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An optimization approach for designing routes in 

metrological control services: A case study 

Jose Carlos Molina; Ignacio Eguia; Jesus Racero 

Abstract  This paper is the first to tackle the problem of designing routes in service 

companies that are responsible for the metrological control of measuring equipments at 

customer sites. This real-world problem belongs to the well-known Rich Vehicle Rout-

ing Problems which combine multiple attributes that distinguish them from traditional 

vehicle routing problems. The attributes include fixed heterogeneous fleet of vehicles, 

time windows for customers and depot, resource synchronization between tours, driver-

customer and vehicle-customer constraints, customer priorities and unserved customers. 

This routing and scheduling problem is modeled with linear programming techniques 

and solved by a variable neighborhood descent metaheuristic based on a tabu search al-

gorithm with a holding list. A real-life case study faced by a company in the region of 

Andalusia (Spain) is also presented in this work. The performance of the metaheuristic 

is compared with the literature for the standard fixed heterogeneous vehicle routing 

problem. Results obtained on a real case instance improve the solutions implemented by 

the company. 

Keywords Rich VRP, VRP with time windows, Fixed Heterogeneous Fleet, Variable 

Neighborhood Descent 



 

1  Introduction 

The efficient and effective movement of goods or drivers to provide services is one of 

the most important logistical activities in today´s competitive companies since it can in-

crease efficiency and productivity in many different ways. An effective management 

has a significant impact on both service quality and product cost reduction, achieving 

the company´s differentiation in a competitive market. Transportation plays a central 

role in distribution and services and has an influence in customer satisfaction levels. 

Among the logistical activities, the vehicle routing problem (VRP) is one of the most 

widely researched. The classical VRP tries to minimize the total distance travelled by a 

set of vehicles while satisfying the demand of a given set of customers and considering 

the assumption that each vehicle serves a single route during any planning period. Alt-

hough there are several variants and specializations of the VRP, the problem often does 

not include all the constraints and requirements of real companies. These requirements 

have received relatively little attention in the literature for years. Nevertheless, the new 

needs of companies have forced researchers to consider more complex and efficient ap-

proaches and this is how the Rich Vehicle Routing Problems (RVRPs) emerged. 

RVRPs are VRPs from a real-life scenario, that deal with additional constraints which 

aim to take into account the particularities of the vehicle routing distribution system 

more precisely. RVRPs combine multiple attributes that might include dynamism, sto-

chasticity, heterogeneity, multi-periodicity, integration with other related activities, di-

versity of users and policies, legal and contractual issues, environmental issues, and 

more (Caceres et al., 2015). These attributes complement the traditional VRP formula-

tions and lead to a variety of Multi-Attribute Vehicle Routing Problems (MAVRPs). 

The aim of this work is to tackle a real-world RVRP that matches with the current 

metrological control practice in companies and to propose solution methods that can 
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solve real-life instances. Metrological control services cover all administrative and 

technical activities which are conducted to ensure that measuring instruments, apparatus 

and equipment perform their tasks properly and in accordance with the industry regula-

tions and requirements. Metrological control can be performed at local laboratories, 

such as Motor Ordinance Test (MOT) checks, or at customer sites, such as fuel dis-

penser checks, scale tests, etc. 

The problem of designing routes in real service companies that are responsible for the 

metrological control of measuring equipments basically consist of the following. Every-

day orders to be served at customers sites are received by the company. The distribution 

business of these companies is affected by high seasonality throughout the year. For this 

reason, the number of orders received in a week can exceed the companies´ capabilities. 

In order to implement these activities, companies have a set of own workers, called veri-

fiers, who visit the customers to verify and calibrate their measuring equipments using a 

fixed fleet of vehicles located in a central laboratory and a set of available measure in-

struments (patterns) which depends on the type of service to be performed. The weekly 

planning consists on selecting the customer orders to be performed and designing the 

routes of customers to be visited by each verifier every day considering constraints on 

time windows, working regulations, verifiers’ skills, customer priorities, vehicle-

verifier-order constraints and limited number of available patterns and vehicles.  

This metrological control services problem has been presented to the authors by a 

public company in Andalusia, Spain, which aims to perform the legal metrological con-

trol in this region. It is important to note that the relevance of this sector continues in-

creasing in Andalusia. The net turnover in 2014 reached the amount of 108.42 million 

euros, representing an increase over the previous year of 3.58%. 



 

This paper is organized as follows: Section 2 reviews the literature about related 

problems. Section 3 describes the details of the tackled problem. The solution method-

ology including the mathematical formulation and algorithmic details to solve the prob-

lem are explained in Section 4. The experimental results of the case study are given in 

section 5 and finally, the conclusions are presented in the last section. 

2  Literature review 

In MAVRPs, Vidal et al. (2013) distinguish three main classes of attributes, relative 

to their impact on different aspects of the problem solution. This classification is related 

to the methodology for solving the problem. These classes are the assignment of cus-

tomers and routes to resources, the sequence choices, and the evaluation of fixed se-

quences. In Lahyani et al. (2015) RVRPs are considered according to the Scenario 

Characteristics (SCs) and to the Problem Physical Characteristics (PPCs). Under each of 

these two classes, attributes are listed in an arborescent way with the company decision 

levels (strategic, tactical and operational). The first and second levels (strategic and tac-

tical) include decisions related to SCs, while the operational level is associated with the 

PPCs. The strategic level includes decisions related to locations, the number of depots 

used, and the data type. The tactical level defines the order type and the visit frequen-

cies of customers over a given time horizon. Finally, the operational level considers ve-

hicle and driver schedules and attributes are specified for customers, vehicles, drivers, 

and roads. 

From the point of view of the SCs the problem is defined as a multi-period vehicle 

routing and driver scheduling problem with a single depot, single trips and service de-

livery tasks where capacity constraints are not presented. The problem is deterministic 

and static since data are not random and it is assumed that no changes can affect the 
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problem as car breakdowns, traffic jams, new order placements, unexpected withdrawal 

of orders, etc. On the other hand, the attributes related to the PPCs that are taken into 

consideration in this work are summarized in the following items: 

 Fixed Heterogeneous fleet: The Heterogeneous VRP with a limited number of vehi-

cles (HVRP) was proposed by Taillard (1999) and it consists of optimizing a set of 

routes for a fixed fleet of vehicles with different characteristics which serve some 

customers with known demands from a central depot. Every customer is visited ex-

actly once by a vehicle and all vehicles start and finish their routes at a depot, without 

exceeding its capacity. A simplification of this problem is the multiple traveling 

salesman problem (m-TSP) where the capacity restrictions are removed. In general, 

the m-TSP is a generalization of the Travelling Salesman Problem (TSP) where tours 

are designed for m salespersons that start and end their trip at the depot. A survey on 

m-TSP, its variants, some practical applications and solving approaches can be found 

in Bektas (2006) and Yuan et al. (2013).  

 Time windows: When hard time windows (TW) are considered, additional re-

strictions are introduced to force customers to be served by a vehicle in a predefined 

time window [EWi , LWi], where EWi and LWi are the earliest and latest time to 

start the service respectively. If a vehicle arrives before EWi, a waiting time must be 

taken into account until the beginning of the time window; if the vehicle arrives later 

than LWi, the solution is infeasible. Examples of solving HVRP with TW include 

Paraskevopoulos et al. (2008), Rieck & Zimmermann (2010) and Koç et al. (2015). 

