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Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric 

method  

 

 

Abstract 

Most of the existing building stock has a deficient energy behaviour. The thermal transmittance of façades is among those 

aspects which most affect this situation. In this paper, the calculation procedure with correction for storage effects from 

ISO 9869-1 was applied to the thermometric method to determine the U-value. Due to the need for determining the 

number and type of layers that compose the wall to apply the calculation, a multilayer perceptron has been developed to 

estimate the U-value. From the different model configurations suggested, the most adequate architecture was the one with 

14 nodes in the hidden layer without making transformations in the input variables. Valid results have been obtained by 

the multilayer perceptron for the case studies analysed from different building periods, with deviations lower than 20% 

between the measured value and the expected one, varying the test duration according to the thermal resistance of the 

wall and the temperature variations. Furthermore, it is not necessary to carry out a data post-processing for the model, so 

this fact simplifies and hastens the calculation procedure.  
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Nomenclature 
Symbols 
  : thermal capacity of the layer   [J/(m2·K)] 
   : total internal thermal mass factor [J/(m2·K)] 
       : total internal thermal mass factor using thermal resistance values corrected by CCF [J/(m2·K)] 

     : internal thermal mass factor for each layer   of the wall [J/(m2·K)] 
            : moisture correction factor [dimensionless] 
    : total external thermal mass factor [J/(m2·K)] 
        : total external thermal mass factor using thermal resistance values corrected by CCF [J/(m2·K)] 

      : external thermal mass factor for each layer   of the wall [J/(m2·K)] 

            : temperature correction factor [dimensionless] 

   : total internal heat transfer coefficient [W/(m2·K)] 
  : specific heat flux through the element at the instant j [W/m2] 

R: thermal resistance of the wall [(m2·K)/W] 
    : thermal resistance of the material by applying the CCF correction [(m2·K)/W] 
     : sum of the internal thermal resistances from the k-1th layer to the internal air [(m2·K)/W] 
  : thermal resistance of the layer   [(m2·K)/W] 
      : sum of the external thermal resistances from the k+1th layer to the external air [(m2·K)/W] 

s: thickness [m] 
     : internal air temperature at the instant j [K] 

      : external air temperature at the instant j [K] 

         internal surface temperature of the wall at the instant j [K] 

U: thermal transmittance [W/(m2·K)] 

    : thermal transmittance obtained by the thermometric method [W/(m2·K)] 
       : thermal transmittance obtained by the thermometric method with correction for storage effects [W/(m2·K)] 

           : thermal transmittance obtained by the multilayer perceptron [W/(m2·K)] 

   
   

: weight of the bias neuron of the hidden layer of the multilayer perceptron 

   
   

: weights of the hidden layer of the multilayer perceptron 

   
   

: weights of the output layer of the multilayer perceptron 

  : values of the input layer of the multilayer perceptron 
  : input value of the bias neuron of the hidden layer of the multilayer perceptron 
  : output of the final layer of the multilayer perceptron 
 
Greek symbols 
  : time interval between the measurements [s] 
    : difference between the average internal air temperature from the 24 h before measuring the observation and the 
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average internal air temperate from the first 24 h of the test [K] 
     : difference between the average external air temperature from the 24 h before measuring the observation and the 
average external air temperature from the first 24 h of the test [K] 
 : thermal conductivity [W/(m·K)] 
 : activation function of the multilayer perceptron 
 
Abbreviations 
ANN: artificial neural networks 
AVRA: Agency for Housing and Rehabilitation in Andalusia 
BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm 
BP: back propagation 
CCF: conductivity correction factors 
CTE: Spanish Technical Building Code 
ECM: energy conservation measure 
MAE: mean absolute error 
MLP: multilayer perceptron 
MW: mineral wool 
P: building period 
P1: building period anterior to NBE-CT-79 
P2: building period between NBE-CT-79 and CTE 
P3: building period posterior to CTE 
PUR: polyurethane 
R2: linear correlation coefficient 
RMSE: root mean square error 
THM: thermometric method 
XPS: extruded polystyrene 
 

 

1. Introduction 

 

Society is more and more aware of the effect that everyday processes have on nature, causing the acceleration of global 

warming, climate change and the extinction of different species [1]. One of the fundamental aspects which would change 

this situation is the reduction of greenhouse gas emissions. Recently, the European Union has published a roadmap for 

moving to a low carbon economy with the aim of reducing pollutant gas emissions by 80% by 2050 [2]. To achieve this, it 

is estimated that the building sector should cut its emissions by 90% due to its high energy consumption [2]. In this sense, 

from the different activities and procedures carried out nowadays, residential buildings were responsible for 24.79% of 

the total primary energy consumption in Europe in 2014 [3]. The main consumption source in these buildings is the 

heating [4]. Therefore, it is necessary to cut the level of the greenhouse gas emissions by reducing the energy demand from 

the existing building stock. Within this context, the adoption of the energy conservation measures (ECMs) in old buildings 

is one of the most significant performances [2]. In order to configurate correctly the ECMs, it is essential to determine the 

thermal transmittance (U-value) of the envelope [5,6], since it usually exceeds the maximum admissible levels from the 

technical standard in most cases [7] and has a major impact on façades, in which the maximum admissible value of energy 

loss can be exceeded by more than 100% [8]. 

The determination of thermal transmittance can be carried out by both theoretical and experimental methods. The 

theoretical method is included in ISO standard 6946 [9], and it calculates thermal transmittance of a conventional wall 

through the thickness and the thermal conductivity of each of its layers, as well as the internal and external surface 

thermal resistances. It is a method with a high uncertainty level, since it is difficult to know accurately the layers of the 

wall unless an endoscopic analysis can be carried out [10] or technical data are available [11]. Regarding experimental 

methods, in scientific literature there is the heat flow meter method included in ISO 9869-1 [12] as well as quantitative 

methods of infrared thermography, with different approaches from both exterior and interior [13].  

