τR), m̄(τR))

defined when τR belongs to a neighborhood U of the origin. Further, by using again
the derivatives given in Appendix, one gets

∂F1

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 0, ∂F2

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 0,

∂F3

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 1

2 ,
∂F4

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 1,

∂F5

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 0, ∂F6

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 0,

∂F7

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 0, ∂F8

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = 0,

∂F9

∂τR
(π, 0, 0, 0, π, 0, 0, 0, 0) = −tR,

(24)

so the first order terms of the solution as a function of τR can be computed. How-
ever, we observe that some first terms of the expansion are zero. Hence, we have
proceeded by undetermined coefficient method to obtain the first non-zero coeffi-
cients for all the components of the solution in expression (22).

We would like to point out that we have used the symbolic manipulators Math-
ematica and Maxima in order to check the truthfulness of expressions in (22), ob-
tained first by hand.

Remark 5. Note that we have chosen parameter τR in order to apply the Implicit
Function Theorem, but parameter τL could be equally chosen to obtain a dual
result.

Once we have proven the existence of solution of system (16) and we have found
an approximation of the solution (22), we proceed to prove in the following result
that these solutions correspond to non-hyperbolic periodic orbits of system (7),
checking that they satisfy inequalities (17).

Proposition 5. If tL · tR < 0, the functions given in Proposition 4 correspond to a
non-hyperbolic three-zonal periodic orbit of system (7).

Proof. To ensure that the functions given in Proposition 4 correspond to a non-
hyperbolic three-zonal periodic orbit, we need to check that functions τ̄L(τR), τ̄Cu(τR)
and τ̄Cu(τR) satisfy τ̄L(τR) > 0, τ̄Cu(τR) > 0 and τ̄Cd(τR) > 0 for τR > 0 sufficiently
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small and that these functions and the rest of the functions verify inequalities (17)
for τR > 0 and small. For this purpose, we will assume in what follows that τR is
strictly positive and sufficiently small.

From the expansions given in (22), it follows that τ̄Cu(τR) > 0, τ̄Cd(τR) > 0.
Moreover, if tL · tR < 0, then τ̄L(τR) > 0.

Now, we check the last inequality of (17). For it, we denote η̄ = η̄(τR) =
(āC(τR), t̄L(τR), m̄(τR), t̄R(τR), d̄L(τR), d̄R(τR)).

The function xL(s; (−1, ȳ3), η̄) defined for s ∈ [0, τ̄L] satisfies

xL(0; (−1, ȳ3), η̄) = xL(τ̄L; (−1, ȳ3), η̄) = −1,

dxL

ds
(0; (−1, ȳ3), η̄) = ȳ3 + m̄(āC + 1) = −τR

2
+O(τ2

R) < 0

and
dxL

ds
(τ̄L; (−1, ȳ3), η̄) = ȳ0 + m̄(āC + 1) =

τR
2

+O(τ2
R) > 0.

If there exists a value s0 ∈ (0, τ̄L) such that xL(s0; (−1, ȳ3), η̄) = −1, then the

function z0(s) = dxL

ds (s; (−1, ȳ3), η̄) has three zeros in the interval (0, τ̄L). But this
is impossible because function z0(s) is a solution of a second order homogeneous
differential equation with constant coefficients and τ̄L is small. Hence, we can
deduce that xL(s; (−1, ȳ3), η̄) < −1 for s ∈ (0, τ̄L); that is, the third inequality of
(17) holds.

A similar reasoning allows to prove that the function xR verifies that xR(s; (−1, ȳ3), η̄) >
1 for s ∈ (0, τR) and the second inequality of (17) is true.

Next, we focus on the first inequality of (17). Function xC(s; (−1, ȳ0), η̄) defined
for s ∈ [0, τ̄Cu] fulfills

xC(0; (−1, ȳ0), η̄) = −1, xC(τ̄Cu; (−1, ȳ0), η̄) = 1,

dxC

ds
(0; (−1, ȳ0), η̄) = ȳ0 + m̄(āC + 1) > 0

and
dxC

ds
(τ̄Cu; (−1, ȳ0), η̄) = ȳ1 + m̄(āC − 1) =

τR
2

+O(τ2
R) > 0.

