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ON THE CONTROLLABILITY OF SOME EQUATIONS OF SOBOLEV-GALPERN

TYPE

FELIPE W. CHAVES-SILVA AND DIEGO A. SOUZA

Abstract. In this paper we deal with the controllability problem for some Sobolev type equations. We
show that the equations cannot be driven to zero if the control region is strictly supported within the
domain. Nevertheless, we also prove that it is possible to control the equations using controls which
have a moving support, under some assumptions on their movement.
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1. Introduction

Let ⌦ Ä RN
pN P N‹

q be a bounded domain whose boundary B⌦ is regular enough. Let T ° 0 and O

be a nonempty open subset of ⌦ ˆ p0, T q. We will use the notation Q “ ⌦ ˆ p0, T q and ⌃ “ B⌦ ˆ p0, T q.
In this paper we deal with controllability properties for some pseudo-parabolic equations of the form

pI ´ �LqBty ` My “ f, (1.1)

where � is positive real number and L and M are linear partial di↵erential operators of order 2l and m
with m § 2l in the spatial variable, respectively (see for instance [12, 20, 21, 22]). More precisely, we
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2 FELIPE W. CHAVES-SILVA AND DIEGO A. SOUZA

consider the following two problems
ˇ̌
ˇ̌
ˇ̌
ˇ

yt ´ �yt ´ �y “ v�O in Q,

y “ 0 on ⌃,

yp¨, 0q “ y0 in ⌦

(1.2)

and ˇ̌
ˇ̌
ˇ̌
ˇ

yt ´ �yt ` r ¨ pApx, tqyq “ v�O in Q,

y “ 0 on ⌃,

yp¨, 0q “ y0 in ⌦,

(1.3)

where A “ pa1, . . . , aN q is a given regular vector field and �O P C8
pQq with supp�O Ä O.

Our goal in this paper is to investigate the null controllability problem:

given T ° 0 and y0 P H1
0

p⌦q find a control v P L2
pOq such that the associated solution of

(1.2) presp. (1.3)q satisfies:
yp¨, T q “ 0, in ⌦.

Equations such as (1.1) are a particular case of the so called equations of Sobolev-Galpern type, see
[8, 23]. These type of equations appear for instance in the study of problems associated with the flow of
certain viscous fluids, in the theory of seepage of homogeneous liquids in fissured rocks, see [3], and surface
waves of long wavelength in liquids, acoustic-gravity waves in compressible fluids, hydromagnetic waves
in cold plasma, acoustic waves in anharmonic crystals, see [4]. In particular, equations (1.2) and (1.3)
are known as the Barenblatt-Zheltov-Kochina equation (in this case y represents the absolute value of the
velocity of the fluid and ⌘ characterizes the fissured rock, increasing ⌘ corresponds to a decreasing degree
of fissuring) and the multidimensional Benjamin-Bona-Mahony equation, respectively (see for instance
[1, 2, 3, 4, 18]).

Regarding controllability for equations (1.2) and (1.3), as far as we know, the only results available
in the literature were obtained in the one-dimensional setting. Indeed, in [17] it is proved that equation
(1.3), with A being a constant, cannot be steered to zero if O “ !ˆ p0, T q and ! ê ⌦ is a proper subset.
However, the proof given in [17] can be only performed in the 1d setting, since it relies on the moment
method. For a positive controllability result for (1.2), we cite [24], where the authors consider the problem
posed on the torus and prove that if one make the control to move in time covering the whole domain,
it is possible to drive the solution exactly to zero. Also related to the controllability of (1.3), we cite
[25, 26], where the unique continuation property is studied.

In this paper, we analyze the null controllability of equations (1.2) and (1.3) in the multi-dimensional
setting. First, we show that both equations (1.2) and (1.3) cannot be steered to zero if the control is fixed
and localized in a proper open subset of ⌦. More precisely, we prove the following two negative results.