Recently, Andújar Márquez et al. [14], Bienvenido-Huertas et al. [15], and Kim et al. [16] validated the use of the 

thermometric method (also known as air–surface temperature ratio method) to determine the U-value by means of in situ 

tests. This method differs from the heat flow meter method in that the heat flux is not measured, but the internal surface 

temperature of the wall. However, no using the heat flux plate does not affect the representation of results, as differences 

lower than 5% between the thermometric method and the heat flow meter method can be obtained in steady state 

conditions [16]. 
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Obtaining thermal transmittance value by means of the measurement using temperature sensors can reduce the error 

associated with the test because of putting the heat flux plate. In this sense, Meng et al. [17] determined that the maximum 

error due to the use of surface temperature probes in the U-value is of 6%, whereas using the heat flux plate increases the 

maximum error to 26%. Regarding the thermometric method (THM), another aspect to highlight is the fact that no using 

the plate avoids the disturbance that probe can cause to thermal behaviour of the wall [10,18]. With respect to infrared 

thermography methods, THM has the advantage of not being significantly influenced by the environmental factors. In this 

sense, the influence of input variables on the results of infrared thermography methods is very significant, leading to 

obtain atypical results [19,20]. Moreover, variations of 50% in the measurement of internal, external, and surface air 

temperature can lead to errors of 5%, 50%, and 50%, respectively [19], whereas a deviation of 1 °C in the measurement of 

the reflected temperature can cause errors up to 100% [21]. 

For walls with a high thermal resistance, the thermal storage effect should be considered [12]. The thermal mass is the 

capacity to store thermal energy, that is, the effect that the components with a large heat capacity can produce in order to 

alleviate the temperature oscillations and reduce the rate of change [22]. The thermal storage characteristics and the 

material transmission of a component should be studied as a complete system, since any material influences the other 

[23]. 

The high thermal mass of walls limits the use of experimental methods [24]. The fundamental limitation of 

experimental methods is that the change of amount of heat stored in the wall is required to be low in comparison with the 

amount of heat going through it [25]. However, this requirement is difficult to achieve, especially in less cold climate 

regions [26]. In scientific literature, there are studies analysing the application of the heat flow meter method in high 

thermal mass buildings with significant deviations in the results obtained. Asdrubali et al. [27] assessed the thermal 

transmittance of six walls with a high thermal resistance using the ISO standard 9869-1. Results obtained deviations up to 

75% for the case studies analysed. Nardi et al. [28] evaluated two walls with low thermal transmittance values, obtaining 

deviations between 47 and 83% in the results. Samardzioska and Apostolska [29] analysed the thermal transmittance of a 

constructive system (Fragmat NZ-1) in three different walls. Results obtained deviations lower than 25%, although 

authors excluded certain monitored days, since the required conditions of data analysis were not achieved. Gaspar et al. 

[30] determined that steady state conditions with temperature differences higher than 19 °C can lead to obtain results 

with deviations of 1.9%, although it is difficult to guarantee this thermal gradient in actual conditions. 

Traditionally, the different steady state methods try to limit the thermal storage effect by extending the test duration to 

at least 72 h, and in some cases more than two weeks [31]. Duration is influenced by the wall typology. In this sense, Ficco 

et al. [32] determined that the sample period should be extended for those elements with a high thermal inertia, 

particularly in unfavourable conditions, such as a low thermal gradient or heat flow inversions. These test durations cause 

an excessive consumption of time resources as well as disturbances for dwellings´ tenants [33], and do not guarantee the 

limitation of thermal storage effect [34]. In this sense, Bienvenido-Huertas et al. [15] showed the difficulties to obtain 

representative results using THM when steady state conditions were not achieved during the tests. Kim et al. [35] 

indicated that thermal resistance values of walls and the difficulty in guaranteeing steady state conditions could make the 

correct estimation of test durations difficult in order to obtain representative results for THM, so the deviation of the 

result obtained can be high.  

The data analysis methodology used plays an important role. According to Cesaratto and Carli [36], the accuracy of 

thermal transmittance results could cause variations higher than 20%, depending on the method employed. A theoretical 

methodology to determine the U-value considering this effect is described in section 7.2. from ISO 9869-1. In this 

methodology, it is necessary to know the thermal characteristics of the layer components. Deconinck et al. [25] 

determined that using this methodology reduced test durations for the heat flow meter method. In this line, Choi and Ko 

[37] stated that test duration was reduced to two days by using this method, obtaining more accurate results than the 

average method. Thus, implementing this methodology for THM can be an opportunity to analyse walls with high thermal 

mass. Nevertheless, the composition of the wall is unknow in most cases [32], since a reliable technical documentation is 

not available or an endoscopy cannot be made. So, it is essential to have data analysis techniques that allow to determine 

the U-value of a wall without knowing exactly its layers to apply the corrections for storage effects. In this sense, the 

regression techniques have become very important to estimate thermal transmittance. 

From the different existing regression techniques, artificial neural networks (ANNs) are one of the typologies ensuring 

greater reliability and viability [38]. ANNs imitate the hardware structure of the nervous system with the aim of building 

parallel and adaptive processing information systems which can estimate an efficient response. Along with the Expert 

Systems, ANNs are one of the study gaps on artificial intelligence in the last years [39]. In the field of building energy 

problems, they have been widely used with correlation coefficients and error values adequate for each case [40]. 

Moreover, they have been extensively used as a prediction tool of energy demand and consumption [41], although other 

researches focused on the characterisation of the thermal properties of components can be highlighted, such as: (i) 
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Chudzik [42] applied an ANN to determine the heat transfer coefficient on the specimen surface to establish the thermal 

properties of thermal insulating materials; (ii) an ANN was designed by Buratti et al. [43] to predict the U-value of wooden 

windows; (iii) Sablani et al. [44] designed two ANN models to estimate the heat transfer coefficient for a liquid-solid set 

through its internal temperature; (iv) Singh et al. [45] determined the effective thermal conductivity of porous materials 

filled with different liquids using ANNs; and (v) Mitra et al. [46] predicted the thermal resistance of handloom cotton 

fabrics using an ANN. However, all these researches used fixed values for the input variables of ANNs, so ANNs were not 

used as a data analysis method for time series obtained by monitoring an element. 

Therefore, this paper is aimed at filling the existing gap in the state of the art. A new data analysis method is suggested 

for the thermometric method by means of an ANN allowing to characterise thermal transmittance of walls, considering the 

effect of thermal storage and without having the need of knowing the exact composition of the wall (fundamental 

requirement to carry out the calculation procedure).  

