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Abstract  13 

The creation of Cultural Heritage (CH) Digital Twins is based on i) the capture of geometric data 14 

using digital technologies (laser scanning and photogrammetry); ii) the processing of the raw 15 

data to identify, segment and label the objects; and iii) their conversion into BIM objects. 16 

Hitherto, the most extensive method for BIM segmentation and modelling is manual, which 17 

led to research into the automation of this process, also in the field of CH. Manual operations 18 

are still labour-intensive and mathematical approaches are not inclusive for all CH specialists. 19 

In this context, this research studies the application of Brodu and Lague's morphological 20 

segmentation algorithm called CANUPO to classify the architectural components of the façade 21 

of the 16th-century Casa de Pilatos Palace in Seville, Spain, from a Terrestrial Laser Scanning 22 

(TLS) point cloud dataset. In this paper, the experimentation on semantic segmentation was 23 

carried out using open-source software, specifically the CANUPO algorithm integrated into 24 

CloudCompare software.  25 

Keywords 26 

Historic Building Information Modelling (HBIM), automatic segmentation, laser scanning and 27 

photogrammetry, segmentation algorithm CANUPO. 28 

Introduction 29 

In recent times, 3D modelling has received special attention in the Archaeological and 30 

Architectural Heritage field. The models must contain precise construction characteristics to be 31 

representative of Cultural Heritage (CH) reality. For this purpose, data acquisition techniques 32 

that allow Building Information Modelling (hereinafter, BIM) software to build geometries 33 

from point clouds are used. Modelling the CH requires completeness and accuracy, which are 34 

necessary for comprehensive representation. Therefore, the use of massive data capture 35 

techniques such as Structure-from-Motion/Multi-View-Stereo (SfM/MVS) and Terrestrial Laser 36 

Scanning (TLS) is increasingly being adapted to a BIM process applied to heritage. This allows 37 

Digital Twins to be exported to BIM platforms for parametric modelling. However, the BIM 38 

representation is a complicated and resource-intensive process when the built elements 39 

belong to CH. The difficulty of modelling existing objects in historic buildings with structural 40 

deformations and complex shapes is still a weakness of the HBIM process [1,2] The new BIM 41 

paradigm relies on the building information model to improve the efficiency of construction 42 
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operations, maintenance, and the project life cycle. It also becomes a container to record and 43 

catalogue sometimes unexplored information [3]. 44 

Nevertheless, the problem lies in the automatic segmentation procedures for subsequent 45 

element modelling. This is the case, for example, for complex façades that are common in 46 

architectural heritage, whose SfM or TLS range clouds contain hundreds of million points. 47 

These files are difficult to handle, even for the manual segmentation of the elements. Two 48 

decades ago, when computers were not present in the area of architecture and heritage, the 49 

way of segmenting in traditional drawings was to structure the compositional units of a 50 

historic building façade according to the hierarchy of its elements. With the emergence of the 51 

new BIM paradigm, Murphy et al. [4] were the first to work with parametric models of 52 

Renaissance architecture from point clouds using a cross-platform software system. The work 53 

was conceived as a simple visualisation tool that structured the elements through a grammar 54 

of ornamentation and composition that they called linguistic analogy. The shape grammar can 55 

recognise architectural styles and can be divided into a set of basic shapes. This is the 56 

procedure currently being carried out in semantic segmentation. 57 

In recent times, researchers and academics are striving to achieve processes that help 58 

recognise historical architectural features using learning techniques based on Deep Learning 59 

(hereafter DL) [5] at an appropriate level of detail. However, the use of neural networks for 60 

point cloud segmentation may limit the operator usability. Even when undertaking 61 

segmentation by artificial intelligence, point cloud files contain such a large amount of data 62 

that they may not be operational with current hardware and software. It is therefore 63 

necessary to develop new strategies related to the interoperability of accurate modelling 64 

systems [6], and especially those related to data management. 65 

In this work, an experimental process was developed to demonstrate the applicability of Brodu 66 

and Lague's algorithm [7]. This was carried out with a TLS point cloud of a façade of the 16th-67 

century Casa de Pilatos Palace in Seville, Spain. This algorithm, available as a plug-in called 68 

CANUPO in CloudCompare software [8], works as a 3D multiscale classifier by training 69 

elementary binary classifiers. 70 

Brodu and Lague developed the system on a natural scene subset to recognise rocks, 71 

vegetation, water, and gravel in a riverbed. However, these authors aimed at experimenting 72 

with the geometric fidelity that semantic segmentation can achieve to classify architectural 73 

elements under the training of this software. These tests have not been applied before; thus, 74 

this is an original methodology. The results are compared with manual segmentation to 75 

evaluate the selected point set and, once the results of the subsets are obtained, the BIM is 76 

created, and the suitability of the data for accurate 3D geometric reconstruction is examined. 77 

Literature review 78 

3D reconstruction is the process by which a computer replicates the physical characteristics of 79 

a real object. The shape and appearance of the three-dimensional object or volumetric scene 80 

are recovered by analysing the digital information provided by different types of sensors [9]. 81 

Therefore, the main objective is to obtain an algorithm capable of representing the connection 82 

between the point set from data acquisition techniques and transforming it into a surface 83 

shape, be it triangles or any other surface. Applications in the CH field are increasing [10] and 84 

becoming particularly challenging when it comes to establishing the maximum fidelity in the 85 

3D reconstruction [11]. Most studies on parametric element reconstruction from range clouds 86 

focus on the representation of planar surfaces [12], independent elements with no 87 
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information about their relationships. This means that there is also no relationship between 88 

the elements and their morphology. In this way, to establish a connection between an element 89 

and its function, the first step is to analyse the object shapes and to perform semantic 90 

modelling of the compositional elements (classification of their shapes). An example of 91 

semantic modelling is the work by Gaiani [13] on the Altar of the marble shrine of Augustus. 92 