Taking into account that m̄ is small, function xC can be written into the form

xC(s; (−1, ȳ0), η̄) = āC + e−m̄s/2
(
c1 sin(β̄s) + c2 cos(β̄s)

)
,

where c1, c2 ∈ R and β̄ =
√

4− m̄2/2.
If we assume that exists a value s1 ∈ (0, τ̄Cu) such that xC(s1; (−1, ȳ0), η̄) = 1,

then, knowing that āC is small, the function z1(s) = xC(s1; (−1, ȳ0), η̄) − āC pos-
sesses three solutions in (0, τ̄Cu) and so τ̄Cu ≥ 2π/β̄. However, that is impossi-

ble because τ̄Cu(τR) = π + (tR−tL)τR
2tL

+ O(τ2
R). Therefore, function xC satisfies

xC(s; (−1, ȳ0), η̄) ∈ (−1, 1) for s ∈ (0, τ̄Cu) and the first inequality of (17) is true.
An identical reasoning allows us to conclude that xC(s; (−1, ȳ2), η̄) ∈ (−1, 1) for

s ∈ (0, τ̄Cd) and the proof finishes.

4.2. Correspondence to a saddle-node bifurcation. To finish with the proof
of Theorem 2.1, in this second subsection we are going to prove that the non-
hyperbolic limit cycle whose existence has been proved in the previous subsection
corresponds, indeed, to a saddle-node bifurcation when tL+ tR 6= 0. To obtain this,
we will prove that the nondegeneracy conditions on the Poincaré map hold, that is,
the second derivative of the Poincaré map defined in (15) with respect to the initial
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condition and the derivative of the Poincaré map with respect to parameter aC are
both different from zero, see [33, 39].

The section is divided into two parts. In the first one, we compute the second
derivative of the Poincaré map with respect to the initial condition and we will see
that this derivative is nonzero. In the second one, we compute the derivative of the
Poincaré map with respect to parameter aC and we test that this derivative does
not vanish.

Computation of the second derivative of the Poincaré map with respect to the ini-
tial condition. Consider the non-hyperbolic periodic orbit ϕ(t; (−1, ȳ0), η̄) given in
Proposition 5. From the study in [11], it is easy to see that the second derivative
of Poincaré map with respect to y0 in the non-hyperbolic fixed point ȳ0 is given by

∂2P

∂y2
0

(ȳ0, η̄) = −m
(
dτCu
dy0

+
dτCd
dy0

)
+ tR

dτR
dy0

+ tL
dτL
dy0

, (25)

where the derivative of the flight times with respect to y0 have to be evaluated in
ȳ0 and η̄ = η̄(τR) = (āC(τR), t̄L(τR), m̄(τR), t̄R(τR), d̄L(τR), d̄R(τR)).

Denote Mij the component ij of a matrix M and F ki the component i of the
vector field defined by system (7) in the corresponding zone k ∈ {L,C,R}. From
[11], the derivative of the flight times with respect to the initial condition are given
by

dτCu
dy0

=
−(eACτCu )12

FC1 (1, y1)
, (26)

dτR
dy0

=
dτR
dy1

dy1

dy0
=
−(eARτR)12

FR1 (1, y2)

FC1 (−1, y0)

FC1 (1, y1)
etCτCu ,

dτCd
dy0

=
dτCd
dy2

dy2

dy1

dy1

dy0
=
−(eACτCd )12

FC1 (−1, y3)

FR1 (1, y1)

FR1 (1, y2)
etRτR

FC1 (−1, y0)

FC1 (1, y1)
etCτCu

= etRτR+tCτCu
−(etCτCd )12

FC1 (−1, y3)

FC1 (−1, y0)

FR1 (1, y2)
,

and

dτL
dy0

=
dτL
dy3

dy3

dy2

dy2

dy1

dy1

dy0

=
−(eALτL)12

FL1 (−1, y4)

FC1 (1, y2)

FC1 (−1, y3)
etCτCd

FR1 (1, y1)

FR1 (1, y2)
etRτR

FC1 (−1, y0)

FC1 (1, y1)
etCτCu

= etRτR+tC(τCu+τCd )−(eALτL)12

FL1 (−1, y4)

FC1 (−1, y3)

FR1 (1, y2)
.