This article gives a new approach to deal with data analysis limitations to determine the thermal transmittance existing 

in scientific literature, suggesting an efficient methodology to be applied in order to characterize the U-value of walls. In 

addition, aspects never discussed in scientific literature are suggested, such as using ANNs as data analysis methodology to 

determine thermal transmittance and implementing a calculation methodology with correction for storage effects for 

THM. The key contributions of this paper can be briefly summarized as follows: 

 Applying the calculation procedure with correction for storage effects for THM. 

 Developing and analysing ANN models to determine thermal transmittance with correction for storage effects 

without the need of previously knowing the thermophysical properties of the materials of the wall. 

 Determining limitations to assess thermal transmittance by means of the model developed, analysing the time 

required and the need of performing a post-processing. 

 Proposing a new data analysis methodology obtained for THM, as well as assessing the potential of using ANNs 

as data analysis methodology to quantify thermal transmittance. 

This article starts by explaining the basis of the calculation methodology of THM in section 2. Section 3 details the 

design of both ANN models developed in this research. Then, Section 4 describes training and testing datasets used in this 

study. Section 5 analyses and discusses the calculation procedure, the ANN architecture and model with the best behaviour 

as well as the applicability of this model to new case studies. Finally, section 6 sums up the main conclusions of this study. 

 

2. Theory and calculation methods 

 

2.1. Average method 

 

The theoretical framework of THM is explained in detail in the publications by Andújar Márquez et al. [14], Bienvenido-

Huertas et al. [15], and Kim et al. [16]. Therefore, a brief description of the equations is given in this section.  

THM is based on the average method from ISO 9869-1 [12]. In this standard, the thermal transmittance of an element is 

defined as the heat flux that goes through the element divided by the difference between the internal and external air 

temperatures under the conditions of a stationary regime [12], and it is obtained as follows:  

  
   
 
   

               
 
   

 
 

    
  (1) 

Where    [W/m2] is the specific heat flux through the element at the instant j, and       and        [K] are the internal and 

external air temperature at the instant j, respectively.  
THM applies Newton’s Law of Cooling provided that the wall is the area of heat transfer (Eq. (2)). Considering that the 

heat transfer by conduction is the same as the heat transfer by convection and radiation in steady state (Eq. (3)), Eq. 4 is 

obtained following the progressive average procedure to determine the U-value. 
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Where     [W/(m2·K)] is the total internal heat transfer coefficient, and         [K] is the internal surface temperature of the 

wall at the instant j. 
Thus, the way to obtain the thermal transmittance is by measuring, on the one hand, the external and internal air 

temperatures and, on the other hand, the internal surface temperature. Hence, the measurement errors associated with 

the use of the heat flux plate are avoided [15]. For    , the reciprocal of the tabulated value of internal surface resistance 

established in ISO 6946 [9] is used, being 7.69 W/(m2·K) the value associated for façades. This value is obtained by the 

mechanisms of heat transfer by convection and radiation, with a value of 2.5 W/(m2K) for the convective heat transfer 

coefficient and a value of 5.19 W/(m2K) for the radiative heat transfer coefficient [47], being applicable to surfaces with a 

medium-high emissivity [9]. Thus, it is applied to most of the buildings, since values of emissivity of most materials used in 

the façades are between 0.90 and 0.96 [48]. 

It is important to highlight that, from the two heat transfers which define the total internal heat transfer coefficient, 

transfer by convection is the one that has a less rigorous development, existing a wide variety of expressions for 

correlation coefficients due to temperature differences, wind speeds or dimensionless numbers [49]. In this sense, the 

value from ISO 6946 has a behaviour similar to the convective heat transfer coefficient proposed by Khalifa and Marshall 

[50], with deviations lower than 6% [47], whereas deviations can reach 20% for other correlations. In a recent study, Kim 

et al. [35] analysed the use of the value of     from ISO 6946 for THM. Tests obtained deviations lower than 5% with 

respect to the heat flow meter method, so this value is the most adequate with respect to other correlation values or 

coefficients existing in scientific literature [35]. Furthermore, the use of this value allows to establish linear correlations 

between the difference of internal and external air temperatures as well as the difference of internal surface temperature 

and internal air temperature for each U-value (see Fig. 1), making the behaviour of the input variables for each value of the 

thermal transmittance more understandable in the same way that for the heat flow meter method (Eq. (1)).  

 

Fig. 1. Relation between the difference of internal and external air temperatures (x-axis), and the difference of internal air 

temperature and the internal surface temperature of the wall (y-axis) for an internal convective coefficient of 7.69 

[W/(m2·K)]. 

 

The use of the average method requires the change of the heat stored in the wall to be insignificant in comparison with 
the heat that goes through the wall, so the test duration should last between 3 and 14 days. However, there are difficulties 
to fulfil those conditions, such as [35,51]: (i) oscillations in temperature values and difficulties to achieve steady state 
conditions; (ii) the time needed to carry out the tests; (iii) significant variations in the convective heat flux due to 
operation cycles of heating systems; and (iv) putting the tenants of the analysed dwellings to great inconvenience. Thus, an 
improvement in the calculation procedure, where the thermal mass of the wall is taken into account, allow to reduce the 
error of the obtained result as well as to shorten the period of test performance [37]. 

 

2.2. Average method with correction for storage effects  

 
The standard of the heat flow meter method [12] establishes a calculation procedure of thermal transmittance by 

correcting the heat storage effects for walls having both high resistance values and thermal mass. This calculation 
procedure should be applied when the U-value obtained at the end of the test varies more than 5% with respect to the 
value obtained 24 h before or to the data from the first two days [12]. To apply this procedure, it is fundamental to know 
the thermal characteristics of the layers composing the wall with the aim of also knowing its thermal resistance (Eq. (5)) 
and thermal capacity. 

  
 

 
  
    

 
  (5) 

Where   [m] and   [W/(m·K)] are the thickness and the thermal conductivity of the material, respectively. 