This analysis determines the simplification degree when the objects are not separate but form 93 

an architectural ensemble. Previous studies addressed the classification of building 94 

components. This classification usually appears as identity coding of architectural elements in 95 

architectural treatises [14] and could be related to the hierarchical description of building 96 

components. 97 

The scientific literature has attempted to analyse the geometric quality of the 3D model [15] 98 

by evaluating its accuracy based on the LiDAR survey. Here, the level of detail of the model 99 

depends on the point cloud resolution. However, current digital BIM platforms cannot handle 100 

records with an excessive amount of information in the range clouds. Therefore, it is necessary 101 

to establish the procedures involved in the transformation of these point sets into a Heritage 102 

BIM project (HBIM) and, secondly, to know how these processes can be optimised. When 103 

approaching the modelling of a restoration project, the identification of the geometric 104 

characterisation (architectural morphology) can be articulated around two points of view [14], 105 

the raw processing of the dataset in the digital model and the use of the semantic information 106 

produced by the design model. The former refers to data acquisition processing in the form of 107 

Massive Data Capture Systems (MDCSs), and the latter is supported by a BIM tool; this 108 

methodology aims at creating a digital information system associated with graphic 109 

documentation [16]. 110 

To solve the transformation of the point cloud into BIM parametric objects, several authors 111 

have reviewed the extensive scientific literature on SfM data [17–21] and TLS point clouds 112 

[15,22–25]. In this sense, the importance of fields of knowledge such as geomatics and 3D 113 

model reconstruction is highlighted. From these efforts to achieve automation of point cloud 114 

to BIM processes, the relatively new term semantic segmentation has emerged. According to 115 

Yang et al. [26], this is a critical issue. The proposed solution is to limit point sets in subset units 116 

whose information can be handled by digital platforms. Thus, Spina et al. [27] used the term 117 

point cloud segmentation as a way to process and organise the point cloud into meaningful 118 

subsets. This organisation makes it possible to reduce the shape complexity of the raw point 119 

cloud and to facilitate the processing of 3D object surveys. The reason the semantic 120 

segmentation is useful is twofold: i) point clouds contain information about the actual 121 

geometry of the object, but lack semantic information on the categories of objects or materials 122 

constituting the building components [28]; ii) point cloud simplification allows to operate in 123 

BIM platforms to implement object geometries. Achieving 3D models requires tasks such as 124 

segmentation which, according to Aitelkadi et al. [29], is the key step during the point cloud 125 

processing to identify homogeneous areas. Thus, most of the segmentation focuses on the 126 

information from the point cloud. 127 

The extraction of semantic features was summarised by Pu et al. [30], who determined the 128 

optimal values of the segmentation parameters as size, position, orientation, topology, and 129 

point density. The proposed segmentation is based on point colour, laser intensity, and 130 

geometric data. These strategies involve an automatic identification process without the need 131 

for operator intervention. Boochs et al. [31] defined segmentation as the combination of 132 

algorithms that improve projective reconstruction. Grilli et al. [29] defined it as the process of 133 
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grouping "point clouds into multiple homogeneous regions with similar properties, while 134 

classification is the step that labels these regions". Classification as outlined by Grilli et al [29] 135 

is based on the need to bring the point cloud into the BIM software through identification. In 136 

other words, the aim is to determine the meaning of function and shape in the 3D elements, 137 

although most segmentation algorithms work with a 2.5D surface model hypothesis [32]. 138 

Supervised methods require a preceding training phase for the classification solution. Previous 139 

studies focus on identifying vertical elements such as walls, floors, or those limited by floors 140 

[33] or other elements. They can also integrate the knowledge of specific elements into the 141 

point cloud, especially to develop interior elements [28,34,35]. Grilli et al. [29] reviewed and 142 

classified segmentation algorithms as those based on edges [36] and data [37], region growing 143 

segmentation[36], or model fitting segmentation based on point fitting using RANSAC 144 

programming [27,38]. An approach based on decomposing architectural structures into 145 

geometric primitives (planes, cylinders and spheres) might seem suitable for their 146 

mathematical adjustment via parametric object modelling (BIM) algorithms. However, the use 147 

of these algorithms is sometimes not within the reach of regular BIM operators. The reason for 148 

this lies in the software usability, which requires mathematical processes; secondly, because 149 

not all point cloud files are valid since they may or may not be structured. Most segmentation 150 

algorithms work with structured or LiDAR files. 151 

Generation of geometric construction models 152 

Newly constructed buildings respond to a project theory based on volumes, new materials and 153 

forms of construction. On the contrary, the built CH (historic buildings) is the result of 154 

numerous transformations over time and is subject to building components constructed at 155 

various periods depending on the refurbishment carried out. 156 

The generation of parametric as-built 3D models from massive data acquisition is a reality for 157 

complex surfaces of historic buildings. Over time, several attempts have been made at semi-158 

automatic methods that allow the creation of parametric models from point clouds [39], 159 

focusing on model accuracy [40]. Other approaches use curves and NURBS surfaces to 160 

reconstruct complex objects [41] without oversimplification. The advantage of creating 161 

parametric objects on digital BIM platforms is that the resulting products are dynamic objects 162 

that can be transformed instantaneously [42]. However, this process is ideal for 163 

reconstructions where the objects are ideal models from architectural manuals or libraries 164 

within specific software. The complexity of historic architecture goes beyond this. Therefore, 165 

parametric 3D reconstruction from digital twins captured by TLS or SfM is a knowledge gap. 166 

The aim is that both architectural and archaeological elements modelled on digital platforms 167 

should represent the greatest geometric similarity to real objects, essentially to preserve their 168 

characteristic geometric uniqueness. 169 

The model associated with the structure ensemble offers the opportunity to relate the 170 

accuracy of the HBIM to the level of detail (LOD) needed. To do this, some researchers [43] 171 

used various workflows based on mathematical algorithms, such as software applications 172 

including Rhino-Grasshopper [39] and Dynamo [44], which interact with programmes such as 173 

Graphisoft ArchiCAD or Autodesk Revit. Thus, 3D reconstruction models with complex 174 

architectural shapes are automatically generated as well as through NURBS surfaces. Yet, the 175 

use of several software packages limits the work of BIM operators. The true nature of accurate 176 