The company under study establishes a route duration of eight hours for the verifiers. 

It is a parameter which must be greater or equal to the total driver working hours in 

one day. It is often defined as a time window at the depot. 



 

 Patterns restrictions:  In addition to the attributes analyzed in Vidal et al. (2013), in 

this problem routes must be designed accordingly to the daily limitation on the num-

ber of measure patterns in the central laboratory.  The different routes designed in a 

specific day have to share these scarce resources. Therefore, the problem presents re-

source synchronization between tours and can accordingly be formulated as follows: 

“the total consumption of a specified resource by all vehicles must be less than or 

equal to a specified limit”. Drexl (2012) presents an elaborated and recent survey on 

vehicle routing problems with multiple synchronization constraints. 

 Driver-order restrictions: There are also driver–order limitations, which indicate 

that orders must (not) be served by exactly one verifier from a specific set of quali-

fied verifiers. These constraints depend on the verifier qualification. An example of 

applying these restrictions can be found in Rieck & Zimmermann (2010).  Moreover, 

Cappanera et al. (2011) defined the Skill VRP which originates from a real applica-

tion in Field Service and is related to Home Care applications. The problem consists 

of defining a set of tours, each one operated by a technician, to fulfill service re-

quirements asking for a particular skill. The authors formulated and tested three mod-

els with an increasing level of variables disaggregation obtaining very good linear 

programming bounds.  

 Vehicle-order restrictions: In the problem under study, each order type must be 

served by a specified vehicle type. This is due to vehicle requirements and patterns 

incompatibility between different types of orders. An example of applying these re-

strictions can be found in Oppen & Løkketangen (2008). The site dependent VRP is a 

variant that takes into account these types of incompatibilities between customers and 

vehicles types (Baldacci et al., 2008). 
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 Order priorities: In addition to the previous attributes, the company assigns priority 

tags to some orders to determine which of them must be served first. Depending on 

these priorities, some orders can be postponed until the next planning horizon in-

creasing their priority tag, thus, older orders have higher priorities. Some papers in 

the literature include customer priorities, for instance Cornillier et al. (2009) and De 

Armas et al. (2015). 

 Unserved orders: The company under study often cannot serve all orders received in 

a week because it usually deals with a great number of orders exceeding its capabili-

ties. It forces the company to postpone some of the orders to the next planning period. 

This results in the consideration of a generalized method to handle both feasible and 

infeasible problem instances. For handling both problem types, a holding list (HL) 

containing unserved customers is introduced in the developed algorithm. This idea 

was first introduced by Lau et al. (2003) and subsequently implemented by other au-

thors as Jiang et al. (2014) or Lim and Zhang (2007). 

Due to the combinatorial complexity of RVRPs, solving real-life sized problems by 

heuristics or metaheuristics are often preferred since they can find good solutions within 

a reasonable amount of computational time. A great number of heuristic and metaheu-

ristic approaches are proposed to solve the HF-VRP in the scientific literature. For fur-

ther information on HF-VRP a survey can be found in Baldacci et al., (2008), Irnich et 

al., (2014), and Koç et al. (2016). Lahyani et al. (2015) also presents information about 

the use of metaheuristics in RVRPs. 

Mladenovic and Hansen (1997) proposed an optimization technique called Variable 

Neighborhood Search (VNS). It is a metaheuristic for solving optimization problems 

based on systematic changes of neighborhood during the search. A variant of the VNS 

arises when the search is performed in a deterministic way. The metaheuristic is known 



 

as Variable Neighborhood Descent (VND). On the contrary, if the search is randomly 

performed we have the reduced VNS. Interesting new variants of the VNS are presented 

in Hansen and Mladenovic (2003).  

Applications of VNS, or hybrids of VNS combined with other metaheuristics, are di-

verse and numerous and have proved their effectiveness (Paraskevopoulos et al., 2008; 

Hansen et al., 2010; De Armas et al., 2015). For further information, Hansen et al. 

(2010) present an extensive review on VNS applications. 

This paper makes two main scientific contributions. First, to the best of our 

knowledge, it does not exist in the scientific literature any practical VRP application 

which combines the attributes listed above. Another major difference considered in our 

implementation, compared to the large majority of papers on VRP literature is the dif-

ferentiation between a vehicle and its driver. Customer orders are fulfilled by exactly 

one technician depending on their skill with a specified type of vehicle. Hence, routes 

for drivers and vehicles must be synchronized. Moreover, we want to draw attention to 

the importance of tackling resource synchronization constraints found in other real 

world VRP applications such as home care scheduling problems. The paper also intro-

duces a mixed-integer linear programming model for a multi-period vehicle routing and 

driver scheduling problem that considers resource synchronization constraints. The 

model is based on an extension of a traditional HVRPTW model, incorporating some 

new decisions variables. The second contribution is a VND algorithm with a tabu struc-

ture for the local search which aims to efficiently solve this RVRP. The latter combines 

some new neighborhood structures definitions and a holding list that prevent the algo-

rithms from being trapped at local optimal and to explore a larger search space. 
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3  Problem description 

In this section the metrological control services problem is presented through a real-life 

company that is responsible to perform the legal metrological control in the region of 

Andalusia (Spain). Section 3.1 describes the problem scenario while section 3.2 pre-

sents the current methodology for designing routes in the company. 

3.1  Problem scenario 

The company performs metrological control services in eight provincial laboratories, 

which are regulated by a central reference laboratory located in Seville. In addition to 

the provincial laboratories, and in order to perform the services that must be provided at 

customer locations, the company owns 34 well-equipped vans and 6 trucks. The pur-

pose of this paper is to elaborate a methodology to be used by the company for design-

ing routes to give service to this type of customers. 

The company receives metrological control job orders from the customers. These or-

ders are internally classified into types of metrological services and stored in a database. 

Each type of service consists on a different set of operations which requires special pat-

terns and involves a different service time at the customer location (see Table 1 and Ta-

ble 2). 

The company requires verifiers, who are suitably qualified people for performing 

each type of service. However, each verifier is only specialized in a set of types of ser-

vices. Verifiers also need a set of patterns to complete each type of service. These pat-

terns are physical elements that serve as a standard reference for measurements to be 

performed during the service. The patterns are loaded on vehicles but not all combina-

tions of patterns are possible, as there are bulky patterns that cannot be carried together. 



 

There is also a limited number of each type of pattern available at the laboratory. The 

quantity of the different patterns to perform the services does not depend on the labora-

tory and is shown in Table 2.  

Provincial laboratories have their own fleet of vehicles that is used for handling the 

orders. The fleet consists on vans and trucks that vary in number depending on the prov-

ince. There are two types of vans: standard vans and special vans, the latter with an in-

stallation of special pipes for gas analyzers and opacimeters. In addition, there are also 

trucks for verifying large tonnage scales. Some types of service must only be performed 

with one type of vehicle. Every day, each vehicle is assigned to a verifier and a set of 

patterns and a feasible route is designed. Other constraints to be considered are the lim-

ited working hours for each verifier which should not exceed the hours of the workday, 

i.e., 8 hours. In addition, there are orders that must be served in a predefined time win-

dow. This is the case of small businesses (with only one scale, one fuel dispenser, etc.), 

in which the service must be performed early in the workday, so that it doesn´t interfere 

with the opening hours. Otherwise, this would imply a financial loss for customers.  

