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Abstract 

This paper presents a solution methodology to solve the heterogeneous vehicle routing problem with time windows (HVRPTW). 

This problem appears when a limited fleet of vehicles, characterized by different capacities, fixed costs and variable costs, is 

available for serving a set of customers which have to be visited within a predefined time window. The objective is to perform 

the route design minimizing the total fixed vehicle costs and distribution costs and satisfying all problem constraints. The 

problem is solved using an ant colony system (ACS) algorithm which has been successfully applied to combinatorial 

optimization problems. Moreover, to improve the performance of the ACS on the HVRPTW, a hybridized ACS with local 

search, called memetic ACS algorithm is proposed where the local search is performed by a variable neighborhood tabu search 

algorithm. Experiments are conducted on sets of benchmark instances from the scientific literature to evaluate the performance of 

the proposed algorithm. The results show that the algorithm has a good performance on the HVRPTW. In particular, out of the 80 

instances, it obtained 65 new best solutions and matched 6 within reasonable computational times. 
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1. Introduction 

Transportation plays an important role in product and services distribution organizations. This logistic activity is 

responsible for moving the products from a place of origin to a point of destination, both at the beginning of the 

activities of a supply chain until the final delivery to the customer. Therefore, route management has become a 

fundamental aspect in companies whose activity is mainly based on transport. An effective management has a 

significant impact on service quality, and it can also increase efficiency and productivity, minimizing different types 

of costs such as costs of fuel, driver costs, fixed vehicle costs, etc. 

The vehicle routing problem (VRP) was first proposed by Dantzig & Ramser (1959) and is a well-known 

combinatorial optimization problem which tries to minimize the total distance traveled by a set of homogeneous 

vehicles while satisfying the demand of a given set of customers. It considers the assumptions that each vehicle 

performs a single route without exceeding its capacity constraint, routes start and end at a depot and every customer 

must be served by exactly one vehicle. The diversity of the VRP is very broad since there are many variants, with 
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each of them focused on solving a specific problem. As a consequence, numerous studies involving the VRP and its 

variants have been published in the scientific literature over the last few years. For further information, see e.g., the 

surveys of Cordeau et al. (2007), Irnich et al. (2014) and the book by Toth & Vigo (2014). 

The fleet of vehicles in a company is usually heterogeneous in real-life as the company incorporates vehicles of 

different characteristics over time (Hoff et al., 2010). Moreover, the use of heterogeneous fleet of vehicles has 

multiple advantages. Having vehicles of different capacities results in a better adaptation to the customers´ varying 

demand and allows to perform the delivery in a more cost-effective way (Tarantilis et al, 2004). In addition, 

restrictions on the vehicle size and weight may be required to access urban areas (Semet, 1995). The Heterogeneous 

Fleet VRP (HF-VRP) is a variant of the VRP where a heterogeneous fleet of vehicles is used for the distribution 

activities (Baldacci et al., 2008). Two variants of the HF-VRP with respect to the available fleet have been 

addressed in the literature. The HF-VRP with a limited number of vehicles, called the Heterogeneous VRP (HVRP) 

(Taillard, 1999) involves optimizing the vehicle routes with the available fixed fleet. On the other hand, the Fleet 

Size and Mix VRP (FSMVRP) (Golden et al., 1984), consists of determining the best fleet composition and routing 

when the number of vehicles of each type is unlimited. Therefore, the idea is not only to consider the routing of the 

vehicles, but also the fleet composition. Relating to the type of costs to be minimized, two different objective 

functions have been considered. They consist of minimizing the vehicle acquiring costs (fixed costs) and/or the 

dependent routing costs. The latter can be related to the total trip duration without service times or proportional to 

the total distance traveled. The HF-VRP with time windows (TW) appears when additional restrictions are 

introduced in the problem to force customers to be served by a vehicle in a predefined time interval [Ei , Li], where 

Ei and Li are the earliest and latest times to start the service respectively. Thus, the HF-VRP variants with time 

windows are denoted by adding TW to the acronym of the specific problem. For a recent literature survey on the 

HF-VRP we refer to Koç et al. (2016). 

This paper tackles the HVRP with TW (HVRPTW) which was first addressed and solved by Paraskevopoulos et 

al. (2008). The objective is to find the optimum set of routes that minimize the sum of the total fixed and dependent 

routing costs. Mathematical formulations of this problem are provided by Paraskevopoulos et al. (2008) and by 

Jiang et al. (2014). The HVRPTW is an NP-Hard problem, which means that there is no algorithm that solves it in a 

polynomial time and justifies the use of heuristics and metaheuristics approaches to solve the problem. 

The contribution of this paper is to propose a solution approach consisting of a hybridized ant colony system 

(ACS) with local search, called memetic ACS (Mem-ACS) to solve the HVRPTW. The Mem-ACS seeks to increase 

the quality of the solutions by the use of a Variable Neighborhood Tabu Search (VNTS) for exploiting the local 

search. This approach combines two state-of-the-art metaheuristic algorithms (ACS and VNTS) which have been 

successfully applied separately on a large variety of VRPs. Furthermore, to the best knowledge of the authors, it 

does not exist in the scientific literature any VRP application which combines both algorithms. In addition, in order 

to handle both feasible and infeasible solutions, a holding list (HL) containing the unserved customers, is introduced 

in the algorithm. This idea was first introduced by Lau et al. (2003) and subsequently implemented by other authors 

such as Jiang et al. (2014), Lim and Zhang (2007) or Molina et al. (2016). 

The paper is structured as follows. A short review of the HF-VRPTW literature is presented in Section 2. Section 

3 presents a detailed description of the main components of the Mem-ACS algorithm. The parameter settings and 

results obtained from benchmark instances from the scientific literature are reported in Section 4 and finally, the 

conclusions and recommendations for further work are given in Section 5. 

2. Related works 

Regarding the literature of FSMVRPTW, a variety of solution approaches have been proposed in the scientific 

literature since its introduction by Liu & Shen (1999), who proposed several insertion-based savings heuristics for 

solving the problem. They tested the heuristics introducing a set of heterogeneous fleets with an unlimited number 

of vehicles for the set of 168 benchmark instances derived from the Solomon (1987) instances. Later, Dullaert et al. 