Theorem 1.1. Let T ° 0 and ! ê ⌦ be a fixed open set. If O “ ! ˆ p0, T q then system (1.2) is not null
controllable at time T , i.e., there exists y0 P H2

p⌦q ˆ H1
0

p⌦q such that the null controllability of system
(1.2) fails.

Theorem 1.2. Let T ° 0, ! ê ⌦ be a fixed open set and A P C8
pQq. If O “ !ˆp0, T q then system (1.3)

is not null controllable at time T , i.e., there exists y0 P H2
p⌦q ˆ H1

0
p⌦q for which the null controllability

of (1.3) does not hold.

It is worth to mention that Theorems 1.1 and 1.2 are closely related to the fact that the principal
part of (1.2) and (1.3), given by Bt�, has vertical characteristic hyperplanes which makes impossible to
recover any information localized along these characteristics (see Section 2). In fact, the proof of both
results relies on the construction of highly localized solutions (Gaussian beams). For Theorem 1.1 we
construct such solutions by means of Fourier transform (for similar constructions see [14, 15]). On the
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other hand, since the vector field A in equation (1.3) depends on both the space and time variables, we
can not use Fourier Transform to prove Theorem 1.2. Therefore, we will use a di↵erent approach based
on asymptotic expansion of solutions.

The second main part of this paper is devoted to obtain positive null controllability results for equations
(1.2) and (1.3). In fact, since the main obstruction to the null controllability with localized fixed controls
is the existence of concentrated solutions, we ask the control to move so that we can see the information
that would be lost otherwise, i.e., we make the control to move in time in order to cover the whole space
domain. This idea of making the control to move in order make the system controllable has been used
for many di↵erent problems in the past few years, see for instance [5, 6, 10, 11, 16]. Here, due to the
techniques we shall employ, we consider two di↵erent types of movement.

The first type of movement, which has been introduced in [13] (see also [19]), will be used to deal with
equation (1.2).

Definition 1.3 (Moving control region of type I). We say that an open set O Ä Q satisfies the Moving
Geometric Control Condition of type I (MGCC-I) if for all x0 P ⌦, the vertical line tps, x0q; s P Ru enters
O before time T and

LO “ inf
xP⌦

sup
pt1,t2qˆtxuÄO

pt2 ´ t1q ° 0.

Remark 1.4. The condition in Definition 1.3 means that vertical rays which do not propagate in space
also reach the control domain and stay in it during some time interval. In practice this means that the
cross section of O moves, as the time evolves, covering the whole domain ⌦.

The positive controllability result we prove for equation (1.2) reads as follows:

Theorem 1.5. Let T ° 0 and assume that O satisfies MGCC-I. Then, for any y0 P H2
p⌦q X H1

0
p⌦q

there exists a moving control v P L2
pOq such that the associated solution to (1.2) satisfies

yp¨, T q “ 0 in ⌦.

We prove Theorem 1.5 using a compactness-uniqueness argument which relies on an observability type
inequality for an ODE (for which Definition 1.3 is necessary) and energy estimates for elliptic equations.

As we will see, unless A “ Aptq, we cannot use a compact-uniqueness argument to deduce positive
controllability results to equation (1.3) (see Section 4 for more details). For this reason, we use a di↵erent
strategy based on Carleman estimates. Nevertheless, since Carleman estimates are heavily dependent
on the construction of specific weight functions, we require stronger geometrical assumptions on the
movement of the control region. In fact, we take the control domain determined by the evolution of a
given reference subset ! Ä RN through a given flow and such that ! contains a smooth bounded domain
!0 Ä RN which satisfies the following geometric requirements:

Assumption 1.6. There exists a flow X : RN
ˆr0, T sˆr0, T s Ñ RN , which is generated by an admissible

velocity field F P Cpr0, T s;W 2,8
pRN ;RN

qq, a curve � P C8
pr0, T s;RN

q and two times t1 † t2 in p0, T q
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such that:

�ptq P Xp!0, t, 0q X ⌦, @t P r0, T s; (1.4)

