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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM
WITH NAVIER-SLIP-WITH-FRICTION AND ROBIN BOUNDARY

CONDITIONS*

F. W. CHAVES-SILVA\dagger , E. FERN\'ANDEZ-CARA\ddagger , K. LE BALC'H\S ,
J. L. F. MACHADO\P , AND D. A. SOUZA\| 

Abstract. In this paper, we deal with the global exact controllability to the trajectories of the
Boussinesq system posed in 2D or 3D smooth bounded domains. The velocity field of the fluid must
satisfy a Navier-slip-with-friction boundary condition, and a Robin boundary condition is imposed
to the temperature. We assume that one can act on the velocity and the temperature on a small part
of the boundary. For the proof, we first transform the boundary control problem into a distributed
control problem. Then, we prove a global approximate controllability result by adapting the strategy
of Coron, Marbach, and Sueur [J. Eur. Math. Soc. (JEMS), 22 (2020), pp. 1625--1673]; this relies
on the controllability properties of the inviscid Boussinesq system and the analysis of appropriate
asymptotic boundary layer expansions. Finally, we conclude with a local controllability result; as in
many other cases, this can be established as a consequence of the null controllability of a linearized
system through a fixed-point argument. Our contribution can be viewed as an extension of the
results in [J. Eur. Math. Soc. (JEMS), 22 (2020), pp. 1625--1673], where thermal effects were not
considered. Thus, we prove that the ideas behind the controllability properties of the Euler system
and the well-prepared dissipation technique can be adapted to the present situation. Furthermore, we
cover all the classical boundary conditions for the temperature, that is, those of the Robin, Neumann,
and Dirichlet kinds.

Key words. Boussinesq system, Navier-slip-with-friction boundary conditions, global controlla-
bility, boundary layers, global Carleman inequalities

MSC codes. 35Q35, 76D55, 93B05, 93C10
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1. Introduction. Let \Omega \subset \BbbR n (n = 2 or 3) be a smooth bounded domain with
\Gamma := \partial \Omega , and let \Gamma c \subset \Gamma be a nonempty open subset which intersects all connected
components of \Gamma . It will be said that \Gamma c is the control boundary. Let us set
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 485

Hc := \{ u\in L2(\Omega )n : div u= 0 in \Omega , u \cdot \nu = 0 on \Gamma \setminus \Gamma c\} ,

where \nu = \nu (x) is the outward unit normal vector to \Omega at the points x\in \Gamma . Here, the
equality u \cdot \nu = 0 on \Gamma \setminus \Gamma c must be understood in the following sense:

\langle u \cdot \nu , g\rangle H - 1/2(\Gamma ),H1/2(\Gamma ) = 0 \forall g \in H1/2(\Gamma ) with g\equiv 0 on \Gamma c.

For a given vector field f , we denote by [f ]tan, D(f), and N(f) the tangential part of
f , the deformation tensor, and the tangential Navier boundary operator, respectively,
given as follows:

[f ]tan := f  - (f \cdot \nu )\nu , D(f) :=
1

2

\bigl( 
\nabla f +\nabla f t

\bigr) 
, N(f) := [D(f)\nu +Mf ]tan.(1)

Here and henceforth, it is assumed that M =M(t, x) is a smooth, symmetric matrix-
valued function. It will be called the friction matrix and will be viewed as a measure
of the boundary rugosity. We will also set

R(\theta ) :=
\partial \theta 

\partial \nu 
+m\theta ,

where m=m(t, x) is another smooth function, again related to the properties of the
boundary, known as the heat transfer coefficient .

Let T > 0 be a final time. We will consider the (incomplete) Boussinesq system\left\{       
\partial tu - \Delta u+ (u \cdot \nabla )u+\nabla p= \theta en, div u= 0 in (0, T )\times \Omega ,
\partial t\theta  - \Delta \theta + u \cdot \nabla \theta = 0 in (0, T )\times \Omega ,
u \cdot \nu = 0, N(u) = 0, R(\theta ) = 0 on (0, T )\times (\Gamma \setminus \Gamma c) ,
u(0, \cdot ) = u0, \theta (0, \cdot ) = \theta 0 in \Omega ,

(2)

where the functions u, \theta , and p must be respectively viewed as the velocity field, the
temperature, and the pressure of a viscous Newtonian fluid subject to thermal effects,
and en is the nth vector of the canonical basis of \BbbR n. Regarded as a control system,
we will interpret that the state is (u, \theta ) and the control is the lateral trace of (u, \theta ) on
(0, T )\times \Gamma c.

1.1. Main result. Let us introduce the notation

XT (\Omega ) := [C0
w([0, T ];Hc)\cap L2(0, T ;H1(\Omega )n)]\times [C0

w([0, T ];L
2(\Omega ))\cap L2(0, T ;H1(\Omega ))].

Here, for any Banach space B, C0
w([0, T ];B) denotes the space of weakly continuous

B-valued functions, that is, the functions \phi : [0, T ] \mapsto \rightarrow B such that t \in [0, T ] \rightarrow 
\langle \psi ,\phi (t)\rangle 

B
\prime 
,B

is continuous for every \psi \in B\prime .
We have the following result.

Theorem 1.1. Let T > 0 be a positive time, let (u0, \theta 0)\in Hc \times L2(\Omega ) be a given
initial state, and let (u, \theta ) \in XT (\Omega ) be a weak trajectory of (2). Then, there exists a
controlled weak solution to (2) in XT (\Omega ) satisfying

(u, \theta ) (T, \cdot ) =
\bigl( 
u, \theta 
\bigr) 
(T, \cdot ).(3)

Remark 1.1. For the precise notions of weak trajectory and controlled weak
solution, see Definition 2.1 below. Essentially, what we require of (\=u, \=\theta ) and (u, \theta ) is
to belong to XT (\Omega ) and satisfy (2) in the weak (distributional) sense.
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486 CHAVES-SILVA ET AL.

Remark 1.2. In Theorem 1.1, we do not indicate explicitly which are the controls.
As already said, once the controlled solution is found, the associated control is the
lateral trace of the solution on (0, T )\times \Gamma c.

Remark 1.3. Theorem 1.1 is stated as an existence result. The lack of uniqueness
is for two main reasons. First, there exist many controls that drive the solution to
(2) to the desired trajectory. Second, even if we select a criterion in order to fix the
control without ambiguity, it is obviously unknown whether the associated state is
unique in the 3D case (in two dimensions, it is known that the corresponding weak
solution is unique; see, for instance, [2, 26] for the Navier--Stokes case).

1.2. Bibliographical comments. We now recall some existing results in the
literature related to Theorem 1.1.

There are several papers where the controllability properties of the Boussinesq
equations are investigated. Most of them are local results covering boundary condi-
tions of various kinds. For instance, in [14] the local exact boundary controllability to
the trajectories was obtained with boundary controls acting over the whole boundary;
in [15], the exact controllability with distributed controls and periodic boundary con-
ditions was analyzed; in [19], the author proved the local exact controllability to the
trajectories with Dirichlet boundary conditions; this situation is also handled with a
reduced number of controls in [10, 17]. For nonviscous Boussinesq fluids, this subject
has been investigated by Fern\'andez-Cara, Santos, and Souza [11].

On the other hand, the literature on the Navier--Stokes and Boussinesq equations
with Navier-slip boundary conditions is scarce. Let us recall some controllability re-
sults obtained for the Navier--Stokes system: in [7], a small-time global result for the
2D equations has been proved where the exact controllability can be achieved in the
interior of the spatial domain; the residual boundary layers are apparently too strong
to be handled satisfactorily during the control design strategy. Guerrero proved in
[18] the local exact controllability to the trajectories with general nonlinear Navier
boundary conditions. Finally, the small-time global exact controllability with Navier-
slip-with-friction boundary conditions towards weak trajectories was proved in [8]
by Coron, Marbach and Sueur; this article provides a positive answer to the famous
open question by J.-L. Lions concerning global null controllability of the Navier--Stokes
equations when the boundary conditions are of this kind. Recently, in [25], this result
was extended from Leray weak controlled solutions to the case of smooth controlled
solutions. For what concerns the Boussinesq system with Navier-slip boundary con-
ditions, see [23, 29] for some local results.

1.3. Strategy of the proof and plan of the paper. Let us briefly indicate
the main ideas and results needed for the proof of Theorem 1.1.

In section 2, we will reduce the task to the solution of a distributed controllability
problem by applying a classical domain extension technique. Then, we will limit our
considerations to smooth initial data by using the smoothing effect of the uncontrolled
Boussinesq system.

In section 3, starting from sufficiently smooth initial data, we prove a global ap-
proximate controllability result by adapting the strategy introduced by Coron, Mar-
bach, and Sueur in [8] in the Navier--Stokes case.

In section 4, we prove a local controllability result. Here, we use an appropriate
Carleman inequality for the adjoint of a linearized system (which leads to the null
control of a related linearized system) and a fixed-point strategy.

In section 5, we combine all these arguments and achieve the proof.
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 487

2. Domain extension and smoothing effect.

2.1. Domain extension. Let us consider a smooth extended bounded domain
\scrO such that \Omega \cup \Gamma c \subset \scrO and \Gamma \setminus \Gamma c \subset \Gamma \scrO := \partial \scrO . In what follows, if there is no
ambiguity, we will also denote by \nu (x) the outward unit normal vector to \scrO at the
points x\in \partial \scrO .

Let us introduce the following notations:

\scrO T := (0, T )\times \scrO and \Kappa T := (0, T )\times \partial \scrO .

In what follows, we will assume that M and m are extended to [0, T ]\times \partial \scrO as smooth
functions in such a way that M is symmetric on (0, T )\times \partial \scrO . This will allow us to
speak of N(u) and R(\theta ) on \Kappa T .

In general, the notation will be abridged. For instance, if u \in H2(\scrO )n and \theta \in 
H1(\scrO ), \| (u, \theta )\| H2\times H1 will stand for the norm of (u, \theta ) in the space H2(\scrO )n\times H1(\scrO ).
The scalar product and norm in L2 spaces will be respectively denoted by (\cdot , \cdot ) and
\| \cdot \| . The symbol C will stand for a generic positive constant.

We will need the space

H := \{ u\in L2(\scrO )n : div u= 0 in \scrO , u \cdot \nu = 0 on \partial \scrO \} .

The following proposition enables us to extend the initial conditions to the whole
domain \scrO :

Proposition 2.1. Let (u0, \theta 0)\in Hc\times L2(\Omega ) be given. Then, there exist (u\ast , \theta \ast )\in 
L2(\scrO )n+1 and \sigma \ast \in C\infty (\scrO ) with Supp \sigma \ast \subset \scrO \setminus \Omega such that

u\ast = u0 and \theta \ast = \theta 0 in \Omega , div u\ast = \sigma \ast in \scrO , u\ast \cdot \nu = 0 on \partial \scrO ,
\| u\ast \| + \| \sigma \ast \| \leq C\| u0\| and \| \theta \ast \| \leq C\| \theta 0\| .

(4)

Proof. Let \theta \ast \in L2(\scrO ) be the extension by zero of \theta 0 to the whole domain \scrO .
Then, we have

\| \theta \ast \| \leq \| \theta 0\| .

Next, in order to find an appropriate extension of u0, we first note that the
space

Hc := \{ \phi \in C1(\Omega ;\BbbR n) : div \phi = 0 in \Omega , \phi \cdot \nu = 0 on \Gamma \setminus \Gamma c\} 

is dense in Hc. Let us put \Gamma c = \cup k
i=1\Gamma 

i
c, where the \Gamma i

c denote the intersections of \Gamma c

with the connected components of \Gamma , and let (\scrO \setminus \Omega )i denote the subset of \scrO \setminus \Omega for
which \partial (\scrO \setminus \Omega )i \cap \partial \Omega =\Gamma i

c. Also, let \omega i \subset \subset (\scrO \setminus \Omega )i be a nonempty open subset, and
let \sigma i

\ast \in C\infty 
c (\omega i) be given with\int 

(\scrO \setminus \Omega )i
\sigma i
\ast = 1 for i= 1, . . . , k.

Let us assume that u0 \in Hc, and let (u0,m)m\geq 1 be a sequence in Hc with u0,m \rightarrow u0
in Hc. For every i \in \{ 1, . . . , k\} and m \geq 1, the following nonhomogeneous elliptic
problem admits a unique solution wi

m \in H1((\scrO \setminus \Omega )i):\left\{             
 - \Delta wi

m = - aim\sigma i
\ast in (\scrO \setminus \Omega )i,

\int 
(\scrO \setminus \Omega )i

wi
m = 0,

\partial wi
m

\partial \nu 
= u0,m \cdot \nu on \Gamma i

c,

\partial wi
m

\partial \nu 
= 0 on \partial (\scrO \setminus \Omega )i \setminus \Gamma i

c,
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488 CHAVES-SILVA ET AL.

where aim :=
\int 
\Gamma c
(u0,m \cdot \nu )d\Gamma . It is clear that, for every i\in \{ 1, . . . , k\} , aim converges to

some ai \in \BbbR and wi
m converges to some wi \in H1((\scrO \setminus \Omega )i) as m\rightarrow +\infty .