(2002) developed three insertion-based heuristics incorporating the modified savings calculations based on Golden 

et al. (1984). The authors tested their algorithms using different objective functions. Dell'Amico et al. (2007) 

developed a constructive insertion heuristic and a metaheuristic algorithm for solving the problem. The heuristic is 

described as an insertion-based parallel approach while the metaheuristic adopted the ruin and recreate paradigm for 

the improvement of the solutions. Belfiore & Fávero (2007) proposed a scatter search approach that was applied to 



solve the benchmark instances proposed by Liu & Shen (1999). The results of the algorithm were compared with the 

heuristics proposed by Liu & Shen (1999) and Dullaert et al. (2002) presenting better results with respect to the 

quality of the solutions. Bräysy et al. (2008) proposed a three-phase multi-restart deterministic annealing 

metaheuristic for solving the FSMVRPTW. They also tested the algorithm on the 168 benchmark instances 

introduced by Liu & Shen (1999) obtaining 151 new best-known solutions. One year later, Bräysy et al. (2009) 

presented a new hybrid metaheuristic that combines threshold-accepting and guided local search for solving large-

scale FSMVRPTW up to 1000 customers. The results showed that the method is competitive with the previous 

approach. Repoussis & Tarantilis (2010) presented a solution approach that utilizes the concept of an adaptive 

memory programming solution framework equipped with a semi-parallel construction heuristic, a re-construction 

mechanism, an iterated tabu search (TS) algorithm and frequency based long term memory structures. The algorithm 

improved the results over most FSMVRPTW instances illustrating the efficiency and effectiveness of the proposed 

method. Vidal et al. (2014) proposed a new component-based heuristic framework and a unified hybrid genetic 

search to address a large variety of VRP variants in which FSMVRPTW is included. They also tested the algorithm 

on FSMVRPTW instances outperforming the mean results obtained by Repoussis & Tarantilis (2010) and Bräysy et 

al. (2008) . 

According to the literature survey on the HF-VRP, HVRP has received less attention than the FSMVRP due to 

the significant difference in the number of published papers. Note that it is easy to find feasible solutions to the 

FSMVRP since there is always a feasible insertion of customers to vehicles as they are unlimited. However, HVRP 

becomes more complex as all customers must be assigned to a vehicle route satisfying all problem constraints. 

Moreover, the incorporation of TW restrictions to the FSMVRP or to the HVRP increases the difficulty of obtaining 

feasible solutions. 

Paraskevopoulos et al. (2008) introduced the HVRPTW and proposed a two-phase solution framework based on 

a semi-parallel construction heuristic and a VNTS algorithm. The algorithm solved both HVRPTW and 

FSMVRPTW. Later, Koç et al. (2015) proposed a hybrid evolutionary algorithm to also solve both problems. The 

algorithm combines advanced procedures and several metaheuristics principles from Vidal et al. (2014), such as 

adaptive large scale neighborhood search and population search. They obtained some new solutions on benchmark 

instances outperforming all previous algorithms. Jiang et al. (2014) defined the VRP with heterogeneous fleet and 

TWs to generalize the variants existing in the scientific literature and developed a two-phase TS algorithm. They 

considered a hierarchical objective function where the total number of served customers is considered as the primary 

objective, minimizing the total number of vehicles and total distance traveled as secondary and tertiary respectively. 

The previous researches show that Evolutionary Algorithms and VNTS are appropriate methods to solve 

HVRPTW. Memetic algorithms (MAs) are defined in the scientific literature as a population based methods which 

are hybridized with a local search procedure to intensify the search. They have been successfully applied for 

different combinatorial optimization problems. However, in the scientific literature, almost all existing memetic 

algorithms for solving different VRP variants follow the framework of genetic algorithms and very rarely the 

framework of ACS algorithms. [e.g. Tavakkoli-Moghaddam et al. (2006); Prins (2009); Cattaruzza et al. (2014); El 

Fallahi et al. (2008); Mendoza et al. (2010)]. To the best of our knowledge there is little research in this area. Yu et 

al. (2009) proposed an improved ant colony optimization (ACO), with a new strategy to update the increased 

pheromone and a mutation operation, to solve VRP. Mavrovouniotis & Yang (2011) used an adaptive local search 

operator inside an ACO algorithm with an enhanced population-list to solve the dynamic travelling salesman 

problem. Abdulkader et al. (2015) proposed a hybridized algorithm which combines local search with an existent ant 

colony algorithm to solve the multi-compartment VRP. They tested the effectiveness of the algorithm on new 

benchmark problems. 

3. Methodological approach 

Memetic algorithms (MAs) were first presented in Moscato (1989) and constitute a class of metaheuristics that 

combine population-based global search approaches with local search procedures (Bansal et al., 2013; Salmeron et 

al., 2017). In the framework of MAs, a global search component is responsible for performing the exploration of the 

search space and local search techniques are used for further exploration (exploitation) of the regions found to be 

promising, which is helpful for attaining more accurate solutions (Acampora et al., 2011; Salmeron et al., 2019). 
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Examples of population based algorithms include evolutionary algorithms, such as genetic algorithms (Goldberg, 

1989), evolution strategy (Beyer & Schwefel, 2002) and differential evolution (Price et al., 2006), but also ACO 

(Dorigo & Birattari, 2010), particle swarm optimization (Kennedy, 2006) and artificial bee colony (Karaboga, 2005) 

among others. 

The rapidly growing research interest in MAs is demonstrated by the significant increase in the number of 

research publications on MAs. Although a large portion of MAs are evolutionary algorithms combined with local 

search techniques, there are numerous MAs in the literature that are derived from other metaheuristics such as ACO 

[e.g. Sharifipour et al. (2018); Mavrovouniotis & Yang (2011); Fathi et al. (2014)], ACS [e.g. Chen et al. (2013)], 

particle swarm optimization [e.g. Wang et al. (2012); Zhang et al. (2016)], artificial immune systems [e.g. Yang et al 

(2008)], artificial bee colony [e.g. Bansal et al. (2013)] and so on. 

In this section, we describe our proposed solution approach consisting of a hybridized ACS with local search, 

called Mem-ACS, to solve the HVRPTW. This decision is based on the remarkable success of swarm intelligent 

algorithms, such as ACO and ACS, in combinatorial optimization problems (Mavrovouniotis & Yang 2011; 

Abdulkader et al. 2015). Moreover, the combination of a probabilistic, adaptive construction heuristic by artificial 

ants with local search algorithms may result in solutions of higher quality. ACO and ACS algorithms are such 

adaptive construction heuristics, in the sense that a colony of ants modifies the solution representation assigning 

higher pheromone trail strength to connections which are contained in better solutions. During the solution 

construction ants preferably select couplings which have high pheromone strength and by combining such couplings 

they generate promising starting solutions for the local search algorithm. An additional advantage of using ant 

algorithms is that, by generating good initial solutions, the subsequent local search needs less iteration to reach a 

local optimum. Thus, for a given time limit many more local searches can be run than by starting from randomly 

generated solutions (Stützle & Dorigo 1999). Thus, the flexibility of building solutions in ACS algorithms allows its 

application to VRPs especially when a limited heterogeneous vehicle fleet and TW restrictions are considered. In 

contrast, genetic algorithms usually may lead to obtain unfeasible solutions (due to capacity or TW restrictions) and 

therefore, additional techniques have to be integrated within the algorithm. 