⌦ Ä

§

tPr0,T s
Xp!0, t, 0q “ tXpx, t, 0q; px, tq P !0 ˆ r0, T su; (1.5)

⌦zXp!0, t, 0q is nonempty and connected for t P r0, t1s Y rt2, T s; (1.6)

⌦zXp!0, t, 0q has two (nonempty) connected components for t P pt1, t2q; (1.7)

@✓ P Cpr0, T s;⌦q, Dt P r0, T s, ✓ptq P Xp!0, t, 0q. (1.8)

Definition 1.7 (Moving control region of type II). A moving control region of type II (MGCC-II) is
defined as O! :“

î
tPr0,T s rXp!, t, 0q X ⌦s ˆ ttu where the reference control domain ! Ä RN contains

a subset !0 which satisfies Assumptions 1.6 and !0 Ä !. For any t ° 0 a time section is defined as
O!ptq :“ Xp!, t, 0q X ⌦.

The positive controllability result we prove for equation (1.3) is the following.

Theorem 1.8. Let T ° 0, let O! satisfying MGCC-II and A P W 1,8
p0, T ;W 1,8

p⌦q
NˆN

q. Then, for
any y0 P H2

p⌦q X H1
0

p⌦q, there exists a moving control v localized in O! with v P L2
pO!q and such that

the associated solution to (1.3) satisfies

yp¨, T q “ 0 in ⌦.

It is important to say that both Assumption 1.6 and Definition 1.7 were introduced in [5] to study the
controllability of a wave equation with both viscous Kelvin-Voigt and frictional damping and the idea was
to split the equation into a coupled parabolic-ODE system and prove new Carleman estimates for both
the heat equation and ODE’s when the control region moves as the time evolves. Here, to prove Theorem
1.8, we split equation (1.3) into a coupled elliptic-ODE system and prove new Carleman estimates for
elliptic equations when the control region moves together with some suitable weighted energy inequalities
combined with the Carleman inequality proved for ODE’s given in [5] (see Section 3 for more details).

2. Negative Controllability Results

2.1. Barenblatt-Zheltov-Kochina with fixed controls. We prove Theorem 1.1. Here we assume
that O is of the form ! ˆ p0, T q, where ! is a proper open subset of ⌦.

For analyzing the controllability of (1.2) we will make use of the following decomposition:
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

u ´ �u “ w in Q,

wt ` w “ u ` v�O in Q,

u “ 0 on ⌃,

wp¨, 0q “ u0 ´ �u0 in ⌦.

(2.1)

Indeed, the solution of equation (1.2) satisfies up¨, T q “ 0 if and only if the solution of system (2.1)
satisfies wp¨, T q “ 0.

From duality arguments, the null controllability for system (2.1) with control supported in ! ˆ p0, T q

is equivalent to the existence of a constant C ° 0 such that the observability inequality

} p¨, 0q}
2

L2p⌦q § C

ª
T

0

ª

!

| |
2dxdt,
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holds for all  T P L2
p⌦q, where  , together with ', is the solution of the adjoint system

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

'´ �' “  in Q,

´ t `  “ ' in Q,

' “ 0 on ⌃,

 pT q “  T in ⌦.

(2.2)

Theorem 1.1 is a direct consequence of the following proposition:

Proposition 2.1. Let !0 be an open subset of ⌦ such that !̄0 à ⌦. Then, there exist ✏0 ° 0 and
 ✏

T
P L2

p⌦q such that for any integer k ° N{4 the corresponding solution of
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

'✏
´ �'✏

“  ✏ in Q,

´ ✏

t
`  ✏

“ '✏ in Q,

'✏
“ 0 on ⌃,

 ✏
p¨, T q “  ✏

T
in ⌦

(2.3)

satisfies

} ✏
p¨, 0q}

2

L2p⌦q • C and } ✏
}
2

L2p0,T ;L2p!0qq § C✏k´N{4
@✏ P p0, ✏0q (2.4)

where C is a positive constant independent of ✏.