Table 1. Type of services and patterns 

Type of 

service 
Denomination Group of service 

Type of 

vehicle 

Service times 

(min) 
Pattern codes needed 

T1 Checking fuel dispensers 
Hydrocarbons 

(H) 
Van 40 3,16,17,18,19,20,28 

T2 Checking fuel pumps 
Hydrocarbons 

(H) 
Van 20 3,16,17,18,19,20,28 

T3 Weighing up to 60 Kg Mass (M) Van 40 5,20 

T4 Weighing up to 500 Kg Mass (M) Van 130 10,20 

T5 Weighing more than 500 Kg Mass (M) Truck 130 9,11,20 

T6 Checking tire pressure gauges Pressure (P) Van 30 2,14,20,25 

T7 Calibration of Opacimeters Gases (G) Van 30 3,20,22,23,26 

T8 Verification of Opacimeters Gases (G) Van 45 3,20,22,23,26 

T9 
Verification of volumetric 

meters for tanker trucks 
Volume (V) Van 260 3,13,20,21,24,27 

T10 
Verification of Temperature 

recorders 
Temperature (T) Van 60 1,3,20,26,28 

T11 
Calibration of Exhaust Gas 

Analyzers 
Gases (G) 

Special 

van 
30 20 
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T12 
Verification of Exhaust Gas 

Analyzers 
Gases (G) 

Special 

van 
45 20 

3.2  Problems and objectives 

As it was already mentioned, every day the company receives the customer orders to be 

served as soon as possible, and places them into a dynamic list of unserved customers. 

To manage the large amount of orders, the company’s logistic department assigns re-

sponsibility of carrying out the requested orders of its province to each provincial labor-

atory. In general, when the company receives a job order, it includes the following in-

formation: 

 Company name. 

 Address, telephone and email. 

 Type and amount of services to be performed. 

 Date of the order receipt. 

 Time window for the service. 

Table 2. Patterns description and available quantity 

Pattern 

code 
Denomination 

Available 

quantity 

Pattern 

code 
Denomination 

Available 

quantity 

1 Thermal shock absorber 4 15 150 grams weight 1 

2 Bottle of liquid nitrogen 6 16 10 liter glass flask 7 

3 Chronometer 6 17 2 liter glass flask 7 

4 Optical filter kit 6 18 20 liter glass flask 7 

5 Truck weights kit 8 19 5 liter glass flask 7 

6 Weights kit from 1 gr to 10 Kg 1 20 Environmental meter 14 

7 Weights kit from 1 mg to 10 Kg 3 21 
Petrol and diesel fuel volume 

meter 
1 

8 
Weights kit from 1 mg to 500 

mg 
5 22 

Smoke generator engine for 

opacimeters 
1 

9 
Weights kit from 100 Kg to 200 

Kg 
1 23 Reference opacimeter 1 

10 
Weights kit from 100 mgr to 10 

Kg 
4 24 Wireless temperature sensor 4 

11 20 Kg Weights kit 1 25 Reference tire pressure gauges 7 



 

12 Weights kit for pallets 1 26 Portable PC and software 1 

13 
Metal volumetric flasks of 

2,5,10 and 20 liters 
1 27 

Wireless temperature measuring 

system 
2 

14 Tire pressure gauge 1 28 Thermometer 9 

 

Currently, due to the large number of orders and the limited number of its own tech-

nical verifiers and vehicles, very frequently some of the orders have to be postponed to 

the following planning horizon. Moreover, due to the complexity of the problem, the 

vehicle routes are manually designed by the heads of laboratories according to their ex-

perience and considering some simple rules, without applying any methodology for op-

timizing them. These planning rules are the following:  

 Customer orders are classified by type of service and geographical area according to 

the ZIP code. 

 Routes with nearby orders, with only one type of service, are designed. Thus, patterns 

incompatibilities and problems in the driver qualification are avoided. Moreover, the 

company takes into account the order priorities and time window restrictions in the 

design of the routes. In general, customers with small businesses must be served in 

the early hours of the route and the oldest orders get the highest priority. 

This approach presents several disadvantages. The first problem is that routes are 

manually designed by the heads of laboratories according to their experience, losing an 

important amount of time in the planning process. Schedules and routes are planned one 

week before, and that task takes more than five hours. Moreover, the cost associated to 

inefficient planning must also be taken into account; this cost includes fuel costs, lost 

time for the verifiers, over-time working hours, unsatisfied customers, etc.  

The manual design of vehicle routes is not the only problem the company has. The 

goal of the company is to be the best operating in terms of quality and it wants to 

achieve high operational efficiency. In order to provide the best quality service to cus-
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tomers and due to the large number of orders received in a day, two objective functions 

must be considered by the company in a hierarchical form: maximizing the number of 

prioritized served orders is in the top level (primary) and minimizing the total traveled 

distances is in the bottom (secondary). Therefore, it is important for the company to 

have a tool to help the heads of laboratories to make the right decisions concerning the 

daily vehicles assignment to the verifiers and the optimization of the routes. 

Although exact algorithmic methodologies are not appropriate when solving real-life 

large VRP instances, a large amount of mathematical formulations, relaxations and re-

cent exact methods are presented in the scientific literature for the VRP and its variants 

(Toth and Vigo, 2014). 

To the best of our knowledge, there is no mathematical model dealing with a multi-

objective vehicle routing and driver scheduling problem with a fixed heterogeneous 

fleet, multi-period, time windows, holding list and resource synchronization constraints 

in the scientific literature. Before getting down to the details of this formulation, let us 

suggest that this model should not be used to solve all RVRP instances. Nevertheless it 

is useful to describe and understand all constraints clearly and it can also be used as a 

basis for formulating more RVRPs applications with additional attributes. 

The attributes of the RVRP presented in this paper are frequently faced by companies 

belonging to other application sectors as the home care providers industry or the indus-

trial maintenance services providers. Therefore, this work contributes to solving RVRPs 

in other potential areas considering their specific attributes. 

The problem under study is defined on a graph G={N, A} with N={0,1,…,N} as a 

set of nodes for a planning period, where node 0 represents the depot, and A is a set of 

arcs defined between each pair of nodes. A set of K heterogeneous vehicles and a ficti-

tious vehicle denoted by K+1, is represented by Z={1,…K, K+1} and is available from 



 

the depot. The fictitious vehicle is usually called “phantom vehicle” (Lau et al., 2003) 

and it will travel to those nodes that cannot be served in the established planning period. 

The set of verifiers that are to be assigned to vehicles is denoted by S={1,…,S} and 

the planning horizon expressed in days is given by T={1,…,T}. 

The notation adopted is the following: 

 PRi : priority in node i. 

 [EWi,LWi] : earliest and latest time to begin the service at node i. 

 STi : service time in node i. 

 TDij : distance from node i to node j (i ≠ j). 

 TTij  : driving time between the nodes i and j. 

 TMaxs : maximum allowable driving time for verifier s. 

 NJs : maximum number of workdays for verifier s. 

 SWis : equal to 1 if verifier s can provide a service at node i, 0 otherwise. 

 WJst : equal to 1 if verifier s can work on day t, 0 otherwise. 

 SVik : equal to 1 if node i can be served with vehicle k, 0 otherwise. 

 NPp : number of patterns p available in a day. 

 SPip : equal to 1 if node i needs the pattern p to be served, 0 otherwise. 