In addition, according to Dorigo & Birattari (2010) ACO and ACS algorithms are very interesting approaches to 

solve problems that can be translated into seeking the minimum cost of a graph structure. Moreover, they are 

algorithms where local searches are very easy to incorporate, since they intrinsically consider the use of local 

heuristics.  

On the other hand, the local search aspect is performed by a VNTS which combines a VNS scheme with the use 

of TS to indicate promising regions not yet explored. Some authors [e.g. Repoussis et al., 2006; Paraskevopoulos et 

al. (2008); Molina et al. 2016] have shown that VNTS provides excellent results when applied to different HF-VRP 

variants.  

The remainder of this section introduces the main components of the Mem-ACS algorithm. Section 3.1 presents a 

general description of the ACS approach. Section 3.2 describes the VNTS algorithm used in the local search process 

and an illustrative example is presented in section 3.3 to help make the methodology clearer. 

3.1 Ant Colony System 

The Ant Colony System (ACS) algorithm was first presented by Dorigo & Gambardella (1997) and is a 

probabilistic metaheuristic inspired by the behavior of ant colonies for solving combinatorial optimization problems. 

ACS defines a maximum number of iterations (iter_max) and a population of ants (M), which participates in the two 

main phases of the algorithm; the ant´s route construction and the pheromone update. 

3.1.1 Route construction 

 

In order to tackle the HVRPTW, an individual ant simulates a fleet of vehicles, whose routes are built 

sequentially one by one. Two lists containing the heterogeneous vehicles (Vk, k=1...K) and the unassigned customers 

(Cs, s=1...N) are needed to be implemented in the algorithm for every route construction. The HL is considered as 

the vehicle K+1. 

An ant randomly chooses a vehicle from Vk and initializes the route by a “seed” criterion based on the furthest 

customer from Cs. Then, at each construction step, an un-routed customer is chosen to be inserted in the current 



route according to the following pseudo-random proportional rule. If a random number q that is uniformly 

distributed over [0,1] is less than q0, equation (1) is used to choose the next customer from Cs, where Pijuk represents 

the probability to choose a customer u to be inserted between customers i and j in the current route k. Otherwise, the 

customer is selected by a fitness proportionate selection, also known as roulette wheel selection, according to the 

probability distribution given in equation 1. Therefore, with probability q0, the best move described is performed, 

while with probability (1-q0) different arcs are explored. Thus, customers are iteratively inserted at any position on 

the route until none can be inserted due to capacity or TW restrictions. Then, the route is added to the partially final 

solution and the vehicle and served customers are removed from Vk and Cs respectively. Next, the ant randomly 

chooses another vehicle from Vk and the overall procedure is repeated until all customers are assigned to a vehicle 

route. Finally, the customers who were not visited by a vehicle are stored in a HL. The HL is an infeasible customer 

list, similar to a ‘‘phantom’’ route, that plays an important role, as it will participate in the local search process 

inducing an extended neighborhood search space for every inter-route operator of the VNTS (Lau et al., 2003). 

𝑃𝑖𝑗𝑢𝑘 =

{
 

 
(𝜏𝑖𝑢)

𝛼∙(𝜂𝑖𝑗𝑢𝑘)
𝛽

∑ (𝜏𝑖𝑤)
𝛼∙(𝜂𝑖𝑗𝑤𝑘)

𝛽
𝑤∈𝐽(𝑖)

,         𝑖𝑓 𝑢 ∈ 𝐽(𝑖)

                 0,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

Pijuk takes into account two different values; the level of pheromone on the arc (i,u), denoted as τiu and ηijuk that 

represents the attractiveness of the move. J(i) represents the feasible neighborhood for customer i, which is formed 

by the set of un-routed customers from Cs that are directly accessible from node i without violating capacity and 

TWs restrictions. 

For the HVRPTW, the attractiveness of the move (ηijuk) is given by a greedy function (Фijuk) that measures the 

cost of inserting a customer u between other two customers i and j served by vehicle k. Our approach used the 

greedy function proposed by Paraskevopoulos et al. (2008) to calculate the ηijuk as follow: 

 

𝜂𝑖𝑗𝑢𝑘 = Ф𝑖𝑗𝑢𝑘 = 𝛼1 ∙ (𝐶𝑖𝑗𝑢
0 + 𝐶𝑖𝑗𝑢

1 ) + 𝛼2 ∙ 𝐶𝑖𝑗𝑢
1 + 𝛼3 ∙ 𝐶𝑖𝑗𝑢

3 + 𝛼4 ∙ 𝐶𝑖𝑗𝑢
4  (2) 

 

The first metric (Eq. 3a) is a measure of the coverage of the TW for the selected customer u and represents the 

closeness between the vehicle arrival time at customer u (ɑu) and its earliest service time (eu). Furthermore, the 

compatibility of the customer time window in the specific insertion position is introduced in the second metric (Eq. 

3b). It represents the time gap between the latest service time (lu) and the time of the vehicle arrival at customer u, 

which depends on the service time in customer i (si) and the travel time to customer u (tiu). When a customer u is 

inserted between two consecutive customers (i,j) in a route, a driving time increase is produced and is given by the 

third metric (Eq. 3c). Metric Cij,u
3 (Eq. 3d) considers the time difference between the vehicle arrival time at customer 

j , before and after the insertion of customer u into the current route. This metric represents the time gap that has to 

be pushed forward in customer j to insert u (Ioannou et al., 2001). Metric Cij,u
4 (Eq. 3e) gives priority to the insertion 

of customers with large demands (Du) on the route and maximizes the utilization of the vehicle capacity (Qk) 

(Paraskevopoulos et al. ,2008). Finally, the α weights in Eq. (2) define the relative contribution of each individual 

metric to the overall selection (α1+ α2 + α3+ α4=1) 

 

𝐶𝑖𝑗𝑢
0 = 𝑎𝑢 − 𝑒𝑢 (3a) 

𝐶𝑖𝑗𝑢
1 = 𝑙𝑢 − (𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖𝑢) (3b) 

𝐶𝑖𝑗𝑢
2 = 𝑡𝑖𝑢 + 𝑡𝑢𝑗 − 𝑡𝑖𝑗 (3c) 

𝐶𝑖𝑗𝑢
3 = [𝑙𝑗 − (𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗)] − [𝑙𝑗 − (𝑎𝑢 + 𝑠𝑢 + 𝑡𝑢𝑗)] (3d) 

𝐶𝑖𝑗𝑢
4 = 𝑄𝑘 − (∑ 𝐷𝑖 ∙ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁∩𝑢 ) − 𝐷𝑢 (3e) 

 

3.1.2 Pheromone initialization and update 

 



At the beginning of the execution of the Mem-ACS, following the idea of the works proposed by Belmecheri et 

al. (2009) and Ellabib et al. (2007), the initial value of pheromones is obtained applying a heuristic approach. This 

work used the semi-parallel construction heuristic proposed by Paraskevopoulos et al. (2008) for solving the 

HVRPTW. The initial pheromone value, defined as τ0, is shown in Eq. 4, where N is the total number of customers 

to be served and L is the total distance travelled by the vehicles in the solution obtained by the semi-parallel 

construction heuristic. 

