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Abstract

In this work we deal with the canard regime as a part of a canard explosion taking place in a
PWL version of the van der Pol equation having a flat critical manifold. The proposed analysis
involves the identification of two specific canard cycles, one at the beginning and the other
at the end of the canard regime, here called birth and maturation of canards, respectively.
Moreover, inside the canard regime, we also analyse the transition from small amplitude
canard cycles (canards without head) to large amplitude canard cycles (canards with head)
by identifiying the maximal canard, transitory canard, and maximum period canard; and then
proving that all these cycles are, in fact, different dynamical objects. There have been several
works in the classical framework addressing the transitory regime, but from a numerical point
of view. Some of these works involve systems exhibiting a flat slow manifold. The flat part
of the nullcline implies a different transition from canard cycles without head to those with
head than in the classical canard explosion. This is a good choice as a first approximation to
the problem because, in particular, the different canard cycles appear further apart from one
another. For that reason we have considered a four-zonal PWL system in which the critical
manifold in the lateral left linear region is flat.

1 Introduction

Canard dynamics in slow-fast differential systems is characterised by the existence of orbits, named
canard orbits, that after following an attracting manifold, then evolve close to a repelling manifold
for a considerable amount of time. In the recent last years, this behaviour have been clearly
identified in many applications. For example, canard orbits have been used to understand complex
oscillations of both the bursting type, in excitable neurons, [33, 38], and the mixed mode type, in
chemical reactions, [4, 13]. An interesting phenomenon associated with canard dynamics, is the so-
called canard explosion, which consists of a sudden increase in the amplitude of an uniparametric
family of limit cycles when the value of the parameter is slightly varied. This phenomenon explains
the transient dynamics from small amplitude oscillations to relaxation oscillation taking place in
the van der Pol oscillator, see [1, 16, 23].

Canard explosion is ubiquitous in planar slow-fast differential systems with a suitable fast
nullcline [23], and it is a result of the interplay between the attracting and the repelling slow
manifolds which appear as a consequence of the singular perturbation [17]. Accordingly, the
canard regime is located in an exponentially small interval around the parameter value at which
the attracting and repelling slow manifolds connect, giving rise to the so-called maximal trajectory.

Even when the canard dynamics has been widely studied, see [8, 40] and references therein,
due inter alia to the extremely narrow interval where the canard regime occurs, some interesting
challenges around the canard explosion are still not well understood. One of them consists in
identifying the limit cycles acting as boundaries of the canard regime. The location of these
canard cycles will help to a better understanding of both the transition from the small amplitude
cycles, called the Hopf regime, to the canard regime, and especially the transition from the canard
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regime to the relaxation regime. The transition from Hopf regime to canard regime is called the
birth of canards, and the transition from the canard regime to the relaxation regime is called the
maturation of canards.

Another of the challenges around the canard explosion is more related to the applications,
in particular to the definition of excitability threshold in neural models. As it is well known, the
FitzHugh-Nagumo (FHN) neural model [19, 28] does not have a well-defined excitability threshold,
that is a value of the voltage beyond which a rapid increase of the membrane potential, that can be
recognized as a spike, occurs [19]. Nevertheless, the presence of the canard explosion phenomenon
in the FHN model allows to define a “quasi-threshold” through the repelling slow manifold. The
strong divergence along this manifold transforms the canard cycle flowing along this slow manifold
into a kind of separatrix, and hence, into a good candidate to define the “quasi-threshold” [39].

Some efforts to locate the canard cycle defining this “quasi-threshold” have been done by
considering inflection sets [15] and exponential coordinate scaling [12], but also other canard cycles
approximating it have been proposed: the maximal canard cycle, occuring when the attracting and
the repelling slow manifolds do connect; the transitory canard cycle, which is the boundary between
headless canard cycles and canard cycles with head; and the canard cycle having maximum period.
However, all these canard cycles are not easy to be located and, indeed, it is not a well-known
question whether all of them are different cycles or not. In [2] authors address a numerical study
to locate all these canard cycles in the aircraft ground dynamics model [32], which is a slow-fast
differential system exhibiting a flat critical manifold given by the graph of y “ ´px ´ aqex{b, see
Figure 1.

x

´y

a´ b

Figure 1: Flat critical manifold. Critical manifold y “ ´px´aqex{b of aircraft ground dynamics
model [32] with a ą b ą 0 in the plane px,´yq. The sign of the parameters is not relevant, the
graph of the function can be brought to that of the figure by a suitable change of variables.

This critical manifold looks like a N -shaped curve in which one of the lateral branches has been
flattened, which causes that the critical manifold loses the normal hyperbolicity at infinity. Hence,
cycles of sufficiently large amplitude become relaxation oscillations. Moreover, large amplitude
canard cycles appear further apart from one another than in systems with N-shaped fast nullcline.
Consequently, slow-fast systems exhibiting flat slow manifold [3, 22, 24, 37] provide a good context
for the analysis of the canard regime [2], in particular, for the analysis of the birth and the
maturation of canards and for the definition of the quasy-threshold, that is, for the location of
the maximal canard cycle, the transitory canard cycle [25] and the canard cycle with maximum
period.

Recently, it has been understood how to reproduce aspects of the slow-fast dynamics in the
context of piecewise linear (PWL) differential systems [9, 10, 11, 14, 18]. In particular, in [34]
the authors show the existence of the canard explosion in the context of a PWL system of the
FitzHugh-Nagumo type. More recently, in [5], we have analytically described the canard explosion
after a Hopf-type bifurcation, both supercritical and subcritical, in a PWL generalized version of
the FHN system, and provide accurate estimates for the parameter value for which the canard
explosion occurs and for the amplitude and the period of the saddle-node canard cycles when they
exist. In this previous version, the fast N-shaped nullcline is formed by a four-segment polygonal
curve, so that three of these segments are used to define the fold around the point at which the
Hopf bifurcation occurs. The width of this kink is of order

?
ε, so it tends to zero with ε, providing

a critical N-shaped manifold.
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Previous nullcline configuration has proven useful in the generation of the canard explosion. In
particular, the three-segment fold provides the existence of the headless canard cycles, while the
fourth segment defines a global return that enables the existence of the canard cycles with head and
also of the relaxation cycles. Following this previous work, in the present manuscript we propose a
PWL differential system with slow-fast dynamics exhibiting a fast nullcline which is a PWL version
of the flat critical manifold in Figure 1. This approximation is obtained by concatenating three
segments to define the fold and a horizontal one to define the flattened branch. The main aim of
the paper is to locate, for the proposed system, the canard cycles both at the birth and at the
maturation of the canards, together with the maximal canard cycle, the transitory canard cycle,
the canard cycle with maximum period and the canard cycle through the repelling slow manifold,
and to prove that all them are different canard cycles.

The rest of the article is organized as follows. In Section 2, we introduce the PWL differential
system and the geometrical and dynamical basic elements which will be considered along the
manuscript. After that, in Section 3 we establish the main results of the work. Then, we present
the proofs of the main results in Section 4. Conclusions and perspectives are discussed in Section
5. Finally, the more technical questions are gathered in Appendices A and B.

2 Statement of the PWL system and its basic elements.

Here, we present the class of PWL systems that we aim to analyze, and also some geometric
elements to describe the global dynamics. Moreover, we define some functions and quantities
which are needed for stating the main results in the next section.

We consider the following slow-fast planar differential system,
"

x1 “ y ´ fpx, a, εq,
y1 “ εpa´ xq,

(1)

with fast nullcline formed by three segments defining the fold and a horizontal one defining the
flattened branch and given by

fpx, a, εq “

$

’

’

&

’

’

%

1`
?
εpa´ 1q ` ε, if x ă ´1

´x`
?
εpa´ 1q ` ε, if ´ 1 ă x ď ´

?
ε,

?
εpa´ xq, if |x| ď

?
ε,

x`
?
εpa´ 1q ´ ε, if x ą

?
ε,

(2)

which is a piecewise linear version of the critical manifold depicted in Figure 1. The system
depends on the two-dimensional parameter η “ pa, εq P R2, with 0 ă ε ! 1.