(27)

The substitution of expressions (26)–(27) in (25) allows us, after some straighfor-
ward but tedious computations, to ensure that the second derivative of the Poincaré
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map is different from zero if and only if

0 6= 2e−mτCu ·me
mτCu

2 sin

(√
4−m2

2 τCu

)
√

4−m2((aC−1)m+y1)
+

m(aCm+m+y0) sin

(√
4−m2

2 τCd

)
eτRtR−

mτCd
2

√
4−m2((aC−1)m+y2)(aCm+m+y3)

−

tL sinh

(√
t2
L

−4dL

2 τL

)
e
−mτCd

+
τLtL

2
+τRtR

√
t2L−4dL(aCm+m+y3)

−
tRe

τRtR
2 (aCm+m+y0) sinh

(√
t2
R

−4dR

2 τR

)
√
t2R−4dR((aC−1)m+y1)((aC−1)m+y2)

 .

Finally, the substitution of variables τCu, y0, y1, y2, τCd, y3, τL, aC ,m, τR by func-
tions developed in expressions (22), provides us the following condition

0 6= 2
(
t2L−t

2
R

tL

)
+

2tR(t2L−t
2
R)

3tL
τR +O

(
τ2
R

)
. (28)

Thus, since tL · tR < 0 and tL + tR 6= 0, the first term in (28) is different from zero.
Therefore, the first nondegeneracy condition on the Poincaré map holds.

Computation of the derivative of the Poincaré map with respect to parameter aC .
To compute the derivative of the Poincaré map with respect to parameter aC in
the neighborhood of the non-hyperbolic periodic orbit γη̄, we will use the following
expression from [39],

∂P

∂aC
(ȳ0, η̄) =

−w0

‖F (γη̄(0), η̄))‖
Q(ȳ0, η̄), (29)

where

Q(ȳ0, η̄) =

∫ T

0

exp

(
−
∫ t

0

div(F (γη̄(s), η̄))ds

)
F ∧ FaC (γη̄(t), η̄)dt, (30)

being w0 is the orientation of the curve, if x,y,∈ R2, we define the wedge product
x ∧ y = x1y2 − y1x2, div(F ) is the divergence of the vector field F defined by
system (4) and FaC denotes the derivative with respect to parameter aC . Note
that, although this identity is originally only valid for smooth systems, it can be
generalized to continuous piecewise smooth systems with similar reasoning as those
done in [8]. In our case, w0 = −1 and ‖F (γη̄(0), η̄))‖ 6= 0, so we will compute only
the factor Q(ȳ0, η̄) of expression (29) given in (30). The integral along a periodic
orbit will be divided into four parts, depending on the zone of linearity that the
orbit is located. By using Lemma A.5 of Appendix, these four addends are given
by:

1. Part of the orbit located between y0 and y1, in central zone,

S1 =

∫ τCu

0

emty(t)dt.

2. Part of the orbit located between y1 and y2, in right zone,

S2 = emτCu

(
(mdR − tR)

∫ τCu+τR

τCu

e−tRt(x(t)− 1)dt

+

∫ τCu+τR

τCu

e−tRty(t)dt

)
.
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3. Part of the orbit located between y2 and y3, in central zone,

S3 = emτCu−tRτR
∫ τCu+τR+τCd

τCu+τR

emty(t)dt.

4. Part of the orbit located between y3 and y4, in left zone,

S4 = em(τCu+τCd )−tRτR

(
(mdL + tL)

∫ T

τCu+τR+τCd

e−tLt(x(t) + 1)dt

+

∫ T

τCu+τR+τCd

e−tLty(t)dt

)
.

Using Lemma A.5, some direct but tedious computations allow us to compute

S1 = 1 + aC + (1− aC)emτCu ,

S2 = emτCu−tR(τCu+τR)·(
etRτR((aC − 1)(m(dRm+ tR) + 1) + y1(dRm+ tR))

dR

+
(1− aC)(m(dRm+ tR) + 1)− y2(dRm+ tR)

dR

)
,

S3 = e2mτCu+mτR−τRtR(aC − 1− (aC + 1)emτCd),

and

S4 = em(τCu+τCd )−tL(τCu+τCd+τR)+τRtR ·(
etLτL((m+ y3)(dLm+ tL) + 1)− (m+ y0)(dLm+ tL)− 1

dL

+
aC(etLτL − 1)(m(dLm+ tL) + 1)

dL

)
.

And then, we obtain Q(ȳ0, η̄) = S1 + S2 + S3 + S4.
The substitution of variables τCu, y0, y1, y2, τCd, y3, τL, aC ,m, τR by functions de-

veloped in expressions (22) provides us the following expression

Q(ȳ0, η̄) = 2tRτR − t2Rτ2
R +O

(
τ3
R

)
.