For each layer   of the wall, the thermal resistance is calculated, and the internal and external thermal mass factor are 

obtained (Eqs. (6) and (7)).  
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  (7) 

Where        [(m2·K)/W] is the sum of the external thermal resistances from the k+1th layer to the external air,       

[(m2·K)/W] is the sum of the internal thermal resistances from the k-1th layer to the internal air,        [J/(m2·K)] is the 

external thermal mass factor of the layer  ,       [J/(m2·K)] is the internal thermal mass factor of the layer  ,    [J/(m2·K)] 
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is the thermal capacity of the layer  ,    [(m2·K)/W] is the thermal resistance of the layer  , and   [(m2·K)/W] is the 
thermal resistance of the wall.  

Thermal mass factors of the wall are obtained by means of the sum of thermal mass factors of the N layers of the wall: 

          

 

   

  (8) 

            

 

   

 (9) 

Where     [J/(m2·K)] is the total internal thermal mass factor, and      [J/(m2·K)] is the total external thermal mass factor.  

To apply the correction, the numerator from Eq. 1 should be replaced by the following expression:  

   

 

   

 
                   

  
 (10) 

Where      [K] is the difference between the average internal air temperature from the 24 h before measuring the 

observation and the average internal air temperate from the first 24 h of the test,       [K] is the difference between the 

average external air temperature from the 24 h before measuring the observation and the average external air 

temperature from the first 24 h of the test, and    [s] is the time interval between the measurements. 

Considering that the heat flux density of an element is equivalent to the density transferred from the internal air to the 

surface of the element analysed (Eq. (2)), Eq. (10) can be modified: 

                      
                   

  

 

   

 (11) 

This expression (Eq. (11)) is applied to Eq. (4), obtaining the following equation: 

  
                      

                   

  

 
   

               
 
   

 
 

    
  (12) 

Therefore, the method applies a correction factor which increases or reduces the numerator from Eq. (4) according to 

the variations of the average internal and external temperatures.  

Determining the composition of the wall can be carried out by several techniques, such as the analogy of similar 

constructions [11], the endoscopy [52], or the use of reliable technical documentation [11]. As there are difficulties to 

access to the project details as well as the impossibility of making an endoscopy due to the havoc caused in the wall, 

determining the configuration of the wall by means of either the analogy of similar constructions or based on previous 

experiences is the technique most used in most professional cases [11], although the associated error is high.  

 

2.3. Average method with correction for storage effects using CCF 

 
The thermal conductivity does not always coincide with the tabulated values included in technical catalogues and 

projects, since it can vary depending on the environmental temperature and moisture [53]. Most database establish 
average temperature and moisture conditions to carry out the calculation procedure of thermal conductivity from ISO 
10456 [54]. Due to this, Pérez-Bella et al. [55] achieved conductivity correction factors (CCF) for each of the province 
capitals in Spain according to the external ambient conditions. CCF can simplify the application of ISO 10456 by combining 
a temperature conversion factor and a moisture conversion factor (Eq. (13)), both applied to the thermal conductivity of 
the material with the result of obtaining a more representative thermal resistance (Eq. (14)). 

                              (13) 

     
 

     
  
    

 
  (14) 

Where     [dimensionless] is the conductivity correction factor for a certain province capital in Spain published by Pérez-

Bella et al. [55],             [dimensionless] is the temperature correction factor,              [dimensionless] is the 

moisture correction factor, and      [(m2·K)/W] is the thermal resistance of the material by applying CCF correction. 

So, Eq. (12) can be modified by using thermal mass factors, which are modified by applying CCF to the province capital 

where tests are performed. Thus, the following expression is obtained:  
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  (15) 

Where         [J/(m2·K)] and          [J/(m2·K)] are the total internal and external thermal mass factor using thermal 

resistance values corrected by CCF, respectively. 

 

3. Estimation of U-value using ANN 

 

To apply the proposals of the average method with correction for storage effects (Eqs. (12) and (15)), a previous 

knowledge or a good estimation of thickness, thermal conductivity, and thermal capacity of the layers of the wall are 

required to calculate thermal mass factors. As mentioned above, consulting project details or making endoscopies are the 

most adequate methods to know the thermal properties of the wall, but these options are not always possible, and it is 

necessary to resort to the estimation by means of either the analogy of similar constructions or based on previous 

experiences. 

 For this reason, it is essential to have analysis techniques predicting thermal transmittance taking into account the 

thermal storage effect of the wall and without having the need of knowing its constructive composition. From the different 

existing typologies to perform an advanced data analysis, ANNs are the ones which best features have [38], and the 

multilayer perceptron (MLP) is the most used structure.  

The MLP structure is formed by three or more layers: an input layer, one or several hidden layers, and an output layer. 

In each layer, there are neurons or nodes connected to those of the following layer by means of weighted connection with 

different weights. The neurons of the input layer do not make any calculation but send information. Each neuron of the 

hidden layer adds all the inputs together, so if that value is higher than the activation value, an output is produced. The 

outputs go over to the output layer where the process is repeated, and the system response is obtained. The MLP 

operation is mathematically expressed as follows: 

         
   
      

   
  

 

   

 

 

   

    
   
    (16) 

Where    is the output of the final layer,    
   

 are the weights of the output layer,   is the activation function,    
   

 are the 

weights of the hidden layer,    are the values of the input layer, and    
   

 and    are the weight and the input value of the 

bias neuron of the hidden layer, respectively. 

To ease the understanding of the steps followed in the research, Fig. 2 shows the flow-chart representing the main 

steps of the research.  

 

Fig. 2. Flow-chart of the procedure followed in the research.  