 

𝜏0 =
1

𝑁∗𝐿
 (4) 

 

The ACS method uses two types of pheromone updates: local and global. Each time a solution is constructed by 

an ant, the local update is performed by modifying the pheromone level of the arcs (i,j) of the obtained solution (S) 

as shown in Eq. 5a, where the parameter ρ is introduced to regulate the reduction of pheromone on the arcs. On the 

other hand, once all ants have computed their route (i.e. at the end of each iteration), the global update is only 

performed by the ant, that produced the best solution (S*) so far. The trail pheromone of the arcs (i,j) are updated as 

shown in Eq. 5b, where ∆𝜏𝑖𝑗
𝑏𝑠= (N*Lbest)-1. 

 

𝜏𝑖𝑗 = (1 − 𝜌) ∙  𝜏𝑖𝑗 + 𝜌 ∙ 𝜏0      𝑖𝑓 (𝑖, 𝑗) ∈ 𝑆 (5a) 

𝜏𝑖𝑗 = (1 − 𝜌) ∙  𝜏𝑖𝑗 + 𝜌 ∙ ∆𝜏𝑖𝑗
𝑏𝑠        ∀(𝑖, 𝑗) ∈ 𝑆∗ (5b) 

3.2 VNTS approach for the local search 

VNTS is a hybrid approach that introduces the use of TS in the local search procedure of a Variable 

Neighborhood Search (VNS) scheme in order to explore the solution space in a more effective manner. VNS was 

introduced by Mladenovic and Hansen (1997) and is a technique that applies a systematic change of neighborhoods 

within a local search.  

The VNTS starts by defining a set of neighborhood structures Nλ (λ = 1… λmax), where Nλ is the λth neighborhood. 

The iterative process starts from an initial solution s obtained by an ant in the ACS algorithm. Then, TS is performed 

to determine a new solution s´ in Nλ. If f(s´) is better than the best solution f(s), then s is replaced by s´, and the 

search returns to N1, otherwise the search explores the next neighborhood Nλ+1. This is repeated until all 

neighborhood structures are examined (λ = λmax). Thus, distant neighborhoods of a solution are explored following a 

discontinuous trajectory during the search jumping from one solution to another if an improvement occurs. The 

VNTS finishes when a local minimum solution with respect to all neighborhood structures is reached (Hansen et al., 

2010). 

The combination of VNS with TS results in a high efficiency of the search, which is relevant to find high quality 

solutions in a HVRPTW. First, the VNS scheme avoids getting stuck in poor quality solutions since a local optimum 

for a given neighborhood structure is not necessarily so for another. Moreover, the TS provides an intensification of 

the local search allowing non improving moves and preventing the search from returning to recently visited 

solutions. 

The TS algorithm implemented in this work has been adopted by some authors in the literature. It provides a 

balance between diversification and intensification search strategies. The use of a small tabu list size results in a 

more effective intensification search since it allows cycling of small periods. On the other hand, a large tabu list size 

will allow a diversified search of more distant neighbors, which may result in escaping from a current local optimum 

solution (Paraskevopoulos et al., 2008). 

Figure 1 shows the TS mechanism. Initially, the size of the tabu list (TT) is set equal to a lower value (TTmin). 

The diversification scheme is provided by increasing at each iteration the TT in one unit up to an upper bound TTmax 

while no improvement is observed. On the other hand, intensification of the search is performed when a new best 

solution is found. For this purpose, the TT is reinitialized to TTmin removing the oldest solutions from the tabu list. 

For a detailed description, we refer to the papers presented by Paraskevopoulos et al. (2008) and Molina et al. 

(2009). 

 



 

 
Figure 1 (a) A tabu list scheme, with TTmin and TTmax values, while no improvement of the current best solution 

is observed. (b) a tabu list scheme just when a new best solution is found. 

 

This research uses seven popular and effective neighborhood structures (λmax=7) which have been used in VRPs. 

The set of neighborhoods are used in the following sequence: Relocate (inter-route), Exchange (inter-route), GENI, 

2-Opt, Relocate (intra-route), Exchange (intra-route), Double insertion, CROSS-exchange and GENI-Exchange. 

 

 Relocate: this operator removes a customer from a current position and inserts it into a new position. It is 

applied on pairs of routes (inter-route) and on single routes (intra-route).  

 Exchange: this operator simultaneously exchanges two customers. It is applied on pairs of routes (inter-

route) and on single routes (intra-route).  

 GENI-Insertion: this neighborhood is applied only on pairs of routes and is only composed of the 

Generalized Insertion (GENI) operator. It basically consists of removing a customer from a route and 

inserting it into any two customers, not necessarily consecutive, of another route. For further information, 

we refer to Gendreau et al. (1998). 

 GENI-Exchange: this operator simultaneously removes two customers from different routes and exchanges 

them but performs the insertions through a GENI operator in the best feasible position of the route. 

 2-Opt: this operator is applied only on single routes (intra-route). It removes two non-adjacent edges from a 

solution and reconnects the remaining parts constructing two new arcs in a route. This operation reverses 

the direction of one part of the solution. The main idea is to build a new route by crossing over itself and 

reordering it, maintaining the tour structure. 

 Double insertion: this operator inserts a segment of two consecutive customers from one route to another. 

 CROSS-Exchange: this operator simultaneously swaps segments of customers between two routes. Sets of 

1-2, 2-2, 1-3, 2-3 and 3-3 swaps are defined and executed in the listed order. The orientation of the 

segments and of the routes is preserved. These moves usually increase the chances of finding high-quality 

solutions and avoid becoming trapped in a local minimum. 

 

Figure 2 shows the procedures used within the steps of the VNTS. It illustrates the total cost of the solutions (y-

axes) versus the search coordinate (x-axes). An ant generates a starting solution for the VNTS (point A). Then, the 

neighborhood structure N1 is selected and TS is performed to determine a new solution in N1 (point B). It can be 

seen that TS intensifies the search in N1 allowing non-improving moves and preventing the search getting trapped in 

local optima. As a new best solution is reached, the search returns to N1 and the process is repeated. Then, if a new 

best solution is not found, the neighborhood structure N2 is selected and TS is executed again. Since a local optimum 
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for a given neighborhood structure is not necessarily so for another, the search continues and a new solution is 

obtained in N2 (point C). As mentioned before, when a new best solution is reached, the search returns to N1, 

otherwise the search will explore the next neighborhood. Therefore, it can be observed that the change of 

neighborhoods clearly leads to escape from local optima and intensifies the search in order to reach under-explored 

areas of the solution space. 