The problem uses the following decision variables: 

 Xijkt : binary variable, equal to 1 if vehicle k ∈ {1,…,K+1} travels from nodes i to j (i 

≠j) on day t; XijK+1t =1 represents the list of unserved orders i. 

 Yikt : starting service time at node i ∈ {0,1,…,N} performed by a vehicle k ∈ 

{1,…,K} on day t; y0kt  is the time of arrival at the laboratory. 

 Zskt : binary variable, equal to 1 if verifier s ∈ {1,…,S} is assigned to vehicle k ∈ 

{1,…,K} on day t. 
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 Wpkt : binary variable, equal to 1 if pattern p ∈ {1,…,P} is assigned to vehicle k ∈ 

{1,…,K} on day t. 

According to the established assumptions, the constraints of the mixed-integer linear 

programming model are as follows: 
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Constraints (1) mean that each vehicle departs from the laboratory each day once or it 

doesn’t, that is, no more than K vehicles (fleet size) depart from the depot. Constraints 

(2) are the flow conservation on each node. Constraints (3) guarantee that each customer 

is visited exactly once in the planning period. It can be observed that unserved orders 

are visited by the phantom vehicle. Starting service times are calculated in constraints 

(4) and (5), where Y0kt is the ending time of the tour for vehicle k on day t. These con-

straints also avoid sub-tours. Time windows are imposed by constraints (6). Constraints 

(7) mean that each vehicle departing from the laboratory is assigned a verifier. Any ver-

ifier cannot exceed its maximum allowable driving time in constraints (8). Constraints 

(9) are used to restrict the maximum number of workdays for a verifier. Constraints (10) 

guarantee that each verifier can be assigned to only one vehicle in the allowed workday. 

Incompatibilities between services and vehicles and services and verifiers are modeled 

in constraints (11) and (12) respectively. Constraints (13) ensure the use of patterns for 

every served order and constraints (14) limit the available number of each one in each 

workday. Constraints (15) and (16) avoid assigning patterns and calculating starting 

service times if a vehicle does not depart from the laboratory in a workday. Further-
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more, the objective of the route planning is a hierarchical objective function, where 

maximizing the total number of prioritized served orders is considered as primary objec-

tive, and minimizing the total traveled distance as secondary. Thus, if multiple solutions 

serving the same number of orders exist, the model must choose those with shorter dis-

tances. For this purpose δ is introduced in the objective function. This value represents a 

small positive number to ensure that the second term is of a lower order of magnitude 

than the first one 
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4  Solution method 

In the remainder of this section, the VND algorithm with tabu search and holding list 

for solving the tackled problem is presented. This tool will guide heads of laboratories 

on how to design the routes and schedules allowing the consideration of their prefer-

ences and specific constraints.  

4.1  The Variable Neighborhood Descent Tabu Search Algorithm with a Holding List 

In this section, the basic VND algorithm is adapted to solve the HVRPTW. The algo-

rithm is improved by introducing tabu search for the local search and by adopting some 

local search procedures including several new neighborhood structures definitions and a 

holding list that prevents the algorithm from being trapped at local optimal and allows 

exploring a larger search space. 



 

The algorithm starts with an initial solution. For this purpose, in a first phase a large 

number of initial solutions are produced using a semi-parallel construction heuristic for 

different combinations of parameter values, selecting only a small set F of high quality 

solutions for further improvement. Then, the post-optimization procedure is repeated for 

all the initial solutions of the subset F, re-starting from a new initial solution once a re-

gion has been extensively explored. The algorithm finishes when all solutions are exam-

ined or an upper bound limit γ, with respect to the computational time consumption, is 

reached. The use of a multi-start strategy is found to be useful in providing diversity and 

obtaining high quality solutions. 

Compared to the solution approach for solving the HVRPTW described in Par-

askevopoulos et al. (2008), there are several differences in our implementation. First, 

our approach handles both feasible and infeasible problem instances. Infeasible prob-

lems occur when some customers cannot be assigned to certain vehicles due to problem 

restrictions. In this situation, the basic idea is to introduce a holding list in the algorithm 

that contains all unserved customers. This idea was first introduced by Lau et al. (2003) 

and subsequently implemented by other authors, such as Jiang et al. (2014) or Lim and 

Zhang (2007). The problem introduces the additional objective of maximizing the num-

ber of served customers. One possible way is dealing with a multi-objective problem 

and defining weights for the different objective functions. However, our approach is to 

define a hierarchical cost structure where serving more customers is always better re-

gardless of the objective function considered. Another major difference involves the de-

terministic scheme of the VND. Despite the shaking mechanism being used to allow a 

more efficient and effective intensification local search, random moves are avoided in 

our approach to future applications in real companies. Other differences are introduced 
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in the heuristic metrics and in the definition of the neighborhood structures where the 

search space is increased to perform a more thorough search. 

The semi-parallel construction heuristic is based on the insertion framework de-

scribed in Paraskevopoulos et al. (2008) but introducing some differences. The heuristic 

builds a route for every feasible combination of vehicle, verifier and day taking into ac-

count incompatibilities between vehicle type and verifier qualifications and daily pattern 

limits.  As capacity constraints are not considered and time windows restrictions are on-

ly to be met in a small set of orders, the new greedy function that evaluates the cost of 

inserting an order u between i and j served by vehicle of type k and a verifier s on the 

workday t is denoted in (18) where the α weights define the relative contribution of each 

individual metric to the overall selection. 
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The first metric (19) is a measure of the driving time increase caused when an order u 

is inserted between two consecutive orders (i,j) in a route (Solomon, 1987). Similarly to 

the metric for measuring carried load increments (Paraskevopoulos et al. 2008), metric 

Cij,u
2 (20)  is introduced in this problem to give priority to the insertion of feasible or-

ders with large services times on the route and maximize the use of the driver working 

time. Metric Cu
3 is introduced to give priority to the insertion of remote customers in the 

route construction. This component is a variant of the criteria proposed by Mole and 

Jameson (1976) and also used in Solomon (1987). It is expressed in equation (21), 

where 0 represents the depot or laboratory and G, the furthest unassigned order in terms 

of time. 
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Finally, a new metric (β) is introduced for the routes selection considering the hierar-

chical cost structure of the problem, where maximizing the number of prioritized orders 

and minimizing the total travelled distances are the primary and secondary objectives 

respectively. To evaluate it, a small positive scalar  (Equation 22) is introduced to en-

sure that the term representing distances is of a lower order of magnitude than the term 

representing priorities. Thus, in case of existing multiple routes serving the same num-

ber of orders, the metric will choose those with shorter distances. Otherwise, the higher 

the value of β, the higher amount of prioritized orders is served. At the end of the pro-

cedure, if there are any unassigned orders left, an additional “phantom vehicle” is gen-

erated to serve them. The phantom vehicle contains the list of the orders that are not 

served in the current solution (Lau et al. 2003). 
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In the second phase the solutions are attempted to be improved by a Variable Neigh-

borhood Descent Tabu Search algorithm with a Holding List (VNDTS_HL). The algo-

rithm starts by defining a set of neighborhood structures Nk (k = 1… kmax), where Nk is 

the kth neighborhood. The iterative process starts from an initial solution s. Then, a local 

search based on tabu search is performed to determine a new solution s´ in Nk. If f(s´) is 

better than the best solution f(s), then s is replaced by s´, and the search returns to N1, 

otherwise the search explores the next neighborhood Nk+1. This is repeated until all 

neighborhood structures are examined (k = kmax). 
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4.1.1  Tabu search 

The tabu search (TS) is a metaheuristic that consists of moving successively, in each it-

eration from one solution s to the best or first improving solution of its neighborhood, 

prohibiting movements stored in the tabu list (TL) or, if so, satisfying some aspiration 

criterion (i.e. improving the best found solution in the problem). 