The PWL character of the vector field allows the phase space to be divided into four regions:
the lateral half-planes σLL “ tpx, yq : x ď ´1u and σR “ tpx, yq : x ě

?
εu, and the central bands

σL “ tpx, yq : ´1 ď x ď ´
?
εu and σC “ tpx, yq : |x| ď

?
εu, separated by the switching lines

x “ ´1, x “ ´
?
ε and x “

?
ε. Thus, restricted to the previous regions, the vector field is linear

and can be expressed in a matrix way as Fipxq “ Aix` bi with i P tLL,L,C,Ru, being

ALL “

ˆ

0 1
´ε 0

˙

, AL “

ˆ

1 1
´ε 0

˙

, AC “

ˆ ?
ε 1

´ε 0

˙

, AR “

ˆ

´1 1
´ε 0

˙

,

bLL “

ˆ

´1´
?
εpa´ 1q ´ ε
εa

˙

, bL “

ˆ

´
?
εpa´ 1q ´ ε
εa

˙

, bC “

ˆ

´
?
εa

εa

˙

,

and

bR “

ˆ

´
?
εpa´ 1q ` ε
εa

˙

.

The local behavior of the flow of system (1) at any of the regions σi with i P tLL,L,C,Ru is
determined by the trace ti and the determinant di “ ε of the matrix Ai through the discriminant
∆i “ t2i ´ 4ε, the eigenvalues λsi and λqi , the eigenvectors vsi “ pλ

s
i ,´εq

T and vqi “ pλ
q
i ,´εq

T , and
the location of the points ei “ ´A

´1
i bi. All these elements are given by:

tLL “ 0, tL “ 1, tC “
?
ε, tR “ ´1,

∆LL “ ´4ε, ∆L “ 1´ 4ε, ∆C “ ´3ε, ∆R “ 1´ 4ε,

λsLL “ ´
?
εi, λsL “

1´
?

1´4ε
2 , λsC “

?
εp1´

?
3iq

2 , λsR “
´1`

?
1´4ε

2 ,

λqLL “
?
εi λqL “ 1´ λsL, λqC “

?
εp1`

?
3iq

2 , λqR “ ´1´ λsR,

(3)
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and

eLL “

ˆ

a
1`

?
εpa´ 1q ` ε

˙

, eL “

ˆ

a
´a`

?
εpa´ 1q ` ε

˙

,

eR “

ˆ

a
a`

?
εpa´ 1q ´ ε

˙

, eC “

ˆ

a
0

˙

.

(4)

Note that λsL and λsR are of order 1 in ε while λqL and λqR are of order 0 in ε, implying a slow-fast
splitting of the dynamics in the σL and σR regions. On the contrary, eigenvalues λsLL, λ

q
LL, λ

s
C ,

and λqC are of order 1
2 in ε impliying no slow-fast splitting in σLL and σC . Moreover, notice that,

ei is an equilibrium point only when ei P σi. Otherwise, these points are called virtual equilibrium
points, and even when they are not equilibrium points, they organise the dynamic behaviour of
the system in their corresponding region σi.

0

1

0

-1

Sr0

Sa0

Figure 2: Flat critical manifold S0 of system (1). This is a PWL version of the critical curve
shown in Figure 1. The layer flow of the fast subsystem of system (1) is also represented. The
segment Sr0 and the half-line Sa0 are, respectively, the repelling and the attracting branches of the
critical manifold.

The critical manifold S0, formed by the equilibria of the fast subsystem of system (1) when
ε “ 0, is given by the graph of the PWL function y “ fpx, a, 0q. It is a normally hyperbolic
manifold, except at the horizontal half-line, that is for x P p´8,´1s, and at the origin p0, 0q. The
segment Sr0 defined for x P p´1, 0q is the repelling branch, and the half-line Sa0 defined for x ą 0
is the attracting branch, see Figure 2. From Lemma 4 in [31], the slow manifold Sε of system
(1), with 0 ă ε ! 1, is locally formed by segments, each of them contained in a region σL, σR and
defined by the slow eigenvector vsi “ pλ

s
i ,´εq

T associated to the slow eigenvalue λsi with i P tL,Ru.
Then,

Sε “

$

&

%

Srε “ eL ´ rv
s
L r P

”?
ε`a
λsL

, 1`a
λsL

ı

,

Saε “ eR ´ rv
s
R r P

”

a´
?
ε

λsR
,`8

¯

.
(5)

We conclude that Saε and Srε are the attracting branch and the repelling branch, respectively, of
a canonical slow manifold Sε, see Figure 3. Moreover, since the horizontal half-line of the critical
manifold is not normally hyperbolic, no piece of the slow manifold is located in the region σLL.
Finally, since in σC there is no real separation between fast and slow behaviour at the eigenvalues
level, it follows that there is no branch of the slow manifold, neither attracting nor repelling, which
is contained in this region. This observation was firstly commented in [11] where, when no other
repelling slow manifold does exist, cycles flowing along this region are called quasi-canards.

According to expression (5), the attracting branch Saε intersects with the switching line x “
?
ε

at the point

qR1 “

ˆ ?
ε

pλsR ´
?
εqp
?
ε´ aq

˙

, (6)

whereas the repelling branch Srε intersects the switching lines x “ ´1 and x “ ´
?
ε at the points

qL1 “

ˆ

´1
p
?
ε´ 1qp

?
ε` aq ` p1` aqλqL

˙

, qL0 “

ˆ

´
?
ε

p
?
ε´ λsLqp

?
ε` aq

˙

, (7)
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qL0

pL

qR1

pR

x “ a

pLL

qL1

Srε

Saε

x “ ´1 x “ ´
?
ε x “

?
εx “ x2 x “ x1

Γ´1

Γx2

Γx1

Figure 3: Geometrical and dynamical key elements for |a| ď
?
ε. x-nullcline and intersection

points pLL, pL and pR with the switching lines. Attracting Saε and repelling Srε canonical slow
manifolds and intersection points qR1 , qL0 and qL1 with the switching lines. Headless canard cycle
Γx1 , transitory canard cycle Γ´1 and canard cycle with head Γx2 .

respectively, see Figure 3. We also highlight the intersection points of the x-nullcline of system (1)
with the switching lines x “ ´1, x “ ´

?
ε and x “

?
ε,

pLL “

ˆ

´1
1`

?
εpa´ 1q ` ε

˙

, pL “

ˆ

´
?
ε

?
εp
?
ε` aq

˙

and pR “

ˆ ?
ε

?
εpa´

?
εq

˙

, (8)

respectively. Note that the flow of system (1) at these points is tangent to the switching lines.
Regarding the limit cycles of system (1), we note that every limit cycle Γ intersects the x-

nullcline y “ fpx, a, εq at exactly one point px, fpx, a, εqq having the property x ă a. From now
on, we call width of the limit cycle Γ, to the first coordinate of this intersection point and we use it
to identify the limit cycle. Therefore, the limit cycle Γx will be the limit cycle having width equal
to x, see Figure 3 for x “ x1 and x “ x2.

Due to the free divergence (tLL “ 0) in the zone σLL, the dynamics in this region is of center
type and, restricted to σLL, the function HLLpx, yq “ εpx´aq2`py´p2q

2 is constant on the orbits,
where p2 is the second coordinate of point pLL given in (8). Hence, given a limit cycle Γx of width
x ă ´1, the intersection points p´1, y˘x q of Γx with the switching line tx “ ´1u are symetrically
located on either sides of pLL, that is, y˘x “ p2 ˘ d , where the distance d satisfies the relationship
HLLp´1, p2 ´ dq “ HLLpx, p2q and hence,

x “ ´

a

d2 ` pa` 1q2ε´ a
?
ε

?
ε

and d “
?
ε
a

px` 1qpx´ 1´ 2aq. (9)

Consider system (1) with a ă
?
ε, which implies that the equilibrium of the system does not

belong to the region σR. The center dynamics in the left region σLL, the repelling dynamics in σL,
and the focus behaviour in σC together with the attracting slow manifold Saε in the right region σR,
allow us to assure that the positive semi-orbit through a point px, fpx, a, εqq, with x ă a, intersects
the nullcline in a point px1, fpx1, a, εqq, with x1 ă a. This fact lets us define the Poincaré map as
follows.

Definition 2.1 Consider ε0 ą 0 small enough. We define the image of px, a, εq by the Poincaré
map Π : p´8, aq ˆ p´8,

?
εq ˆ p0, ε0q Ñ p´8, aq as the first coordinate of the next intersection

point px1, fpx1, a, εqq with x1 ă a, between the x´nullcline and the positive semi-orbit passing
through the point px, fpx, a, εqq.

Associated to each limit cycle Γx, we can define the following times of flight, as follows.