Let us set

u\ast :=

\biggl\{ 
u0 in \Omega ,
\nabla wi in (\scrO \setminus \Omega )i for i= 1, . . . , k.

It is then clear that u\ast \in L2(\scrO )n, div u\ast = \sigma \ast in \scrO for some \sigma \ast \in C\infty 
c (\scrO \setminus \Omega ), and

u\ast \cdot \nu = 0 on \partial \scrO . On the other hand, we see that, by construction, (4) is satisfied.

Let us introduce the following notation:

WT (\scrO ) :=[C0
w([0, T ];L

2(\scrO )n)\cap L2(0, T ;H1(\scrO )n)]

\times [C0
w([0, T ];L

2(\scrO ))\cap L2(0, T ;H1(\scrO ))].

The notion of solution used throughout the paper is the following.

Definition 2.1. Let T > 0 be a positive time, and let (u0, \theta 0) \in Hc \times L2(\Omega )
be given. It will be said that (u, \theta ) \in XT (\Omega ) is a controlled weak trajectory of (2)
with initial condition (u0, \theta 0) if (u, \theta ) is the restriction to (0, T )\times \Omega of a weak Leray
solution, still denoted by (u, \theta ), in the space WT (\scrO ), to the nonlinear system\left\{       

\partial tu - \Delta u+ (u \cdot \nabla )u+\nabla p= \theta en + v, div u= \sigma in \scrO T ,
\partial t\theta  - \Delta \theta + u \cdot \nabla \theta =w in \scrO T ,
u \cdot \nu = 0, N(u) = 0, R(\theta ) = 0 on \Kappa T ,
u(0, \cdot ) = u\ast , \theta (0, \cdot ) = \theta \ast in \scrO ,

(5)

where
\bullet v \in C0([0, T ];H1(\scrO )n) \cap H1(0, T ;L2(\scrO )n), w \in C0([0, T ];H1(\scrO )) \cap 
H1(0, T ;L2(\scrO )), and \sigma \in C\infty (\scrO T ) are supported by (0, T )\times (\scrO \setminus \Omega ), and

\bullet (u\ast , \theta \ast ) is an extension of (u0, \theta 0) furnished by Proposition 2.1, satisfying
div u\ast = \sigma (0, \cdot ).

Let us recall an existence result of weak solution to (5); it is taken from [27] (see
Proposition 3.7 in that reference) and see also [4, Proposition 2.2].

Proposition 2.2. Let us assume that T > 0 and v, \sigma , w, and (u\ast , \theta \ast ) are as in
Definition 2.1. Then there exists at least one weak Leray solution (u, \theta ) to (5).

2.2. Smoothing effect of the uncontrolled Boussinesq system. The goal
of this section is to show that, starting from L2 initial data, at small time the solution
is smooth. For convenience, this property will be stated as follows.

Lemma 2.1. Let us assume that T > 0 and (u, \theta ) \in C\infty (\scrO T )
n+1 is such that

div u = 0 in \scrO T and u \cdot \nu = 0 on \Kappa T . Then, there exists a smooth function \Psi T :
\BbbR + \mapsto \rightarrow \BbbR + with \Psi T (0) = 0 such that, for any (r\ast , q\ast )\in H\times L2(\scrO ) and any weak Leray
solution (r, q)\in WT (\scrO ) to

\left\{       
\partial tr - \Delta r+ (r \cdot \nabla )r+ (u \cdot \nabla )r+ (r \cdot \nabla )u+\nabla \pi = qen, div r= 0 in \scrO T ,

\partial tq - \Delta q+ (r+ u) \cdot \nabla q+ r \cdot \nabla \theta = 0 in \scrO T ,
r \cdot \nu = 0, N(r) = 0, R(q) = 0 on \Kappa T ,
r(0, \cdot ) = r\ast , q(0, \cdot ) = q\ast in \scrO ,

(6)

the following property holds:

\exists t0 \in [0, T ]; \| (r, q)(t0, \cdot )\| H3\times H3 \leq \Psi T (\| (r\ast , q\ast )\| ) .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 489

The proof of this lemma is quite classical but, for completeness, will be given in
Appendix A.

3. Approximate controllability problem. In this section, we prove an ap-
proximate controllability result starting from sufficiently smooth initial data.

Proposition 3.1. Let us assume that T > 0, and let (u, \theta ), v, w, and \sigma be as
in Definition 2.1. Suppose that (u, \theta ) is, together with p, an associated solution, and
assume that the triplet (u,p, \theta ) belongs to C\infty (\scrO T ;\BbbR n+2). Let (u\ast , \theta \ast ) \in [H3(\scrO )n \cap 
H]\times H3(\scrO ) be an initial state. Then, for any \delta > 0, there exist regular controls v, w,
and \sigma , again supported in \scrO \setminus \Omega , and an associated weak solution to (5) satisfying

\| (u, \theta )(T, \cdot ) - (u, \theta )(T, \cdot )\| \leq \delta .

For the proof, we will follow the strategy introduced by Coron, Marbach, and
Sueur in [8]. Let us explain how it works.

First, a change of scale associated to a small parameter \varepsilon > 0 is introduced and (5)
is transformed into a Boussinesq system with small viscosity \varepsilon that must be controlled
in the (long) time interval [0, T/\varepsilon ], starting from a small initial state; see (7). The
advantage of this scaling is that we can benefit from the nonlinear terms (u \cdot \nabla )u and
u \cdot \nabla \theta .

Formally, by taking \varepsilon = 0, we obtain the inviscid Boussinesq system; see (11).
For this hyperbolic system, we can construct a very particular nontrivial trajectory
that connects (0,0) \in \BbbR n+1 to itself and sends any particle outside the physical do-
main before the final time T . By linearizing the inviscid Boussinesq system around
the previous trajectory, we obtain a new hyperbolic linear system that is small-time
globally null-controllable (actually, what we do is apply the so-called return method ,
due to Coron; see [5]; note that the linearization around the trivial state leads to a
noncontrollable system).

In the particular case of a ``special slip"" boundary condition for the velocity
and a Neumann boundary condition for the temperature, that is, with M such that
[\nabla \times u]tan = 0 on \Kappa T andm\equiv 0, we immediately conclude by estimating the remainder
terms. We do not need to use the long interval time [0, T/\varepsilon ] to control in this case,
since the solution is already small at intermediate times T\ast \in (0, T/\varepsilon ).

Unfortunately, in the general case, a boundary layer appears. This phenomenon
was already taken into account in [12, 22] for the Navier--Stokes PDEs. Thus, we
have to introduce some corrector terms in the asymptotic expansion of the solution
depending on \varepsilon , in order to estimate the residual layers. It is found that the boundary
layer decays but not enough. Hence, the corrector is not sufficiently small at the final
time T/\varepsilon and we still cannot conclude.

In order to overcome this difficulty, we adapt the well-prepared dissipation method,
introduced by Marbach in [28]. Here, the idea is to design a control strategy that rein-
forces the action of the natural dissipation of the boundary layer after an intermediate
time. A desired small state is obtained at final time, and we can finally achieve the
proof.

In what follows, we will frequently need vector functions (u,p, \theta , v,w,\sigma ) represent-
ing adequate states (u,p, \theta ), controls (v,w), and auxiliary functions \sigma , corresponding
to some linear or nonlinear systems. In all cases, it will be implicitly assumed that v,
w, and \sigma vanish outside [0, T ]\times (\scrO \setminus \Omega ).

3.1. Time scaling. Let us introduce\biggl\{ 
u\varepsilon (t, x) := \varepsilon u(\varepsilon t, x), p\varepsilon (t, x) := \varepsilon 2p(\varepsilon t, x), \theta \varepsilon (t, x) := \varepsilon 2\theta (\varepsilon t, x),
v\varepsilon (t, x) := \varepsilon 2v(\varepsilon t, x), w\varepsilon (t, x) := \varepsilon 3w(\varepsilon t, x), \sigma \varepsilon (t, x) := \varepsilon \sigma (\varepsilon t, x).
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490 CHAVES-SILVA ET AL.

In these new variables, (5) reads as

(7)\left\{       
\partial tu

\varepsilon  - \varepsilon \Delta u\varepsilon + (u\varepsilon \cdot \nabla )u\varepsilon +\nabla p\varepsilon = \theta \varepsilon en + v\varepsilon , div u\varepsilon = \sigma \varepsilon in (0, T/\varepsilon )\times \scrO ,
\partial t\theta 

\varepsilon  - \varepsilon \Delta \theta \varepsilon + u\varepsilon \cdot \nabla \theta \varepsilon =w\varepsilon in (0, T/\varepsilon )\times \scrO ,
u\varepsilon \cdot \nu = 0, N(u\varepsilon ) = 0, R(\theta \varepsilon ) = 0 on (0, T/\varepsilon )\times \partial \scrO ,
u\varepsilon (0, \cdot ) = \varepsilon u\ast , \theta \varepsilon (0, \cdot ) = \varepsilon 2\theta \ast in \scrO .

Thus, we work along a large time interval [0, T/\varepsilon ], starting from the small initial data
(\varepsilon u\ast , \varepsilon 

2\theta \ast ). The counterpart is the small viscosity. Accordingly, (7) must be viewed
as a singular perturbation of a nonlinear inviscid system.

In order to prove Proposition 3.1, it is sufficient to check that

\| u\varepsilon (T/\varepsilon , \cdot ) - \varepsilon u(T, \cdot )\| = o(\varepsilon ) and
\bigm\| \bigm\| \theta \varepsilon (T/\varepsilon , \cdot ) - \varepsilon 2\theta (T, \cdot )

\bigm\| \bigm\| = o(\varepsilon 2).

3.2. A special slip boundary condition. In this section, we consider a special
situation where the fluid perfectly slips and the proof of Proposition 3.1 is much
simpler (there is no boundary layer). For the moment, we will assume that the target
trajectory is zero, i.e., (u,p, \theta , v,w,\sigma ) \equiv 0, and we will try to control (7) during the
time interval [0, T ] instead of [0, T/\varepsilon ]. The goal is to prove

\| u\varepsilon (T, \cdot )\| = o(\varepsilon ) and \| \theta \varepsilon (T, \cdot )\| = o(\varepsilon 2).(8)

Thus, let us assume that the friction coefficient M is the Weingarten map (or
shape operator) Mw. Thanks to [8, Lemma 1], on the uncontrolled boundary one has
zero normal velocity and zero tangential vorticity, that is,

u \cdot \nu = 0 and [\nabla \times u]tan = 0 on \Kappa T .(9)

3.2.1. Ansatz with no correction term. Let us introduce an asymptotic
expansion of the solution to (7):\biggl\{ 

u\varepsilon = u0 + \varepsilon u1 + \varepsilon r\varepsilon , p\varepsilon = p0 + \varepsilon p1 + \varepsilon \pi \varepsilon , \theta \varepsilon = \theta 0 + \varepsilon 2\theta 1 + \varepsilon 2q\varepsilon ,
v\varepsilon = v0 + \varepsilon v1, w\varepsilon =w0 + \varepsilon 2w1, \sigma \varepsilon = \sigma 0.

(10)

There is some intuition behind (10). The first term (u0, p0, \theta 0, v0,w0, \sigma 0) is the
solution to an inviscid system; take \varepsilon = 0 in (7). It models a reference trajectory
around which we linearize the original system, exactly as is done when applying
Coron's return method; see [5]. It will be chosen in such a way that the associated
flow flushes the particles out of the physical domain before t= T ; see (13) below for
a more precise explanation. The second term (u1, p1, \theta 1, v1,w1) takes into account
the initial data (u\ast , \theta \ast ) and will be controlled to zero in the physical domain \Omega ; see
Lemma 3.2 below. Then, (r\varepsilon , \pi \varepsilon , q\varepsilon ) contains higher order terms; see (19). At the
end, using (10), what we have to prove is that \| (r\varepsilon , q\varepsilon )(T, \cdot )\| = o(1), in order to be
able to conclude (8).