3D reconstruction is to automate processes by reducing the number of software applications 177 

used. This is the knowledge gap of 3D Accuracy Reconstruction Geometry (3D ARG). 178 
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Semantic segmentation 179 

Reverse engineering is the process of capturing massive data from LiDAR technology. 180 

Therefore, it is an accurate representation of the building shell and its superficial elements. 181 

These data are recorded in files with a large amount of information that are not operational on 182 

a BIM platform. The 3D point cloud shapes fundamental parameters capable of representing 183 

both geometrical components and radiometric elements [29]. Due to the large amount of 184 

information they provide, there are numerous research studies on the subject. One important 185 

area is segmentation algorithms for automatic classification [5,27,28,36,45,46]. Recently, a 186 

large-scale open platform for point cloud processing has emerged. The Point Cloud Library 187 

(PCL) framework contains numerous state-of-the-art algorithms for filtering, surface 188 

reconstruction, model fitting, registration, and segmentation, among others [47]. A review of 189 

these algorithms was carried out by Grilli et al. Hence, for this research, those for model fitting 190 

are the most interesting algorithms. In the field of image analysis and processing, the concept 191 

of semantic segmentation aims to classify each pixel of a scene image. Each pixel is then 192 

allocated to a group in an image, resulting in homogeneous clusters [48]. The most widespread 193 

use of this technique is in the fields of autonomous vehicles, robotics, and indoor positioning 194 

systems [5]. This classification is possible thanks to automatic processes based on Machine 195 

Learning (ML). This technology applies inferences to a given piece of information to 196 

appropriately represent relevant aspects. Thus, segmentation studies are crucial for planning 197 

sustainability strategies and on perception criteria [49]. Segmentation uses ML or Deep 198 

Learning (DL) techniques; their difference lies in the types of algorithms they implement. ML 199 

uses mathematical algorithms, whereas DL is based on biological neural networks of the 200 

human brain [50]. Segmentation within the digital documentation of CH uses these learning 201 

techniques to identify objects. The novelty is the combination of these techniques to work 202 

with point clouds. Here, the method represents considerable benefits in shape detection for 203 

further modelling in heritage environments. The feature classification can be conducted via 204 

pre-training, but also through pre-set training and the interactive method, where complex 205 

mathematical procedures [29] are required to achieve appropriate results. Even so, the use of 206 

these technologies in the three-dimensional domain is rather limited. Some studies used these 207 

methodologies on historical facades to apply 2D to 3D information transfer [51], while other 208 

methods performed semantic point cloud segmentation [5]. These can be conducted by 209 

creating a set of images through the point cloud (Multi-view based), point cloud rasterisation 210 

based on voxels, or by applying a feature-based approach to the points. 211 

Other methods related to the above exist in the scientific literature. There are methodologies 212 

involving training from an original (zero) position with previous training of readjustment or 213 

hyperparameter optimisation (impulse, weight drop, or learning rate) [50]. On the other hand, 214 

there are some studies on artificial neural networks (ANN) that can recognise objects, such as 215 

3D ShapeNets [52], or PointNet [53]. Other studies focus on obtaining vector values from 216 

photographs. The classification is performed through three parameters using freely available 217 

software such as AutoTrace, Potrace, or Inkscape. The process consists of interpreting a 218 

bitmap in black and white to produce vectorised curves [54]. For an in-depth analysis of a 219 

polygonal model, other studies simplify complex 3D geometry into a series of 2D closed 220 

polygons by automatically converting each polygonal section into a raster model. All raster 221 

sections produce a 3D volumetric model in a voxel format. This process is called voxelisation 222 

[55][56]. Here, the voxel is to 3D what the pixel is to 2D, i.e. the voxel is the minimum unit to 223 

form a volume. A series of voxels, endowed with information such as position, colour, and 224 

density, allow the generation of a hypothetical 3D model [57]. This methodology intends to 225 
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reduce the file size, thus reducing the work time as the computations would be much faster 226 

[58]. In addition to its use in visualisation tests such as x-ray imaging or MRIs, this method is 227 

also used to detect 3D objects in robotics and autonomous driving [59]. Given that this 228 

approach is used when high accuracy is required, it could be beneficial for virtual heritage 229 

recovery. One of the most interesting options for CH modelling could be working with point 230 

clouds directly without creating meshes. In this sense, it is proposed to use this methodology 231 

to automatically convert the point cloud into parametric objects, although it would still be 232 

necessary for the user to operate the programme [56]. 233 

Methodology 234 

1.- Case study 235 

The façade of the Casa de Pilatos, a 16th-century Palace located in the centre of Seville (Spain), 236 

was chosen as a case study for semantic segmentation. The façade composition is based on 237 

planes and decorative elements of different architectural styles and with different shapes. 238 

Thus, the case study is a suitable environment for 3D point cloud data segmentation. 239 

2.- Data acquisition  240 

Image-based methods and 3D laser scanning are the most widely used professional and 241 

scientific data acquisition techniques for large-scale projects. Of these two techniques, TLS is 242 

currently the most extensively used, as it provides accuracy and speed. Notwithstanding, other 243 

researchers have used image-based methods for 3D reconstruction because of their economic 244 

advantages, efficiency [60], and to ensure fidelity in CH BIM [21,61]. LiDAR technology is based 245 

on the calculation of the distance between the laser and the object. This procedure is 246 

developed using the time-of-flight method or through the transmitted and received signal 247 

waveform [18]. The method performs a scan of the entire surface to capture thousands of 248 

points in an x, y, z coordinate system to produce the range cloud. In this case study, a Leica 249 

Geosystems BLK360 laser scanner is used to capture the geometry of the main façade of the 250 

Palace. This device uses the Waveform Digitising (WFD) technology and has four built-in 251 

cameras: 3 digital HDR, colour sensor and fixed focal length cameras ( 2592 x 1944 pixels 252 

resolution, 60° x 45° (V x H), a full dome of 30 images, automatic spatial rectification, 150 Mpx, 253 