Definition 2.2 For ε ą 0, consider a limit cycle Γx. We define the period T px, a, εq of Γx as
the time spent by the orbit from the point px, fpx, a, εqq to the point pΠpx, a, εq, fpΠpx, a, εq, a, εqq.
Then, the period T px, a, εq can be descomposed as the sum of the times of flight τi that the limit
cycle spends in each zone σi, with i P tLL,L,C,Ru, that is

T px, a, εq “ τLL ` τL ` τC ` τR.
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One special limit cycle, assuming that it exists, is the one having width x “ ´1. Such a limit
cycle is tangent to the switching line tx “ ´1u at the point pLL, and therefore, it is the separation
cycle between the limit cycles intersecting the lateral region σLL and those that do not intersect
it, see Γ´1 in Figure 3. In a similar way, the limit cycle having width x “ ´

?
ε is tangent at pL to

the switching line tx “ ´
?
εu and it is the separation cycle between the limit cycles intersecting

the region σL and those that do not intersect it.
When ε is small enough, the limit cycles with width ´1 ă x ă ´

?
ε will be referred to as

headless canard limit cycles whereas limit cycles with width x ă ´1 will be referred to as canard
limit cycles with head. Therefore, the limit cycle with width x “ ´1 will be referred to as the
transitory canard, see [27], and it is the boundary between headless canard cycles and canard
cycles with head.

3 Statement of the Main Results

In this section, we present the main results in the paper. These results regarding the existence
of a one parameter family of stable limit cycles in the PWL system (1) borning at a Hopf-like
bifurcation, and to the description about how the amplitudes of the cycles in the family evolve.

In the first result we assure that, the starting point of the curve organizing the family of limit
cycles exhibited by system (1) takes place at a Hopf-like bifurcation [20, 21, 35, 36]. At this
bifurcation, a limit cycle appears after the change of stability of the equilibrium point, just like in
the Hopf bifurcation. The difference between both kind of bifurcations is the relation between the
amplitude of the limit cycle and the value of the bifurcation parameter. This relation is linear in
the Hopf-like bifurcation and a square root in the Hopf bifurcation.

Since the Hopf-like bifurcation is a local phenomenon, involving only two regions of linearity,
the following result can be derived from Theorem 5 in [20]. See also Theorem 5.1 and Theorem
5.2 in [36], or Theorem 4.1 in [5] in the particular case m “ ´

?
ε and k “ 1.

Theorem 3.1 (Hopf-like bifurcation) System (1) has a unique equilibrium point e “ pa, fpaqq,
which converges to the fold of the critical manifold at the origin as pε, aq tends to p0, 0q. Moreover,
the equilibrium point e is asymptotically stable for a ą

?
ε and looses stability through a Hopf-like

bifurcation across a “
?
ε. In particular, when ε ą 0 is sufficiently small, a stable limit cycle

appears in a supercritical bifurcation for a ă
?
ε, and the size of the limit cycle depends linearly

on the distance |
?
ε´ a|.

In the next result, we study the possibility of connecting the point qR1 with a given point p0 of
the switching line tx “ ´

?
εu through an orbit of the system in the central region σC . The point

p0 can be written in the form
p0 “ q0

L ` Y ε
3{2p0, 1qT , (10)

with ´8 ď Y ď rY0, being

rY0 “

?
ε` a

λqL
?
ε
. (11)

We note that when Y “ rY0 the point p0 coincides with the point pL, at which the flow is
tangent to tx “ ´

?
εu and this value is, hence, the limit of the region where the orbits cross from

the central region σC to the region σL. On the other hand, when Y vanishes the point p0 coincides
with q0

L, which implies that both branches of the slow manifold, Saε and Srε , connect giving rise to
the maximal trajectory, see Figure 3.

Theorem 3.2 (Connection near the slow manifold) Let us consider the values qR1 , qL0 , and
rY0 given in (6), (7), and (11), respectively. Let us define

rY ˚0 “
2e

π?
3

1` e
π?
3

(12)

and let us fix a value Y0 P

´

´8, rY ˚0

¯

. Then, there exist a value 0 ă µ ! 1 and two ana-

lytic functions AS and ηS defined in U “ pY0 ´ µ, Y0 ` µq ˆ p´µ, µq such that if 0 ă ε ă µ2

and a “ aSpY, εq :“
?
εASpY,

?
εq, then the orbit of system (1) starting in point qR1 reaches the

switching line tx “ ´
?
εu at the point p0 “ qL0 ` Y ε3{2p0, 1qT with the time of flight τSC pY, εq :“
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ηSpY,
?
εq{
?
ε ą 0. In addition, the first terms of the expansions of aS and τSC in terms of

?
ε are

given by

aSpY, εq “
e
π?
3 ´ 1

e
π?
3 ` 1

?
ε´

CpY qY

4e
π?
3

´

e
π?
3 ` 1

¯ε
3
2 `Opε2q (13)

and

τSC pY, εq “
2π
?

3
?
ε
`
CpY q

2e
π?
3

´

´

e
π?
3 ` 1

¯

CpY qY

8e
2π?
3

?
ε`Opεq, (14)

where
CpY q “ pe

π?
3 ` 1qY ´ 4e

π?
3 . (15)

Notice that the existence of the functions aSp0, εq and τSC p0, εq which guarantee the connection
of both branches of the slow manifold when Y “ 0, were derived in [5, Theorem 3.2]. Here,
considering that Y does not vanish, we have extended the existence to a neighbourhood of the slow
manifold.

The existence of the connection between the attracting and repelling slow manifolds, together
with the free divergence character of the flow in the region σLL, allow for a global return of the
flow, which provides the arguments to establish the following result about the existence of cycles
of any suitable width. To state the result in a proper way, we introduce the following values
corresponding with the end points of the canard regime, see Lemma 4.1 in Subsection 4.2

xrpεq “ ´

c

λqL

´

1´
?
ε
´

1` 1
| lnpεq|

¯¯2

` λsLp1` raq2

a

λsL
` ra “ ´

1
?
ε
` 1`Opε1{2q,

(16)

xspεq “ ´
?
ε´

1

| lnpεq|
p
?
ε` raq,

where ra “ aSp0, εq in order to simplify notations. Moreover, when no confusion arises we remove
the ε dependency on xrpεq and xspεq.

Theorem 3.3 (Existence of canard limit cycles) Consider ε0 ą 0 small enough and x0 P

p´8, xspε0qq. There exists a C8-function AN defined in U “ px0 ´ µ, x0 ` µq ˆ p´
?
µ,
?
µq with

0 ă µ ! 1, such that if 0 ă ε ă µ, system (1) with a “ aN px, εq :“
?
εAN px,

?
εq possesses a stable

limit cycle, Γx, passing through px, fpxqq. Moreover, if x0 P pxrpεq, xspεqq, function aN px0, εq has
the same Taylor series expansion in

?
ε as aSp0, εq, with aS given in Theorem 3.2, and therefore,

Γx0 is a canard cycle. Furthermore, if x0 P p´1, xspεqq, then Γx0 is a headless canard; and if
x0 P pxrpεq,´1q, then Γx0 is a canard with head. Finally, if x0 P p´8, xrpεqs, then Γx0 is a
relaxation oscillation.

The above theorem describes the family of limit cycles depending on width of the cycles, and
assures for this family the existence of the canard explosion restricted to the interval pxr, xsq, since
every cycle Γx with x P pxr, xsq occurs for a parameter value a “ aN px, εq having the same Taylor
series expansion in

?
ε than aSp0, εq. Moreover, limit cycles having width x ă xr are relaxation

oscillations, whereas limit cycles having width xs ă x ă ´
?
ε are still under the effect of the

Hopf-like bifurcation, namely, the Hopf regime.
In the next result, we provide information about the period function T px, εq “ T px, aN px, εq, εq

of canard cycles in terms of the width x.

Theorem 3.4 (Properties of period function) Set ε0 sufficiently small. There exists a func-
tion T : U “ p´8, xspε0qq ˆ p0, ε0q Ñ R`, function of px,

?
εq such that T px, εq is the period of

the cycle Γx whose existence has been established in Theorem 3.3 for the parameter a “ aN px, εq.
Moreover, the following statements hold.

a) There exists a function xP pεq, C8 as a function of ε1{3, defined in p0, ε0q which provides the
maximum of the period T , that is

BT

Bx
px, εq ą 0, x P pxr, xP pεqq,

BT

Bx
pxP pεq, εq “ 0,

BT

Bx
px, εq ă 0, x P pxP pεq, xsq.