3.2.2. Inviscid flow. By taking \varepsilon = 0 in (7), we obtain the following system:\left\{       
\partial tu

0 + (u0 \cdot \nabla )u0 +\nabla p0 = \theta 0en + v0, div u0 = \sigma 0 in \scrO T ,
\partial t\theta 

0 + u0 \cdot \nabla \theta 0 =w0 in \scrO T ,
u0 \cdot \nu = 0 on \Kappa T ,
u0(0, \cdot ) = u0(T, \cdot ) = 0, \theta 0(0, \cdot ) = \theta 0(T, \cdot ) = 0 in \scrO ,

(11)

where v0, w0, and \sigma 0 are spatially supported in \scrO \setminus \Omega .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 1

50
.2

14
.1

82
.2

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 491

Let us introduce the flow function \Phi 0 := \Phi 0(s; t, x) associated to u0. That is, for
any (t, x), \Phi 0(\cdot ; t, x) solves the ODE problem\biggl\{ 

\partial s\Phi 
0(s; t, x) = u0(s,\Phi 0(s; t, x)),

\Phi 0(s; t, x)
\bigm| \bigm| 
s=t

= x.
(12)

Then, we look for trajectories such that

\forall x\in \scrO , \exists tx \in (0, T ) such that \Phi 0(tx; 0, x)\in \scrO \setminus \Omega .(13)

This property is obvious for the points x already located in \scrO \setminus \Omega . For the points
x \in \Omega , we use the following result, whose proof can be found in [6, 8] in the 2D case
and [8, 16] in the 3D case:

Lemma 3.1. There exists a nonzero solution to (11) (u0, p0, \theta 0, v0,w0, \sigma 0) \in 
C\infty ([0, T ]\times \scrO ;\BbbR 2n+4) such that the associated flow \Phi 0, defined in (12), satisfies (13).
Moreover, we can choose u0, \theta 0, and w0 such that

\theta 0 =w0 = 0 and \nabla \times u0 = 0 in [0, T ]\times \scrO (14)

and u0, p0, v0, and \sigma 0 are compactly supported in time in (0, T ).

Note that, in the proof of this result, the assumption that \Gamma c intersects all con-
nected components of \Gamma must be used.

In what follows, when needed, it will be assumed that (u0, p0, \theta 0, v0,w0, \sigma 0) has
been extended by zero after time T .

3.2.3. Flushing. In accordance with Lemma 3.1, we take \theta 0 = w0 = 0 in (10).
Let (u1, \theta 1) be the solution to the linear problem\left\{       

\partial tu
1 + (u0 \cdot \nabla )u1 + (u1 \cdot \nabla )u0 +\nabla p1 =\Delta u0 + v1, div u1 = 0 in \scrO T ,

\partial t\theta 
1 + u0 \cdot \nabla \theta 1 =w1 in \scrO T ,

u1 \cdot \nu = 0 on \Kappa T ,
u1(0, \cdot ) = u\ast , \theta 1(0, \cdot ) = \theta \ast in \scrO ,

(15)

where v1 and w1 are forcing terms, spatially supported in \scrO \setminus \Omega . Thanks to (14), we
have \Delta u0 =\nabla ( div u0) +\nabla \times (\nabla \times u0) =\nabla \sigma 0. Thus, this term can be absorbed by
v1. Of course, (15) is a linear uncoupled system.

Lemma 3.2. Let us assume that (u\ast , \theta \ast ) \in [H3(\scrO )n \cap H]\times H3(\scrO ). There exist
forcing terms

v1 \in C1([0, T ];H1(\scrO )n)\cap C0([0, T ];H2(\scrO )n),(16)

w1 \in C1([0, T ];H2(\scrO ))\cap C0([0, T ];H3(\scrO ))

with

Supp (v1,w1)\subset \subset [0, T ]\times \scrO \setminus \Omega ,(17)

such that the associated solution (u1, \theta 1) to (15) satisfies (u1, \theta 1)(T, \cdot ) = (0,0) in \Omega .
Moreover, u1 belongs to C0([0, T ];H2(\scrO )n)\cap L\infty (0, T ;H3(\scrO )n) and a similar property
holds for \theta 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 1

50
.2

14
.1

82
.2

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



492 CHAVES-SILVA ET AL.

Proof. First, note that the result for u1 is proved in [8, Lemma 3]. Second, for \theta 1

we have a similar situation and we can apply the same arguments. For completeness,
let us sketch the main ideas.

We will use the smooth partition of unity \{ \eta \ell : 1\leq \ell \leq L\} defined in [8, Appendix
A], which is related to \Phi 0 as follows: thanks to (13), we can find \gamma > 0 and open balls
B\ell for 1\leq \ell \leq L covering \scrO with the following property:\biggl\{ 

\forall \ell , \exists t\ell \in (\gamma ,T  - \gamma ), \exists m\ell \in \{ 1, . . . ,\scrM \} such that
\Phi 0(s; 0,B\ell )\subset Qm\ell 

\forall s\in (t\ell  - \gamma , t\ell + \gamma ),
(18)

where the Qm\ell 
are squares (or cubes) that never intersect \Omega that cover a compact set

K in \scrO such that K \cap \Omega = \emptyset and

\forall x\in \scrO , \exists tx \in (0, T ) such that \Phi 0(tx; 0, x)\in K

and \scrM \in \BbbN is the number of such a cubes; hence, every ball spends a positive amount
of time within a given square (cube) where we can use a localized control to act on the
\theta 1. Here, it is assumed that the \eta \ell satisfy 0\leq \eta \ell \leq 1,

\sum 
\eta \ell \equiv 1 and Supp (\eta \ell )\subset B\ell .

Let us introduce a smooth function \varrho : \BbbR \mapsto \rightarrow [0,1], with \varrho = 1 on ( - \infty , - \gamma ) and
\varrho = 0 on (\gamma ,+\infty ). For each \ell , consider the solution \theta \ell to\biggl\{ 

\partial t\theta \ell + u0 \cdot \nabla \theta \ell = 0 in (0, T )\times \scrO ,
\theta \ell (0, \cdot ) = \eta \ell \theta \ast in \scrO ,

and set \theta \ell (t, x) := \varrho (t - t\ell )\theta \ell (t, x). Since \varrho (T  - t\ell ) = 0 and \varrho ( - t\ell ) = 1, \theta \ell solves the
linear problem \biggl\{ 

\partial t\theta \ell + u0 \cdot \nabla \theta \ell =w\ell in (0, T )\times \scrO ,
\theta \ell (0, \cdot ) = \eta \ell \theta \ast , \theta \ell (T, \cdot ) = 0 in \scrO ,

where w\ell (t, x) := \varrho t(t - t\ell )\theta \ell . Since \varrho t vanishes outside ( - \gamma , \gamma ), one has (18), and \eta \ell 
is compactly supported in B\ell , it is easy to see that w\ell is supported in [0, T ]\times Qm\ell 

.
At this point, we take \theta 1 :=

\sum 
\ell \theta \ell and w1 :=

\sum 
\ell w\ell and we see that the second

PDE and the second initial condition in (15) are satisfied. Thanks to this explicit
construction, the spatial regularity of w1 and \theta \ell are the same. Therefore, w1 \in 
C1([0, T ],H2(\scrO ))\cap C0([0, T ],H3(\scrO )). The fact that \theta 1 belongs to C0([0, T ];H2(\scrO ))\cap 
L\infty (0, T ;H3(\scrO )) readily comes from the fact that the \theta \ell satisfy the same. This ends
the proof.

Lemma 3.2 is a null controllability result. Thanks to the linearity and reversibility
of (15), it leads to an exact controllability result:

Lemma 3.3. Let us assume that (u\ast , \theta \ast ), (uT , \theta T ) \in [H3(\scrO )n \cap H] \times H3(\scrO ).
Then, there exist v1 and w1 as in (16) and (17) such that the associated solution to
(15) satisfies (u1, \theta 1)(T, \cdot ) = (uT , \theta T ). Moreover, u1 belongs to C0([0, T ];H2(\scrO )n) \cap 
L\infty (0, T ;H3(\scrO )n) and a similar property holds for \theta 1.

3.2.4. Equations and estimates for the remainder. The equations for r\varepsilon ,
\pi \varepsilon , and q\varepsilon in the extended domain \scrO T are

(19)\left\{       
\partial tr

\varepsilon  - \varepsilon \Delta r\varepsilon + (u\varepsilon \cdot \nabla )r\varepsilon +\nabla \pi \varepsilon = f\varepsilon  - A\varepsilon r\varepsilon + \varepsilon q\varepsilon en + \varepsilon \theta 1en, div r\varepsilon = 0 in \scrO T ,
\partial tq

\varepsilon  - \varepsilon \Delta q\varepsilon + u\varepsilon \cdot \nabla q\varepsilon = h\varepsilon  - B\varepsilon r\varepsilon in \scrO T ,
r\varepsilon \cdot \nu = 0, [\nabla \times r\varepsilon ]tan = - [\nabla \times u1]tan, R(q\varepsilon ) = - R(\theta 1) on \Kappa T ,
r\varepsilon (0, \cdot ) = 0, q\varepsilon (0, \cdot ) = 0 in \scrO ,
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 493

where we have introduced

f\varepsilon := \varepsilon \Delta u1  - \varepsilon (u1 \cdot \nabla )u1,A\varepsilon r\varepsilon := (r\varepsilon \cdot \nabla )(u0 + \varepsilon u1),

h\varepsilon := \varepsilon \Delta \theta 1  - \varepsilon u1 \cdot \nabla \theta 1, B\varepsilon r\varepsilon := \varepsilon r\varepsilon \cdot \nabla \theta 1.

We can establish energy estimates for the remainder by multiplying (19)1 by r\varepsilon 

and (19)2 by q\varepsilon . Indeed, after integration by parts, and thanks to the interpolation
inequality in [2, Theorem III.2.36]), we easily obtain the following estimates:\bigm| \bigm| \bigm| \bigm| \int 

\partial \scrO 
q\varepsilon R(\theta 1)d\Gamma 

\bigm| \bigm| \bigm| \bigm| \leq \| q\varepsilon \| L2(\partial \scrO )

\bigm\| \bigm\| R(\theta 1)\bigm\| \bigm\| 
L2(\partial \scrO )

\leq C\| q\varepsilon \| H1

\bigm\| \bigm\| \theta 1\bigm\| \bigm\| 
H2 ,\bigm| \bigm| \bigm| \bigm| \int 

\partial \scrO 
m| q\varepsilon | 2 d\Gamma 

\bigm| \bigm| \bigm| \bigm| \leq C\| q\varepsilon \| L2\| q\varepsilon \| H1

and

(20)

1

2

d

dt
(\| r\varepsilon \| 2 + \| q\varepsilon \| 2) + \varepsilon (\| \nabla \times r\varepsilon \| 2 + \| \nabla q\varepsilon \| 2)

\leq C(\varepsilon + \| \sigma 0\| L\infty + \| u0 + \varepsilon u1\| L\infty + \varepsilon \| \nabla \theta 1\| L\infty )(\| r\varepsilon \| 2 + \| q\varepsilon \| 2)

+
\varepsilon 

2
(\| \nabla \times r\varepsilon \| 2 + \| \nabla q\varepsilon \| 2)

+C
\bigl[ 
\varepsilon 
\bigl( 
\| u1\| 2H2 + \| \theta 1\| 2H2

\bigr) 
+ \| f\varepsilon \| 2 + \| h\varepsilon \| 2

\bigr] 
,

where the boundary term for r\varepsilon is bounded as in [8, section 2.5].
From Gronwall's inequality and Lemma 3.2, we deduce that

\| r\varepsilon \| 2L\infty (L2) + \| q\varepsilon \| 2L\infty (L2) + \varepsilon 
\bigl( 
\| \nabla \times r\varepsilon \| 2 + \| \nabla q\varepsilon \| 2

\bigr) 
=O(\varepsilon ).

Consequently, at time T , since (u0, \theta 0)(T, \cdot ) = (u1, \theta 1)(T, \cdot ) = (0,0), we have

\| u\varepsilon (T, \cdot )\| \leq \| \varepsilon r\varepsilon (T, \cdot )\| \leq O(\varepsilon 3/2) and \| \theta \varepsilon (T, \cdot )\| \leq \| \varepsilon 2q\varepsilon (T, \cdot )\| \leq O(\varepsilon 5/2).

This concludes the proof of Proposition 3.1 in a special case of the slip boundary
condition (9).

3.3. The case of Navier-slip-with-friction boundary conditions. We
come back in this section to the general case.

3.3.1. Ansatz with correction term. Let us introduce a smooth function
\varphi :\BbbR n \mapsto \rightarrow \BbbR such that\biggl\{ 

\varphi = 0on\partial \scrO ,\varphi > 0 in\scrO ,\varphi < 0 in \BbbR n\setminus \scrO , and
| \varphi (x)| = dist(x,\partial \scrO ) in a small neighborhood of \partial \scrO .

Then, \nu = - \nabla \varphi near \partial \scrO and \nu can be extended smoothly within the full domain \scrO .
According to the original boundary layer analysis of Navier-slip-with-friction

boundary conditions proved in [22] by Iftimie and Sueur, we introduce the follow-
ing expansions of the variables and the forcing terms:\left\{   u\varepsilon (t, x) = u0(t, x) +

\surd 
\varepsilon \rho (t, x,\varphi (x)/

\surd 
\varepsilon ) + \varepsilon u1(t, x) + \cdot \cdot \cdot + \varepsilon r\varepsilon (t, x),

p\varepsilon (t, x) = p0(t, x) + \varepsilon p1(t, x) + \cdot \cdot \cdot + \varepsilon \pi \varepsilon (t, x),
\theta \varepsilon (t, x) = \theta 0(t, x) + \varepsilon 2\theta 1(t, x) + \varepsilon 2q\varepsilon (t, x),

(21)
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494 CHAVES-SILVA ET AL.\left\{   v\varepsilon (t, x) = v0(t, x) +
\surd 
\varepsilon v\rho (t, x,\varphi (x)/

\surd 
\varepsilon ) + \varepsilon v1(t, x),

w\varepsilon (t, x) = w0(t, x) + \varepsilon 2w1(t, x),
\sigma \varepsilon (t, x) = \sigma 0(t, x).