 

3.1. Phase 1. Design and data collection 

 

The design of MLPs with two or more hidden layers does not usually generate a better behaviour of the model, 

increasing the risk of converging to a local minima [56]. For this study, the authors proposed three layers as architecture 

for the MLP (see Fig. 3). The MLP estimated the U-value of the wall by means of the time series of internal (     and 

external air temperatures (     , and the internal surface temperature (     ). Other variables required to characterise 

thermal transmittance were the average difference temperatures from the first 24 h, both internal        and external 

       , as well as the thickness of the wall (s), the time interval between the measurements (  ), and the building period 

(P). Regarding this last variable, the most predominant construction typologies in Spain (from the middle of the 20 century 

to nowadays) can be divided into three building periods [57]: (i) anterior to the normative NBE-CT-79 [58]; (ii) posterior 

to NBE-CT-79, and anterior to the Spanish Technical Building Code (CTE) [59]; and (iii) posterior to CTE. Buildings 

constructed anterior to NBE-CT-79 are characterised by being formed by one or two brick layers, without insulation and 

with the possibility of having an air gap [7], while with NBE-CT-79 coming into force, insulating material was added to the 

constructive solutions with thicknesses lower than 3 cm [60]. The implementation of CTE increased the limit values of 

thermal resistance, so the insulation thickness of the buildings from this period is higher [60]. With respect to data input, 

three discrete values were used for this variable: P1 (anterior to NBE-CT-79), P2 (between NBE-CT-79 and CTE), and P3 

(posterior to CTE). This can be quickly determined by consulting the cadastral data of the building. 
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Considering the existing linear correlations between the temperature differences for each thermal transmittance value 

(Fig. 1), another MLP was developed by transforming the variables    ,      and       into the difference of internal and 

external air temperature (        ), and the difference of internal air temperature and internal surface temperature 

(         ). Therefore, two MLPs were designed: MLP1 for temperature variables without being modified and MLP2 for 

transformed variables (see Fig. 3). 

 

Fig. 3. Schematic diagram of the MLPs designed. 

 

3.2. Phase 2. Training and validating the MLP, and selecting the best architecture 

 

The MLP was trained by back propagation (BP) [61]. The Quasi-Newton Method was used as algorithm of second order, 

using Broyden-Fletcher-Goldfarb-Shanno (BFGS) [62] updates due to the high accuracy achieved by both of them in results 

[63]. Test data indicated in section 4 of this paper were used as training and testing dataset. For both hidden and output 

layer, a sigmoidal activation function was used. 

During the training, input data had the correct U-value as classification value. The result of the MLP depends on the 

number of neurons of the hidden layer. Therefore, to obtain an optimal result, the numbers of neurons generating a better 

behaviour should be analysed [40]. For this reason, architectures of the MLP in which the number of neurons in the hidden 

layer oscillated between 4 and 15 were analysed. Furthermore, a momentum of 0.2 and a learning rate of 0.3 were used as 

fixed parameters. The number of training time was between 500 and 120,000 until determining the optimal configuration, 

using a 10-fold cross validation. The assessment of the correct number of nodes from the hidden layer as well as the 

performance of the MLP were determined by the linear correlation coefficient (R2) (see Eq. (17)), the mean absolute error 

(MAE) (see Eq. (18)), and the root mean square error (RMSE) (see Eq. (19)). The use of these parameters was useful to 

determine efficiently the performance of the models [64]. Both MAE and RMSE should be as small as possible, whereas R2 

should have values close to 1, since its value scale goes from 0 (null correlation) to 1 (total correlation) [38]. The 

determination of the nodes composing the hidden layer to achieve an optimal performance is discussed in the result 

section of this paper.  
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Where n is the number of observations in the training dataset,    is the value predicted by the ANN, and    is the measured 

value.  

 

3.3. Phase 3. Comparing models and testing the model selected in new case studies 

 

After determining the most optimal architectures of MLP1 and MLP2, the behaviour of both models was compared 

using the statistical parameters of R2, MAE and RMSE. Then, the MLP with the most adequate behaviour was determined, 

and three new case studies no included in the training process were used for testing its behaviour in new case studies 

belonging to the three building periods considered. 

 

4. Experimental campaign and dataset used 

 

To do the training and the testing, a dataset composed by 69 subsets was used. Each of these subsets corresponded to 

tests carried out in different façades. The façades analysed were common wall typologies from the three building periods 

considered: P1, P2 and P3. The façades were multilayer walls with brick leaves, with or without insulation. It is a 

constructive typology widely used in several countries like Belgium [65], United Kingdom [66] or Italy [67], so the 

application of the data analysis method can be extended to other regions. Some of the tests were performed by the authors 

and the others by the Agency for Housing and Rehabilitation in Andalusia (AVRA) of the Regional Government of Andalusia 

under the Energy Improvement in the Public Housing Stock Program. Choosing the walls, selecting the equipment and 

mounting the probes were done according to the methodology described by Bienvenido-Huertas et al. [15]. Tests were 
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performed between 4 and 7 days, with a data acquisition interval of 15 minutes, and each measured instant of time was an 

observation of the subset. Observations from the first 24 h of each test were not included in the subsets generated. For 

each wall, there was a reliable technical documentation which allowed to determine the number, the material and the 

thickness of their layers exactly. The values of thermal conductivity and capacity were obtained from the constructive 

elements catalogue in Spain for the different materials [68]. Tests were performed in the locations of Cadiz, Cordoba, 

Granada, Huelva, Jaen, Malaga, and Seville, so the value of the used CCF varies (see Table 1).  
 

Table 1 

CCF for the locations of the analysed walls. 

 

As indicated in section 3, from the 69 tests available, 66 were used for training and validating the MLPs, and therefore 

determining which method was the most adequate (see Fig. 4). Data included in subsets corresponded to input data from 

the MLP as well as to the classification value (see Table 2). With respect to the three new case studies included in the 

testing of the model selected, Table 3 and Fig. 4. show the sketch, technical characteristics and thermophysical properties 

of each one. 

 

Table 2 

Input and output data compiled in datasets for both models of MLP. 

 

Table 3 

Technical characteristics and thermophysical properties of the walls used for testing the MLP. 

 

Fig. 4. Scheme of the training and testing of the MLP. 

 

 

5. Results and discussion 

 

First, the results obtained for the training dataset of the MLP were analysed with the aim of studying the limitations of 

Eqs. (12) and (15). It is important to highlight that all the tests included in the training dataset of the neural network had 

thermal transmittance values without correction (Eq. (4)) and with differences higher than 5% with respect to the 

observations from the previous 24 h, being in some cases higher than 30%. Table 4 shows the values obtained for Eqs. (4), 

(12), and (15) in two walls from each building period. These equations were applied to the data obtained in 2 and 3 days. 

Furthermore, the estimated value of thermal transmittance was obtained by applying ISO 6946 in order to determine the 

percentage error of the result obtained by the test, following the validation criteria from ISO 9869-1 [12]. As mentioned 

above, a precise technical documentation was acquired, so it was possible to determine exactly the dimensions and 

thermal properties of the materials composing the walls analysed. The uncertainty of the obtained results was determined 

by the combined standard uncertainty from ISO/IEC Guide 98-3 [69]. 