 
Figure 2. Intensification mechanism in VNTS algorithm 

 

The route construction phase of the ACS algorithm may result in obtaining solutions that may not necessarily 

include all customers to be served. For that purpose, a HL containing the list of the unserved customers is included 

in the solution scheme. Therefore, in order to obtain feasible solutions and to avoid getting trapped in local minima, 

the HL incorporates some additional moves at every iteration and neighborhood structure of the VNTS: 

 Relocate from HL: this involves transferring a customer from the HL to an existing route. This move is 

examined in every iteration of the local search process of a Nλ. This type of moves is prioritized in the 

local search in order to find feasible solutions. 

 Relocate to HL: this involves transferring a customer from an existing route to the HL. This move occurs 

when all feasible relocate (inter-route) moves in a local search process are tabu. In this case the HL favors 

the procedure to search for better solutions by going through the infeasible solution space (Lim and 

Zhang, 2007). 

 Exchange with HL: this involves exchanging one customer from an existing route with another in the HL. 

This type of move only occurs when Exchange (inter-route) neighborhood is used. 

3.3 An illustrative example 

In this section, an illustrative example is presented in order to make the Mem-ACS more transparent and clear. 

We consider the six node network of Figure 3(a), with two different vehicles at the depot to serve customers 1, 2, 3, 

4 and 5. Each customer has a load demanded of 4, 2, 2, 2 and 3 tons respectively, as shown in figure 3(a). The fleet 

is heterogeneous, as it is characterized by vehicles of different capacities (7 tons for vehicle-1 and 6 tons for vehicle-

2). Time windows restrictions are not considered to make the example more illustrative. 

The first phase of the ACS is the ant´s route construction. Thus, an ant randomly chooses a vehicle (e.g. vehicle-

1) and initializes the route with the furthest customer from the depot (customer 2). Next, the route is constructed by 

A 

B 

C 



incrementally inserting customers at any position on the route until none can be inserted due to capacity restrictions. 

As explained in section 3.1, the decision making about inserting customers is based on a probabilistic rule taking 

into account both the attractiveness of the move and the pheromone information. In this manner, the ant builds the 

route-1 (D-1-2-D), as shown in figure-3(a). Note that no customer can be additionally inserted in this route since it 

would not satisfy capacity restrictions. Then, the ant randomly chooses another vehicle from the depot (vehicle-2) 

and the process is repeated, obtaining the route-2 (D-5-3-D). As there are not any additional vehicle in the depot, 

customer 4 is placed in the HL and an initial solution is obtained. Next, the trail pheromone of the arcs of the vehicle 

routes are updated for the following ant´s route constructions. 

 

 

Figure 3 (a) Graph representing the HVRP with five customers solved by the ACS. The pheromone trails have 

different intensities: strong (—), medium (- - -) and weak (‧‧‧). (b) Example of transferring a customer from the HL 

to an existing route in the VNTS. 

 

Once an initial solution is obtained, the local search phase is performed by a VNTS algorithm, as shown in 

figure-3(b). The first neighborhood structure (N1) is selected (e.g. exchange inter-route operator) and a TS is 

performed. At each iteration, the best solution of N1 which is not included in the tabu list or satisfies the aspiration 

criterion is selected as the new current solution. Following this procedure, in the first iteration, customers 5 and 2 are 

simultaneously exchanged, as shown in figure-3(b).  

In addition, at every iteration of the TS, two different types of moves are also considered. Firstly, moves that 

consist in transferring a customer from the HL to an existing route are also examined and prioritized in order to find 

feasible solutions. Thus, in the second iteration, customer 4, which is placed in the HL, is transferred to the route-2 

since the new solution increases the number of served customers and satisfies all problem restrictions. This type of 

moves is always analyzed as it does not depend of the neighborhood structure selected. Secondly, moves that 

involve exchanging one customer from an existing route with another in the HL are also examined in this 

neighborhood structure. 
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Since a new best solution is reached, the search again returns to N1 and continues as explained in section 3.2. 

 

Algorithm 1: Memetic Ant colony system algorithm 

 

1    Initialization of parameters (α1, α2, α3, α4, iter_max, M, ρ, α, β, q0, iter_tabu_max, TTmin, TTmax); 

2    S ← Semi-parallel_Insertion_Heuristic (α1, α2, α3, α4), τ(N,N)← Pheromone_matrix(); 

3    τ0← Calculate_pheromone_value (S); Δτbs← τ0; 

4    τ(N,N)← Initialize_pheromone_matrix (τ0); 

5    iterations=1; 

6        While (iterations ≤ iter_max) AND (CPU time consumed ≤ γ) do: 

7         ant=1; 

8             While (ant ≤ M) AND (CPU time consumed ≤ γ) do: 

9                S’ ← Ant_Route_Construction (α, β, q0, α1, α2, α3, α4); 

10              τ(N,N)← Local_Update_pheromone_matrix (S’, ρ, τ0); 

11              S’’ ← VNTS (S’, iter_tabu_max, TTmin, TTmax); 

12              If  f (S’’) improves f (S) then 

13                      S ← S´´;  Δτbs← Calculate_pheromone_value (S’’); 

14     ant=ant+1; 

15            EndWhile 

16       τ(N,N)← Global_Update_pheromone_matrix (S, ρ, Δτbs); 

17       iterations=iterations+1; 

18      EndWhile 

 

Algorithm 2: Ant Route Construction Procedure (α, β, q0, α1, α2, α3, α4) 

 

1    Initialize available vehicle list Vk, k=1,2,…,K; 

2    Initialize customer list Cs, s=1,2,…,N; 

3    While (Cs 0) AND (Vk  0) do: 

4       k←PickatRandom (Vk), Vk← RemoveVehicle(k); 

5         seed←FindSeedCustomer (Cs, k); 

6         If (seed 0): 

7            rk ← InitializeRoute(k),  rk←InsertSeedCustomer(seed), Cs ← RemoveCustomer(seed), Select_cust ←True; 

8                While (Cs 0) AND (Select_cust) do: 

9                 Select_cust ←False; 

10                 q←ChooseRandomNumber(); 

11                 For all customers u of  Cs do: 

12                   For all insertion positions i,j of  rk do: 

13                       ηi,j,u,k ←GreedyFunction(i,j,u,k, α1, α2, α3, α4); 

14                       Pi,j,u,k ←Calculate_Probabilities( ηi,j,u,k, τ(N,N)); 

15                   EndFor 

16                EndFor   

17                If (Pi,j,u,k  0): 

18                    If (q<= q0): 

19                       n←Maximum_Value(Pi,j,u,k); 

20                    Else: 

21                       n←Roulette_Wheel_Selection (Pi,j,u,k); 

22                    EndIf     

23                    rk ← InsertAT(i, j,n,k); Cs ← RemoveCustomer(n) 

24                   Select_cust ←True 

25                EndIf     

26             EndWhile   

27       EndIf     

28   EndWhile   

29   If (Cs 0) do: 



30       rk ← Insert_AT_HoldingList(Cs); 

31   EndIf     

 

Algorithm 3: VNTS Procedure (S’, iter_tabu_max, TTmin, TTmax) 

 

1    Define a set of neighborhood structures Nλ, λ=1, 2,…,λmax; 

2    S← S’; 

3    λ=1 ;   

4    While (λ ≤ λmax) do: 

5         S’’ ← Tabu_Search (S, λ, iter_tabu_max, TTmin, TTmax);   

6         If  f (S’’) improves f (S) then 

7      S ← S’’; λ ← 1; 

8         Else 

9                 λ= λ+1; 

10       EndIf 

11   EndWhile 

12   Return (S) 

 

4. Experimental approach 

This section describes the computational experiments carried out to validate the effectiveness of the memetic 

algorithm presented in Section 3. The Mem-ACS algorithm was programmed in C++ and run on a 3.30 GHz Intel® 

Core(TM) i5-2400 CPU. First, section 4.1 describes the benchmark problem instances used for the experiments. 