Thus, since u0 cannot satisfy the Navier-slip-with-friction boundary condition on
\Lambda T , we introduce in (21) a corrector \rho . This profile is expressed in terms of both the
slow spatial variable x\in \scrO and one fast scalar variable z =\varphi (x)/

\surd 
\varepsilon . In the expansions

in (21), the missing terms will be defined below (see section 3.3.3); they will help us to
prove that the remainder is small. We use the couples (u0, \theta 0) and (u1, \theta 1) (extended
by zero for t > T ) introduced in the previous sections; see sections 3.2.2 and 3.2.3.
The following sections are devoted to determine, analyze, and estimate all the terms.

The boundary layer corrector will be given by the solution to an initial boundary
value problem with a boundary condition associated to the extra variable. More
precisely, as in [22], we will require that \rho = \rho (t, x, z) satisfies\left\{       

\partial t\rho + [(u0 \cdot \nabla )\rho + (\rho \cdot \nabla )u0]tan + u0\flat z\partial z\rho  - \partial zz\rho = v\rho in \BbbR + \times \scrO \times \BbbR +,
\partial z\rho (t, x,0) = g0(t, x) in \BbbR + \times \scrO ,
\rho (t, x,0) \cdot \nu (x) = 0 in \BbbR + \times \scrO ,
\rho (0, x, z) = 0 in \scrO \times \BbbR +,

(22)

where we have used the notation

u0\flat (t, x) := - u
0(t, x) \cdot \nu (x)
\varphi (x)

and g0(t, x) := 2\chi (x)N(u0)(t, x) in\BbbR + \times \scrO 

for a smooth cut-off function \chi satisfying \chi = 1 in a neighborhood of \partial \scrO .
We can formally obtain (22) by replacing the expression u\varepsilon by u0 +\surd 

\varepsilon \rho (t, x,\varphi (x)/
\surd 
\varepsilon in (7) and keeping the terms of order

\surd 
\varepsilon .

The following points are in order:
\bullet v\rho must be viewed as a smooth control whose spatial support is located

outside of \Omega . With the help of the transport term, this control will enable us
to modify the behavior of \rho inside the physical domain \Omega .

\bullet \rho depends on n+1 spatial variables (n slow variables xi and one fast variable
z); thus, it is not set in curvilinear coordinates. It is implicitly assumed that
\nu actually refers to the extension  - \nabla \varphi of the normal vector; in turn, this
furnishes extensions of the identities in (1).

\bullet We will check that the construction above satisfies v\rho \cdot \nu = 0. Since the
equation is linear, it preserves the relation \rho (0, x, z) \cdot \nu (x) = 0 at initial time;
whence, the boundary profile will be tangential, even inside the domain; see
[22, section 2] for more details.

\bullet In (23), the role of the function \chi is to ensure that \rho is compactly supported
near \partial \scrO .

\bullet Since u0 is smooth and tangent to the boundary, a Taylor expansion proves
that u0\flat is smooth in \scrO .

\bullet The boundary layer profile \rho does not depend on \varepsilon .

3.3.2. The well-prepared dissipation method. Unlike in the previous sec-
tion, where T is the fixed time control, we will need here virtually long time intervals
[0, T/\varepsilon ] to dissipate the boundary layer.

The most natural strategy would be to use that u0 is equal to 0 after time T .
Then, (22) would be reduced to a heat equation on the half line \BbbR + with homogeneous
Neumann boundary conditions and the boundary layer would decay. Unfortunately,
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 495

this is too slow: one can only prove that
\surd 
\varepsilon \rho (T/\varepsilon , \cdot ,\varphi (\cdot )/

\surd 
\varepsilon ) =O(\varepsilon ) (see [8, section

3.2]); therefore, by dividing by \varepsilon , u(T, \cdot ) = O(1) and this is not enough to use the
local result at the end. This is why we use the source v\rho to ``prepare"" the dissipation
of the boundary layer.

Let us introduce some weighted Sobolev spaces:

Hm,\ell (\BbbR ) :=

\left\{   f \in Hm(\BbbR ) ;
m\sum 

| \alpha | =0

\int 
\BbbR 
(1 + | z| 2)\ell | \partial \alpha z f(z)| 2dz <+\infty 

\right\}   ,

endowed with the corresponding (natural) norms. In [8, Lemma 7], the following
result is proved.

Lemma 3.4. Let us assume that k \geq 1, and let u0 \in C\infty (\scrO T ;\BbbR n) be a fixed
reference flow in (11). There exist v\rho \in C\infty (\BbbR +\times \scrO \times \BbbR +) with v

\rho \cdot \nu = 0 and support
in (0, T ) \times (\scrO \setminus \Omega ) \times \BbbR + such that, for any j,m \in \BbbN and any \ell = 0,1, . . . , k, the
associated boundary layer profile \rho satisfies

\| \rho (t, \cdot , \cdot )\| Hj
x(\scrO ;Hm,\ell 

z (\BbbR +)) \leq C

\bigm| \bigm| \bigm| \bigm| log(2 + t)

2 + t

\bigm| \bigm| \bigm| \bigm| 1/4+(k - \ell )/2

,(23)

where the positive constant C depends on j, m, \ell , and u0 but is independent of t.

The interest of Lemma 3.4 is twofold:
\bullet The estimates (23) will be used to show that the source terms generated by

the boundary layer are integrable in long time and the equation satisfied by
the remainder term is well posed.

\bullet Also, they will be used to prove that the boundary layer is sufficiently small
at time T/\varepsilon .

Remark 3.1. A more ambitious idea would be to design a control strategy to get
exactly \rho (T/\varepsilon , \cdot ,\varphi (\cdot )/

\surd 
\varepsilon ) \equiv 0. But, unfortunately, it can be proved that (22) is not

null-controllable at time T/\varepsilon ; see [8, section 3.5].

3.3.3. Technical profiles. For a function f = f(t, x, z), we will use the notation
\{ f\} to denote its values at points (t, x, z) with z = \varphi (x)/

\surd 
\varepsilon . The full decomposition

required for the states and controls will be the following:

(24)\biggl\{ 
u\varepsilon = u0 +

\surd 
\varepsilon \{ \rho \} + \varepsilon u1 + \varepsilon \nabla \zeta \varepsilon + \varepsilon \{ \beta \} + \varepsilon r\varepsilon , p\varepsilon = p0 + \varepsilon \{ \psi \} + \varepsilon p1 + \varepsilon \mu \varepsilon + \varepsilon \pi \varepsilon ,

\theta \varepsilon = \theta 0 + \varepsilon 2\theta 1 + \varepsilon 2q\varepsilon , v\varepsilon = v0 +
\surd 
\varepsilon \{ v\rho \} + \varepsilon v1, w\varepsilon =w0 + \varepsilon 2w1, \sigma \varepsilon = \sigma 0.

The functions \beta , \zeta \varepsilon , and \psi are defined as follows:

\beta (t, x, z) = - 2e - zN(\rho )(t, x,0) - \nu (x)

\int +\infty 

z

div \rho (t, x, z\prime )dz\prime ,\biggl\{ 
\Delta \zeta \varepsilon = - \{ div \beta \} in \scrO ,
\partial \nu \zeta 

\varepsilon = - \beta (t, \cdot ,0) \cdot \nu on \partial \scrO ,\biggl\{ 
\psi =\psi (t, x, z) satisfies [(u0 \cdot \nabla )\rho + (\rho \cdot \nabla )u0] \cdot \nu = \partial z\psi 
and \psi (t, x, z)\rightarrow 0 as z\rightarrow +\infty .

(25)
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496 CHAVES-SILVA ET AL.

It is not difficult to check that the definitions in (25) are compatible with (7),
and, furthermore, the following estimates hold:

\| \beta (t, \cdot , \cdot )\| Hj
x(\scrO ;Hm,l

z (\BbbR +)) \leq C\| \rho (t, \cdot , \cdot )\| Hj+1
x (\scrO ;Hm+1,l+2

z (\BbbR +)),(26)

\| \zeta \varepsilon (t, \cdot )\| H4(\scrO ) \leq C
\Bigl( 
\varepsilon  - 3/4\| \beta (t, \cdot , \cdot )\| H4

x(\scrO ;H2,0
z (\BbbR +))

+\| \rho (t, \cdot , \cdot )\| H3
x(\scrO ;H0,1

z (\BbbR +))

\Bigr) 
,

\| \zeta \varepsilon (t, \cdot )\| H3(\scrO ) \leq C
\Bigl( 
\varepsilon  - 1/4\| \beta (t, \cdot , \cdot )\| H3

x(\scrO ;H1,0
z (\BbbR +))

+\| \rho (t, \cdot , \cdot )\| H2
x(\scrO ;H0,1

z (\BbbR +))

\Bigr) 
,

\| \zeta \varepsilon (t, \cdot )\| H2(\scrO ) \leq C
\Bigl( 
\varepsilon 1/4\| \beta (t, \cdot , \cdot )\| H2

x(\scrO ;H0,0
z (\BbbR +)) + \| \rho (t, \cdot , \cdot )\| H1

x(\scrO ;H0,1
z (\BbbR +))

\Bigr) 
,(27)

\| \psi (t, \cdot , \cdot )\| H1
x(\scrO ;H0,0

z (\BbbR +)) \leq C\| \rho (t, \cdot , \cdot )\| H2
x(\scrO ;H0,2

z (\BbbR +)).

3.3.4. Equation and estimates for the remainder. We will now analyze the
remainder defined in (24), which is in fact a solution in the domain \BbbR + \times \scrO to

\left\{       
\partial tr

\varepsilon  - \varepsilon \Delta r\varepsilon + (u\varepsilon \cdot \nabla )r\varepsilon +\nabla \pi \varepsilon = \{ f\varepsilon \}  - \{ A\varepsilon r\varepsilon \} + \varepsilon q\varepsilon en + \varepsilon \theta 1en, in \BbbR + \times \scrO ,
\partial tq

\varepsilon  - \varepsilon \Delta q\varepsilon + u\varepsilon \cdot \nabla q\varepsilon = \{ h\varepsilon \}  - B\varepsilon r\varepsilon , div r\varepsilon = 0 in \BbbR + \times \scrO ,
r\varepsilon \cdot \nu = 0, N(r\varepsilon ) = - N(g\varepsilon ), R(q\varepsilon ) = - R(\theta 1) on \BbbR + \times \partial \scrO ,
r\varepsilon (0, \cdot ) = 0, q\varepsilon (0, \cdot ) = 0 in \scrO ,

(28)

where g\varepsilon := u1 +\nabla \zeta \varepsilon + \beta | z=0. We have introduced in (28) the new operators A\varepsilon and
B\varepsilon , with

A\varepsilon r\varepsilon := (r\varepsilon \cdot \nabla )(u0 +
\surd 
\varepsilon \rho + \varepsilon u1 + \varepsilon \nabla \zeta \varepsilon + \varepsilon \beta ) - (r\varepsilon \cdot \nu )(\partial z\rho +

\surd 
\varepsilon \partial z\beta ),

B\varepsilon r\varepsilon := \varepsilon r\varepsilon \cdot \nabla \theta 1,
(29)

and the new forcing terms f\varepsilon and h\varepsilon , with

(30)

f\varepsilon := (\Delta \varphi \partial z\rho  - 2(\nu \cdot \nabla )\partial z\rho + \partial zz\beta ) +
\surd 
\varepsilon (\Delta \rho +\Delta \varphi \partial z\beta  - 2(\nu \cdot \nabla )\partial z\beta )

+ \varepsilon (\Delta \beta +\Delta u1 +\Delta \nabla \zeta \varepsilon ) - ((\rho +
\surd 
\varepsilon (\beta + u1 +\nabla \zeta \varepsilon )) \cdot \nabla )(\rho +

\surd 
\varepsilon (\beta + u1 +\nabla \zeta \varepsilon ))

 - (u0 \cdot \nabla )\beta  - (\beta \cdot \nabla )u0  - u0\flat z\partial z\beta + (\beta + u1 +\nabla \zeta \varepsilon ) \cdot \nu \partial z(\rho +
\surd 
\varepsilon \beta ) - \nabla \psi  - \partial t\beta 

and

h\varepsilon := \varepsilon \Delta \theta 1  - (
\surd 
\varepsilon \rho + \varepsilon (u1 +\nabla \zeta \varepsilon + \beta )) \cdot \nabla \theta 1.(31)

We have to estimate the size of the remainder (r\varepsilon , q\varepsilon ) at final time and check
that it is small. We begin by establishing an energy estimate. Here, we perform
computations similar to those in [18, Proposition 1.1] (see also [8, section 4.4]).