 

Table 4 

Results obtained of some of the walls of the training dataset. 

 

By analysing the results, it was detected that the U-value corrected in the walls from P1 had results more approximate 

to the estimated value, with errors lower than 10%. Generally, the values obtained in THM without correction in the 

façades from this period were adequate because they presented a difference lower than 20% with respect to the estimated 

value. However, using correction for storage effects could reduce the deviation percentage. Regarding the walls from P2 

and P3, the application of correction could reduce the deviation percentage in comparison with the method without 

correction in most cases. In the examples included in Table 4, the application of correction allowed to reduce the obtained 

error from 32% to 13% and from 5% to 4% for the data analysed in the same time period. Nevertheless, there were two 

tests in which the obtained results were no representative due to the difficulties they had to achieve a stability in the 

measurements with a high thermal gradient, although it could also be attributed to a possible degradation of the thermal 

performance of these walls. That degradation caused differences between the estimated value from ISO 6946 and the 

measured value. For these tests, the application of correction could reduce the error with respect to the estimated U-value, 

reducing the deviation percentage from 75% to 59% in W3 and from 90% to 33% in W5, although the result continued 

being non-representative.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Therefore, in most of the cases analysed, Eq. (4) obtained valid results when the test lasted between 3 and 7 days, 

whereas for Eqs. (12) and (15) representative values could be obtained on the second day, although it is possible that the 

use of the method produces non-representative results depending on the test conditions and the previous knowledge of 

the wall. Regarding the values obtained by Eqs. (12) and (15), differences were not detected between the results obtained 

by the two approaches. This happened because the correction made by CCF to thermal conductivity of the materials had no 

impact on the thermal mass factors calculated in the different walls. The obtained value of thermal transmittance with 

correction varied 2% only in some façades from P3. Regarding relative uncertainty values obtained in all the methods, 

adequate results with percentages lower than 14% were obtained.  

As mentioned above, determining the composition of the wall as well as its thermal properties is fundamental to apply 

the correction effectively, particularly the layer of insulating material. In Fig. 5, it is represented the data distribution 

obtained in a test after applying the correction to a configuration of typical wall in Spain under different suppositions of 

the insulating materials most used in the buildings of the country, varying the thickness and the location with respect to 

the air gap. Those insulating materials are: mineral wool (MW), polyurethane (PUR), and extruded polystyrene (XPS), 

which have different thermal conductivity values, density and specific heat according to what is indicated in the 

constructive elements catalogue [68]. In addition, the position of the insulation with respect to the air gap did not 

influence the corrected value of the thermal transmittance obtained at each instance. However, the thickness of the 

insulation and the kind of material had differences on data distributions. The thickness variations for a same material led 

to deviations between 6.1% and 7.67%, whereas the determination of the insulation had a lower impact on the corrected 

U-value, with deviations between 0.5% and 2.55% for the different types of materials due to the similarity between the 

thermal properties of the insulation analysed.  

 

Fig. 5. Box-plots of the U-values corrected for different estimations of insulation of a wall. GIE: great insulation in external 

side of air gap; GII: great insulation in internal side of air gap; IE: insulation in external side of air gap; II: insulation in 

internal side of air gap. 

 

Using the MLP could estimate the U-value with the heat storage effect. Since the use of CCF did not give a major 

adjustment of the U-value obtained, the output of the proposed MLPs was Eq. (12). As mentioned above, the efficiency of 

the MLP models was determined by the statistical parameters of R2, MAE and RMSE. Table 5 shows the behaviour of the 

different MLP models in the training time of 5,000. All the MLP models had an adequate correlation coefficient for 

structures of 7 or more nodes, with R2 higher than 0.90. Moreover, error statistical parameters had adequate values. In 

most of the cases, MAE was between 0.056 and 0.091, and RMSE was between 0.098 and 0.143. The optimal number of 

neurons was the one with the lowest MAE and RMSE, and the highest R2. From the different models analysed, the optimal 

architecture was the one with 14 neurons for both MLP1 and MLP2. 

 

Table 5 

Behaviour of MLP models in training time of 5,000. 

 

Regarding the better adjustment between MLP1 and MLP2, great differences in the quality parameters of both optimal 

configurations of networks for 120,000 training cycles were not detected (Fig. 6), although the statistical parameters 

obtained in MLP1 were more adequate. Carrying out transformations into the input variables did not lead to an 

improvement in the parameters of the models. MLP1 had values of MAE and RMSE lower than MLP2, increasing from 0.050 

to 0.057 and from 0.081 to 0.092, respectively. Moreover, the R2 had a better adjustment in MLP1, going from 95.69% to 

94.31% for MLP2. Fig. 5 shows how the points cloud for MLP1 had more precise predictions with an error lower than 

MLP2. Thus, the most correct model was MLP1 with 14 neurons, since the quality parameters were better. Furthermore, 

carrying out transformations in the input variables were not required, so that the process to estimate the thermal 

transmittance was simplified. 

 

Fig. 6. Correlation between the predicted value and the expected value in the training cycle 120,000, and statistical 

parameters obtained for the architectures of 14 nodes of MLP1 and MLP2. 

 

After training the network, three new case studies no included in the training of MLP were tested (see Table 3). Fig. 7 

shows the time serie of the U-value, and Table 6 shows the results obtained at the end of the test for Eqs. (4) and (12) as 

well as for the MLP model, for both data without post-processing and with post-processing, rejecting the measurements 

performed in the first 24 h. For the estimation uncertainty carried out by the MLP, the error associated with the model 
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prediction was considered as well as the contributions associated with the variation of the type of insulating material and 

its thickness discussed above (Fig. 5). 

 

Fig. 7. Time series of U-value for the different methods: (a) without post-processing; and (b) with post-processing. Eq. (4) 

is represented by the red line, Eq. (12) is represented by the blue line, and the estimation of the MLP is represented by the 

black line. The expected value in case studies is represented by the grey dashed line. 

 

Table 6 

U-value obtained in the three case studies of testing. 