Next, section 4.2 describes the testing of the algorithm to identify the best parameter values, while section 4.3 

presents the computational results of the proposed algorithm for the HVRPTW.  

4.1 The benchmark problem instances 

The benchmark data sets used in our computational experiments for the evaluation of the Mem-ACS algorithm, 

are those proposed by Paraskevopoulos et al. (2008) and Jiang et al. (2014). Paraskevopoulos et al. (2008) used the 

benchmark data sets proposed by Liu and Shen (1999) and extended a fixed fleet for each problem with the best-

known solutions of these authors. In Liu and Shen (1999) test cases, different vehicles types, which differ in 

capacities and costs, are added to the classical Solomon (1987) instances with 100 customers to solve the 

FSMVRPTW. In total there are 24 instances grouped into 6 types of data sets. Customers are randomly distributed 

in instances of type R, clustered in type C and semi-clustered in instances of type RC. Problem sets shown by R1, 

C1 and RC1 have a short scheduling horizon and small vehicle capacities, contrary to R2, C2 and RC2. The total 

cost of a route is obtained by the sum of the fixed vehicle cost and of the total en-route time, which includes 

travelling and waiting times. The second set consists of the HVRPTW instances presented by Jiang et al. (2014), 

which, in a similar way to Liu and Shen (1999), introduced a set of heterogeneous fleets with different fixed costs, 

variable costs and latest returning times to the depot into the Solomon (1987) test cases. 

4.2 Parameter setting for the Mem-ACS 

This section addresses the best values selected for the parameters of the Mem-ACS algorithm proposed in this 

work. Memetic algorithms use a set of parameters which affects the performance of the algorithm and, therefore, it 

plays an important role for obtaining solutions of high quality. The tests used to do the parameter setting have been 

randomly selected among the Paraskevopoulos et al. (2008) instances; for this purpose, instances R101, C102, 

RC103, R201, C202 and RC204 have been selected. 

When a certain parameter was tested, the algorithm was run maintaining identical settings for the other 

parameters. In a first phase, experiments have been done with the following parameter settings: the value parameter 

α=1 was fixed and three parameters: β ϵ {1, 1.5, 2, 2.5, 3}, ρ ϵ {0.2, 0.25, 0.3} and q0 ϵ {0.8, 0.85, 0.9} were 

analyzed on the above-mentioned instances. In all runs the ACS parameters were set as: iter_max=10 and M=50, 



while the local search parameters were fixed to iter_tabu_max=30, TTmin=10 and TTmax=30, as recommended in 

Paraskevopoulos et al. (2008). The latter values were held constant for the rest of the experiments. The results 

obtained with this analysis indicate that different parameter combinations vary the performance of the algorithm and 

the best obtained values are α=1, β=2, q0=0.8 and ρ=0.2. Consequently, we will adopt this setting in the remainder of 

this section. 

In order to investigate the relative contribution of the rest of parameters of the evolutionary algorithm, 

experiments were conducted on the values of iter_max and M. The first defines a termination criterion of the 

algorithm limiting the total number of iterations, while the second indicates the population of ants. Both control 

parameters are expressed as a fractional size of the number of nodes (N). The value of iter_max was set to 10, 20 

and 30% indicating the degree of the evolutionary search while the value of M was set to 10, 25, 50 and 75%. As a 

result, the algorithm was run for each instance with 12 different parameter combinations. 

Table 1 presents the results obtained from the parameter setting. It shows the percentage deviation between the 

solution obtained by the Mem-ACS and the best-known solution (BKS) value, averaged over the six instances. The 

experiments showed that both parameters have an impact on the solution quality, obtaining the best results when 

iter_max =20%*N and M=50%*N. Finally, Table 2 presents the best parameter values obtained in the parameter 

setting. 

 

Table 1. Average percentage deviations from the best-known solutions with varying iter_max and M 

M 
Iter_max 

10% N 20% N 30% N 

10% N 0.44 0.35 0.33 

25% N 0.32 0.29 0.26 

50% N 0.42 0.20 0.21 

75% N 0.48 0.25 0.23 

 

Table 2. Parameter settings for the Mem-ACS algorithm 

ACS parameters VNTS parameters 

α β ρ q0 Iter_max M iter_tabu_max TTmin-TTmax 

1 2 0.2 0.8 20% N 50% N 30 10-30 

4.3 Computational results 

This section presents the computational results of the Mem-ACS obtained from the HVRPTW benchmark 

instances. The algorithm was run ten times for each instance with a maximum running time of 20 minutes. The 

algorithm finished when it reached the maximum number of iterations or the time limit was exceeded.  

Table 3 reports the best results obtained by the Mem-ACS algorithm in Paraskevopoulos et al. (2008) instances, 

compared to the BKS from the current state-of-the-art solution approaches for the HVRPTW. The algorithms 

reported in the literature are referenced using the following abbreviations: ReVNTS for Paraskevopoulos et al. 

(2008) and HEA for Koç et al. (2015). Bold numbers indicate that the algorithms have reached the best solution. In 

the last column, “=” shows the number of matches and “<” shows the number of new BKS obtained for each 

instance. Table 3 also presents the composition fleet (Mix) of the solutions and the gap between the Mem-ACS and 

the BKS. The gap is defined as the percentage increase of the objective function value with respect to the BKS. 

Additionally, the average, minimum and maximum gap over all problem instances are also shown. The last rows 

indicate the number of times to run the algorithm, the type of processor used and the average time. 

The results show that the Mem-ACS is competitive, generating ten BKSs (problems R104A, C102A, C103A, 

C104A, RC101A, RC102A, RC103A, RC104A, R204A and RC204A) and obtaining equivalent solutions on five 

problems (C101A, C201A, C202A, C203A and C204A). This may be attributed to the fact that the introduction of 

the VNTS for the local search can diversify the ant colony, explore new solution space and prevent the algorithm 



from being trapped in a local minimum. For the other nine instances, seven are at most 1% worse and only two of 

them are more than 1% worse. 