Thus, we multiply (28)1 by r\varepsilon and (28)2 by q\varepsilon and we integrate by parts. We
proceed as before, term by term, the only difference being the treatment of the terms
coming from the boundary.

We recall the following identity, which will be used in what follows:\int 
\scrO 
( - \Delta u) \cdot v= 2

\int 
\scrO 
D(u) \cdot D(v) - 2

\int 
\partial \scrO 

[D(u)\nu ]tan \cdot v d\Gamma ,

where u and v are smooth vector fields such that v is divergence-free and tangential
to the boundary.
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 497

It follows that

 - \varepsilon 
\int 
\scrO 
\Delta r\varepsilon \cdot r\varepsilon = 2\varepsilon \| D(r\varepsilon )\| 2 + 2\varepsilon 

\int 
\partial \scrO 

([Mr\varepsilon ]tan +N(g\varepsilon )) \cdot r\varepsilon d\Gamma ,

and, consequently, for any \lambda > 0,

2

\bigm| \bigm| \bigm| \bigm| \int 
\partial \scrO 

([Mr\varepsilon ]tan +N(g\varepsilon )) \cdot r\varepsilon 
\bigm| \bigm| \bigm| \bigm| \leq 2

\int 
\partial \scrO 

| Mr\varepsilon \cdot r\varepsilon | d\Gamma +

\int 
\partial \scrO 

| N(g\varepsilon ) \cdot r\varepsilon | d\Gamma 

\leq \lambda \| \nabla r\varepsilon \| 2 +C\lambda (\| r\varepsilon \| 2 + \| N(g\varepsilon )\| 2L2(\partial \scrO ))

\leq \lambda \| \nabla r\varepsilon \| 2 +C\lambda (\| r\varepsilon \| 2 + \| g\varepsilon \| 2H2(\scrO )).

(32)

Let us absorb the term \| \nabla r\varepsilon \| 2 in the right-hand side of (32). Thanks to the
classical Korn's inequality, since div r\varepsilon = 0 in \scrO and r\varepsilon \cdot \nu = 0 on \partial \scrO , we have

\| r\varepsilon \| 2H1 \leq CK\| r\varepsilon \| 2 +CK\| D(r\varepsilon )\| 2

for some CK > 0. Choosing \lambda = 1/(2CK), we get:

d

dt
\| r\varepsilon \| 2 + \varepsilon \| D(r\varepsilon )\| 2 \leq 

\Bigl( 
\| \sigma 0\| \infty +C\varepsilon + \| \{ f\varepsilon \} \| + 2\| \{ A\varepsilon \} \| \infty 

\Bigr) 
\| r\varepsilon \| 2

+
\Bigl( 
C\varepsilon \| g\varepsilon \| 2H2 + \| \{ f\varepsilon \} \| + \varepsilon \| \theta 1\| 2

\Bigr) 
+ \varepsilon \| q\varepsilon \| 2

and

d

dt
\| q\varepsilon \| 2 + \varepsilon \| \nabla q\varepsilon \| 2 \leq 

\Bigl( 
\| \sigma 0\| \infty + \| \{ h\varepsilon \} \| + \| B\varepsilon \| \infty +C\varepsilon 

\Bigr) 
\| q\varepsilon \| 2

+
\Bigl( 
\| \{ h\varepsilon \} \| +C\varepsilon \| \theta 1\| 2H2

\Bigr) 
+ \| B\varepsilon \| \infty \| r\varepsilon \| 2.

Adding these two estimates, we see that

d

dt
(\| r\varepsilon \| 2 + \| q\varepsilon \| 2) + \varepsilon (\| D(r\varepsilon )\| 2 +\| \nabla q\varepsilon \| 2)

\leq 
\Bigl( 
\| \sigma 0\| \infty +C\varepsilon + \| \{ f\varepsilon \} \| + 2\| \{ A\varepsilon \} \| \infty + \| \{ h\varepsilon \} \| + \| B\varepsilon \| \infty 

\Bigr) \Bigl( 
\| r\varepsilon \| 2 + \| q\varepsilon \| 2

\Bigr) 
+
\Bigl( 
C\varepsilon \| g\varepsilon \| 2H2 + \| \{ f\varepsilon \} \| + \| \{ h\varepsilon \} \| +C\varepsilon \| \theta 1\| 2H2

\Bigr) 
.

Applying Gronwall's inequality in the interval (0, T/\varepsilon ) and using the fact that the
initial state vanishes and

\| \{ A\varepsilon \} \| L1(L\infty ) + \| B\varepsilon \| L1(L\infty ) =O(1),(33)

\varepsilon \| \theta 1\| 2L2(H2) + \varepsilon \| g\varepsilon \| 2L2(H2) =O(\varepsilon 1/4),(34)

\| \{ f\varepsilon \} \| L1(L2) + \| \{ h\varepsilon \} \| L1(L2) =O(\varepsilon 1/4),(35)

we obtain

\| r\varepsilon \| 2L\infty (L2) + \| q\varepsilon \| 2L\infty (L2) + \varepsilon 
\Bigl( 
\| D(r\varepsilon )\| 2L2(L2) + \| \nabla q\varepsilon \| 2L2(L2)

\Bigr) 
=O(\varepsilon 1/4).(36)

The estimates (33)--(35) hold in the whole interval [0,+\infty ). The estimates for
\{ A\varepsilon \} , g\varepsilon , and \{ f\varepsilon \} can be found in [8, section 4.4]. Here, we give some details to
obtain the estimates for B\varepsilon , \theta 1, and \{ h\varepsilon \} , which are new.
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498 CHAVES-SILVA ET AL.

First, B\varepsilon and \theta 1 can be easily bounded using (29) and Lemma 3.2. This yields
\| B\varepsilon \| L1(L\infty ) =O(1) and \varepsilon \| \theta 1\| 2L2(H2) =O(\varepsilon ).

Now, let us justify the estimate of \{ h\varepsilon \} . The first term of \{ h\varepsilon \} is O(\varepsilon ), thanks
to the regularity of \theta 1.

The second term of \{ h\varepsilon \} , one can be treated as follows:

\| 
\surd 
\varepsilon \{ \rho \} (t, \cdot )\cdot \nabla \theta 1(t, \cdot )\| 

\leq C
\surd 
\varepsilon \| \{ \rho \} (t, \cdot )\| H1\| \nabla \theta 1(t, \cdot )\| H1

\leq C
\Bigl( \surd 

\varepsilon \| \rho (t, \cdot , \cdot )\| H1
x(H

0,0
z ) + \| \{ \partial z\rho \} (t, \cdot )\| 

\Bigr) 
\| \nabla \theta 1(t, \cdot )\| H1

\leq C
\Bigl( \surd 

\varepsilon \| \rho (t, \cdot , \cdot )\| H1
x(H

0,0
z ) + \varepsilon 1/4\| \rho (t, \cdot , \cdot )\| H1

x(H
1,0
z )

\Bigr) 
\| \nabla \theta 1(t, \cdot )\| H1

\leq C\varepsilon 1/4\| \rho (t, \cdot , \cdot )\| H1
x(H

1,0
z )\| \nabla \theta 

1(t, \cdot )\| H1 ,

where we have used that the fast scaling variable enables us to ``win"" a factor \varepsilon 1/4;
see [22, Lemma 3] and the Sobolev embedding H1(\scrO ) \lhook \rightarrow L4(\scrO ) which is valid in two
and three dimensions. Then, integrating this last inequality with respect to time over
(0, T/\varepsilon ), using the fact that \theta 1 is bounded in L\infty (0, T ;H3(\scrO )) and Lemma 3.4 for k= 4
and noting that there exists a positive constant C > 0 such that (log s)/s \leq Cs - 1/2,
for every s\geq 1, we see that

\| 
\surd 
\varepsilon \{ \rho \} \cdot \nabla \theta 1\| L1(L2) =O(\varepsilon 1/4).

The third term of \{ h\varepsilon \} is O(\varepsilon ), thanks to the regularity of u1 and \theta 1.
For the fourth term of \{ h\varepsilon \} , using (26) and (27), we have

\| \varepsilon \nabla \zeta \varepsilon (t, \cdot )\cdot \nabla \theta 1(t, \cdot )\| 
\leq C\varepsilon \| \nabla x\zeta 

\varepsilon (t, \cdot )\| H1\| \nabla \theta 1(t, \cdot )\| H1

\leq C\varepsilon \| \zeta \varepsilon (t, \cdot )\| H2\| \nabla \theta 1(t, \cdot )\| H1

\leq C\varepsilon 
\Bigl( 
\varepsilon 1/4\| \beta (t, \cdot , \cdot )\| H2

x(H
0,0
z ) + \| \rho (t, \cdot , \cdot )\| H1

x(H
0,1
z )

\Bigr) 
\| \nabla \theta 1(t, \cdot )\| H1

\leq C\varepsilon \| \rho (t, \cdot , \cdot )\| H3
x(H

1,2
z )\| \nabla \theta 

1(t, \cdot )\| H1 .

Integrating this last inequality with respect to time, and using Lemma 3.4 for k = 3
and, again, the fact that \theta 1 is bounded in L\infty (0, T ;H3(\scrO )), we find that

\| \varepsilon \nabla \zeta \varepsilon \cdot \nabla \theta 1\| L1(L2) =O(\varepsilon 1/4).

The last term of \{ h\varepsilon \} can be estimated in a similar way, using (26).

3.4. Towards the trajectory. In this section, we deduce a small-time global
approximate controllability result to the smooth trajectories by arguing as in [8, sec-
tion 5]. For this purpose, we will use once more Lemma 3.4 and the estimates (36)
on the remainder.

Let (u\varepsilon , p\varepsilon , \theta \varepsilon ) be the solution to (7). First, during the interval [0, T ], we put

(37)\biggl\{ 
u\varepsilon = u0 +

\surd 
\varepsilon \{ \rho \} + \varepsilon u1,\varepsilon + \varepsilon \nabla \zeta \varepsilon + \varepsilon \{ \beta \} + \varepsilon r\varepsilon , p\varepsilon = p0 + \varepsilon \{ \psi \} + \varepsilon p1,\varepsilon + \varepsilon \mu \varepsilon + \varepsilon \pi \varepsilon ,

\theta \varepsilon = \theta 0 + \varepsilon 2\theta 1 + \varepsilon 2q\varepsilon , v\varepsilon = v0 +
\surd 
\varepsilon \{ v\rho \} + \varepsilon v1,\varepsilon , w\varepsilon =w0 + \varepsilon 2w1,\varepsilon , \sigma \varepsilon = \sigma 0,

where u1,\varepsilon (0, \cdot ) = u\ast , \theta 
1,\varepsilon (0, \cdot ) = \theta \ast , u

1,\varepsilon (T, \cdot ) = u(\varepsilon T, \cdot ), and \theta 1,\varepsilon (T, \cdot ) = \theta (\varepsilon T, \cdot ).
The couple (u1,\varepsilon , \theta 1,\varepsilon ) solves, together with some p1,\varepsilon , the first-order system (15), and
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 499

obviously u1,\varepsilon and \theta 1,\varepsilon depend on \varepsilon . However, since the reference trajectory is of class
C\infty , all the required estimates can be made independent of \varepsilon . In a second step, for
large times t\geq T , we modify the expansions and set\biggl\{ 

u\varepsilon =
\surd 
\varepsilon \{ \rho \} + \varepsilon u(\varepsilon t, \cdot ) + \varepsilon \nabla \zeta \varepsilon + \varepsilon \{ \beta \} + \varepsilon r\varepsilon , p\varepsilon = \varepsilon 2p(\varepsilon t, \cdot ) + \varepsilon \mu \varepsilon + \varepsilon \pi \varepsilon ,

\theta \varepsilon = \varepsilon 2\theta (\varepsilon t, \cdot ) + \varepsilon 2q\varepsilon , v\varepsilon =
\surd 
\varepsilon v\rho + \varepsilon 2v, w\varepsilon = \varepsilon 3w .

(38)

Note that, for t\geq T , we have u0 = 0 and (u1, \theta 1) is the ``main"" trajectory. Changing
(37) by (38) allows us to get rid of some terms in the equations satisfied by the re-
mainder. Indeed, terms such as \varepsilon \Delta u1, \varepsilon (u1 \cdot \nabla )u1, \varepsilon u1 \cdot \nabla \theta 1, and \varepsilon \Delta \theta 1 will no longer
appear in (30) and (31) because they are already taken into account by (u, \theta ). Actu-
ally, despite the presence of the profile (u1, \theta 1) in both steps, the estimates obtained
for the remainder profile are as in section 3.3.4.

Let us introduce

u(\varepsilon )(t, x) :=
1

\varepsilon 
u\varepsilon 
\biggl( 
t

\varepsilon 
, x

\biggr) 
and \theta (\varepsilon )(t, x) :=

1

\varepsilon 2
\theta \varepsilon 
\biggl( 
t

\varepsilon 
, x

\biggr) 
.