 

The results obtained by the MLP were adequate in the three typologies of façades, corresponding to P1, P2 and P3. The 

stability in the estimation of thermal transmittance varied according to the the wall typology. In case study B, valid results 

were obtained on the second day of the measurement, whereas it was necessary to extend the test to 4 days in case study C 

due to the highest thermal resistance that the wall had and the inestability of the thermal gradient during the test because 

of the variations of external temperature. In case study A, an improvement in the estimation of U-value in comparison with 

the value obtained for Eqs. (4) and (12) was not detected. The deviation between the expected U-value and the one 

estimated by the MLP was lower than 20% in all the case studies, having a minimum percentage deviation of 2% in case 

study B. Thus, the MLP was well adapted to the walls from the different considered building periods. It is important to 

highlight that the MLP did not require to carry out a data processing in order to obtain estimations adjusted to the 

expected value of thermal transmittance, since thermal variations which took place during the test did not significantly 

affect the final value estimated by the network, with small reductions of the error percentage of 4.55% in CS-A, 0% in CS-B, 

and 1.72% in CS-C (see Table 6). So, the use of the MLP could optimize the estimation procedure of thermal transmittance 

because making the data post-processing was not required. 

Although ANNs have been widely used as classification models in scientific literature, ANNs are used in this article as 

data analysis methodology monitored to assess thermal transmittance.  

The data analysis methodology proposed in this paper used eight input variables (   ,     ,      ,     ,      ,       ) to 

determine the thermal transmittance of the walls by using THM with corrections for storage effects (see Fig. 8). From 

these data, only temperature variables (   ,      and      ) should be monitored, whereas variables     ,       and    were 

determined automatically according to the data monitored. Only   and   should be determined for the performance of the 

procedure, but the easiness of identifying them by means of measuring the thickness of the wall and consulting cadastral 

data did not make the analysis process difficult. After determining the time series of the different variables, they were 

entered in the MLP developed, and the U-value with the output variable of the model was obtained. 

 

Fig. 8. Flow-chart of the analysis process of a wall using the MLP. 

  

The data analysis model proposed determined accurately the thermal transmittance of walls with insulation, obtaining 

accurate results in two days for walls of P2, and in four days for walls of P3. Although differences with respect to the 

progressive procedure were not obtained for P1 as walls from this period do not have a high thermal mass, the use of the 

data analysis model provided valid results, so it could also be used for these walls with the objective of automating the 

data analysis process. Moreover, the model did not need to carry out a data post-processing, so the calculation procedure 

was hastened. Another aspect to highlight is that the same methodology of the MLP developed could be used for 

characterizing thermal transmittance by using the heat flow meter method with corrections for heat storage, extending its 

use. One of the limitations of the analysis model is that the wall typology should be adapted to the characteristics existing 

in each region or country. However, the wall typology analysed in this study (multilayer walls with brick layers and an 

insulation layer) is a constructive technique very common in several countries, such as Belgium, United Kingdom or Italy, 

and widely analysed in several researches.  

 

6. Conclusions 

 

A calculation methodology has been proposed to determine thermal transmittance by means of the thermometric 

method considering the heat storage effect, and an artificial neural network of type multilayer perceptron has been 

developed to simplify its application. Based on the results obtained, the authors of this paper conclude the following:  

- The calculation procedure with heat storage correlations suggested in this study for the thermometric method 

(Eqs. (12) and (15)) was applied to the case studies included in the training dataset. In most case studies, the 
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calculation procedure allowed to obtain U-values with deviations lower than the average method of thermometric 

method (Eq. (4)), although there were some case studies where the obtained results were non-representatives.  

- Differences were not detected in the U-values obtained by Eqs. (12) and (15). Hence, the use of conductivity 

correction factors in the correction for storage effects did not influence the result obtained.  

- In walls with insulation in some of their layers, determining the thickness of this material led to variations between 

6.1 and 7.67% of the corrected thermal transmittance, while differences because of the type of the existing material 

in that layer were between 0.5-7.67% due to the similarity in thermal properties of the main insulating materials 

commonly used.  

- A multilayer perceptron has been developed to estimate the U-value with the correction for storage effects in order 

to avoid the need of knowing the composition of the wall. The input variables obtaining a more optimal model 

were: (i) the internal air temperature; (ii) the external air temperature; (iii) the internal surface temperature; (iv) 

the difference of the average internal temperature; (v) the difference of the average external temperature; (vi) the 

thickness of the wall; (vii) the building period; and (viii) the time interval between the measurements. These input 

variables could be obtained by means of a methodology of monitoring the simple wall which can be applied to any 

energy audit. The multilayer perceptron model with an optimal behaviour was the one of 14 nodes in the hidden 

layer and without carrying out transformations in the input variables, with a R2 of 0.957, a MAE of 0.050, and a 

RMSE of 0.081.  

- The multilayer perceptron obtained valid results in the testing for the three considered building periods (P1, P2, 

and P3), with deviations lower than 20% between the measured value and the expected value, and varying the test 

duration according to the thermal resistance of the wall and the variations of external temperature. In this sense, 

valid results were obtained in two days in P2, while it was necessary to extend the test to 4 days in P3. Thus, the 

data analysis model proposed leads to obtain valid results in time periods shorter than those recommended by 

several researches.  

- The multilayer perceptron did not need a data post-processing to obtain representative results, optimizing the 

speed of the calculation procedure, although the post-processing reduced the error percentage up to 4.55%. 

To conclude, the multilayer perceptron developed in this paper can be used for performing energy audits in order to 

estimate thermal transmittance precisely by applying the thermometric method with correction for storage effects, 

simplifying and hastening the calculation.  
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Table 1 

CCF for the locations of the analysed walls. 

Location CCF a 
Cadiz 1.0403 
Cordoba 1.0367 
Granada 1.0311 
Huelva 1.0385 
Jaen 1.0354 
Malaga 1.0382 
Seville 1.0385 
a Conductivity correction factor given by Pérez-Bella et al. [33]. 
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Table 2 

Input and output data compiled in datasets for both models of MLP. 

Model Input data Class 
MLP1                                                

MLP2                                                    
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Table 3 

Technical characteristics and thermophysical properties of the walls used for testing the MLP. 