360° x 300°); and an infrared camera (160 x 120 pixels resolution, 71° x 56° (V x H), a full dome 254 

of 10 images, 360° x 70°). Although the equipment can be controlled using a computer or a 255 

tablet, the data capture was automatically performed and further processed in the laboratory. 256 

Additional specifications of the scanner are shown in Table 1.  257 

Table 1. Laser scanner specifications  258 

 259 

LEICA BLK 360 

Wavelength 830 nm 

Field of view 360º (horizontal)/300º (vertical) 

Range Min. 0,6-up to 60 m 

Point measurement rate Up to 360000 pts/sec 

Ranging accuaracy 4mm @ 10 m/7 m @ 20m 

3D point accuracy 6mm @ 10 m/8 m @ 20m 
 260 

Figure 1 depicts the research workflow: 261 
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 262 

Figure 1. Workflow. 263 

3.- Post-processing 264 

Point cloud processing involves interpreting the spatial components (x,y,z). The segmentation 265 

and classification of the object are necessary for 3D modelling and the analysis process in the 266 

research into historic buildings. To prepare the dataset, a filtering of the elements outside the 267 

range of the main façade is carried out on the TLS global cloud. Points containing residual 268 

values and outliers are removed using the Leica Cyclone 9.2.1 software (Leica Geosystems, 269 
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2018). In the segmentation process, the homogeneity criterion is not related to the image 270 

radiometry. The classification of the morphology structure component will be the selection 271 

criterion. Therefore, the façade surface is partially taken, considering its composition based on 272 

planes and decorative components. The point cloud, with 38 million points, is obtained and 273 

transferred to CloudCompare v2.10.2 (Zephyrus) software (Girardeau-Montaut, 2003) for 274 

further processing. From the C2C process, two point subsets are obtained from the façade: a 275 

manually segmented group of elements and the global range cloud. In the 3D point cloud 276 

classification, three types of discrepancies must be taken into account, such as i) the gaps in 277 

the cloud due to laser beam occlusions, ii) the effects that may be caused by shadows on the 278 

scanned elements, and iii) those figures in movement through the architectural spaces. 279 

4.- Evaluation of the experimental design 280 

The 3D object reconstruction is an important step in digital representation since it allows for 281 

approaching the physical world as a basis for analysis and construction [31]. Modelling has 282 

therefore been considered as a digital representation comprising simplified geometric 283 

properties of heritage buildings. In this sense, models represent the three dimensions of space 284 

in real time, but it is the BIM platforms that include semantic components, represented as 285 

digital objects comprising relationships, attributes and properties[62]. These objects in historic 286 

buildings generally have complex geometric elements, as in the case of natural shapes such as 287 

trees, rocks, and grass. This paper hypothesises that Brodu and Lague's algorithm [7], which 288 

was developed for these complex terrain geometries, should apply to the morphology of 289 

heritage buildings. Also, to the best of our knowledge, this algorithm has not been applied to 290 

heritage elements before. This algorithm is effective in the classification of natural surfaces 291 

through the local analysis of changes in the geometrical properties of the point cloud. It is 292 

available in CloudCompare software [8] as the CAracté-risation de NUages de POints (CANUPO) 293 

plug-in to work as a 3D multiscale classifier by training elementary binary classifiers. The basic 294 

working principle of this algorithm is to project a sphere with a radius depending on the 295 

working scale onto a point in the scene; next, the geometrical behaviour of neighbouring 296 

points in three dimensions is analysed in this space. Brodu and Lague applied this system to 297 

natural scenes of a subset with a range of scales to recognise rocks, vegetation, water, and 298 

gravel in the Otira riverbed (New Zealand). The procedure relies on the combination of C2C 299 

classifiers, working in two different ways. The first approach executes the "Classify" command, 300 

using the available classifiers created by default. The second method creates customised 301 

"Train Classifier" classifiers. Once the point cloud is obtained, the system performs training 302 

through different parameters: the measurement range, measurement scale, and point 303 

sampling. Yet, the idea behind the classification procedure is the combination of scales, where 304 

dimensionality makes it possible to distinguish from more than one category [7]. The 305 

mathematical rationale was made explicit in section 3.1 Local dimensionality at a given scale. 306 

The tool determines the degree to which a local neighbourhood of points can be considered 1-307 

D, 2-D or 3-D by finding the components of the coordinates of the points in the neighbourhood 308 

[63]. Local dimensionality analysis for characterising the point cloud at different scales [64] can 309 

be expressed as follows: for 1D, the points belong to a line, in 2D, to a plane surface, and to a 310 

volumetric surface in 3D. Finally, a discriminative analysis is applied to find the hyperplane of 311 

maximum classification separability.  312 

4.1.- Manual segmentation through the scalar field 313 

The evaluation process is carried out by means of a complementary study and analysis. To this 314 

end, a point set from manual semantic segmentation comprising three testbeds is obtained. 315 
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This process is common in scientific literature. Kovanič et al. [65] used manual segmentation to 316 

process point cloud data and determine the geometric parameters of a rotary kiln. Li et al. [66] 317 

used manual segmentation to automate the analysis of building facades from TLS. The purpose 318 

was to semantically segment and label the depth planes. Manual refinements are sometimes 319 

used in point cloud segmentation in tree structure studies [67]. However, manual 320 

segmentation involves a laborious and time-consuming task. The more complex the scene is, 321 

the more difficult it is to process [68]. The main challenge is to match the morphology of the 322 

architectural elements. Likewise, because it is a manual process, the point subsets taken may 323 

or may not belong to the geometry of the chosen element. Considering the limitations of 324 

manual segmentation, a scalar field is created to classify the façade's point cloud according to 325 

values on the "y" axis, as established by the C2C software's coordinate system (Figure 2). 326 