Then, thanks to (26), (27), and (36), we see that\bigm\| \bigm\| \bigm\| u(\varepsilon )(T, \cdot ) - u(T, \cdot )
\bigm\| \bigm\| \bigm\| 

=
\bigm\| \bigm\| \bigm\| \varepsilon  - 1/2 \{ \rho \} (T/\varepsilon , \cdot ) +\nabla \zeta \varepsilon (T/\varepsilon , \cdot ) + \{ \beta \} (T/\varepsilon , \cdot ) + r\varepsilon (T/\varepsilon , \cdot )

\bigm\| \bigm\| \bigm\| 
\leq \varepsilon  - 1/2 \| \{ \rho \} (T/\varepsilon , \cdot )\| + \varepsilon 1/4\| \beta (T/\varepsilon , \cdot , \cdot )\| H2

x(\scrO ;H0,0
z (\BbbR +))

+ \| \rho (T/\varepsilon , \cdot , \cdot )\| H1
x(\scrO ;H0,1

z (\BbbR +)) + \| \{ \beta \} (T/\varepsilon , \cdot )\| + \| r\varepsilon (T/\varepsilon , \cdot )\| 

\leq \varepsilon  - 1/2\| \rho (T/\varepsilon , \cdot , \cdot )\| H0
x(\scrO ;H0,0

z (\BbbR +)) + \varepsilon 1/4\| \rho (T/\varepsilon , \cdot , \cdot )\| H3
x(\scrO ;H1,2

z (\BbbR +))

+ \| \rho (T/\varepsilon , \cdot , \cdot )\| H1
x(\scrO ;H0,1

z (\BbbR +)) + \| \rho (T/\varepsilon , \cdot , \cdot )\| H1
x(\scrO ;H1,2

z (\BbbR +)) +O(\varepsilon 1/8) .

We can use (23) to estimate the terms containing \rho in the estimates above. First,
recall that there exists a positive constant C > 0 such that (log s)/s \leq Cs - 1/2 for
every s\geq 1. Then, by taking \varepsilon sufficiently small, the following is found for k\geq 2:

\varepsilon  - 
1
2 \| \rho (T/\varepsilon , \cdot , \cdot )\| H0

x(\scrO ;H0,0
z (\BbbR +)) \leq C\varepsilon 

 - 1/2

\bigm| \bigm| \bigm| \bigm| log(2 + T/\varepsilon )

2 + T/\varepsilon 

\bigm| \bigm| \bigm| \bigm| 1/4+k/2

\leq C\varepsilon  - 3/8+k/4,

\varepsilon 
1
4 \| \rho (T/\varepsilon , \cdot , \cdot )\| H3

x(\scrO ;H1,2
z (\BbbR +)) \leq C\varepsilon 

1/4

\bigm| \bigm| \bigm| \bigm| log(2 + T/\varepsilon )

2 + T/\varepsilon 

\bigm| \bigm| \bigm| \bigm|  - 3/4+k/2

\leq C\varepsilon  - 1/8+k/4,

\| \rho (T/\varepsilon , \cdot , \cdot )\| H1
x(\scrO ;H0,1

z (\BbbR +)) \leq C
\bigm| \bigm| \bigm| \bigm| log(2 + T/\varepsilon )

2 + T/\varepsilon 

\bigm| \bigm| \bigm| \bigm|  - 1/4+k/2

\leq C\varepsilon  - 1/8+k/4,

| \rho (T/\varepsilon , \cdot , \cdot )| H1
x(\scrO ;H1,2

z (\BbbR +)) \leq C
\bigm| \bigm| \bigm| \bigm| log(2 + T/\varepsilon )

2 + T/\varepsilon 

\bigm| \bigm| \bigm| \bigm|  - 3/4+k/2

\leq C\varepsilon  - 3/8+k/4.

Finally, we choose k large enough, we conclude that \| u(\varepsilon )(T, \cdot )  - u(T, \cdot )\| =
O(\varepsilon 1/8), and, from (36), we have \| \theta (\varepsilon )(T, \cdot ) - \theta (T, \cdot )\| = \| q\varepsilon (T/\varepsilon , \cdot )\| =O(\varepsilon 1/8).

This concludes the proof of Proposition 3.1.

4. Local controllability of the Boussinesq system. The results in this sec-
tion are relatively well known. For clarity, they will be specified and their proof will
be sketched to some extent.
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500 CHAVES-SILVA ET AL.

Let \omega c and \omega be two nonempty open sets such that \omega c \subset \subset \omega \subset \subset \scrO \setminus \Omega , and let
\chi \omega be a cut-off function such that \chi \omega = 0 outside \omega and \chi \omega = 1 in \omega c.

The goal of this section is to prove the local exact controllability to the trajectories
of the following Boussinesq system with distributed controls:\left\{       

\partial tu - \Delta u+ (u \cdot \nabla )u+\nabla p= \theta en + v\chi \omega , div u= 0 in \scrO T ,
\partial t\theta  - \Delta \theta + u \cdot \nabla \theta =w\chi \omega in \scrO T ,
u \cdot \nu = 0, N(u) = 0, R(\theta ) = 0 on \Kappa T ,
u(0, \cdot ) = u\ast , \theta (0, \cdot ) = \theta \ast in \scrO .

(39)

Since (39) is nonlinear, we first begin by proving a (global) null controllability
result for the following system:

(40)\left\{       
\partial tz  - \Delta z + ((a+ b) \cdot \nabla )z + (z \cdot \nabla )b+\nabla q= hen + v\chi \omega , div z = 0 in \scrO T ,
\partial th - \Delta h+ (a+ b) \cdot \nabla h+ z \cdot \nabla c=w\chi \omega in \scrO T ,
z \cdot \nu = 0, N(z) = 0, R(h) = 0 on \Kappa T ,
z(0, \cdot ) = z\ast , h(0, \cdot ) = h\ast in \scrO ,

where the vector fields a, b, and M and the scalar functions c and m satisfy the
following assumptions:

(41)

(a, b, c)\in L\infty (0, T ;H \times H \times L2(\scrO ))\cap L\infty (\scrO T )
2n+1, (at, bt, ct)\in L2(0, T ;Lr(\scrO )2n+1),

M \in E :=H1 - \ell (0, T ;W\vargamma 1,\vargamma 1+1(\partial \scrO )n\times n)\cap H(3 - \ell )/2(0, T ;H\vargamma 2(\partial \scrO )n\times n),

m\in F :=H1 - \ell (0, T ;W\vargamma 1,\vargamma 1+1(\partial \scrO ))\cap H(3 - \ell )/2(0, T ;H\vargamma 2(\partial \scrO )),

where \ell \in (0,1/2) is arbitrarily close to 1/2, r= 2n, \vargamma 2 = (1/2)(3 - n)+(1 - \ell )(n - 2),
and \vargamma 1 > 1 (arbitrarily small) if n = 3 and \vargamma 1 = 1 if n = 2. From well-known
Sobolev embeddings, we deduce at once that E \lhook \rightarrow L\infty ((0, T ) \times \partial \scrO )n\times n and F \lhook \rightarrow 
L\infty ((0, T )\times \partial \scrO ).

It is well known that the null controllability of (40) is equivalent to the observ-
ability of the adjoint system\left\{       

 - \partial t\phi  - \Delta \phi  - (a \cdot \nabla )\phi  - D(\phi )b+\nabla \pi = c\nabla \psi , div \phi = 0 in \scrO T ,
 - \partial t\psi  - \Delta \psi  - (a+ b) \cdot \nabla \psi = \phi \cdot en in \scrO T ,
\phi \cdot \nu = 0, N(\phi ) = 0, R(\psi ) = 0 on \Kappa T ,
\phi (T, \cdot ) = \phi \ast , \psi (T, \cdot ) =\psi \ast in \scrO .

(42)

The desired observability inequality will be a consequence of a global Carleman in-
equality for (42); see Proposition 4.1 below.

4.1. Carleman estimates. Before stating the required inequalities, let us in-
troduce several classical weights in the study of Carleman estimates for parabolic
equations; see [13]. The basic weight will be a function \eta 0 \in C2(\scrO ) verifying

\eta 0 > 0 in \scrO , \eta 0 \equiv 0 on \partial \scrO , | \nabla \eta 0| > 0 in \scrO \setminus \omega \prime ,

where \omega \prime \subset \subset \omega c is a nonempty open set. The existence of \eta 0 is proved in [13].
Thus, for any \lambda > 0 we set

\alpha (x, t) =
e2\lambda \| \eta 

0\| \infty  - e\lambda \eta 
0(x)

t4(T  - t)4
, \alpha \ast (t) =max

x\in \scrO 
\alpha (x, t), \widehat \alpha (t) =min

x\in \scrO 
\alpha (x, t),

\xi (x, t) =
e\lambda \eta 

0(x)

t4(T  - t)4
, \xi \ast (t) =min

x\in \scrO 
\xi (x, t), \widehat \xi (t) =max

x\in \scrO 
\xi (x, t).
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 501

We also introduce the following notation:

I(s,\lambda ;\phi ) =

\int \int 
\scrO T

e - 2s\alpha 
\bigl[ 
s3\lambda 4\xi 3| \phi | 2 + s\lambda 2\xi | \nabla \phi | 2 + s - 1\xi  - 1(| \phi t| 2 + | \Delta \phi | 2)

\bigr] 
dxdt,

where s and \lambda are positive real numbers and \phi = \phi (t, x).
The following Carleman inequality holds:

Proposition 4.1. Assume that the assumptions (41) are fulfilled. There exist
positive constants \widetilde \lambda , \widetilde s, and C = C(\scrO , \omega c) such that, for any (\phi \ast ,\psi \ast ) \in H \times L2(\scrO ),
the corresponding solution to (42) verifies

(43)

I(s,\lambda ;\phi ) + I(s,\lambda ;\psi )\leq C(1 + T 2)s15/2\lambda 8
\int \int 

(0,T )\times \omega c

e - 4s\^\alpha +2s\alpha \ast \^\xi 15/2(| \phi | 2 + | \psi | 2)dxdt

for all \lambda \geq \widetilde \lambda and s \geq \widetilde s. Furthermore, \widetilde \lambda and \widetilde s have the form \widetilde \lambda = \widetilde \lambda 0e\widetilde \lambda 1T and \widetilde s =\widetilde s0e\lambda \widetilde s1(T 4+T 8), where \widetilde \lambda 0, \widetilde \lambda 1, and \widetilde s0 only depend on \| a\| \infty , \| b\| \infty , \| c\| \infty , \| at\| L2(Lr),
\| bt\| L2(Lr), \| ct\| L2(Lr), and \| M\| E, and \| m\| F and \widetilde s1 only depend on \scrO and \omega c.

The proof of Proposition 4.1 consists of three steps: (i) global Carleman estimates
for \phi and \psi (see [18, Proposition 2.1] and [27, Appendix D]); (ii) estimates of the
pressure by a local term using elliptic Carleman inequalities (see [24]); (iii) estimates
of local integrals of \Delta \phi and \phi t by using global energy estimates. For more details, we
refer the reader to [27, Appendix E] and [4, Appendix C].

4.2. Null controllability of the linearized system. In what follows, we take
s= \widetilde s and \lambda = \widetilde \lambda .

In this section, we prove the null controllability of the linear system (40) as a
consequence of the inequality (43). To this end, let us introduce the space where the
controls are searched for:

\scrH := [H1(0, T ;L2(\scrO )n)\cap C0([0, T ];H1(\scrO )n)]\times [H1(0, T ;L2(\scrO ))\cap C0([0, T ];H1(\scrO ))].

Proposition 4.2. Let (z\ast , h\ast ) \in H \times L2(\scrO ) be given, and suppose that (41)
holds. Then, there exist controls (v,w) \in \scrH such that the corresponding solution to
(40) satisfies

z(T, \cdot ) = 0 and h(T, \cdot ) = 0.

Moreover, the following estimate holds:

\| \kappa 1/2v\chi \omega \| + \| \kappa 1/2w\chi \omega \| + \| v\| H1(L2) + \| v\| L\infty (H1) + \| w\| H1(L2) + \| w\| L\infty (H1)

\leq C(\| z\ast \| + \| h\ast \| ),

where the positive constant C depends only on \scrO , \omega , T , \| a\| \infty , \| b\| \infty , \| c\| \infty ,
\| at\| L2(Lr), \| bt\| L2(Lr), \| ct\| L2(Lr), and \| M\| E and \| m\| F , \kappa (t) = e4s\^\alpha  - 2s\alpha \ast \^\xi  - 15/2,

\^\alpha , \alpha \ast , and \^\xi are defined in section 4.1.

The proof of Proposition 4.2 is based on a penalized Hilbert uniqueness method;
it follows the ideas of [18, section 3.1]. The details can be found in [27, Proposition
3.17].

4.3. Local exact controllability to the trajectories of the Boussinesq
system. We now prove the local exact controllability to the trajectories of (39).
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502 CHAVES-SILVA ET AL.