# Case Study A 
P1 (before NBE-CT-79) 

s  
[mm] 

cp 
[J/(kg·K)] 

ρ 
[kg/m3] 

λ  
[W/(m·K)] 

R    
[(m2·K)/W] 

1 Perforated brick 115 1000 780 0.35 - 
2 Cement mortar 10 1000 1900 1.30 - 
3 Air gap 100 - - - 0.18 
4 Hollow brick 70 1000 770 0.32 - 
5 Gypsum plaster 15 1000 1000 0.57 - 
     =0.13 [(m2·K)/W]     

      =0.04 [(m2·K)/W]     

CCF=1.0385 a [dimensionless]    
  = 1.10 [W/(m2·K)] b    
# Case Study B 

P2 (between NBE-CT-79 and CTE) 
s  
[mm] 

cp 
[J/(kg·K)] 

ρ 
[kg/m3] 

λ  
[W/(m·K)] 

R    
[(m2·K)/W] 

1 Cement mortar 15 1000 1900 1.30 - 
2 Perforated brick 115 1000 780 0.35 - 
3 Cement mortar 10 1000 1900 1.30 - 
4 Insulation PUR 15 1400 40 0.035 - 
5 Air gap 50 - - - 0.18 
6 Hollow brick 50 1000 770 0.32 - 
7 Gypsum plaster 15 1000 1000 0.57 - 
     =0.13 [(m2·K)/W]    

      =0.04 [(m2·K)/W]    

CCF=1.0385 a [dimensionless]   
  = 0.79 [W/(m2·K)] b   
# Case Study C 

P3 (after CTE) 
s  
[mm] 

cp 
[J/(kg·K)] 

ρ 
[kg/m3] 

λ  
[W/(m·K)] 

R    
[(m2·K)/W] 

1 Cement mortar 15 1000 1900 1.30 - 
2 Perforated brick 117 1000 780 0.35 - 
3 Cement mortar 10 1000 1900 1.30 - 
4 Insulation PUR 25 1400 35 0.028 - 
5 Air gap 28 - - - 0.18 
6 Hollow brick 50 1000 770 0.32 - 
7 Gypsum plaster 15 1000 1000 0.57 - 
     =0.13 [(m2·K)/W]    

      =0.04 [(m2·K)/W]    

CCF=1.0385 a [dimensionless]   
  = 0.58 [W/(m2·K)] b   
 : thickness; cp: specific heat capacity; ρ: density;  : thermal conductivity;  : thermal resistance. 
a Conductivity correction factor given by Pérez-Bella et al. [33]. 
b U-value estimated according to the calculation procedure from ISO 6946 [27]. 
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Table 4 

Results obtained for some of the walls of the training dataset. 

Wall Period           
 a 

    
 b 

(2 days) 
    

 b 
(3 days) 

       
 c 

(2 days) 

       
 c 

(3 days) 

           
 d 

(2 days) 

           
 d 

(3 days) 
W1 P1 1.09 0.86 ± 0.09 0.91 ± 0.07 1.01 ± 0.11 1.05 ± 0.07 1.01 ± 0.11 1.05 ± 0.07 
W2 P1 1.60 1.22 ± 0.08 1.31 ± 0.07 1.75 ± 0.18 1.74 ± 0.13 1.75 ± 0.18 1.74 ± 0.13 
W3 P2 0.81 1.42 ± 0.08 1.27 ± 0.05 1.29 ± 0.07 1.28 ± 0.05 1.29 ± 0.07 1.28 ± 0.05 
W4 P2 0.85 0.65 ± 0.07 0.83 ± 0.07 0.96 ± 0.11 1.07 ± 0.10 0.96 ± 0.11 1.07 ± 0.10 
W5 P3 0.61 1.67 ± 0.11 1.16 ± 0.10 1.41 ± 0.10 0.81 ± 0.08 1.41 ± 0.10 0.80 ± 0.08 
W6 P3 0.76 0.80 ± 0.08 0.86 ± 0.06 0.73 ± 0.09 0.75 ± 0.10 0.73 ± 0.09 0.75 ± 0.10 
a Estimated U-value according to the calculation procedure from ISO 6946 [27]. 
b U-value obtained from Eq. (4). 
c U-value obtained from Eq. (12). 
d U-value obtained from Eq. (15). 
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Table 5 

Behaviour of the MLP models in training time of 5,000. 

MLP Indicators Number of nodes in the hidden layer  
4 5 6 7 8 9 10 11 12 13 14 15 

MLP1 R2 0.863 0.877 0.893 0.904 0.914 0.927 0.929 0.931 0.932 0.934 0.936 0.934 
MAE 0.083 0.082 0.075 0.073 0.07 0.059 0.060 0.056 0.060 0.060 0.058 0.056 
RMSE 0.142 0.134 0.126 0.119 0.113 0.105 0.102 0.098 0.100 0.099 0.098 0.098 

MLP2 R2 0.862 0.894 0.895 0.912 0.908 0.904 0.913 0.917 0.918 0.920 0.921 0.918 
MAE 0.091 0.081 0.075 0.071 0.069 0.069 0.066 0.068 0.065 0.066 0.063 0.068 
RMSE 0.143 0.125 0.124 0.114 0.116 0.119 0.114 0.112 0.111 0.109 0.108 0.110 
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Table 6 

U-value obtained in the three case studies of testing. 

Case study Period           
 a Without post-processing With post-processing 

    
 b        

 c            
  d     

 b        
 c            

  d 

CS-A P1 1.10 1.01 ± 0.09 1.10 ± 0.09 1.31 ± 0.07 0.59 ± 0.07 0.65 ± 0.07 1.26 ± 0.06 
CS-B P2 0.79 1.26 ± 0.05 1.50 ± 0.04 0.80 ± 0.07 0.99 ± 0.04 1.14 ± 0.04 0.80 ± 0.07 
CS-C P3 0.58 1.35 ± 0.09 1.33 ± 0.07 0.46 ± 0.04 0.17 ± 0.07 0.14 ± 0.07 0.47 ± 0.04 

a U-value estimated according to the calculation procedure from ISO 6946 [27]. 
b U-value obtained from Eq. (4). 
c U-value obtained from Eq. (12). 
d U-value obtained from the MLP.  