The TL stores in a stated list the solutions explored throughout the search or, more 

commonly, some relevant attributes of these solutions. In this problem, the TL consists 

of storing the exchanged nodes and their initial positions before moving to other solu-

tion. The main purposes are to prevent the return to the most recent visited solutions in 

order to avoid cycling and to drive the search towards regions of the solution space not 

yet explored. The termination condition used is the maximum number of iterations 

without observing improvement. 

 

Variable Neighborhood Descent Tabu Search algorithm 

1    F ← Semi-parallel_Insertion_Heuristic; 

2    Define a set of neighborhood structures Nk, k=1, 2,…,kmax; 

3    For all solutions s of set F do: 

4        While (CPU time consumed ≤ γ) do: 

5            Set k ← 1; 

6            While (k ≤ kmax) do: 

7     s’ ← TabuSearch (s, Nk);   

8     If  f (s’) improves f (s) then 

9         s ← s’; k ← 1; 

10     Else 



 

11         k ← k+1; 

12              EndIf 

13           EndWhile 

14           UpdateBestSolution(s); 

15        EndWhile 

16    EndFor 

4.1.2  Neighborhood structures 

Five neighborhoods structures (kmax=5) are used in this algorithm to solve the RVRP 

under study. As opposed to other metaheuristics based on VNS, where the neighbor-

hood structures are defined by a single local search operator, in our implementation 

some of them are defined by a set of two operators. Although the computational effort 

required to search the neighborhood becomes greater, the quality of the solution of the 

neighborhood may improve considerably. In this work, the following operators are 

used: Relocate (Savelsbergh, 1992), Exchange (Kindervater and Savelsbergh, 1997), 2-

opt (Croes, 1958), 3-opt (Lin, 1965), CROSS-exchange (Taillard et al., 1997), double 

and triple insertion (Brandão, 2011). The operators are applied with the best accept 

strategy, i.e., the best improving move is first identified and then accepted. Moreover, 

the solution includes a holding list containing the list of the orders that are not served. 

The holding list is similar to a ‘‘phantom’’ route which participates in the regular local 

search inducing an extended neighborhood search space for every inter-route operator 

(Lau et al., 2003). Consequently, there exist some additional moves within Relocate, 

Exchange and CROSS-exchange operators. These movements are: 

 Relocate from holding list: Transferring orders from HL to an existing route. 

 Relocate to holding list: Transferring orders from an existing route to the HL. 
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 Exchange with holding list: Exchanging orders from an existing route with another 

group of orders in the HL. 

Thus, orders of a selected route will be searched completely for possible transfer 

to/from or for exchange with orders in the holding list. The hierarchical cost structure of 

this problem, favors the transfer of orders from the holding list to the routes, increasing 

the chances of finding high quality solutions to the problem. In addition, the holding list 

favors the procedure to search for better solutions by going through the infeasible solu-

tion space (Lim and Zhang, 2007). 

The neighborhood structures are briefly described below and are performed in the fol-

lowing sequence: 

 Mixture: This neighborhood structure is defined by Relocate and Exchange operators. 

It is applied only on pairs of routes (inter-route) and it aims to generate a feasible so-

lution by removing an order from a route and insert it into another route or swapping 

a pair of orders from two different routes. 

 Crossings: This neighborhood structure is also applied only on pairs of routes and is 

defined by the CROSS-exchange operator. CROSS-exchange swaps segments of or-

ders between two routes. The different segments may contain an arbitrary number of 

orders. Due to the typically vast number of neighbors that would result, the segment 

length is limited to two orders in this problem. Thus, set of 2-2 and 1-2 swaps are de-

fined. 

 λ-OPT: This neighborhood structure is applied only on single routes (intra-route) and 

it aims to generate feasible solutions by examining all possible moves defined in 2-

OPT and 3-OPT operators.  



 

 Interchanges: This neighborhood structure is similar to the mixture type but applied 

only on single routes (intra-route). 

 Insertions: This neighborhood structure is applied only on pairs of routes and is com-

posed by double and triple insertion moves. In a double or triple insertion move, the 

operation is similar to the single insertion one except for removing respectively two 

or three consecutive orders belonging to the same route. 

5  Computational Results 

This section describes the computational experiments carried out to validate the effec-

tiveness of the algorithms developed to solve the presented RVRP. The algorithms were 

developed in C++ and run on a 3.30 GHz Intel® Core(TM) i5-2400 CPU. 

First, the parameters used within the algorithm are described. Secondly, a compara-

tive analysis with the best results from the literature corresponding to the standard 

HVRPTW benchmark instances is performed. Next, real data corresponding to a weekly 

planning of the company under study is presented and solutions provided by the algo-

rithms are compared with the solutions implemented by the company. Finally, the re-

sults obtained in a simplified planning problem by using CPLEX and the VNDTS_HL 

is presented.  

5.1  Parameter settings 

In the first phase of the proposed methodology, the algorithm was tested with differ-

ent parameter settings to identify the best parameter values. The results indicated that 

the parameter settings highly depend on the problem attributes and as in Paraskevopou-

los et al. (2008) the alpha´s parameters are the most sensitive. Based on these observa-
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tions and in order not to present a large computational effort, we initially used the pa-

rameters suggested by Paraskevopoulos et al. (2008) for the VNDTS_HL.  

The first phase of the proposed methodology consists on the calculation of the set F 

with different initial solutions obtained by varying the construction parameters of the 

heuristic α1, α2 and α3, and selecting the best solutions. The main focus of the problem 

under study is on both improving the intra-route sequence of orders and the vehicle 

route travel time utilization. For these reasons, the values of α1 and α2 ranged between 

0.3-0.6 via increments of 0.01. Experimentation suggests a size of 30 solutions for the 

set F. Other parameters that affect the VNDTS_HL are the maximum number of itera-

tions for the TS and the TL size. Based on a set of previous experiments these values 

were set to 30 and 15 respectively. The algorithm is run once for every instance, with a 

maximum computer time of 1200 seconds, since the purpose of these experiments is to 

evaluate the proposed methodology as a powerful tool for fast and effective fleet sched-

uling in real-life situations. Table 3 summarizes the parameters used by the algorithm. 

Table 3. Parameter settings 

Heuristic parameters Metaheuristic parameters 

α1 α2 α3 Δα F Nº Iterations TL γ (sec) 

0.3-0.6 0.3-0.6 0-0.4 0.01 30 30 15 1200 

5.2  Comparative with the literature 

The HVRPTW benchmark data sets of Paraskevopoulos et al. (2008) is a subset of the 

FSMVRPTW instances, in which the fleet size is set equal to that obtained in the best 

known solutions of Liu and Shen (1999). In total there are 24 benchmark instances 

grouped into 6 types of data sets. Customers are randomly distributed in instances of 

type R, clustered in type C and semi-clustered in instances of type RC. Problem sets 



 

shown by R1, C1 and RC1 have a short scheduling horizon and small vehicle capacities, 

contrary to R2, C2 and RC2. 