7



b) The maximum satisfies that
xP pεq “ ´ε

´1{6 `Opε1{2q,

T pxP pεq, εq “
1

ε
ln

˜

C0p1´ ε
2
3 q

ε

¸

`Opε´
1
2 q,

where,

C0 “
p1` e

π?
3 q2

4e
π?
3

.

We recall that x “ ´1 is the width of the transitory canard cycle Γ´1, that is, the one at the
boundary between headless canard cycles and canard cycles with head. Let rxpεq and xM pεq be the
width of, respectively, Γ

rx the canard cycle through the point qL1 , i.e, the one passing through the
repelling branch of the slow manifold, and ΓxM the maximal canard cycle, that is the one obtained
just when both branches of the slow manifold coincide. In the next theorem we establish the order
of the width of all these canard cycles which are depicted in Figure 4.

Theorem 3.5 (Order of canard limit cycles) Set ε0 ą 0 sufficiently small. Transitory canard
Γ´1, maximal canard ΓxM and the canard with maximal period ΓxP are ordered as follows,

xr ă xP ă rx ă xM ď ´1 ă xs.

qL0

pL

τL

τLL

qR1

pR

τR

τC

x “ a

pLL
Γ´1

Γ
rx

ΓxM

ΓxP

qL1
Srε

Saε

x “ ´1 ´
?
ε

?
εxr xs

Γxr

Γxs

Figure 4: Canard regime: from birth to maturation. The birth of canards occurs at cycle
Γxs , whereas the maturation at Γxr . The transition from headless canard cycles to canard cycles
with head at the transitory canard Γ´1, maximal canard ΓxM taking place at the conection between
the slow-manifolds, canard cycle through the repelling slow manifold Γ

rx and the maximum period
canard cycle ΓxP .

4 Proofs of the Main Results

4.1 Proof of Theorem 3.2

As a first step, a direct computation shows that the orbit of the linear differential system

"

x1 “ y ´
?
εpa´ xq,

y1 “ εpa´ xq,

8



passing through the point qR1 can be parametrized as pxpt; a, εq, ypt; a, εqq, where

xCpt; a, εq “ 1
3
?
ε
p
?
ε´ aq e

t
?
ε

2

`?
3
`?

1´ 4ε´
?
ε´ 1

˘

sin
`?

3ε t{2
˘

` 3
?
ε cos

`?
3ε t{2

˘˘

` a,

yCpt; a, εq “ ´ 1
6 p
?
ε´ aq e

t
?
ε

2

`?
3
`?

1´ 4ε` 2
?
ε´ 1

˘

sin
`?

3ε t{2
˘

`
`

´3
?

1´ 4ε` 6
?
ε` 3

˘

cos
`?

3ε t{2
˘˘

with t P R.
Now, we want to find two values τSC ą 0 and aS P R, depending on ε ą 0 and Y0, such that

F1pτ
S
C , aS , εq “ 0,

F2pτ
S
C , aS , ε, Y0q “ 0,

|xCpτ ; aS , εq| ă
?
ε, for τ P p0, τSC q,

(17)

where
F1pτ, a, εq “ xpτ ; a, εq `

?
ε (18)

and
F2pτ, a, ε, Y0q “ ypτ ; a, εq ´

`?
ε´ λsL

˘ `?
ε` a

˘

´ Y0 ε
3{2. (19)

Notice that the two first equations of (17) imply that the orbit reaches the point qL0 ` Y0 ε
3{2e2

and the last inequality assures that the orbit remains in the zone σC for τ P p0, τSC q.
Next, we deal with the solutions of the nonlinear system of two equations F1pτ, a, εq “ 0,

F2pτ, a, ε, Y q “ 0 and four unknowns (τ, a, ε, Y q. After that, we will check that the solutions found
also satisfy the inequality in (17).

The change of variable
pτ, a, ε, Y q “

`

ηδ´1, Aδ, δ2, Y
˘

, (20)

valid for ε, δ ą 0, allows to write the system F1 “ 0 and F2 “ 0 into the form δG1pη,A, δq “ 0 and
δ2G2pη,A, δ, Y q “ 0, where

G1pη,A, δq “
1´A
?

3
eη{2

ˆ

?
3 cos

´?
3 η{2

¯

´

ˆ

4δ
?

1´ 4δ2 ` 1
` 1

˙

sin
´?

3 η{2
¯

˙

`A` 1 (21)

and

G2pη,A, δ, Y q “
A´ 1
?

3
eη{2

ˆ

?
3

ˆ

2δ
?

1´ 4δ2 ` 1
` 1

˙

cos
´?

3 η{2
¯

`

ˆ

1´
2δ

?
1´ 4δ2 ` 1

˙

sin
´?

3 η{2
¯

˙

´

pA` 1q

ˆ

1´
2δ

?
1´ 4δ2 ` 1

˙

´ Y δ.

(22)
Since systems pF1, F2q “ p0, 0q and pG1, G2q “ p0, 0q are equivalent for δ “

?
ε ą 0, from now

on we will find solutions for the second one.
From straightforward computations it follows that the point

pη0, A0, δ0, Y0q “

˜

2π
?

3
,
e
π?
3 ´ 1

e
π?
3 ` 1

, 0, Y0

¸

is a solution of system pG1, G2q “ p0, 0q. Since the determinant of the Jacobian matrix is

det pDη,AGpη0, A0, δ0, Y0qq “

¨

˚

˚

˝

BG1

Bη
pη0, A0, δ0q

BG1

BA
pη0, A0, δ0q

BG2

Bη
pη0, A0, δ0, Y0q

BG2

BA
pη0, A0, δ0, Y0q

˛

‹

‹

‚

“ ´2e
π?
3 ‰ 0,

the Implicit Function Theorem assures that there exists a value µ :“ µpY0q ą 0 and two analytic
functions ηS and AS defined in pY0´µ, Y0`µqˆ p´µ, µq such that ηSpY0, 0q “ η0, ASpY0, 0q “ A0

and G1 pηSpY, δq, ASpY, δq, δq “ G2 pηSpY, δq, ASpY, δq, δ, Y q “ 0 for all pY, δq P pY0 ´ µ, Y0 ` µq ˆ
p´µ, µq. Moreover, after some direct calculations, one can see that the functions ηS and AS can
be written as

ηSpY, δq “
2π
?

3
`
CpY q

2e
π?
3

δ ´

´

e
π?
3 ` 1

¯

CpY qY

8e
2π?
3

δ2 `Opδ3q
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and

ASpY, δq “
e
π?
3 ´ 1

e
π?
3 ` 1

´
CpY qY

4e
π?
3

´

e
π?
3 ` 1

¯δ2 `Opδ3q,

where CpY q is given in expression (15).
Therefore, the existence of the functions τSC and aS , as well as the analyticity of functions

aSpY, εq and
?
ε τSC pY, εq as functions of

?
ε and the validity of expressions (13) and (14), are

guaranteed by undoing the change of variable (20). Here, functions τSC pY, εq “ ηSpY,
?
εq{
?
ε and

aSpY, εq “
?
εASpY,

?
εq are defined in pY0 ´ µ, Y0 ` µq ˆ

`

0, µ2
˘

.
Now, we will turn to proving that the last inequality of (17) is satisfied by assuring that

x1Cpτ ; aS , εq ă 0 for τ P p0, τSC q. On the contrary let us assume that there exists t1 P p0, τ
S
C q

such that x1Cpt1; aS , εq “ 0. Therefore the point pxCpt1; aS , εq, yCpt1; aS , εqq belongs to the x-

nullcline with xCpt1; aS , εq ă ´
?
ε. We conclude that p´

?
ε, yCpτ

S
C ; aS , εqq “ qL0 ` Y0ε

´ 3
2 p0, 1qT

with Y0 ą rY0. Notice that rY0 “ rY ˚0 since a “ aS , and then Y0 ą rY ˚0 in contradiction with the
hypotheses.