 327 

Figure 2. Façade’s scalar field. 328 

This process involves classifying the points in space with respect to a (x,z) plane. In other 329 

words, the distances from the point cloud to a theoretical (x,z) plane are being calculated. The 330 

result of the process is a scalar value for each point in the cloud that indicates the Euclidean 331 

distance between the analysed point and the closest point to the imaginary plane. The results 332 

are displayed in the histogram in Figure 3. 333 

Figure 3. Histogram of the number of points between the reference plane (x,z) and the Y-334 

coordinate. 335 



10 

 

It should be noted that manual segmentation may capture points outside the chosen model 336 

since there would not be a segmentation of classification with certain parameters. 337 

4.2.- Algorithm validation testbeds 338 

In order to test the applicability of the classification algorithm, three testbeds were carried 339 

out. First, working with the global point set, i.e. considering the complete façade (21.00 metres 340 

long by 8.50 metres high (Figure 4)), the parameters were adjusted according to the length of 341 

each element. 342 

Marble shapes were initially differentiated from the predominant brickwork: the three 343 

parameters involved in the process were minimum distance, interval, and maximum distance. 344 

The minimum distance is the smallest magnitude between the elements to differentiate. For 345 

example, the length of a brick or a rivet in wooden doors, among others. The maximum 346 

distance is the opposite, the largest dimension of the elements. In this case, the height of the 347 

pilasters that form the centre of the marble doorway was considered. Finally, the intervals to 348 

determine the total number of scales needed were chosen. 349 

 350 

 351 

Figure 4. (a) Test A; (b) Test B; (c) Test C; (d) Test D. Classification through the CANUPO 352 
plug-in. The red dots represent the bricks and the blue dots represent other materials. 353 

The images show the point density of a scene represented in the proposed feature space at 354 

different scales. Each image represents the working process with the C2C tool to measure the 355 

distances for the chosen architectural elements. Meanwhile, the larger the maximum distance, 356 

the longer the processing time. Similarly, the smaller the interval, the longer the processing 357 

time. In the analysis, tests were conducted by choosing alternative measurements according to 358 

Table 2.   359 

Table 2. Distance parameters taken for global façade processing 360 

 361 
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  Min. Distance (m) Step (m) Max. Distance (m) 

Survey A 0.01 0.025 0.50 

Survey B 0.01 0.01 0.50 

Survey C 0.01 0.01 1.00 

Survey D 0.01 0.01 1.50 

 362 

Also, various graphs were produced to evaluate the data obtained and to verify the software 363 

performance. Comparisons were carried out of the tests in which the processing time, the 364 

number of classified points, and the precision of each sample of the sets were represented. It 365 

should be noted that the processing time depended on the hardware used, a computer of 366 

average specifications (Intel i5 processor with 12 GB RAM). Each step was measured (Figure 5). 367 

The number of classified points represents the subsets that can later be used to generate 368 

meshes for conversion into parametric BIM objects. The accuracy is a magnitude achieved 369 

through the experimental values entered into the software. For example, for this case, 370 

measurement distances of 10 cm were taken. 371 

 372 

Figure 5. Processing time for each test A, B, C, and D of the training and classification 373 
using the CANUPO algorithm. 374 
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Following the classification procedure, the best combination of selection scales was defined. 375 

The operator can then determine the scale range of the different categories and elements to 376 

be geometrically classified. According to Brodu and Lague, the algorithm finds the best 377 

combination of scales to segment into different categories previously defined by the operator, 378 

as shown in Figure 6. 379 

 380 

Figure 6. Point classification in the global façade. Tests A, B, C, and D. 381 

Figure 7 shows the Balanced Accuracy (BAa) value. With this value and that of the FDRfdr 382 

(Fisher Discriminant Ratio), the performance can be measured by classifying each point in its 383 

respective class. This data appears as a supplement in the statistics section once the first 384 

phase, the training, is carried out. The result of this phase is a .prm file. 385 
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Figure 7. The accuracy achieved in tests A, B, C, and D. Sampling over 10,000 points of 386 
survey items. 387 

Each test was analysed to determine the classification percentage of points in the façade 388 

global point cloud. 49.84% was obtained for survey A, 52.43% for survey B, 60.78% for survey 389 

C, and 64.95% was achieved for survey D.  390 

 391 

 392 

Figure 8. The schemes of the three testbeds. 393 

The second testbed addresses the main entrance to the Palace, focusing on the area delimited 394 

by the two pilasters and the lintel of the portico (3.50 metres wide by 7.55 metres high). The 395 

hardwood door is selected, the marble pilasters are differentiated, and the brickwork is 396 

omitted (Figure 9). 397 

 398 

(a)                                                                                   (b) 399 
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      Figure 9. (a) Test E; (b) Test F. Classification through the CANUPO plug-in.  400 

 401 

Table 3. Distances taken to process the façade portico. 402 

 403 

  Min. Distance (m) Step (m) Max. Distance (m) 

Survey E 0.01 0.025 0.50 

Survey F 0.01 0.01 1.50 

 404 

The same procedure enabled comparisons of the tests by plotting the accuracy obtained, the 405 

processing time, and the number of classified points for each data set sample. 406 

 407 
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Figure 10. Processing time for the training and classification tests E and F using the 408 
CANUPO algorithm. 409 

Figure 11. Point classification of the façade portico in tests E and F. 410 

 411 

 412 

Figure 12. The accuracy achieved in tests E and F of the marble portico and the wooden 413 
door. Sampling over 10,000 points of study elements. 414 

Regarding the percentages of points classified in the façade portico corresponding to the two 415 

materials analysed, the marble of the entrance portico and the wooden door, 45.86% was 416 

obtained in survey E and 61.91% in survey F. 417 
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For the third testbed, the retable on the left side of the façade was chosen. It is a piece carved 418 

in different marbles in various shades of colour. The dimensions of the chosen area are 1.75 419 

metres wide by 2.35 metres high, as in the marble frame. It has been chosen for its 420 

morphological singularity, a miniature retable composed of two columns on a round arch and a 421 

Christian cross in the centre (Figure 13). 422 

Figure 13. Processing time for training and classification tests E and F using the 423 
CANUPO algorithm. 424 

 425 

Figure 14. (a) Test G; (b) Test H. Classification through the CANUPO plug-in. 426 