Thus, if tR 6= 0, the first term in the development is different from zero and therefore,
the proof of the existence of the saddle-node bifurcation is concluded.

Finally, we proceed to obtain relations (8)-(10). From expression of m̄ in (22), we
can obtain the expression of τR in terms of the parameter m̄, by inverting the series.
Moreover, taking into account that m · tR(t2L − t2R) > 0, τR > 0. Then, substituting
this expression into the expression of āC in (22), we obtain the existence of function
a∗C(m) and the approximation given in (8). The expression of the period Tγ given in
(9) has been obtained by summing up the series of the first three expressions of (22)
plus the expression of τR obtained. The approximation of the amplitude has been
obtained with the first order of ȳ0 − ȳ2 from (22), by substituting the expression of
τR in the resulting expression.
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5. Conclusions and perspectives. In this article, we have proven the existence
of a saddle-node bifurcation of limit cycles perturbing from a local center in planar
continuous PWL systems with three zones. Power series of the bifurcation manifold,
the amplitude and the period of the saddle-node limit cycle are also provided. The
obtained result is general in the sense that it characterizes the bifurcation in any
continuous PWL system with three regions of linearity. In particular, this result
follows up theorems 7, 8, 9 and 10 in [34] in the following sense: In statement c)
of these theorems, the authors prove the existence of two limit cycles, in a certain
region of the parameter space. The region is given in terms of the trace of the
coefficient matrix in central zone, and of a value ε > 0. On the other hand, in
Theorem 2.1 we obtain, for each m sufficiently small, a curve aC = a∗C(m) that
provides a boundary for the existence of two limit cycles, as we can see, for instance,
in Figure 1. By using the injectivity of function a∗C , for each aC small enough, it is
possible to find a value m = m∗(aC) such that (m∗(aC), aC) belongs to the curve.
The value |m∗(a∗C)| corresponds to the ε of theorems 7-10 (c) in [34], after the
appropriate change of variables.

This main result can be applied to a wide variety of models whose oscillatory
behavior is well-known, and where these oscillations are shown to born in a saddle-
node bifurcation of limit cycles. In particular, we consider two different applications.

The first one is a PWL version of the FitzHugh-Nagumo system, the McKean
system. For this model, the bifurcation value is written in terms of the natural
parameter of the system, the applied current. Note that there are not restrictions
on the conductance value C, so it can be as small as needed. Therefore, these results
can be applied in the slow-fast regime. Nevertheless, the saddle-node limit cycle,
and the two limit cycles which collide are far from the canard regime. The analysis
of fold limit cycles in the canard regime is beyond the objective of this work and is
part of an ongoing project.

The second application, is an electronic circuit, namely the memristor oscillator
[14]. We consider the version of the model studied in [34]. Moreover, the bifur-
cation value considered here is the boundary of linearity zones of the flux-charge
characteristic of the memristor.

In both applications, we provide approximated expressions for the bifurcation
curve and the period of the saddle-node limit cycle.
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Appendix A. Technical and auxiliary results. Here, we compute the solutions
of variational problems involved in Jacobian matrix (23). From now on, let us denote
η0 = (0, tL, 0, tR, dL, dC , dR).

Lemma A.1. Functions xR, xL satisfy the following properties:

1. xR(s; (1, y1),η) = 1 + (y1 −m(1− aC))s+O(s2),
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2. xL(s; (−1, y3),η) = −1 + (y3 +m(1 + aC))s+O(s2).

Proof. Consider the first case. The Taylor series expansion of xR(s;η, (1, y1)) as a
function of s,

xR(s; (1, y1),η) = xR(0; (1, y1),η) + ∂xR

∂s (0; (1, y1),η)s+O(s2) =

1 + (y1 −m(1− aC))s+O(s2),

where we have taken into account that xR(0; (1, y1),η) = 1 and that xR is the first
component of the solution of system (7) in the right zone. The proof of the second
case is analogous, bearing in mind that xL(0; (−1, y3),η) = −1 and that xL is the
first component of the solution of system (7) in the left zone.

In the next result we compute the non-zero components of the Jacobian matrix
corresponding with 2nd, 3th, 4th and 6th column. The inputs of the Jacobian
matrix for such columns and 3th and 7th row can be obtained from Lemma A.1.