4.2 Proof of Theorem 3.3

Theorem 3.3 is devoted to the existence and stability of the curve of limit cycles which starts at the
Hopf-like bifurcation. In this result we also distinguish between the different oscillatory regimes
taking place along the curve, those are the Hopf like cycles, the canard cycles and the relaxation
oscillations. All these oscillatory regimes are characterised according to whether the limit cycles
evolve close to the repelling slow manifold or not. In particular, the canard regime is formed by all
the cycles that flow close to the repelling slow manifold, and therefore that intersect the separation
plane tx “ ´

?
εu exponentially close to qL0 . Moreover, the canard regime is inserted between the

Hopf and the relaxation regimes. Nevertheless, as far as we are concerned, the transitions between
these regimens are not precisely defined in the literature. By analyzing the strong divergence in
the neighbourhood of the unstable slow manifold, in the next result we suggest two cycles of the
one-parameter family to act as boundaries of the previous oscillatory regimes.

Lemma 4.1 For ε0 ą 0 sufficiently small, set ε ă ε0, a ă
?
ε and let Γx0 be a limit cycle of

system (1) having width x0 P p´8, aq. Consider the values of xr and xs given in (16). It holds
that:

a) If x0 P pxs, aq then Γx0
is under Hopf regime.

b) If x0 P pxr, xsq then Γx0
is under canard regime.

c) If x0 P p´8, xrq then Γx0
is under relaxation regime.

Proof: The proof of the result is obtained through the analysis of the divergence in a neighbourhood
of the repelling slow manifold, Srε , contained in the zone σL, see Figure 4. To this end, we consider
the transition map from points on the switching line tx “ ´

?
εu to itself, but also the transition

map to the switching line tx “ ´1u. Since pL and pLL are contact points of the flow with the
switching lines, the domain and the ranges of these transition maps can be parametrized as follows,
pL ´ u 9pL with u ą 0 and pL ` v 9pL or pLL ´ v 9pLL with v ą 0, respectively, where 9pL and 9pLL
stand for the vector field evaluated at points pL and pLL respectively, see Figure 5.

Let ϕptq be a solution of system (1) such that ϕptq Ă σL for t P p0, t0q and t0 ą 0. By
using the Krylov base tpL, 9pLu, the solution can be parametrized by ϕptq “ u1ptqpL ` u2ptq 9pL.
Following Theorem 5 in [26], function HLpu1, u2q “ |u1`λ

s
Lu2|

λqL |u1`λ
q
Lu2|

´λsL is constant over the
coordinates pu1ptq, u2ptqq with t P p0, t0q, and it is called a first integral for system (1) related to the
Krylov base tpL, 9pLu. Therefore, the transition map from points on the switching line tx “ ´

?
εu

to itself, i. e., from points pL´u 9pL to points pL` v 9pL, is given by HLp1,´uq “ HLp1, vq, that is

|1´ uλsL|
λqL

|1´ uλqL|
λsL
“
|1` vλsL|

λqL

|1` vλqL|
λsL
, (23)

for u P r0, utq, where ut is the coordinate of the initial condition pL ´ ut 9pL of the orbit passing
through pLL. Consequently, ut limits the domain of the transition map from the straight line
tx “ ´

?
εu to itself, and it is at the same time the beginning of the transition map between the

two switching lines, see Figure 5.
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pL ` v 9pL

pL

pL ´ u 9pL

pLL ´ v 9pLL

pLL

x “ ´1 x “ ´
?
ε

Figure 5: Transition maps in σL. Representation of the transition maps from tx “ ´
?
εu to

itself and to tx “ ´1u in terms of the Krylov bases tpL, 9pLu and tpLL, 9pLLu.

On the other hand, since pLL ´ eL “ rppL ´ eLq and 9pLL “ r 9pL with

r “
}pLL ´ eLL}

}pL ´ eL}
“

1` a
?
ε` a

,

it follows that the transition map from points pL ´ u 9pL to points pLL ´ v 9pLL is given by
HLp1,´uq “ HLpr,´rvq, that is

|1´ uλsL|
λqL

|1´ uλqL|
λsL
“ rλ

q
L´λ

s
L
|1´ vλsL|

λqL

|1´ vλqL|
λsL
, (24)

with u P rut,`8q. The value of ut can be computed from (24) since vputq “ 0, that is

ut “
1

λqL
´

1

λqL
e

1
2λs
L

lnpεq
P

ˆ

1,
1

λqL

˙

.

Therefore, expressions (23)-(24) define the transition map vpuq implicitely given as

F puq “

"

F p´vq, u P r0, utq,

rλ
q
L´λ

s
LF p´vq, u P rut,`8s,

(25)

where F pxq is defined by

F pxq “
|1´ xλsL|

λqL

|1´ xλqL|
λsL
“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p1´ xλsLq
λqL

p1´ xλqLq
λsL
, if x ă 1{λqL,

p1´ xλsLq
λqL

pxλqL ´ 1qλ
s
L
, if 1{λqL ă x ă 1{λsL,

pxλsL ´ 1qλ
q
L

pxλqL ´ 1qλ
s
L
, if x ą 1{λsL.

(26)

In Figure 6 it is depicted the graphs of the functions F pxq and rλ
q
L´λ

s
LF pxq together with a

representation of the transition map vpuq.
From (7) and (8) it follows that qL0 “ pL ´

1
λqL

9pL, thus the coordinate u “ 1
λqL

corresponds to

the repelling slow manifold Srε . Hence, the canard orbits are those with coordinate u exponentially
close to it. Let uspεq ă

1
λqL

be such that F puspεqq “ 1 ` 1
| lnpεq| . According to expression (41) it

follows that

uspεq “
1

λqL
´

1

λqL
e´

1
ε| lnpεq| ,

which is a canard orbit, as well as every u such that uspεq ď u ď 1
λqL

. Therefore, we suggest uspεq

to be the lower boundary of the canard regimen.
Let us now compute xs, that is, the first coordinate of the intersection of the orbit passing

through pL ´ uspεq 9pL with the x´nullcline. The transition map from points in tx “ ´
?
εu into

points in the x´nullcline in zone σL is given by,

HLp1,´uspεqq “ HLpγ, 0q. (27)
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0

1

rd

F
p´
vq
«
εv
`

1

r d
F
pvq
«
r 1´

vλ s
L

1´
u
r λ s
L

1
λqL

u vpuq
ut

1
λsL

Figure 6: Representation of the transition map vpuq throught the graphs of the functions
F pxq and rλ

q
L´λ

s
LF pxq “ rdF pxq, with d “ λqL ´ λ

s
L. Note that vpuq “ u at u “ 1

λqL
and u “ 1

λsL
.

Moreover, HLp1,´uspεqq “ F puspεqq and by construction F puspεqq “ 1` 1
| lnpεq| .Also, HLpγ, 0q “

γλ
q
L´λ

s
L which can be approximated at first order by γ. Taking this into account, from (27) we find

that γ « 1` 1
| lnpεq| . Thus, xs can be computed as the first coordinate of the point eL`γppL´eLq,

from which we obtain expression (16).
On the other hand, consider 1

λqL
ă urpεq ă

1
λsL

such that F purq “ 1 ` 1
| lnpεq| . According to

expression (41) it follows that

urpεq “
1

λqL
`

1

λqL
e´

1
ε| lnpεq| ,

which is a canard orbit, as well as every u such that 1
λqL
ď u ď urpεq. Therefore, we suggest urpεq

to be the upper boundary of the canard regimen. Let vr “ vpurq, from expression (25) and by
using that F purq “ 1` 1

| lnpεq| and

rλ
q
L´λ

s
LF p´vq “ rλ

q
L´λ

s
L

1´ vλsL
1´ urλsL

« r
1´ vλsL
1´ urλsL

,

we conclude that vrpεq “
1
λsL

´

1´
?
ε
´

1` 1
| lnpεq|

¯¯

.

Let us finally compute the first coordinate, xr, of the intersection point with the x´nullcline,
of the orbit through pL´ urpεq 9pL. From definition, orbit passing through the point pL´ urpεq 9pL
also passes through the point pv “ pLL´vrpεq 9pLL, and pv can also be written as pv “ pLL´yre2,
where yr “ λqL ´ λ

q
L

?
εp1` 1

| lnpεq| q. Thus, from the first expression in (9) with d “ yr, expression

(16) follows.
˝

Now we deal with the proof of the Theorem 3.3. First, we prove the existence of the family of
cycles, and second we study the stability of these cycles.