Let (u,p, \theta ) be an uncontrolled solution to (39), that is, a triplet satisfying\left\{       
\partial tu - \Delta u+ (u \cdot \nabla )u+\nabla p= \theta en, div u= 0 in \scrO T ,

\partial t\theta  - \Delta \theta + u \cdot \nabla \theta = 0 in \scrO T ,

u \cdot \nu = 0, N(u) = 0, R(\theta ) = 0 on \Kappa T ,

u(0, \cdot ) = u\ast , \theta (0, \cdot ) = \theta \ast in \scrO .

Let us assume that the following holds:

u\in X :=H(3 - \ell )/2(0, T ;H\vargamma 2+1/2(\scrO )n \cap H)\cap H1 - \ell (0, T ;W\vargamma 1+1/2,\vargamma 1+1(\scrO )n),
u\ast \in H3(\scrO )n \cap H, N(u\ast ) = 0 on \partial \scrO ,
\theta \in Y :=H(3 - \ell )/2(0, T ;H\vargamma 2+1/2(\scrO ))\cap H1 - \ell (0, T ;W\vargamma 1+1/2,\vargamma 1+1(\scrO )),

\theta \ast \in H3(\scrO ), R(\theta \ast ) = 0 on \partial \scrO ,

(44)

with \ell , r, \vargamma 1, and \vargamma 2 as in the beginning of section 4.

Proposition 4.3. Assume that T > 0 and (u,u\ast , \theta , \theta \ast ) satisfies (44). Then,
there exists \delta T > 0 such that, for every (u\ast , \theta \ast ) \in [H3(\scrO )n \cap H] \times H3(\scrO ) satisfying
\| u\ast  - u\ast \| H3 \leq \delta T , \| \theta \ast  - \theta \ast \| H3 \leq \delta T and the compatibility conditions

N(u\ast ) = 0, R(\theta \ast ) = 0 on \partial \scrO ,

one can find controls (v,w)\in \scrH and associated solutions (u,p, \theta ) to (39) with

u(T, \cdot ) = u(T, \cdot ) and \theta (T, \cdot ) = \theta (T, \cdot ) in \scrO .

The proof is based on a Kakutani's fixed-point theorem. It is a straightforward
adaptation of the argument in [18, section 3.2]. The details can be found in [27,
Proposition 3.18] and [4, Proposition 4.3]. See also [29] for a similar result.

5. Global controllability to the trajectories. Let us explain how the pre-
vious arguments can be chained in order to prove the main result, that is, Theorem
1.1.

First, we reduce the controllability to weak trajectories to the controllability to
smooth trajectories as follows.

Despite (u,p, \theta ) only being a weak solution in [0, T ], there exists a time interval
[\tau 1, \tau 2] \subset (0, T ) such that (u,p, \theta ) is smooth in [\tau 1, \tau 2]. This statement follows from
classical results; indeed, one can easily adapt [21, Theorems 2, 3, and 9] or [30, Remark
3.2] (written for the Navier--Stokes equations with Dirichlet boundary conditions and
source terms) to our context.

Then, we can start our control strategy by doing nothing in [0, \tau 1], that is, taking
v=w= \sigma = 0 in (5). The weak trajectory will move from (u\ast , \theta \ast ) to some (u, \theta )(\tau 1, \cdot ),
which must be viewed as the new initial data. Hence, without loss of generality, we
can work with a smooth reference trajectory.

We split the control strategy into four steps.
Step 1 - Regularization of the data: We begin by extending \Omega to a new

domain \scrO , as explained in section 2.1. We also use Proposition 2.1 to guarantee the
existence of (u\ast , \theta \ast ) \in H \times L2(\scrO ) and \sigma \ast \in C\infty 

c (\omega 0) satisfying (4). We set \sigma (t, x) :=
\varsigma (t/T )\sigma \ast (x) with \varsigma a smooth nonnegative decreasing function such that \varsigma \equiv 1 near 0
and \varsigma \equiv 0 near 1/8. The function \sigma must satisfy the compatibility condition div u\ast =
\sigma (0, \cdot ). Then, we let the system (5) evolve with v = w = 0 in the time interval
(0, T/8) in order to reach some data (u, \theta )(T/8, \cdot ) \in H \times L2(\scrO ). Next, by using
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 503

the smoothing effect of the uncontrolled Boussinesq system starting from divergence-
free data (see Lemma 2.1), we deduce that there exists T1 \in (T/8, T/4) such that
(u, \theta )(T1, \cdot )\in [H3(\scrO )n \cap H]\times H3(\scrO ). Accordingly, we can apply Lemma 3.3.

Step 2 - Global approximate controllability result in L2(\scrO )n+1: Let
us set T2 := T/2. Starting from the new initial data (u, \theta )(T1, \cdot ), we use the global
approximate controllability result stated in Proposition 3.1 in a time interval of size
T2 - T1 \geq T/4. Thus, for any \delta > 0, we can build a trajectory starting from (u, \theta )(T1, \cdot )
such that

\| (u, \theta )(T2, \cdot ) - (u, \theta )(T2, \cdot )\| \leq \delta .

Step 3 - Regularizing argument: Now, we use again Lemma 2.1 to deduce
the existence of a time T3 \in (T2,3T/4) such that

\| (u, \theta )(T3, \cdot ) - (u, \theta )(T3, \cdot )\| H3\times H3 \leq \Psi T/4(\delta ).

In particular, we can take \delta small enough such that

\Psi T/4(\delta )\leq \delta T/4,

where \delta T/4 is the radius of local controllability result given in Proposition 4.3 and
the function \Psi T/4 appears in the regularity result for the free Boussinesq system; see
Lemma 2.1.

Step 4 - Local controllability in H3(\scrO )n+1: Finally, we use the local
controllability result in [T3, T3 + T/4] and get

(u, \theta )(T3 + T/4, \cdot ) = (u, \theta )(T3 + T/4, \cdot ).

Then, extending the control by zero for t \in [T3 + T/4, T ], we get (3) and the proof is
complete.

Remark 5.1. A detailed analysis of the proofs of the results in sections 3 to 4
shows that the (intermediate) global approximate controllability result holds as soon
as the components of \=u and \=\theta belong to L\infty (0, T ;H3(\scrO ))\cap C0([0, T ];H2(\scrO )) and the
local exact controllability result holds as soon as (\=u, \=\theta ) satisfies (44).

6. Additional comments and open questions.

6.1. Controlling with fewer controls. A natural extension of the main result
would be the global exact controllability with a reduced number of controls acting
on a small part of the boundary. Unfortunately, in order to solve this problem, we
cannot use the extension domain technique.

However, in the spirit of [10, 29] one could try to establish a small-time global
null controllability for the internal control system (5) in two dimensions by acting
only on the temperature. The intuition behind a result of this kind is the following:
the temperature \theta is directly controlled by w; then, \theta acts through the coupling term
\theta e2 to control the component u2 and then u2 acts as bilinear control through the term
u2\partial x2

u1 to control the component u1.
One can also try get a global control result acting only on the motion, that is,

with w= 0 in (5); for some local results in this direction, see [3, 10].
Note that, in the case of Neumann conditions on \theta , i.e., with m\equiv 0, we have an

obstruction: Indeed, the total thermal energy associated with \theta is conserved and we
have \int 

\Omega 

\theta (T,x)dx=

\int 
\Omega 

\theta 0(x)dx.
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504 CHAVES-SILVA ET AL.

However, one could try to control to zero any initial data for the temperature \theta 0 \in L0,
where L0 is a closed linear subspace of L2(\Omega ) given by

L0 =

\biggl\{ 
\theta \ast \in L2(\Omega ) :

\int 
\Omega 

\theta \ast (x)dx= 0

\biggr\} 
,

which is invariant for the equation of temperature.
Results of these kinds will be analyzed in the near future

6.2. Other boundary conditions for the velocity field. Another natural
question is whether Theorem 1.1 holds with u subject to other boundary conditions.

By imposing Dirichlet boundary (no-slip) conditions on the velocity, we face a very
well known and challenging open problem related to a conjecture by Jacques-Louis
Lions. As pointed out in [8], the boundary layer found in the presence of Dirichlet
conditions has a behavior which is not as ``good"" as in the case of Navier boundary
conditions. This implies many difficulties to estimate the boundary layer profiles and
the remainder terms. As an attempt to deal with this problem, we refer the reader to
[9], where the authors prove that a kind of global boundary null controllability result
holds if we allow a distributed force, which can be chosen arbitrarily small in any
Sobolev norm in space; see also [20] for related results.

6.3. Other boundary conditions for the temperature. Let us see that
Theorem 1.1 holds with Dirichlet boundary conditions on the temperature.

To prove this, we can adapt the strategy of the proof of Theorem 1.1 (see section
5). After the extension and regularization steps, the initial temperature \theta \ast vanishes
on the whole boundary \partial \scrO . Then, the temperature \theta 1, which solves (15)2, preserves
this property in [0, T/\varepsilon ].

Indeed, since the flow u0 is parallel to the boundary, particles on the boundary
cannot enter in the domain \scrO , i.e., \Phi 0(s; t, x) \in \partial \scrO for all s, t \in [0, T/\varepsilon ] and x \in \partial \scrO 
(see [1, Theorem 5.1]). Thus, in the estimates of the reminder q\varepsilon (see section 3.2.4),
we get a zero boundary integral\int 

\partial \scrO 
q\varepsilon 
\partial q\varepsilon 

\partial \nu 
d\Gamma =

\int 
\partial \scrO 

\theta 1
\partial q\varepsilon 

\partial \nu 
d\Gamma = 0.

Finally, a local control result for the Boussinesq system with Navier-slip-with-friction
boundary conditions for the velocity field and Dirichlet boundary conditions on the
temperature can also be deduced, and this completes the argument.

6.4. Some possible extensions. Theorem 1.1 can be easily extended to cover
global control properties of a few systems of the Navier--Stokes and Boussinesq kinds.
For example, it can be applied to some pollution models, where the motion and tem-
perature PDEs are coupled to one or several additional transport-diffusion-reaction
equations. Some results will be given in the near future.

Nevertheless, there are other situations where the extension of the result seems
more (or much more) delicate. One of them concerns ``complete"" or ``full"" Boussinesq
systems. By this we mean the equations\biggl\{ 

\partial tu - \Delta u+ (u \cdot \nabla )u+\nabla p= \theta en, div u= 0 in (0, T )\times \Omega ,
\partial t\theta  - \Delta \theta + u \cdot \nabla \theta = (\nabla u+\nabla ut) \cdot \nabla u in (0, T )\times \Omega ,

completed with initial conditions and boundary control requirements as before. An-
other one is the variable density Navier--Stokes system\biggl\{ 

\partial t\rho + u \cdot \nabla \rho = 0 in (0, T )\times \Omega ,
\rho (\partial tu+ (u \cdot \nabla )u) - \Delta u+\nabla p= 0, div u= 0 in (0, T )\times \Omega ,
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GLOBAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM 505

this time completed with initial conditions for u and \rho and, again, boundary controls
acting on u.

Appendix A. Regularity of the uncontrolled Boussinesq system. Let
us present the proof of Lemma 2.1. In the followinglowing, let us assume that M and
m are regular enough. In what follows, we will use Korn's inequality recurrently.

Lemma A.1 (second Korn inequality). There exist two positive constants
C1,C2 > 0 such that, for every u\in H1(\scrO )n, one has

C1 (\| u\| + \| D(u)\| )\leq \| u\| H1 \leq C2 (\| u\| + \| D(u)\| ) .

We will also need the following results.

Lemma A.2. There exist positive constants Cl,Cr,K > 0 such that, for every
u\in H1(\scrO )n, we have

Cl\| u\| K,M \leq \| u\| H1 \leq Cr\| u\| K,M ,

where \| u\| K,M := (K\| u\| 2 +
\int 
\partial \scrO 

Mu \cdot u+ \| D(u)\| 2)1/2.

Lemma A.3. There exist positive constants Cl,Cr, \gamma > 0 such that, for every
\theta \in H1(\scrO ), we have

Cl\| \theta \| \gamma ,m \leq \| \theta \| H1 \leq Cr\| \theta \| \gamma ,m,

where \| \theta \| \gamma ,m := (\gamma \| \theta \| 2 +
\int 
\partial \scrO 

m| \theta | 2 + \| \nabla \theta \| 2)1/2.

The proofs of these two lemmas rely on the interpolation inequality [2, Theorem
III.2.36]. In particular, it is used that there exists a positive constant C such that

\| u\| L2(\partial \scrO ) \leq C\| u\| 1/2\| u\| 1/2H1 \forall u\in H1(\scrO ).

Lemma A.4 (Proposition III.2.35 in [2]). Let p \in [1,+\infty ] and q \in [p, p\ast ], where
p\ast is the critical exponent associated with p. Then, there exists C > 0 such that

\| u\| Lq \leq C\| u\| 1+n/q - n/p
Lp \| u\| n/p - n/q

W 1,p \forall u\in W 1,p(\scrO ).