Lemma A.2. Functions xC , yC , yR, yL satisfy the following properties:

1. ∂xC

∂y0
(π; (−1, 0),η0) = 0, ∂y

C

∂y0
(π; (−1, 0),η0) = −1,

2. ∂xC

∂y2
(π; (1, 0),η0) = 0, ∂y

C

∂y2
(π; (1, 0),η0) = −1,

3. ∂yR

∂y1
(0; (1, 0),η0) = 1, ∂y

L

∂y3
(0; (−1, 0),η0) = 1.

Proof. Consider the first statement. Note that functions ∂xC

∂y0
(τ ; (−1, 0),η0) and

∂yC

∂y0
(τ ; (−1, 0),η0) correspond to the first and second components of the solution of

the following variational problem with respect to the initial conditions,
(
ẇ1

ẇ2

)
=

(
0 1
−1 0

)(
w1

w2

)
,(

w1(0)
w2(0)

)
=

(
0
1

)
.

(31)

Notice that we have already substituted m = 0 in the corresponding matrix in the
central zone AC , see (5). Solution of (31) is given by

w1(τ) = sin τ, w2(τ) = cos τ.

Now, it suffices to substitute τ = π in previous expressions to conclude the proof of
the first statement.

The proof of the second statement is completely analogous.

Consider the first equality in the third statement. Function ∂yR

∂y1
(τ ; (1, 0),η0)

corresponds to the second component of the solution of the following variational
problem with respect to the initial conditions,

(
ẇ1

ẇ2

)
=

(
tR 1
−1 0

)(
w1

w2

)
,(

w1(0)
w2(0)

)
=

(
0
1

)
.

(32)

As we need to evaluate the solution in τ = 0, it is straightforward that ∂yR

∂y1
(0; (1, 0),η0) =

1. Analogously, considering the corresponding variational problem for the solution

in the left zone, it follows that ∂yL

∂y3
(0; (−1, 0),η0) = 1.
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In the next lemma we compute the non-null components of the 7th colum of the
Jacobian matrix. The components in the 3th and 7th row can be obtained from
Lemma A.1.

Lemma A.3. Functions xC , yC , xR, yR, xL, yL satisfy the following properties:

1. ∂xC

∂aC
(π; (−1, 0),η0) = 2, ∂y

C

∂aC
(π; (−1, 0),η0) = 0,

2. ∂xC

∂aC
(π; (1, 0),η0) = 2, ∂y

C

∂aC
(π; (1, 0),η0) = 0,

3. ∂yR

∂aC
(0; (1, 0),η0) = 0, ∂y

L

∂aC
(0; (−1, 0),η0) = 0.

Proof. First, let us remind that the variational problem with respect to some param-
eter γ, corresponding to a linear system of ordinary differential equations ẋ = Ax+b
with initial condition x(0) = x0 is given by{

ẇ = Aw + ∂A
∂γ x + ∂b

∂γ ,

w(0) = 0,
(33)

being x the solution of the original initial value problem.

Now, we consider the first case. Note that functions ∂xC

∂aC
(τ ; (−1, 0),η0) and

∂yC

∂aC
(τ ; (−1, 0),η0) correspond to the first and second components of the solution of

the following variational problem with respect to parameter aC ,
(
ẇ1

ẇ2

)
=

(
0 1
−1 0

)(
w1

w2

)
+

(
0
1

)
,(

w1(0)
w2(0)

)
=

(
0
0

)
.

(34)

Notice that we have already substituted m = 0 in the corresponding matrix in the
central zone AC , (see (5)) and in the derivative with respect to parameter aC of
vector bC , (see (6)). Note also that the derivative of the coefficient matrix AC with
respect to parameter aC is the null matrix. Solution of (34) is given by

w1(τ) = 1− cos τ, w2(τ) = sin τ.

Now, it suffices to substitute τ = π in previous expressions to conclude the proof of
the first statement.

The proof of the second statement is completely analogous.

Finally, consider the third statement. As functions ∂yR

∂aC
(τ ; (1, 0),η0) and ∂yL

∂aC
(τ ; (−1, 0),η0,)

are the second component of the solution of the corresponding variational problem
with respect to parameter aC , whose initial condition is always (0, 0), and we want to

evaluate them in τ = 0, it is obvious that ∂yR

∂aC
(0; (1, 0),η0) = ∂yL

∂aC
(0; (−1, 0),η0) =

0.