Let p̄0 “ p´
?
ε, yq be the intersection point of the orbit through px0, fpx0qq with the separation

line tx “ ´
?
εu, and consider p0 “ qL0 ` Y0ε

3
2 p0, 1qT exponentially close to p̄0. Since x0 ă xs it

follows that Y0 ă Ys ă rY ˚0 , where rY ˚0 is given in (12) and

Ys “
2e

π?
3

e
π?
3 ` 1

e´
1

ε| lnpεq|

corresponds with the orbit through pxs, fpxsqq. By integrating forward, at some point the orbit will
cross from the central to the right zone in Opεq time, and will reach a neighborhood of Saε . After
that, as the manifold Saε is attracting, the orbit targets to the central zone, while the distance to
Saε is contracting with contraction rate Opexpp´c{εqq, where c is a positive constant depending on
y, for a time interval of order Op1q. Thus, the orbit arrives to the central zone in a point p̄1, which
is exponentially close to the intersection between the invariant manifold Saε and the separation line
tx “

?
εu, that is, qR1 given in expression (6).

Consider now the connection between p̄1 and p̄0. Following the proof of Theorem 3.2, this
connection can be obtained as the solutions of a system of two equation, namely F̄1pτ, a, ε, Y0q “ 0
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and F̄2pτ, a, ε, Y0q “ 0. Moreover, since p̄1 and p̄0 are exponentially close to qR1 and p0 respectively,
the change of variables (20) transforms the previous system into

ˆ

G1pη,A, δq
G2pη,A, δ, Y0q

˙

` ξpy, η, A, δ, Y0q “

ˆ

0
0

˙

, (28)

where G1 and G2 are the functions in (21)-(22) and being ξpy, η, A, δ, Y0q and their derivatives
are Opexpp´c{δ2qq small, where c is a positive constant depending on y. Thus, we can apply
the Implicit Function Theorem for C8 functions to the set of equations (28) which proves the
existence of two C8 functions AN and ηN defined in a neigbourhood of Y0 and δ “ 0 and such
that py, ηN pY, δq, AN pY, δq, δ, Y q is a solution of systems (28). Moreover, functions AN and ηN are
exponentially close to functions AS and τSC , respectively, which are obtained in Theorem 3.2.

Finally, since Y0 depends on x0 and δ “
?
ε we consider AN and ηN as defined in px0´µ, x0`

µqˆ p´
?
µ,
?
µq. This concludes the proof of the existence of a periodic orbit Γx0

passing through
px0, fpx0qq when x0 P p´8, xsq.

We study now the stability of such limit cycle Γx0
. To this end, let us consider the derivative

with respect to the width x of the Poincaré map introduced in Definition 2.1. It corresponds to
the exponential of the integral of the divergence along the limit cycle, see [7]. In the particular
case of PWL systems, the integral of the divergence can be explicitly computed as the sum of the
product of the trace and the time of flight, as they are introduced in Definition 2.2, of the limit
cycle in each region of linearity, see [21],

BΠ

Bx
px0, aN px0, εq, εq “ etLτL`tLLτLL`tRτR`tcτC “ eτL´τR`

?
ετC , (29)

where we have taken into account the values of the traces in each zone, see (3). Therefore, the
stability of Γx0

depends on the sign of τL ´ τR `
?
ετC .

The time τC that the orbit takes in zone σC is divided into two parts, one below and another
above the x´nullcline. Thus, we can write that, τC “ τCd ` τCu, where τCd “ τSC pY, εq “

2π?
3
?
ε
`Opεq, see Theorem 3.2, and τCu “ Opεq.

In the following, we calculate the sign of τL´τR`
?
ετC depending on whether Γx0

is a headless
canard, a canard with head or a relaxation oscillation.

Suppose the cycle is a headless canard. In such a case, the cycle intersects the switching line
tx “ ´

?
εu above the x´nullcline at a point whose second coordinate is denoted by h. In Lemma

A.1 we present the times of flight of the cycle as a function of h and so

τL ´ τR “
1

λsL
ln

ˆ

ppλqL ´
?
εqp
?
ε` aN q ` hq pλ

q
R ´ λ

s
Rqp
?
ε´ aN q

ppλqR ´
?
εqp
?
ε´ aN q ´ hq pλ

q
L ´ λ

s
Lqp
?
ε` aN q

˙

,

where λsL “ ´λ
s
R, λqL “ ´λ

q
R and aN “ a0

?
ε`Opεq with a0 “

e
π?
3´1

e
π?
3`1

, see (13). Hence,

τL ´ τR “
1

λsL
ln

ˆ

´
ppλqL ´

?
εqp1` a0 `Op

?
εqq
?
ε` hq p1´ a0 `Op

?
εqq

ppλqR ´
?
εqp1´ a0 `Op

?
εqq
?
ε´ hq p1` a0 `Op

?
εqq

˙

,

“
1

λsL
ln

ˆ

1´ a0

1` a0
`Op

?
εq

˙

“ ´
C2

ε
`Opε´1{2q.

Therefore, for ε small enough τL´τR`
?
ετC ă 0 which implies that BΠ

By px0,ηq ă 1 and so headless
canard cycles are all stable limit cycles.

Assume now that Γx0 is a canard cycle with head or a relaxation oscillation. Then Γx0 intersects
the switching line tx “ ´1u into two points, p`LL and p´LL, one above and the other below pLL
and equidistant to it, since the trace tLL “ 0. Let h` and h´ be the second coordinates of p`LL
and p´LL, respectively.

In the case Γx0
is a canard cycle with head, we can write that τL “ τLd ` τLu, where τLu

corresponds with the time of the transition of the cycle in σL above the nullcline. Since the
dynamics at this part is fast, hence the contribution of τLu is neglibible with respect to τLd and
will not be taken into account in following computations. From Lemma A.1, taking h “ h´ in the
computation of τLdphq and h “ h` in the computation of τRphq, it follows that

τLd ´ τR “
1

λsL
ln

ˆ

ppλqL ´
?
εqp
?
ε` aN q ` λ

s
Lp
?
ε´ 1q ` h´q pλ

q
R ´ λ

s
Rqp
?
ε´ aN q

ppλqR ´
?
εqp
?
ε´ aN q ´ h`q pλ

q
L ´ λ

s
Lqp
?
ε` aN q

˙

,
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where λsL “ ´λ
s
R, λqL “ ´λ

q
R and aN “ a0

?
ε`Opεq. Hence,

τLd ´ τR “
1

λsL
ln

ˆ

´
ppλqL ´

?
εqp1` a0 `Op

?
εqq
?
ε` λsLp

?
ε´ 1q ` h´q p1´ a0 `Op

?
εqq

ppλqR ´
?
εqp1´ a0 `Op

?
εqq
?
ε´ h`q p1` a0 `Op

?
εqq

˙

“
1

λsL
ln

ˆ

h´
h`

1´ a0

1` a0
`Op

?
εq

˙

“ ´
C2

ε
`Opε´1{2q,

with h´ ă h`. Therefore, τL ´ τR `
?
ετC ă 0 and canard cycles with head are also stable limit

cycles.
Assuming now that Γx0

be a relaxation oscillation, then the piece of the orbit in σL under the
x-nullcline flows along the fast dynamics so in this case τLd is negligible with respect to τR which
is order ´1 in ε. Therefore τL ´ τR `

?
ετC ă 0 and the relaxation oscillations are stable limit

cycles. This ends the proof of Theorema 3.3.