The results of tests G and H are shown in graphs according to the accuracy achieved, the 427 

processing time, and the number of classified points of each data set sample. The distances 428 

taken for the processing of the retable are shown in Table 4. 429 

Table 4. Distances taken to process the retable. 430 

 431 

  Min. Distance (m) Step (m) Max. Distance (m) 

Survey G 0.01 0.025 0.50 

Survey H 0.01 0.01 1.50 

 432 



17 

 

Next, comparative tests were carried out, and the processing time is shown in Figure 15. 433 

 434 

Figure 15. Processing time for training and classification tests E and F through the CANUPO 435 

algorithm. 436 

 437 
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Figure 16. Point classification on the façade portico in Tests G and H. 438 

 439 

Figure 17. The accuracy achieved in tests G and H. Sampling over 10,000 points of 440 
survey items 441 

 442 

The point classification percentage in the retable (different types of marble in various colours) 443 

was also determined. 85.22% was achieved in test G, and 95.75% in test H. 444 

CloudCompare software using the CANUPO algorithm allows the operator to obtain a 445 

probabilistic classifier. This classifier firstly defines the projection of the data onto a plane of 446 

maximum separability to, secondly, separate the classes. The main advantage of this is that an 447 

immediate and intuitive visualisation of the classification process (Figure 18) is obtained. The 448 

reliability level is set on the abscissa axis and the ordinate axis sets the range. 449 

 450 

Figure 18. Classifier definition in the plane of separability. 451 

Once the manual segmentation through the scalar field and the point classification process 452 

with the CANUPO algorithm have been carried out, the modelling of the gate was undertaken 453 

(tests E and F). The gate was segmented according to Figure 19. For the manual semantic 454 

segmentation of the point set and its segmentation using the CANUPO algorithm, a reference 455 

was established in percentages of the number of points captured; next, the creation of the 456 

BIM took place. In this case, the manual segmentation was taken as a reference, with which 457 
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2,535 points were obtained. Figure 19a shows (red colour) the projection of the point set 458 

selected by the algorithm in tests E and F compared to the total number of manually 459 

segmented points of the gate. 460 

(a)                                                    (b)                                              (c) 461 

Figure 19. (a) Manually segmented point set, (b) test E, and (c) test F. 462 

The point set taken as a reference was considered 100% of the points (Figure 19 a). 37.27% of 463 

the manually segmented points were classified in test E, and 46.71% in test F. Figure 20 shows 464 

the number of points of each test. 465 

 466 

 467 

Figure 20. The number of points obtained from segmentation tests E and F against manual 468 

segmentation (M). 469 

5.- Modelling the tests in BIM 470 

An important factor in the parameterisation process is determining the geometry. The process 471 

of transferring TLS or SfM to BIM is known as Scan-to-BIM [69]. The Scan-to-BIM framework is 472 

specifically designed to ensure that BIM meets the applicability requirements for CH, whether 473 

architectural or archaeological, by efficiently managing the information provided by data 474 

capture techniques. Wang et al. [70] determined four fundamental steps in the process, 475 
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including the identification of information requirements, scan data quality, data acquisition, 476 

and BIM reconstruction. This involves creating the BIM with the geometric parameters 477 

provided by the MDCSs. In practice, the MDCS files are imported into the BIM tools and serve 478 

as a reference template for modelling. Nevertheless, this procedure can be prone to errors. To 479 

overcome these issues, previous research has addressed the semi-automatic generation of 480 

parametric objects from TLS or SfM point clouds. Antón et al [40] evaluated the accuracy of 481 

the 3D meshing from remote sensing products to later propose a semi-automatic three-stage 482 

procedure to create an as-built HBIM. For their part, Andriasyan et al [39] explored the 483 

combination of Rhino+Grasshopper-ArchiCAD software to automate the Scan-to-BIM process. 484 

In this paper, effective procedures to automatically build parametric objects are explored, 485 

which is a knowledge gap in the field. To validate the data obtained (the points segmented 486 

using the CANUPO plug-in), the workflow by Moyano et al. [71] for complex surfaces common 487 

in architecture and archaeology is used. 488 

Surveys M (Manual), E, and F were exported to Rhinoceros in .ASCII or .e57 formats for their 489 

conversion into meshes, in the same way as the subset obtained by segmentation through the 490 

scalar field. The meshes were inserted into the BIM software (ArchiCAD) to be transformed 491 

into .gsm parametric objects, in such a way that the actual geometry of the wooden door was 492 

generated. However, the meshes can also be subsequently transformed into 'Morph' elements 493 

for editing and customisation in the HBIM project. In this case, the Boolean operations 494 

between elements was the procedure chosen. To define the surface faces of the door with a 495 

thickness of 8 centimetres, division surfaces were used, thus performing a subtraction with 496 

extrusion upwards as an operation between solid elements in the BIM platform. This 497 

procedure was carried out for both faces to achieve a model as shown in Figure 21. The model 498 

used the manually segmented TLS point cloud, as it was the most complete of all surveys. This 499 

procedure verified the Scan-to-BIM methodology for the system requirements. Hence, the 500 

parametric modelling was validated for the case of the manually segmented point set from the 501 

scalar field of the main façade. 502 

Figure 21. Relief of the wooden door solid object. 503 

 504 

5.1 Modelling results 505 

3D modelling has been particularly conducted for civil engineering applications and games 506 

based on real-world environments [72]. With a view to approximate real shapes, BIM 507 
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technology has implemented processes to manually and automatically create geometric 508 

models from point cloud data. The point cloud representing complex architectural shapes can 509 

be translated into triangulated meshes before generating the parametric objects. This is a 510 

common workflow established by specialists in the field, a further stage involved in the Scan-511 

to-BIM to the Mesh-to-BIM process. That transformation requires using different programmes. 512 

Yang et al. [73] followed a three-step process: the extraction of basic primitives in 3D in 513 

Rhinoceros software, the transformation of surfaces to volumetric components using extrusion 514 

and NURBS functions in the same programme, and the generation of Dynamo visual 515 

programming algorithm packages. This process is rather complex and would require that the 516 