Note that the algorithm proposed in this paper is not designed to solve the HVRPTW 

as capacity constraints are not taken into account. In order to conduct the experiments, 

the semi-parallel construction heuristic proposed by Paraskevopoulos et al. (2008) is 

used to generate the set of initials solutions. Next, initial solutions are improved by a 

modification of the proposed VNDTS_HL algorithm which only considers capacity and 

time windows constraints. 

Table 4 summarizes the average results obtained by VNDTS_HL compared to the 

current state-of-the-art solution approaches for the HVRPTW. The first line of the table 

lists the authors using the following abbreviations: LS for Liu and Shen (1999), 

ReVNTS for Paraskevopoulos et al. (2008) and HEA for Koç et al. (2015). The first 

column of the table shows the Paraskevopoulos instance category. Then, the total costs 

(TC) and the percentage deviation (% Dev) of the costs of each method with respect to 

VNDTS_HL are described. The last rows indicate the average percentage deviation over 

all problem instances. 

Table 4. Comparison between different approaches for HVRPTW instances 

Instance set 
LS  ReVNTS  HEA  VNDTS_HL 

TC % Dev.  TC % Dev.  TC % Dev.  TC 

R1A (4) 4825.25 -11.45  4316.31 0.31  4298.68 0.72  4329.68 

C1A (4) 8280.50 -9.91  7553.89 -0.27  7547.09 -0.18  7533.79 

RC1A (4) 5486.00 -7.90  5114.13 -0.58  5093.54 -0.18  5084.46 

R2A (4) 4248.25 -20.33  3521.06 0.27  3500.53 0.85  3530.62 

C2A (4) 7160.25 -7.07  6729.50 -0.63  6687.11 0.00  6687.19 

RC2A (4) 5647.25 -16.09  4854.09 0.14  4849.64 0.27  4864.18 

           
Average  -12.13   -0.15   0.24   

 

 

The VNDTS_HL algorithm provides high quality solutions with average cost reduc-

tions from -12.16% to 0.22% and a worst case performance of 0.85%. For C1, C2 and 
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RC1 instances, the average results show substantially reduction of the total costs indi-

cating the effectiveness of the proposed VNDTS_HL solution approach in this type of 

problems. It is important to note that the problem tackled in this paper usually presents a 

semi-clustered distribution of orders and a short scheduling horizon that favor the ap-

plicability of the proposed VNDTS_HL approach. Note that this paper is not aimed at 

overcoming the best results for the HVRPTWs, but rather at proposing an intelligent al-

gorithm that works effectively when instances with real-world constraints are solved.  

5.3  Real instance provided by the company 

To conclude the computational experiments carried out in this paper, the solutions pro-

vided by the heuristic and the VNDTS_HL algorithm are compared to the solution im-

plemented by the company for the real data. Additionally a set of three experiments has 

been carried out to show the different solutions obtained by the algorithm when differ-

ent restrictions are taken into consideration. 

The data belongs to the provincial Laboratory of Seville for the first week of Septem-

ber 2014. The choice of this period is related to the fact that is a representative week of 

the year with respect to the received orders. The fifty orders received from the different 

customers and their characteristics are shown in Table 5 and the geographical location 

of service orders and the provincial laboratory can be observed in Figure 2. All orders 

are assigned the same priority and as observed in Table 5, there are some of them to be 

served in a predefined time window in the early hours of the workday (those belonging 

to small business as already mentioned). The costs of travelling between every two or-

ders (distances and travel times) have been obtained using the application Open Street 

Maps. 



 

 

Figure.-2 Geographical location of service orders and provincial laboratory 

The planning period is set to four days, from Monday to Thursday. On Fridays, veri-

fiers must carry out administrative tasks at the central laboratory. The provincial labora-

tory of Seville currently has five verifiers responsible for the metrological services at 

customer locations, thus a maximum of twenty routes are expected to be planned. Those 

days with a lower number of worked hours, will be completed with administrative tasks. 

Table 6 shows the verifiers available during the planning period and their service type 

qualifications. 

Table 5. Service types, total service times and time windows for the received order 

nodes. 

Order 

Nº 

Services types 

(quantity) 
Group 

Total 

S.T.(min) 

TW 

(min) 

Order 

Nº 

Services types 

(quantity) 
Group 

Total 

S.T.(min) 

TW 

(min) 

1 T1(2)+T2(16) H 400  20 T1(2)+T2(18) H 440  

2 T1(2)+T2(6) H 200  21 T1(1) H 40  

3 T1(2)+T2(18) H 440  22 T3(10) M 400  

4 T1(2)+T2(8) H 240  23-24 T3(2) M 80  

5 T1(4)+T2(7) H 300  25-27 T3(1) M 40 [0-60] 

6 T1(4)+T2(5) H 260  28 T6(1) P 30  

7 T1(1)+T2(8) H 200 [0-60] 29 T6(2) P 60  

8 T1(1)+T2(1) H 60 [0-60] 30 T6(1) P 30  

9 T1(3)+T2(5) H 220  31-34 T9(1) V 260  

10 T1(3)+T2(14) H 400  35-37 T12(1) G 45  

11 T1(2)+T2(3) H 140  38 T1(3)+T2(6) H 240  

12 T1(1)+T2(2) H 80 [0-60] 39 T3(4) M 160  

13 T1(3)+T2(10) H 320  40 T3(3) M 120  

14 T1(3)+T2(14) H 400  41-45 T3(1) M 40  

15 T1(1)+T2(7) H 180 [0-60] 46 T3(3) M 120  
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16 T1(2)+T2(6) H 200  47 T3(1) M 40  

17 T1(2)+T2(9) H 260  48-49 T6(1) P 30  

18 T1(3)+T2(6) H 240  50 T9(1) V 260  

19 T1(2)+T2(7) H 220       

Table 6. Verifiers and service type qualifications 

Verifier Service type qualifications 

1 T1-T2-T9-T10 

2 T1-T2-T3-T4-T5-T9-T10 

3 T1-T2-T3-T4-T5-T10 

4 T1-T2-T3-T4-T5-T10 

5 T1-T2-T6-T7-T8-T10-T11-T12 

 

The provincial laboratory of Seville has an own fleet of vehicles consisting of five 

standard vans (nº 1 to 5), one special van with special pipes for gas analyzers and 

opacimeters (nº 6), and one truck for large tonnage scales (nº 7). The relation between 

type of service and vehicle type is shown in Table 1. The quantity of the different pat-

terns available to perform the services is presented in Table 2. 