4.3 Proof of Theorem 3.4

We begin by proving statement (a) and after that we proceed to prove statement (b).
For ε small enough, let us consider the period function T px, εq introduced in Definition 2.2 with

a “ aN px, εq “ aSp0, εq if x P pxr, xsq, or a “ aSpY ph2pxqq, εq otherwise, and given by

T px, εq “

$

&

%

τLph1pxqq ` τRph1pxqq ` τC x P r´1, xsq,
τLdph2pxqq ` τLLph2pxqq ` τRp2p2 ´ h2pxqq ` τC x P pxr,´1q,
τLLph2pxqq ` τRp2p2 ´ h2pxqq ` τ

S
C pY ph2pxqq, εq x ă xr,

(30)

where p2 “ 1 ` ε `
?
εpa ´ 1q is the second component of the tangent point pLL given in (8),

functions τLphq, τLdphq, τLLphq and τRphq are the time of flight introduced in Definition 2.2 and
computed in Lemma A.1, and τC “ τSC p0, εq where τSC pY, εq is given in (14). Moreover, h1pxq and
h2pxq provide the second coordinate of the intersection points, if any, of the cycle Γx with the
switching lines tx “ ´

?
εu and tx “ ´1u, respectively. In particular, if x P p´1, xsq, then h1pxq is

the second coordinate of the intersection point of Γx with tx “ ´
?
εu which is above of the tangent

point pL. If x P p´8,´1q, then h2pxq is the second coordinate of the intersection point of Γx with
tx “ ´1u which is below pLL. We note that when ε is small enough and x ă xr, then h2pxq also
provides a good approximation for the second coordinate of the intersection point of the orbit Γx
with tx “ ´

?
εu which is below pL, see Figure 4. Therefore, function Y ph2pxqq and its derivative

dY
dh can be obtained from equation h2pxq “ p

?
ε´ λsLq p

?
ε` aSpY, εqq ` Y ε

3
2 , corresponding with

the second coordinate of the equation (10). Hence, dY
dh “

´

ε
3
2 ` p

?
ε´ λsLq

BaS
BY

¯´1

, where BaS
BY “

ε
3
2

4e
π?
3´2p1`e

π?
3 qY

4e
π?
3 p1`e

π?
3 q

`Opε2q ą 0 can be computed from (13), and therefore

dY

dh
“ ε´

3
2 `Opε´1q. (31)

Set

hpxq “

"

h1pxq, x P r´1, xsq,
h2pxq, x P p´8,´1q.

It is easy to see that dh
dx ą 0 in p´8,´1q and dh

dx ă 0 in p´1, xsq.
From Lemma A.1 and since λqL “ ´λ

q
R, the derivative of the period function given in (30) for

x P r´1, xsq can be straightforward computed as

BT

Bx
“ pτ 1Lphq ` τ

1
Rphqq

dh

dx

“
1

λsL

dh

dx

ˆ

1

pλqL ´
?
εqp
?
ε` raq ` h

´
1

pλqR ´
?
εqp
?
ε´ raq ´ h

˙

“
1

λsL

dh

dx

ˆ

1

pλqL ´
?
εqp
?
ε` raq ` h

`
1

pλqL `
?
εqp
?
ε´ raq ` h

˙

ă 0,

where ra “ aSpε, 0q, see (13).
On the other hand, for x P pxr,´1q the derivative of the period function is given as,

BT

Bx
“ pτ 1Ldphq ` τ

1
LLphq ´ τ

1
Rp2p2 ´ hqq

dh

dx
. (32)
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From Lemma A.1,

τ 1Ldphq ` τ
1
LLphq ´ τ

1
Rp2p2 ´ hq “

1

λsL

1

pλqL ´
?
εqp
?
ε` raq ` λsLp

?
ε´ 1q ` h

´
2p1` raq

εp1` raq2 ` p1´ h`
?
εpra´ 1q ` εq2

`
1

λsL

1

pλqR ´
?
εqp
?
ε´ raq ´ 2p1`

?
εpra´ 1q ` εq ` h

and taking into account the value of ra “ aSpε, 0q, it follows that expression (32) writes as

BT

Bx
“

ˆ

1

ε

ˆ

1

h
`

1

h´ 2

˙

´
2

p1´ hq2
`Op

?
εq

˙

dh

dx
. (33)

Since dh{dx ą 0 in pxr,´1q the function BT
Bx has an unique zero

h˚ “ 1´ ε
1
3 `

1

3
ε´

1

9
ε

5
3 `Opε3q, (34)

which is positive at p0, h˚q, and negative in ph˚, p2q. Consequently, T has a local maximum at h˚,
corresponding with a canard cycle with width xP P pxr,´1q.

Finally, for x P p´8, xrq the derivative of the period function is given as,

BT

Bx
“

ˆ

τ 1LLphq ´ τ
1
Rp2p2 ´ hq `

BτSC
BY

dY

dh

˙

dh

dx
. (35)

From Theorem 3.2 and expression (31), we get,

BτSC
BY

dY

dh
“

1` e
π?
3

2e
π?
3

ε´
3
2 `Opε´1q. (36)

On the other side, from Lemma A.1 it follows that

τ 1LLphq ´ τ
1
Rp2p2 ´ hq “ ´

2p1` aq

p1´ hq2
`

1

εph´ 2` aq
,

where we note that a is not necessarily of order
?
ε since we are considering x P p´8, xrq. Therefore,

taking into account (36), it follows that the expression (35) writes as

BT

Bx
“

˜

1` e
π?
3

2e
π?
3

ε´
3
2 `Opε´1q

¸

dh

dx
,

and then BT {Bx ą 0 in p´8, xrq since dh{dx ą 0 in that interval. Thus, this conclude the proof
of statement (a).

Now, let us proceed to the proof of statement (b).
Taking into account that p2 “ 1 ` ε `

?
εpra ´ 1q is the second coordinate of the point pLL,

the change of coordinates from the height h2 to the width x is given by the expression (9) with
d “ p2 ´ h and a “ ra, i.e.,

x “ ´

a

pp2 ´ hq2 ` pra` 1q2ε´ ra
?
ε

?
ε

.

Using this change of variables, we conclude that the width xP of the canard cycle with maximum
period can be computed as

xP “ ´

a

pp2 ´ h˚q2 ` pra` 1q2ε´ ra
?
ε

?
ε

“ ´ε´
1
6 `Opε

1
2 q.

Since xr “ ´ε´
1
2 ` Opε0q, from (16), this maximum is clearly located in the interval pxr,´1q.

Moreover, the value of the period (30) at xP can be computed as

T pxP , εq “ τLdph
˚q ` τLLph

˚q ` τRp2p´ h
˚q ` τC

“
1

ε
ln

ˆ

h˚
?
ε` ra

˙

`
2
?
ε

arctan

ˆ

1´ h˚
?
ε

˙

´
1

ε
ln

ˆ

h˚ ´ 2p2

ra´
?
ε

˙

“
1

ε
ln

ˆ

h˚p2´ h˚q

ε´ ra2

˙

`
2
?
ε

arctan

ˆ

1´ h˚
?
ε

˙

.
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Finally, substituting in the previous expression the value of h˚ given in (34) and the value of
ra “ aSp0, εq, we obtain the maximum of the period,

T pxP pεq, εq“
1

ε
ln

˜

C0p1´ ε
2
3 q

ε

¸

`Opε´
1
2 q,

where,

C0 “
p1` e

π?
3 q2

4e
π?
3

.

4.4 Proof of Theorem 3.5

From the expression of xr in (16) and the expression of xP pεq appearing in Theorem 3.4, and
assuming ε small enough, it follows that xr ă xP pεq ă ´1. Since rxpεq is the width of the canard
cycle through the point qL1 and qL1 “ pLL ´ p1` raqλsLe2, from (9) it follows that

rxpεq “ ´1´
1

2
ε`Opε

3
2 q.

Therefore,
xr ă xP pεq ă rxpεq ă ´1.

On the other hand, the absolute value of the width xM of the maximal canard cycle taking
place when both branches of the slow manifold connect is smaller than |rxpεq|, and the theorem
follows.

5 Conclusions

In this paper we have further described the canard regime as a part of the canard explosion in
a PWL slow-fast system exhibiting a flat critical manifold. In particular, we have suggested two
canard cycles acting as a boundaries of the canard regime, see (16), which define the birth and
the maturation of the canards. Even when the canard regime occurs in an exponentially small
interval of the parameter, the flatness of the critical manifold allows an interval of the width of the
canard cycles, pxr, xsq, to become non-bounded as ε tends to zero. Thus, regarding to the width
of the cycles, canards appear further apart from one another, allowing for a deep analysis of the
transitional region going from the headless canard cycles to the canard cycles with head. Therefore,
we have also located the transitory canard cycle, the maximal canard cycle, the canard cycle flowing
along the slow repelling manifold, which defines the quasi-threshold, and the maximum period
canard cycle. In Theorem 3.5 it is proved that these canard cycles are all different dynamical
objects. Moreover, it can be concluded that the width of the three first cycles converge to ´1 as
ε tends to zero, corresponding with the width of the transitory canard; whereas the width of the
maximun period canard cycle converges to ´8.

Apart from the results obtained on the different canard cycles in the transient regime, we high-
light the study carried out on the period function T px, εq, whose unimodal character has been
proved, and an estimate for the maximum period has been obtained. This type of quantitative es-
timation are difficult to derive in the smooth context and can be highly appreciated in applications,
see [30] and references therein.