BIM operators specialise in various software. In this paper, the whole process was carried out 517 

using Rhinoceros and ArchiCAD. The result of the tests is shown in Figure 22. 518 

 519 

 520 

Figure 22. Global point cloud of the façade and BIM of the door. 521 

 522 

5.2.- Point cloud decimation validation within the Mesh-to-BIM process 523 

To validate the expected point density of a parametric model, the point set of the manually 524 

segmented wooden door was decimated. The data were next taken to the C2C software to 525 

reach the desired resolution. Optimal values of the segmentation parameters were also sought 526 

so that the smallest number of points would provide representative data for the Mesh-to-BIM 527 

process. Test work was carried out starting from 100 points per square metre to know the 528 

scope of the work. This point density was initially established by Pu and Vosselman [30] for 529 

their experimental work on an automatic method for the reconstruction of building façades. In 530 

this paper, the data consist of a point subset of 2,535 points. Using the subsample command 531 

with random parameters, a decimated subset of 2,000 points was obtained, which entailed 532 

approximately 110 points per square metre (Figure 23). In the second phase, further 533 

decimation of 10,000 points spread over the entire surface of the wooden door was carried 534 

out, resulting in approximately 600 points per square metre (Figure 24). Afterwards, the Mesh-535 

to-BIM process was performed using Surface Poisson Reconstruction [74].  536 

As a result, through a scalar function adjustment, a bubble was obtained by connecting all the 537 

related points. By reducing the density in the SF display parameters, part of the bubble was 538 
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removed. The decimation results are shown in Figures 23 and 24, and the histograms of the 539 

achieved point densities are presented in Figure 25. 540 

 541 

 542 

Figure 23. Mesh reconstruction of the survey M point set at 110 points/m2 density. 543 

 544 

 545 

Figure 24. Mesh reconstruction of the survey M point set at 600 points/m2 density. 546 

 547 
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Figure 25 a) Histogram of the survey M point set at 110 points/m2 density. b) Histogram of the 548 

survey M point set at 600 points/m2 density. 549 

Discussion of results 550 

Most studies on semantic segmentation use programming algorithms beyond the software 551 

available to BIM operators. This work advances upon the applicability of the CANUPO 552 

software, which is a plug-in to C2C, well known within the scientific community. This algorithm 553 

was tested to verify that semantic segmentation can provide a representative sample point set 554 

to mesh and subsequently build parametric BIM objects. To do this, point cloud data from 555 

elements analysed within the façade of the 16th-century Casa de Pilatos Palace in Seville, 556 

Spain, were considered. Brodu and Lague's natural surface classification algorithm cannot 557 

detect the presence of changing materials on the same surface but works by the degree of 558 

geometric heterogeneity, where a single scale can rarely classify a scene [7]. To test its 559 

applicability to CH, the aforementioned façade was taken, which presents several complex 560 

geometries of different architectural styles, thus being a suitable example for experimentation. 561 

Three testbeds were carried out; first, the architectural elements comprising the entire façade; 562 

second, on the main gate; and third, on a small retable located on the left side of the façade 563 

canvas. Results on the first testbed show that the classification is less dispersed (test A) by 564 

considering low values (Table 2). In test D, the accuracy increases, as does the number of 565 

unclassified points. The accuracy determines the number of points the algorithm can detect. 566 

This could indicate that points may not be properly classified. To achieve an adequate 567 

classification of the points, it was considered that the representativeness should be at least 75 568 

% of the global set and sufficiently sparse for Mesh-to-BIM. The classification must be based 569 

on a previous decimation of the point subsets (section 4 of this paper). In the second testbed, 570 

test F shows a higher accuracy and marble and wood are above the unclassified ones. The 571 

higher the accuracy, the more significant the points of the wooden door are. In the last testbed 572 

(retable), the classification did not distinguish between architectural elements. Here, the 573 

automatic segmentation process presented serious difficulties for comprehensive modelling as 574 

in Figure 18. Therefore, the exact control of the geometry of the wooden entrance door is 575 

questionable. In view of the results, the CANUPO classification algorithm is more successful on 576 

large complex façades than on minor details such as the small marble retable. In this case, the 577 

algorithm fails to classify the elements of the cross concerning the planes and elements of the 578 

cornice. The tested scale yields a better classification when the base exceeds 10 metres in 579 

length. 580 

Another interesting parameter is the time the algorithm takes to classify the selected point 581 

sets. This variable is of interest to the BIM operator, as it influences the operational 582 

performance of the process. Generally speaking, the processing time in tests A, B and C for 583 

both classification and training was a few minutes. Meanwhile, in test D, where the maximum 584 

training distance was taken, the time was approximately 12 minutes and 6 minutes for 585 

classification. In this case, the percentages of classified points were even lower than 70 %. For 586 

the second testbed, the results could be improved, since the processing time was 14 minutes 587 

for 61.91% of classified points. In the third testbed, the processing time was 5 minutes for 588 

95.75% of classified points, although no positive classification results were obtained. 589 

Therefore, a multiscale point cloud analysis was introduced to semantically segment 590 

architectural elements through an open-source algorithm accessible to all researchers, 591 

academics and professionals in the Architecture, Engineering and Construction (AEC) industry. 592 
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The creation of cross-sections of the wooden door parametric model revealed heterogeneity 593 

of the points and the morphology achieved with respect to the TLS data and the semantic 594 

segmentation model. The results determined the absence of points in important parts in the 595 

point set post-processing for Mesh-to-BIM. The percentage of gaps is due to the partial 596 

segmentation by the classification algorithm, thus losing part of the important elements for 597 

meshing. Part of the classification point sets yielded non-representative data. Figure 26 shows 598 

the results of two tests of the meshing of the wooden door using C2C and the CANUPO 599 

algorithm.  600 

 601 

Figure 26. The meshing of the wooden door in C2C. (a) Test E. (b) Test F. 602 

The validation of the point set decimation for Mesh-to-BIM determines that a density of at 603 

least 600 points per square metre in the segmentation is necessary to obtain a representative 604 

sample of the mesh for BIM parameterisation. According to Pu and Vosselman [30], over-605 

segmentation is preferable to under-segmentation when large elements coexist. In this paper 606 