Lemma A.5 (pages 490--494 in [18]). Let f \in L2(\scrO )n and g \in H1/2(\partial \scrO )n. Then,
there exists a unique strong solution (u,p)\in H2(\scrO )n \times H1(\scrO ) to the Stokes problem\biggl\{ 

 - \Delta u+\nabla p= f, \nabla \cdot u= 0 in \scrO ,
u \cdot \nu = 0, N(u) = g on \partial \scrO ,

and there exists a positive constant C > 0 such that

\| u\| H2 + \| p\| H1 \leq C(\| f\| + \| g\| H1/2).

Moreover, if f \in Hk(\scrO )n and g \in Hk+1/2(\partial \scrO )n for some k \geq 0, then (u,p) \in 
Hk+2(\scrO )n \times Hk+1(\scrO ) and we have

\| u\| Hk+2 + \| p\| Hk+1 \leq C(\| f\| Hk + \| g\| Hk+1/2).
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506 CHAVES-SILVA ET AL.

Lemma A.6. Let S : D(S) \rightarrow L2
div(\scrO )n be the Stokes operator, where D(S) =

\{ v \in H2(\scrO )n \cap L2
div(\scrO )n :N(v) = 0\} and S := - \BbbP \Delta . There exists a positive constant

C > 0 such that, for every u\in D(S), we have

\| u\| H2 \leq C (\| Su\| + \| u\| H1) .

Moreover, if Su\in Hk(\scrO )n for some k\geq 0, then u\in Hk+2(\scrO )n and we have

\| u\| Hk+2 \leq C(\| Su\| Hk + \| u\| Hk+1).

Lemma A.7. Let u \in H1(\scrO ) satisfying \Delta u \in L2(\scrO ) and \partial u
\partial \nu +mu= 0 on \partial \scrO .

Then, there exists a constant C > 0, only depending on \scrO , such that

\| u\| H2 \leq C(\| \Delta u\| + \| mu\| H1/2(\partial \scrO )).

Moreover, if \Delta u\in Hk(\scrO ) for some k\geq 0, then u\in Hk+2(\scrO ) and we have

\| u\| Hk+2 \leq C(\| \Delta u\| Hk + \| mu\| Hk+1/2(\partial \scrO )).

This last result is a consequence of [2, Theorem III.4.3].
Throughout the proof of Lemma 2.1, we will accept that the constants C can

increase from line to line and depend on T and the trajectory (u, \theta ). For simplicity,
we will only consider the 3D case. The proof is split in several steps.

Step 1 - Weak estimates in (0, T/3). Let us first multiply (6)1 by r and (6)2
by q, integrate by parts, and sum. We get

1

2

d

dt

\bigl( 
\| r\| 2 + \| q\| 2

\bigr) 
+ 2\| Dr\| 2 + \| \nabla q\| 2 + 2

\int 
\partial \scrO 

Mr \cdot r+
\int 
\partial \scrO 

m| q| 2

= (qen, r) - 
\int 
\scrO 
(r \cdot \nabla )u \cdot r - 

\int 
\scrO 
r \cdot \nabla \theta q.

From the Cauchy--Schwarz and Young inequalities, we obtain

1

2

d

dt

\bigl( 
\| r\| 2 + \| q\| 2

\bigr) 
+ 2\| Dr\| 2 + \| \nabla q\| 2 + 2

\int 
\partial \scrO 

Mr \cdot r+
\int 
\partial \scrO 

m| q| 2 \leq C(\| r\| 2 + \| q\| 2).

Using Lemmas A.2 and A.3, we deduce that

1

2

d

dt

\bigl( 
\| r\| 2 + \| q\| 2

\bigr) 
+

2

C2
l

(\| r\| 2H1 + \| q\| 2H1)\leq (C + 2K)\| r\| 2 + (C + 2\gamma )\| q\| 2.(45)

By applying Gronwall's lemma, we have for a.e. t\in [0, T ] that

\| r(t, \cdot )\| 2 + \| q(t, \cdot )\| 2 +
\int t

0

\bigl( 
\| r(s, \cdot )\| 2H1 + \| q(s, \cdot )\| 2H1

\bigr) 
ds\leq eCt

\bigl( 
\| r\ast \| 2 + \| q\ast \| 2

\bigr) 
.

(46)

Therefore, from the mean value theorem, we deduce by contradiction that there exists
0\leq t1 \leq T/3 such that

\| r(t1, \cdot )\| 2H1 + \| q(t1, \cdot )\| 2H1 \leq C1

\bigl( 
\| r\ast \| 2 + \| q\ast \| 2

\bigr) 
(47)

for a positive constant C1 independent of t1.
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Step 2 - Strong estimates in (t1,2T/3). Let \BbbP be the classical Leray projector.
We multiply (6)1 and (6)2 by  - Sr and  - \Delta q, respectively, and then integrate by parts.
Since M is symmetric, we obtain

d

dt

\biggl( 
\| Dr\| 2 +

\int 
\partial \scrO 

Mr \cdot r
\biggr) 
+ \| Sr\| 2

=

\int 
\partial \scrO 

(Mt)r \cdot r+
\int 
\scrO 

\Biggl( 
(r \cdot \nabla )r \cdot Sr+ (u \cdot \nabla )r \cdot Sr+ (r \cdot \nabla )u \cdot Sr - (qen, Sr)

\Biggr) 
\leq C\| r\| 2H1 +

1
2\| Sr\| 

2 +C\| q\| 2 + \| r\| 2L6\| \nabla r\| 2L3 .

Also,

1

2

d

dt

\biggl( 
\| \nabla q\| 2 +

\int 
\partial \scrO 
m| q| 2

\biggr) 
+ \| \Delta q\| 2 =

1

2

\int 
\partial \scrO 

(mt)q \cdot q+ (r \cdot \nabla q,\Delta q)

+ (u \cdot \nabla q,\Delta q) + (r \cdot \nabla \theta ,\Delta q)

\leq C\| q\| 2H1 +
1

2
\| \Delta q\| 2 +C\| r\| 2 + \| r\| 2L6\| \nabla q\| 2L3 .

Multiplying (45) by \varsigma = max\{ K,\gamma \} , adding the above inequalities, and using
Lemmas A.2--A.7, we deduce the following:

d

dt

\bigl( 
\| r\| 2\varsigma ,M +\| q\| 2\varsigma ,m

\bigr) 
+ \| r\| 2H2+\| q\| 2H2(48)

\leq C(\| r\| 2\varsigma ,M+\| q\| 2\varsigma ,m+\| r\| 2L6\| \nabla r\| 2L3+\| r\| 2L6\| \nabla q\| 2L3)

\leq C
\bigl[ 
(\| r\| 2\varsigma ,M+\| q\| 2\varsigma ,m) + (\| r\| 2\varsigma ,M+\| q\| 2\varsigma ,m)3

\bigr] 
.

Introducing Y (t) := \| r(t, \cdot )\| 2\varsigma ,M+\| q(t, \cdot )\| 2\varsigma ,m, we see that Y is a.e. differentiable
and, from (48), we have that

Y \prime \leq C(Y 3 + Y ).(49)

In view of (49), we obtain

Y (t)2 \leq eC(t - t1)Y (t1)
2

Y (t1)2 + 1 - eC(t - t1)Y (t1)2
.

Let us take t - t1 \leq \tau 1 small enough such that eC(t - t1) \leq 1 + 1
2Y (t1)2

. Then, Y (t)2 \leq 
2eC(t - t1)Y (t1)

2 and, from (47), we deduce that Y (t)\leq CY\ast , where Y\ast := \| r\ast \| 2+\| q\ast \| 2.
Therefore,

\| r(t, \cdot )\| 2\varsigma ,M+\| q(t, \cdot )\| 2\varsigma ,m +

\int t

t1

(\| r(s, \cdot )\| 2H2 + \| q(s, \cdot )\| 2H2)ds\leq CY\ast +C(Y\ast + Y 3
\ast )\tau 1.

Taking \tau 1 small enough such that \tau 1 \leq (1+Y 2
\ast )

 - 1, we have that CY\ast +C(Y\ast +Y
3
\ast )\tau 1 \leq 

C2Y\ast . Therefore, one has

\| r(t, \cdot )\| 2\varsigma ,M+\| q(t, \cdot )\| 2\varsigma ,m +

\int t

t1

(\| r(s, \cdot )\| 2H2 + \| q(s, \cdot )\| 2H2)ds\leq C2

\bigl( 
\| r\ast \| 2 + \| q\ast \| 2

\bigr) (50)

for t1 \leq t \leq t1 + \tau 1. This ensures the existence of t1 \leq t2 < min\{ 2T/3, t1 + \tau 1\} such
that

\| r(t2, \cdot )\| 2H2 + \| q(t2, \cdot )\| 2H2 \leq 
C2

\tau 1

\bigl( 
\| r\ast \| 2 + \| q\ast \| 2

\bigr) 
.
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508 CHAVES-SILVA ET AL.

Step 3 - Third energy estimate in (t2, T ). At this point, we differentiate
(6) with respect to time and multiply by \partial tr and \partial tq. Then, we integrate by parts to
obtain

1

2

d

dt
\| rt\| 2 + 2\| Drt\| 2 + 2

\int 
\partial \scrO 

Mrt \cdot rt

= - 2

\int 
\partial \scrO 
Mtr \cdot rt + (qten, rt) - (rt \cdot \nabla )r \cdot rt  - (ut \cdot \nabla )r \cdot rt

 - (rt \cdot \nabla )u \cdot rt  - (r \cdot \nabla )ut \cdot rt
\leq C

\bigl( 
\| r\| H1\| rt\| H1 + \| qt\| 2 + \| rt\| 2 + \| rt\| 3\| \nabla r\| \| rt\| 6 + \| r\| 2H1

\bigr) 
and

1

2

d

dt
\| qt\| 2 + \| \nabla qt\| 2 +

\int 
\partial \scrO 
m| qt| 2

= - 
\int 
\partial \scrO 
mtqqt  - ((rt + u) \cdot \nabla q, qt) - (rt \cdot \nabla \theta , qt) - (r \cdot \nabla \theta t, qt)

\leq C
\bigl( 
\| q\| H1\| qt\| H1+\| q\| 2H1+\| qt\| 2+\| rt\| 2+\| rt\| 3\| \nabla q\| \| rt\| 6

\bigr) 
.

Consequently, using Lemmas A.2--A.4 and adding the two above inequalities, we
have

d

dt

\bigl( 
\| rt\| 2 + \| qt\| 2

\bigr) 
+ \| rt\| 2H1 + \| qt\| 2H1

\leq C
\bigl( \bigl( 
\| r\| 4H1 + \| q\| 4H1 + 1

\bigr) 
\| rt\| 2 + \| qt\| 2 + \| r\| 2H1 + \| q\| 2H1

\bigr) 
.

Now, introducing Z(t) := \| rt(t, \cdot )\| 2 + \| qt(t, \cdot )\| 2, we find from (50) that

Z \prime \leq C[(1 + Y 2
\ast )Z + Y\ast ]

for t2 \leq t\leq t1 + \tau 1. By applying Gronwall's lemma, we have for a.e. t\in [t2, t1 + \tau 1]

Z(t)\leq eC(1+Y 2
\ast )(t - t2) (Z(t2) +CY\ast (t - t2)) .

Since we have Z(t2) \leq \Psi 1(Y\ast ) for some nonnegative regular \Psi 1 with \Psi 1(0) = 0, we
find that Z(t)\leq \Psi 2(Y\ast ), with

\Psi 2(s) := eC(1+s2)(\Psi 1(s) +Cs) \forall s\geq 0.

Therefore,

\| rt(t, \cdot )\| 2 + \| qt(t \cdot )\| 2 +
\int t

t2

\bigl( 
\| rt(s, \cdot )\| 2H1 + \| qt(s, \cdot )\| 2H1

\bigr) 
ds\leq \Psi 3(Y\ast ) \forall t\in [t2, t1 + \tau 1],

(51)

where \Psi 3(s) := C[(1 + s2)\Psi 2(s) + s]. In particular, this yields the existence of t3 \in 
(t2, t1 + \tau 1) such that

\| rt(t3, \cdot )\| 2H1 + \| qt(t3, \cdot )\| 2H1 \leq 
\Psi 3(Y\ast )

(t1  - t2 + \tau 1)
.(52)

Actually, it is not difficult to check that the set of times t3 \in (t2, t1 + \tau 1) satisfying
(52) has a positive measure.

Step 4 - Conclusion. Using (50) and (51), we deduce an estimate of r in
L\infty (H2). It suffices to view (6)1 as a family of Stokes problems (see Lemma A.5 and
the arguments presented in [30, Theorem 3.8]). Then, looking at (6)2 as a family
of elliptic problems, we also find L\infty (H2) estimates for q; see Lemma A.7. Both
estimates depend on Y\ast continuously. Therefore, repeating the procedure, we see that
(r(t3), q(t3))\in H3 \times H3 with an estimate of the form \Psi (Y\ast ).
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