Since the Mem-ACS presents an average gap of 0.08%, it was capable of finding 15 equivalent or better solutions 

in reasonable computational times, outperforming the BKSs on C1A and RC1A instances (see Table 5). Moreover, 

the algorithm obtains equivalent solutions in C2A instances. Total cost reductions range from -0.58% to -0.01% and 

the worst-case performance is 1.26%. 

As presented in Table 3, the average computational time for the Mem-ACS is approximately 12.24 minutes for 

the Paraskevopoulos et al. (2008) benchmark instances. Therefore, the results leads to the conclusion that our 

method produces highly competitive quality solutions at dealing with HVRPTWs in reasonable time, especially 

when solving instances containing smaller vehicle capacities and cluster or random locations of customers. 

On the other hand, Table 4 shows the results obtained by Mem-ACS compared to the BKSs obtained by Jiang et 

al. (2014). To the best of our knowledge, we are the first authors to apply a different solution approach in their 

instances. The first column of the table shows the instance category. Then, the fixed costs (FC), the variable costs 

(VC) and the total costs (TC) are showed. The gap between the Mem-ACS and the BKS is also presented. The last 

rows indicate the minimum, average and maximum gap over all problem instances and the average values for fixed 

and variable costs. The number of times to run the Mem-ACS, the type of processor used and the average time are 

also shown. 

The Mem-ACS provides quality solutions with an average deviation of -1.17% and a worst-case performance of 

0.00%. The algorithm found 55 new best solutions and matched one within an average computation time of 13.29 

minutes. 

Looking at the results obtained on the instances, on average the Mem-ACS yields 1.57% lower vehicle fixed 

costs than the BKS. Moreover, the Mem-ACS also decreases the average variable cost by 0.59%, compared with the 

BKS. The results indicate that our algorithm obtains better fleet compositions while reducing distribution costs 

within a modest computational effort. 

 

 

 

 

 

 

 



Table 3. Results for Paraskevopoulos et al. (2008) HVRPTW instances 

Instance Fleet 
 BKS in the literature  Mem-ACS   BKS 

 Mix TC Reference  Mix TC Gap (%)  = < 

R101A A1 B11 C11 D1  B10 C11 D1 4583.99 ReVNTS  B10 C11 D1 4641.79 1.26  0 0 

R102A A1 B4 C14 D2  A1 B4 C13 D2 4376.54 HEA  A1 B2 C14 D2 4422.93 1.06  0 0 

R103A B7 C15  B6 C15 4195.05 ReVNTS  B6 C15 4198.80 0.09  0 0 

R104A B9 C14  B9 C13 4027.69 HEA  B7 C14 4004.51* -0.58  0 1 

C101A A1 B10  B10 8828.93 ReVNTS, HEA  B10 8828.93 0.00  1 0 

C102A A19  A19 7137.79 ReVNTS  A19 7119.35* -0.26  0 1 

C103A A19  A19 7122.57 HEA  A19 7105.39* -0.24  0 1 

C104A A19  A19 7083.74 HEA  A19 7081.51* -0.03  0 1 

RC101A A7 B7 C7  A4 B7 C7 5266.36 HEA  A4 B7 C7 5257.67* -0.16  0 1 

RC102A A5 B6 C8  A4 B5 C8 5099.55 HEA  A2 B6 C8 5072.33* -0.53  0 1 

RC103A A11 B2 C8  A10 B2 C8 4991.29 HEA  A10 B2 C8 4990.94* -0.01  0 1 

RC104A A2 B13 C3 D1  A2 B13 C3 D1 5016.97 HEA  A2 B13 C3 D1 5003.94* -0.26  0 1 

R201A A5  A5 3779.12 ReVNTS  A5 3789.55 0.28  0 0 

R202A A5  A5 3578.91 ReVNTS  A5 3585.31 0.18  0 0 

R203A A4 B1  A4 B1 3553.92 HEA  A4 B1 3573.78 0.56  0 0 

R204A A5  A5 3081.80 HEA  A5 3080.44* -0.04  0 1 

C201A A4 B1  A4 B1 6140.64 ReVNTS, HEA  A4 B1 6140.64 0.00  1 0 

C202A A1 C3  A1 C3 7623.96 HEA  A1 C3 7623.96 0.00  1 0 

C203A C2 D1  C2 D1 7303.37 ReVNTS, HEA  C2 D1 7303.37 0.00  1 0 

C204A A5  A5 5680.46 HEA  A5 5680.46 0.00  1 0 

RC201A C1 E3  C1 E3 5523.15 ReVNTS  C1 E3 5550.88 0.50  0 0 

RC202A A1 C1 D1 E2  A1 C1 D1 E2 5132.08 ReVNTS  A1 C1 D1 E2 5148.90 0.33  0 0 

RC203A A1 B1 C5  A1 B1 C5 4471.92 HEA  A1 B1 C5 4473.13 0.03  0 0 

RC204A A14 B2  A14 B2 4241.83 HEA  A14 B2 4234.46* -0.17  0 1 

             

Nº BKS           5 10 

Average         0.08    

Max         1.26    

Min         -0.58    

Runs         10    

Processor        Core i5 3.3 GHz   

Avg Time (minutes)        12.24    



Table 4. Results for HVRPTW Jiang et al (2014) instances 

    Instance 

BKS in the literature  Mem-ACS 

Instance 

BKS in the literature  Mem-ACS 

F.C V.C T.C. %Dev. F.C V.C T.C. F.C V.C T.C. %Dev. F.C V.C T.C. 