In next lemma we compute the components of the 8th column of the Jacobian
matrix. The components in the 3th and 7th row can be obtained from Lemma A.1.

Lemma A.4. Functions xC , yC , xR, yR, xL, yL satisfy the following properties:

1. ∂xC

∂m (π; (−1, 0),η0) = −π/2, ∂y
C

∂m (π; (−1, 0),η0) = 0,

2. ∂xC

∂m (π; (1, 0),η0) = π/2, ∂y
C

∂m (π; (1, 0),η0) = 0,

3. ∂yR

∂m (0; (1, 0),η0) = 0, ∂y
L

∂m (0; (−1, 0),η0) = 0.

Proof. We consider the first statement.



SADDLE-NODE OF LIMIT CYCLES IN PLANAR PWLS AND APPLICATIONS 23

Functions ∂xC

∂m (τ ; (−1, 0),η0) and ∂yC

∂m (τ ; (−1, 0),η0) correspond to the first and
second components of the solution of the following variational problem with respect
to parameter m (see (33)),

(
ẇ1

ẇ2

)
=

(
0 1
−1 0

)(
w1

w2

)
+

(
−xC(τ ;η0, (−1, 0))

0

)
,(

w1(0)
w2(0)

)
=

(
0
0

)
.

(35)

Note that we have already substituted m = 0 in the corresponding matrix in the
central zone AC , (see (5)) and aC = 0 in the derivative with respect to parameter
m of vector bC , (see (6)). Taking into account that xC(τ ;η0, (−1, 0)) = − cos τ, it
is possible to compute the solution of (35),

w1(τ) =
1

2
(τ cos τ + sin τ), w2(τ) = −1

2
τ sin τ.

Now, it suffices to substitute τ = π in previous expressions to conclude the proof of
the first statement.

The proof of the second statement can be analogously done.
The third statement is analogous to the proof of the third statement of Lemma

(A.3).

Finally, we present an auxiliary result that is used for the computation of the
derivative of the Poincaré map with respect to parameter aC .

Lemma A.5. Consider the autonomous linear system

ẋ = Ax + b, (36)

where x ∈ Rn, A ∈Mn, b ∈ Rn, n ≥ 1 and λ ∈ R. If A+ λI is regular, then,∫ τ

0

eλsx(s)ds = −(A+ λI)−1(B − C), (37)

with

B =

∫ τ

0

eλsbds and C = eλτx(τ)− x(0), (38)

where I the identity matrix of dimension n.

Appendix B. Fine tuning algorithm. In the following steps, we provide an
algorithm to fine tuning the external impulse I in the McKean model, in order to
switch from an oscillatory behavior to a resting behavior (step 1 to step 7), and
vice versa (step 8 to step 10).

1. Given an oscillatory voltage trace V (t), corresponding with a limit cycle of
system (11), with known parameter values C, β, w0, a, δ, tc and tr, and
assuming that this limit cycle is close to a saddle-node limit cycle, compute
the impulse, I1 = I∗(C, β,w0, a, δ, tc, tr), from expression (12).

2. Compute the equilibrium point (V1, w1) of system (11) with I = I1. Let
λ = µ ± iη be the eigenvalues of the Jacobian matrix of the vector field at
(V1, w1).

3. From the first equation of system (11), approximate the trace of w(t).

4. Look for values Ṽ = V (t̃) and w̃ = w(t̃) such that Ṽ = βw̃−w0 with w̃ < w1.
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5. Compute the values

l1 = w1 − w̃, l2 = l1
e
µ
η π

1 + e
µ
η π
,

V2 = V1 − βl2, and w2 = w1 − l2.
6. Compute the impulse I2 = w2− tcV2− (δ−a/2)(tc+1) such that system (11),

with I = I2, has an equilibrium point at (V2, w2).
7. At time t̃, apply impulse I = I2 − I1 during the time π/η, where η is the

imaginary part of the eigenvalue given in the step 2.
8. Compute the values

V3 = V1 − β(l1 − l2), w3 = w1 − (l1 − l2).

9. Compute the impulse I3 = w3− tcV3− (δ−a/2)(tc+1) such that system (11),
with I = I3, has an equilibrium point at (V3, w3).

10. At any time after π/η, apply impulse I = I3 − I1 during the time π/η, where
η is the imaginary part of the eigenvalue given in the step 2.
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