(section 4.2), a minimum spacing of 6 centimetres is recommended as the optimal value for a 607 

subset of segmented points.  608 

Many of the developments and implementations in the specific area of BIM are thanks to the 609 

growing popularity of Open Source Software (OSS) or freeware, which together with Industry 610 

Foundation Classes (IFC) file viewers and exporters allow to reach a large number of users. 611 

[75]. The developement of OSS is pursued to permit the enhancement of the collaborative 612 

openBIM® process, as defined by buildingSMART, with the scope of  wider “accessibility, 613 

usability, management and sustainability of digital data” [76].  In this case, ArchiCAD can be 614 

operated under an educational licence, while CloudCompare is open source software. The 615 

importing of both point clouds and meshes is implemented in this BIM software. However, the 616 

segmentation through classification elements could lead to a greater operability between 617 

point cloud and digital BIM platforms [77]. In particular, BIM models, with their ontological 618 

structure of elements and semantics, can be widely shared via cloud-based and web-based 619 

platforms. For example, BIMServer [78] is an open source tool to share BIM projects in online 620 

server or local (localhost); or the IFC Web Server [79] consents to visualize the 3D model and 621 

its ontological structure in IFC standard [80]. Nevertheless, architectural heritage visualization 622 

and conservation state analysis require that the real appearence is mantained; for this, open 623 

source web based publisher can be employed for semantic segmented 3D models (point 624 

clouds and meshes), based on webGL libraries, such as Potree and three.js [81].  In addition, 625 

decimating the point cloud as a simplification approach for BIM as in this research is a practical 626 

resource for streamlining the workflow. 627 

Conclusions 628 
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In this work, the applicability of Brodu and Lague's algorithm [7] was explored in architectural 629 

elements of heritage sites. Based on the acquisition of TLS data from a façade of the Casa de 630 

Pilatos Palace, an experimental process was developed through three testbeds. A semantic 631 

segmentation method was followed based on open-source software applications such as C2C 632 

that are easy to use by operators, academics and BIM researchers, without the need for 633 

programming. Therefore, the aim was to recognise common morphological features in 634 

heritage buildings, so that complex geometries could be identified. 635 

As explained above, the use of these algorithms is sometimes not within the reach of the usual 636 

BIM operators. Firstly, the programmes used generally derive from mathematical work, which 637 

requires a process and knowledge in computational mathematics and visual geometry. 638 

Secondly, not all point cloud data captured by acquisition techniques such as TLS or SfM are 639 

valid. Most segmentation algorithms work with structured or LiDAR files only. 640 

Brodu and Lague developed the system on natural scenes of a subset to recognise rocks, 641 

vegetation, water, and gravel in a riverbed. However, this work aimed to experiment with the 642 

geometric fidelity that semantic segmentation can achieve for classifying architectural 643 

elements under CANUPO plug-in training. Given that these tests have not been applied before, 644 

the methodology adopted is original. Also, the validation analysis of the Mesh-to-BIM process 645 

has not been presented before. In order to select the most suitable process to obtain data for 646 

HBIM parameterisation, the results of the algorithm were compared with the manual 647 

segmentation and the selected point set was evaluated. Examining these subsets is essential to 648 

verify their suitability for accurate 3D geometric reconstruction. This paper also discusses an 649 

optimisation framework to analyse other segmentation software to produce parametric BIM 650 

objects. 651 

In the experimental tests, the algorithm was found to be a classifier of morphological surfaces 652 

since when there is no variation in morphology, the algorithm cannot classify the data, as 653 

occurred in the retablo test. Furthermore, it is worth mentioning that, as shown in the results 654 

of tests E and F from the 3D mesh reconstruction, the absence of point sets does not imply a 655 

complete surface. As a result, a complete segmentation would yield better results for 656 

transformation into parametric objects. It was also demonstrated that the classification 657 

algorithm, previously implemented on surfaces more complex than those of traditional 658 

architectural shapes, entails a reduction in accuracy for small scales.  659 

On the other hand, optimal values of the segmentation parameters were sought so that 660 

representative data for Mesh-to-BIM could be obtained with the smallest number of points. 661 

Testbeds were carried out from 100 to 600 points per square metre to determine the required 662 

segmentation point density for BIM. It was determined that the point spacing should be at 663 

least 6 cm and uniform over the entire surface of the objects. Therefore, the results of the 664 

automatic segmentation by the CANUPO algorithm are not optimal for parameterising 665 

architectural elements in a BIM environment. The reason lies in the lack of essential points in 666 

certain areas and the presence of excessive gaps caused by the non-classification of points.  667 

One of the main issues of this classifier is that, in the testbed of the wooden door, the 668 

algorithm determined points that did not belong to that subset (false positives) and 669 

accordingly classified them outside the surface. This is when the BIM operator has to intervene 670 

to analyse and interpret the data. Nevertheless, the algorithm yielded positive data of scale 671 

proportionality. Regarding the third testbed, the results showed no classification subsets. The 672 
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aim was to segment the cross, but the uniformity of the points indicated that the algorithm 673 

was unable to perform such segmentation. 674 

Future work will not only adapt this algorithm to improve its applicability efficiency but also 675 

conduct further research based on it to meet the requirements of integrating point sets into 676 

BIM. These requirements are the uniformity in the point dispersion (which is related to the 677 

resolution of the set) and that the decimation exceeds 85 % of the total number of source 678 

points. Besides, geometric and colourimetric segmentation can be combined to classify TLS 679 

and SfM point clouds, which are characterised by geometric and colourimetric features. The 680 

algorithm was developed to classify terrain, vegetation, or gravel, achieving a classification 681 

accuracy of 98% when separating vegetation from the soil. However, it was not possible to 682 

achieve the same performance for less complex architectural features without excessive 683 

roughness. 684 
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