HC101 670 1215.33 1885.33 0.00% 670 1215.33 1885.33 HR112 2540 1712.71 4252.71 -0.43% 2540 1694.62 *4234.62 

HC102 670 1220.66 1890.66 -3.49% 670 1154.59 *1824.59 HR201 255 1510.74 1765.74 -7.05% 250 1391.31 *1641.31 

HC103 650 1258.04 1908.04 -2.96% 650 1201.65 *1851.65 HR202 255 1281.81 1536.81 -5.35% 270 1184.66 *1454.66 

HC104 670 1139.78 1809.78 -1.06% 670 1120.54 *1790.54 HR203 255 1082.39 1337.39 -1.07% 270 1053.08 *1323.08 

HC105 670 1184.73 1854.73 -0.22% 670 1180.70 *1850.70 HR204 275 839.94 1114.94 -0.55% 250 858.79 *1108.79 

HC106 670 1210.64 1880.64 -0.86% 670 1194.49 *1864.49 HR205 270 993.91 1263.91 -0.33% 270 989.74 *1259.74 

HC107 670 1169.52 1839.52 -0.00% 670 1169.45 *1839.45 HR206 270 910.44 1180.44 -0.19% 225 953.20 *1178.20 

HC108 670 1156.49 1826.49 -0.31% 670 1150.74 *1820.74 HR207 225 877.06 1102.06 -0.89% 225 867.23 *1092.23 

HC109 670 1129.22 1799.22 -0.42% 670 1121.71 *1791.71 HR208 225 782.00 1007.00 -0.94% 225 772.52 *997.52 

HC201 520 793.28 1313.28 -0.00% 520 793.25 *1313.25 HR209 225 894.04 1119.04 -0.18% 225 891.98 *1116.98 

HC202 540 743.58 1283.58 -1.93% 500 758.83 *1258.83 HR210 275 1032.53 1307.53 -2.66% 225 1047.79 *1272.79 

HC203 540 719.97 1259.97 -0.21% 540 717.36 *1257.36 HR211 225 785.22 1010.22 -0.74% 225 777.71 *1002.71 

HC204 540 716.09 1256.09 -0.32% 500 752.08 *1252.08 HRC101 3330 2373.97 5703.97 -1.60% 3270 2342.57 *5612.57 

HC205 520 805.84 1325.84 -0.45% 540 779.88 *1319.88 HRC102 3420 2136.02 5556.02 -0.12% 3360 2189.20 *5549.20 

HC206 540 723.63 1263.63 -0.10% 540 722.39 *1262.39 HRC103 3510 1928.89 5438.89 -0.27% 3390 2034.35 *5424.35 

HC207 520 787.35 1307.35 -3.52% 540 721.39 *1261.39 HRC104 3450 1881.41 5331.41 -0.47% 3390 1916.52 *5306.52 

HC208 500 690.81 1190.81 -0.35% 500 686.67 *1186.67 HRC105 3570 2135.79 5705.79 -1.16% 3390 2249.81 *5639.81 

HR101 3030 2095.52 5125.52 -3.04% 2760 2209.52 *4969.52 HRC106 3510 2018.42 5528.42 -1.65% 3390 2047.39 *5437.39 

HR102 3040 1942.39 4982.39 -1.37% 3040 1874.35 *4914.35 HRC107 3450 2001.31 5451.31 -1.65% 3390 1971.36 *5361.36 

HR103 2880 1781.22 4661.22 -0.29% 2790 1857.81 *4647.81 HRC108 3510 1812.31 5322.31 -0.78% 3450 1831.05 *5281.05 

HR104 2940 1590.55 4530.55 -3.10% 2740 1650.16 *4390.16 HRC201 2900 1601.65 4501.65 -0.02% 2900 1600.72 *4500.72 

HR105 2700 1870.39 4570.39 -1.01% 2700 1824.06 *4524.06 HRC202 2950 1458.53 4408.53 -0.86% 2950 1420.70 *4370.70 

HR106 2610 1821.31 4431.31 -1.02% 2590 1796.13 *4386.13 HRC203 2900 1421.87 4321.87 -0.22% 2900 1412.26 *4312.26 

HR107 2700 1691.14 4391.14 -0.20% 2680 1702.37 *4382.37 HRC204 2900 1406.65 4306.65 -1.12% 2950 1308.25 *4258.25 

HR108 2580 1700.05 4280.05 -0.72% 2540 1709.14 *4249.14 HRC205 2900 1552.88 4452.88 -0.16% 2900 1545.61 *4445.61 

HR109 2540 1799.86 4339.86 -0.68% 2540 1770.30 *4310.30 HRC206 2900 1519.09 4419.09 -0.68% 2900 1488.86 *4388.86 

HR110 2540 1732.25 4272.25 -4.91% 2540 1522.31 *4062.31 HRC207 2950 1393.55 4343.55 -0.62% 2900 1416.65 *4316.65 

HR111 2670 1696.32 4366.32 -0.87% 2650 1678.41 *4328.41 HRC208 2900 1376.15 4276.15 -0.34% 2900 1361.43 *4261.43 

                

Min    -7.05%            

Average    -1.17%            

Max    0.00%            

Av. FC  1728.66  -1.57%  1701.61          

Av. VC  1376.92  -0.59%  1368.84          

Runs      10          



Processor     Core i5 3.3 GHz         

Avg Time (minutes)     13.29          



Table 5. Average results for Paraskevopoulos et al. (2008) HVRPTW instances. 

Instance set 

  Mem-ACS  BKS 

  TC Gap(%) TC 

R1A (4)   4317.01 0.49%  4295.82 

C1A (4)   7533.79 -0.13%  7543.26 

RC1A (4)   5081.22 -0.24%  5093.54 

R2A (4)   3507.27 0.25%  3498.44 

C2A (4)   6687.11 0.00%  6687.11 

RC2A (4)   4851.84 0.20%  4842.25 

 

5. Conclusions 

The HVRPTW is an important and practical problem in real-world applications. This paper proposes a new 

memetic ACS scheme (Mem-ACS) that incorporates VNTS as a local search procedure to solve the HVRPTW. 

To the best of the author´s knowledge this is the first work that combines an ACS algorithm with a VNTS 

procedure for solving a combinatorial problem. The major idea underlying our method is the use of the ACS 

algorithm to get a diversified exploration over the search space while VNTS intensifies the search in promising 

regions. 

ACS algorithms are adaptive construction heuristics in which a colony of ants generates starting solutions for the 

local search algorithm. These obtained solutions may not necessarily include all customers to be served when solving 

a HVRPTW. Therefore, a HL which holds temporarily unserved customers is integrated within the algorithm to 

introduce flexibility when tackling infeasible solutions. 

In the subsequent local search phase, the VNTS provides an intensification of the search by the use of different 

neighborhood structures and by allowing non-improving moves in order to preventing getting trapped in local optima. 

In this phase, unserved customers placed in the HL may be transferred to specific positions in existing routes. For that 

purpose, these additional movements are analyzed and prioritized at every iteration and neighborhood structure of the 

VNTS. Other movements as exchanging customers from existing routes are also allowed in the HL, if a solution with 

a best objective function is obtained. 

Computational experiments were carried out on HVRPTW benchmark instances from the scientific literature. The 

Mem-ACS was applied to the 24 HVRPTW instances of Paraskevopoulos et al. (2008). The results indicate that the 

Mem-ACS obtained 10 new best solutions and matched 5, producing high quality solutions. In the HVRPTW 

instances of Jiang et al (2014), the Mem-ACS improved 55 solutions out of 56, being able in some instances to obtain 

better fleet compositions to reduce the total costs. These results showed that the suggested method provides feasible 

solutions of acceptable quality to all types of HVRPTW instances. Moreover, the Mem-ACS is relevant when 

customers of a specific route planning cannot be served due to a limitation in the number of vehicles. In these 

situations, the Mem-ACS maximizes the vehicles’ utilization, reduces the number of unserved customers in a route 

planning and also reduces the total costs. 

The Mem-ACS could be extended to solve the HVRPTW with simultaneous pickup and delivery introducing slight 

modifications in the algorithm. This will be the subject of future research. 
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