The analysis developed along the manuscript has been carried out by taking advantage not
only of the PWL context, but also of the existence of the flat critical manifold, which allows the
analysis to be reduced to a neighbourhood of the slow repelling manifold. This manifold is entirely
contained in the region σL where the system is linear and, therefore, the transition map is just
defined by a linear flow, which allows a good control of it. Despite the context specificity, it is
expected that the relative position obtained between the transient canard, the maximum canard
and the one flowing along the repelling slow manifold does not change after modifying the flat
branch of the critical manifold to a non-zero slope segment. However, it is expected that the width
of the interval in which the canard regime occurs, i.e. pxr, xsq, tends to be finite as ε Ñ 0 and,
therefore, the width of any of these cycles to be exponentially close. This could explain why it is
so difficult to distinguish all these canard cycles in the smooth context when ε is small. Regarding
the period function T px, εq, replacing the flat branch by a branch with a non-zero slope can alter
the expression (33) and cause changes in both the number of existing critical (local maximum or
minimum) periods and their location. This study is carried out in a work in progress.
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A About Poincaré maps

In the next result we summarize the time of flight expended by canard cycles Γx of width x P pxr, xsq
in any of the linearity region, we also compute its derivative. In this result the time of flight, and
its derivative, is referenced to the second coordinate, h, of the intersection point of the cycle Γx
with the switching line tx “ ´

?
εu for headless canards, or the switching line tx “ ´1u for canards

with heads. To reference this time of flight to the width x of the cycle Γx we refer the reader to
expression (9) just by considering d “ p2 ´ h.

Lemma A.1 For ε ą 0 and small enough let Γx be a limit cycle with x P pxr, xsq. Let h be the
second coordinate of the intersection point of Γx with the switching line tx “ ´

?
εu and located

above the x-nullcline, if x P r´1, xsq, or with the switching line tx “ ´1u and located under the
x-nullcline, if x P pxr,´1q. It follows that

τRphq “ ´
1
λsR

ln
´

pλqR´
?
εqp
?
ε´aq´h

pλqR´λ
s
Rqp
?
ε´aq

¯

, τ 1Rphq “
1
λsR

1
pλqR´

?
εqp
?
ε´aq´h

,

τLphq “
1
λsL

ln
´

pλqL´
?
εqp
?
ε`aq`h

pλqL´λ
s
Lqp
?
ε`aq

¯

, τ 1Lphq “
1
λsL

1
pλqL´

?
εqp
?
ε`aq`h

,

τLdphq “
1
λsL

ln
´

pλqL´
?
εqp
?
ε`aq`λsLp

?
ε´1q`h

pλqL´λ
s
Lqp
?
ε`aq

¯

, τ 1Ldphq “
1
λsL

1
pλqL´

?
εqp
?
ε`aq`λsLp

?
ε´1q`h

.

Proof: Next we obtain the expression of τRphq. For ε small enough, we obtain that Γx intersects

the switching line tx “
?
εu above the x-nullcline at a point p “ p

?
ε, h`Opε

3
2 qqT . The order of the

estimation of the second coordinate of p is a direct consequence of the monotonicity of the function
providing the angle of the vector field along orbits in linear systems, see for instance Lemma 4.2.9
in [29]. Let ϕpt; pq be the solution of (1) with initial condition at p. Thus, ϕpt; pq Ă σR for
t P r0, τRphqs and locally the solution can be written in terms of the eigenvalues λsR, λqR and the
eigenvectors vsR, vqR as follows

ϕpt; pq “ eR ` C1e
λsRtvsR ` C2e

λqRtvqR, t P r0, τRphqs, (37)

where the constants

C1 “
pλqR ´

?
εqp
?
ε´ aq ´ h

λsRpλ
q
R ´ λ

s
Rq

, C2 “
h´ pλsR ´

?
εqp
?
ε´ aq

λqRpλ
q
R ´ λ

s
Rq

,

are obtained from the equation ϕp0; pq “ p by recalling that λsR ` λ
q
R “ ´1.

Assuming that ϕpτRphq; pq is exponentially close to qR1 , we approximate the value of τRphq
from (37) as qR1 “ eR ` C1e

λsRτRphqvsR. More concretely, we obtain

τRphq “ ´
1

λsR
ln

ˆ

|C1|}v
s
R}

}qR1 ´ eR}

˙

,

which provides the expression given in the statement. The derivative is straightforward obtained.
To compute the expression of τLdphq we consider the intersection point p “ p´1, hqT of Γx with

tx “ ´1u and located under the x-nullcline. Then, the solution through p can be locally written
as

ϕpt; pq “ eL `D1e
λsLtvsL `D2e

λqLtvqL, t P r´τLdphq, 0s.

Assuming that ϕp´τLdphq; pq is exponentially close to qL1 , we conclude that qL1 “ eL`D1e
´λsLτLdphqvsL

what implies that

τLdphq “
1

λsL
ln

ˆ

|D1|}v
s
L}

}qL1 ´ eL}

˙

.
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The result follows by using ϕp0; pq “ p to compute D1. Finally, the expression of τLphq is obtained
in a similar way. ˝

In the following result we present the time of flight and its derivative of Γx in the region σLL
regardless of whether it is a canard cycle with head or a relaxation cycle.

Lemma A.2 For ε ą 0 and small enough let Γx be a limit cycle with x ă xr. Let h be the second
coordinate of the intersection point of Γx with the switching line tx “ ´1u and located under the
x-nullcline. It follows that

τLLphq “
2?
ε

arctan
´

1´h`
?
εpa´1q`ε

?
εp1`aq

¯

, τ 1LLphq “ ´
2p1`aq

εp1`aq2`p1´h`
?
εpa´1q`εq2

,

and the expressions of τRphq and τ 1Rphq are equal to the ones given in Lemma A.1.

Proof: Taking into account that the first component of the solution of system (1) in zone σLL with
initial condition p´1, hq is given by

xptq “ a´ p1` aq cosp
?
εtq `

h´ p1`
?
εpa´ 1q ` εq
?
ε

sinp
?
εtq,

it is enough to make this expression equal to -1 and bear in mind that 1´cospαq “ tanpα{2q sinpαq,
for α P p0, π{2q.

The expressions of τRphq and its derivative given in Lemma A.1 are also valid for the relaxation
oscillations since, in such case, the cycle intersects tx “

?
εu exponentially close to qR1 . ˝

B Properties of function F in (26)

In this section we describe some qualitative and quantitative aspects of the function F pxq given in
(26), which is used in the proof of Lemma 4.1 and has been represented in Figure 7.

x

F pxq

1

y “ ´εx` 1

1{λsL1{λqL

Figure 7: Representation of Function F pxq, its asymptotes and points F px`q and F px´q.

The function F pxq is continuous in the domain D “ Rz t1{λqLu, has a zero at x “ 1{λsL and it
is positive elsewhere, F pxq ą 0 if x P Dz t1{λsLu. Since

lim
xÕ1{λqL

F pxq “ lim
xŒ1{λqL

F pxq “ `8, (38)

the graph of F pxq has a vertical asymptote at x “ 1{λqL and a slant asymptote when xÑ ´8 in
y “ ´εx` 1. Moreover, the function is differentiable with continuity in Dz t1{λsLu, being

F 1pxq “
εxpλqL ´ λ

s
Lq

p1´ xλqLqp1´ xλ
s
Lq
F pxq. (39)
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Note that the derivative vanishes at x “ 0, which is a local minimum with F p0q “ 1, and the local
expression of F pxq at the origin is

F pxq “ 1` pλqL ´ λ
s
Lqεx

2 `Opx3q. (40)

Furthermore, the derivative is strictly decreasing in p1{λqL, 1{λ
s
Lq and strictly increasing in p1{λsL,`8q,

see Figure 7.
It is easy to check that, sufficiently close to 1

λqL
, function F can be approximated by

F pxq «
1

|1´ λqLx|
λsL

and therefore

x «

$

’

’

&

’

’

%

1
λqL
´ 1

λqL
e
´ 1
λs
L

lnpF pxqq
, x ă 1

λqL
,

1
λqL
` 1

λqL
e
´ 1
λs
L

lnpF pxqq
, x ą 1

λqL
.

(41)

Finally, the behaviour of F pxq with respect to ε satisfies that

F pxq “ 1´ px` lnp1´ xqqε`Opε2q, (42)

what implies that for fixed x P D it follows that limεŒ0 F pxq “ 1.
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