Table 7. Head of laboratory solution 

Day Route Group Vehicle Verifier 
Time 

(min) 

Dist. (Km) 
Required Patterns 

1 

0-31-0 V 1 1 265.78 4.17 3-13-20-21-24-27 

0-10-0 H 2 2 413.72 11.53 3-16-17-18-19-20-28 

0-23-39-43-47-42-0 M 3 3 479.92 176.00 5-20 

0-7-21-0 H 4 4 334.28 130.48 3-16-17-18-19-20-28 

0-30-49-29-28-48-0 P 5 5 326.77 176.65 2-14-20-25 

2 

0-32-0 V 1 1 265.78 4.17 3-13-20-21-24-27 

0-20-0 H 2 2 459.23 17.79 3-16-17-18-19-20-28 

0-27-26-24-46-0 M 3 3 361.99 102.28 5-20 

0-15-11-0 H 4 4 467.14 220.67 3-16-17-18-19-20-28 

0-36-35-37-0 G 6 5 255.76 154.04 20 

3 

0-3-0 H 1 1 458.68 17.62 3-16-17-18-19-20-28 

0-33-0 V 2 2 265.78 4.17 3-13-20-21-24-27 

0-19-9-0 H 3 3 473.63 36.09 3-16-17-18-19-20-28 

0-25-41-45-44-40-0 M 4 4 354.70 83.90 5-20 

0-18-16-0 H 5 5 456.31 13.35 3-16-17-18-19-20-28 

4 

0-34-0 V 1 1 265.78 4.17 3-13-20-21-24-27 

0-22-0 M 2 2 419.33 14.92 5-20 

0-12-17-0 H 3 3 441.53 140.32 3-16-17-18-19-20-28 



 

0-8-5-0 H 4 4 458.31 130.28 3-16-17-18-19-20-28 

0-4-2-0 H 5 5 459.46 18.24 3-16-17-18-19-20-28 

- UNROUTED ORDERS 1-6-13-14-38-50 

 

The solution produced by the head of laboratory for the real planning problem (a) is 

shown in Table 7. As observed, each route performs only one type of service to avoid 

patterns incompatibilities and problems in the verifier qualification. Table 8 presents the 

routes of the weekly planning obtained by the VNDTS_HL algorithm. Note that the 

limitation to a single unit in the pattern number 21 causes that only one route belonging 

to the Volume group can be performed per day. 

Table 8. Detailed solutions for the algorithm 

Day Route Group Veh. Verif. 
Time 

(min) 

Dist. 

(Km) 
Required Patterns 

1 

0-22-0 M 1 3 419.33 14.92 5-20 

0-31-16-0 H+V 2 1 474.10 11.91 3-13-16-17-18-19-20-21-24-27-28 

0-20-0 H 3 2 459.23 17.79 3-16-17-18-19-20-28 

0-7-40-0 H+M 4 4 415.92 123.55 3-5-16-17-18-19-20-28 

0-36-35-37-0 G 6 5 255.76 154.04 20 

2 

0-6-48-28-29-0 H+P 1 5 464.47 87.43 2-3-14-16-17-18-19-20-25-28 

0-3-0 H 2 1 458.68 17.62 3-16-17-18-19-20-28 

0-42-46-39-0 M 3 3 433.53 172.97 5-20 

0-27-8-24-33-0 H+M+V 4 2 465.50 22.48 3-5-13-16-17-18-19-20-21-24-27-28 

0-14-0 H 5 4 420.35 19.00 3-16-17-18-19-20-28 

3 

0-49-17-0 H+P 1 5 390.85 136.79 2-3-14-16-17-18-19-20-25-28 

0-21-4-11-0 H 2 1 454.02 32.40 3-16-17-18-19-20-28 

0-25-44-45-41-18-0 H+M 3 3 468.29 79.09 3-5-16-17-18-19-20-28 

0-26-1-0 H+M 4 4 478.36 40.23 3-5-16-17-18-19-20-28 

0-12-23-34-0 H+M+V 5 2 433.79 10.84 3-5-13-16-17-18-19-20-21-24-27-28 

4 

0-30-13-0 H+P 1 5 440.90 120.00 2-3-14-16-17-18-19-20-25-28 

0-32-2-0 H+V 2 1 476.25 15.20 3-13-16-17-18-19-20-21-24-27-28 

0-5-47-43-0 H+M 3 2 475.76 119.12 3-5-16-17-18-19-20-28 

0-19-9-0 H 4 3 473.63 36.09 3-16-17-18-19-20-28 

0-10-0 H 5 4 413.71 11.53 3-16-17-18-19-20-28 

- 
UNROUTED 

ORDERS 
15-38-50 

 

In order to analyze the capabilities of the algorithm, we have also created three addi-

tional cases that may appear in this type of company. Case study (b) analyzes the situa-
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tion when order priorities are changed; particularly the unserved orders in the real plan-

ning solution provided by the algorithm (orders nº 15, 38 and 50) are assigned a double 

priority. Problem (c) represents the problem when the number of vans is reduced in one 

unit. This is the case when company’s vehicles need regular preventive maintenances or 

repairs. Similarly, problem (d) represents the problem when one specific verifier (nº3) is 

missing. The objective is to compare the results obtained by the head of laboratory´s 

current procedure to those obtained from the algorithms described in this paper, as-

sessing the increments of served orders and the savings obtained in terms of distance. 

The performance of the head of laboratory method and the proposed methodology for 

the different cases are compared in Table 9. 

Table 9. Obtained solutions 

Case study Head of laboratory Heuristic Metaheuristic 

 
Served 

Orders 

Dist. 

(Km) 
Routes 

Served 

Orders 

Dist. 

(Km) 
Routes 

Served 

Orders 

Dist. 

(Km) 
Routes 

CPU 

Time 

(min) 

REAL PLANNING 44 1460.83 20 47 1689.15 20 47 1242.99 20 17.40 

WITH ORDER 

PRIORITIES 
44 1664.32 20 46 1704.79 20 47 1328.75 20 17.53 

1 VEHICLE LESS 41 1410.50 17 43 1772.55 17 43 999.67 17 20.00 

1 VERIFIER LESS 40 1398.97 16 42 1755.80 16 42 931.21 16 9.81 

 

Looking at the results obtained for the real planning problem (a), the number of 

served orders can be even increased just by applying the semi parallel construction heu-

ristic. The heuristic outperforms the current method with an increment of three served 

orders, around 6.8%, but this fact increases the total traveled distance by 15.63%. These 

results can be explained by the interdependency of the first and secondary objectives. It 

is usual to obtain a solution with an increased traveled distance when serving more or-

ders. Nevertheless, by also allowing the use of the VNDTS_HL post-optimization algo-



 

rithm the results show the same number of served orders as the heuristic and a 14.91% 

savings in distance compared to the current practice. 

The solution obtained by the VNDTS_HL algorithm for problem (b), incorporates the 

orders with double priority with an increment of 85.76 kilometers (6.9%) with respect to 

the solution obtained for the real case. On the other hand, the results obtained for prob-

lems (c) and (d) are close to the solution obtained for problem (a) if routes with fewer 

served orders are removed. 

In terms of total CPU time consumption (Table 9), during the first phase the heuristic 

consumed on average 50–60 seconds while using the VNDTS_HL took less than 23 

minutes in the worst case. This value is considered as a short computation time in a 

weekly planning. 

In summary, the results of the proposed methodology show a better planning distribu-

tion with substantial increments in the total number of served orders and also significant 

decreases in the total distance traveled. Routes with more than one type of order allow 

increasing the number of prioritized served orders with a significant reduction on the to-

tal distance traveled. 

5.4  Comparison with CPLEX results 

 In this section, a comparison of the results obtained by using CPLEX and the 

VNDTS_HL is presented. For comparison purposes and in order to obtain any optimal 

solution by CPLEX, the real-life problem presented in Section 5.3 is simplified and re-

duced. In particular, the available fleet is reduced to vans nº 1, 2 and 6, the latter with 

special pipes for gas analyzers and opacimeters. Consequently, the set of available veri-

fiers is also reduced to two people (verifier nº 2 and 5). A set of 8 instances of different 

node sizes are generated. Instances with 12, 14, 16, and 18 orders have been solved in a 
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planning period of 2 days while the planning horizon in instances with 20, 30, 40 and 50 

orders is increased to 4 days. Table 10 shows the orders belonging to each instance and 

the number of required variables and constraints. Stopping rules consider a limit time of 

7200 seconds for CPLEX while for the VNDTS_HL the same parameters values are 

kept.  

Table 10. Experimental instances 

Nº Orders 12 14 16 18 20 30 40 50 

Planning 

period 
2 days 2 days 2 days 2 days 4 days 4 days 4 days 4 days 

Order 

numbers 

11-12; 26-

32; 35-37 

9-12; 26-

32; 35-37 

8-12; 25-

32; 35-37 

8-12; 24-

33; 35-37 

1-2; 8-12; 24-

33; 35-37 

1-17; 24-

33; 35-37 

1-22; 24-

33; 35-42 
1-50 

Nº Var. 1696 2160 2688 3280 7872 16352 28032 42912 

Nº Constr. 3464 4192 4968 5792 13246 23366 35886 50806 

 

For every instance, the results obtained by CPLEX and the VNDTS_HL are com-

pared, and a difference with respect to the solution reported by CPLEX (which for some 

instances correspond to the optimal solution) is estimated. As the objective of the route 

planning is a hierarchical objective function composed of two criteria, two different de-

viations are obtained as described in (23), where Zf correspond to the value obtained by 

the VNDTS_HL for the objective function f. The deviation of the secondary objective 

function (minimizing distances) is only calculated when the deviation for the primary 

objective function (maximizing the number of prioritized served orders) is equal to zero. 

Thus, positive gaps are obtained when CPLEX finds better solutions. 

100;100
2

22
2

1

11
1 







CPLEX

CPLEXZ
Dev

CPLEX

ZCPLEX
Dev  (23) 

Table 11. Obtained solutions 

 CPLEX Heuristic Metaheuristic 



 

Nº 

Orders 

Planning 

period S.O. D.(Km) GAP(%) 
T. 

(sec) 
S.O. D.(Km) 

T. 

(sec) 
S.O. D.(Km) 

CPU 

Time 

(sec) 

%Dev1 %Dev2 

12 

2 days 

12 293.70 0.00 5.94 12 293.70 0.23 12 293.70 0.31 0.00 0.00 

14 12 253.22 0.00 5244 11 301.21 0.36 12 253.22 0.98 0.00 0.00 

16 13 271.33 7.78 7200 11 311.66 0.38 13 271.33 1.33 0.00 0.00 

18 14 285.50 21.58 7200 12 319.15 0.48 14 285.50 1.91 0.00 0.00 

20 

4 days 

20 369.72 0.29 7200 20 393.95 1.26 20 376.45 6.00 0.00 1.82 

30 15 674.90 103.07 7200 20 988.12 3.01 21 369.74 43.80 -40.00 - 

40 14 575.48 191.83 7200 21 1263.37 7.29 26 535.71 125.00 -85.71 - 

50 10 320.81 407.52 7200 24 1267.15 11.55 31 565.59 176.24 -210.00 - 

 

Table 11 shows a summary of all results obtained. The first line of the table lists the 

methods used to solve the instances. The first and second columns of the table indicate 

the number of orders of each instance and the planning period expressed in days respec-

tively. Then, the number of served orders (S.O.), the total distance traveled (D.) and the 

computational time (T.) of the solution provided by each method are shown. The opti-

mality gap tolerance (GAP) found by CPLEX in the specified computational time is al-

so indicated. Finally, an analysis of the quality of the VNDTS_HL in terms of the per-

centage deviations (% Dev) obtained with respect to CPLEX according to (23), are 

presented in the last two columns.  

As observed in Table 11, the GAPs found by CPLEX in the specified computational 

time increase as long as the number of orders of the instance also increase in a particular 

planning horizon. Therefore, as the number of nodes increases, it becomes more diffi-

cult to obtain optimal solutions by CPLEX, which have been only found for the two 

smallest size instances (12 and 14 orders).  

The solutions obtained by the VNDTS_HL for the smallest size instances (with a 

planning period of two days) match with those found by CPLEX. Moreover, the algo-

rithm is more effective in terms of computational effort. Due to the quality of the solu-

tions do not decrease when the size of the instances increased, the VNDTS_HL may be 

expected a good performance for bigger size instances in which solutions provided by 
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CPLEX cannot be compared. This fact can be observed in instances with 30, 40 and 50 

orders where the VNDTS_HL yields important percentage deviations in the number of 

served orders with respect to CPLEX. 

6  Conclusions 

This work deals with a Rich Vehicle Routing Problem (RVRP) to solve the problem 

faced by a real service company that is responsible of the metrological control of meas-

uring equipments in the region of Andalusia. In this problem, a weekly routing plan and 

driver scheduling is made for a set of verifiers and a fleet of heterogeneous vehicles to 

serve customers that need to be visited for the verification and calibration of a set of 

measuring equipment. Moreover, the company has different types of orders that have to 

be assigned to the verifiers, depending on their skills and need a set of measure patterns 

to carry out the service. In addition, a large amount of received service orders per week 

is considered allowing postponing some of them to the next planning. The attributes 

considered in this RVRP include a fixed heterogeneous fleet of vehicles, time windows 

for customers and depot, resource synchronization between tours, driver-order and vehi-

cle-order constraints, order priorities and unserved customers. 

The routing and scheduling problem is modelled with linear programming tech-

niques. Compared with classic models from the literature for solving the HVRPTW, ad-

ditional constraints and binary variables are added to tackle the RVRP under study. In 

order to obtain high quality solutions, a semi-parallel insertion heuristic and a 

VNDTS_HL algorithm are designed. These two methods are applied to design routes 

maximizing the number of served orders (main objective) while minimizing the total 

distance traveled (second objective). 



 

Experimental results are presented with a comparative analysis with the best results 

from the literature corresponding to the standard HVRPTW benchmark instances. The 

proposed method provided high quality solutions with average cost reductions, especial-

ly in cluster and semi-cluster instances. In addition, based on a real instance provided by 

the company, the performance of the current planning method and the proposed meth-

odology were compared. It was observed that both procedures outperformed the compa-

ny implementation. The VNDTS_HL showed promising increments in the total number 

of served orders. More specifically, the VNDTS_HL algorithm applied to the real plan-

ning increments the number of served orders, around 6.8%, compared to the current 

method used by the head of the laboratory. A 14.91% reduction of the total distance 

travelled was also observed using the same available resources. The VNDTS_HL algo-

rithm is also validated in three additional cases that may appear in this type of company. 

Finally, a set of instances is generated to compare the results obtained by using 

CPLEX and the VNDTS_HL. Numerical results show that the VNDTS_HL presents 

reasonable gaps with respect to the solution found by CPLEX in smaller size instances 

becoming an alternative method for solving large instances that CPLEX cannot solve 

efficiently. 

To conclude, the computational experience performed in this work validates the ef-

fectiveness of the proposed approach. A new tool has been developed to achieve a more 

efficient management of the resources in the company under study. This methodology 

will assist head of laboratories in their decisions, identifying the alternative with the 

highest number of prioritized orders and also reducing distances, costs and the amount 

of time in the planning process. 
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