Proof. Let us first consider the system (2.3) posed in RN
ˆ p0, T q, i.e.

ˇ̌
ˇ̌
ˇ̌
ˇ

'´ �' “  in RN
ˆ p0, T q,

´ t `  “ ' in RN
ˆ p0, T q,

 p¨, T q “  T in RN ,

(2.5)

with  T P L2
pRN

q.
Taking the spatial Fourier transform, one verifies that

 ̂p⇠, tq “ e
´ |⇠|2

p1`|⇠|2q pT´tq
 ̂T p⇠q and '̂p⇠, tq “

e
´ |⇠|2

p1`|⇠|2q pT´tq

1 ` |⇠|2
 ̂T p⇠q

solves ˇ̌
ˇ̌
ˇ̌
ˇ

p1 ` |⇠|
2
q'̂ “  ̂ in RN

ˆ p0, T q,

´ ̂t `  ̂ “ '̂ in RN
ˆ p0, T q,

 ̂p¨, T q “  ̂T in RN ,

(2.6)

where  ̂T is the Fourier transform of  T .
Now let ✓ be a real smooth function supported in B1p0q with }✓}L2pRN q “ 1 and for each ✏ ° 0 consider

 ̂✏

T
p⇠q “ ✏N{4✓

ˆ
?
✏

ˆ
⇠ ´

⇠

✏

˙˙
e´ix0¨⇠, (2.7)

where ⇠ P RN , |⇠| “ 1 and x0 is a point around which we will localize our solution.
Let p ̂✏, '̂✏

q be the solution of (2.6) associated to  ̂✏

T
. Since  ̂✏

T
P L2

pRN
q, let p ̌✏, '̌✏

q be the solution

of (2.5) with initial datum  ̌✏

T
, the inverse Fourier transform of  ̂✏

T
.

Claim 1. There exist two constants C1, C2 ° 0, independent of ✏, such that

C1 § } ̌✏
p¨, 0q}L2pRN q § C2.
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Proof of Claim 1. We have

 ̌✏
px, tq “

1

p2⇡qN

ª

RN

e
´ |⇠|2

p1`|⇠|2q pT´tq
 ̂✏

T
p⇠qeix¨⇠d⇠ (2.8)

and by Parseval’s identity

} ̌✏
p¨, tq}

2

L2pRN q “
1

p2⇡q2N

ª

RN

e
´2

|⇠|2
p1`|⇠|2q pT´tq

| ̂✏

T
p⇠q|

2d⇠.

Since } ̂✏

T
}L2pRN q “ 1, it follows that

e´2T

p2⇡q2N
§ } ̌✏

p¨, 0q}
2

L2pRnq §
1

p2⇡q2N
. (2.9)

⇤

Claim 2. Let x0 P RN . For any � ° 0 there exists C ° 0, independent of ✏, such that

}'̌✏
}
2

L2p0,T ;H1p|x´x0|•�qq ` } ̌✏
}
2

L2p0,T ;L2p|x´x0|•�qq § C✏k´N{4.

Proof of Claim 2. Let us show the estimate for '̌✏. Similar arguments give the estimate for  ̌✏.
Since

'̌✏
px, tq “

1

p2⇡qN

º

RN

e
´ |⇠|2

p1`|⇠|2q pT´tq

1 ` |⇠|2
 ̂✏

T
p⇠qeix¨⇠d⇠, (2.10)

by the change of variables ⇣ “
?
✏p⇠ ´

⇠

✏
q we see that

'̌✏
px, tq “

✏N{4´N{2

p2⇡qN

º

|⇣|§1

✓p⇣qeipx´x0q¨p ⇣?
✏

` ⇠
✏ q e

´
| ⇣?

✏
` ⇠

✏
|2

p1`| ⇣?
✏

` ⇠
✏

|2q
pT´tq

1 ` |
⇣?
✏

`
⇠

✏
|2

d⇣ (2.11)

From the fact that

�k

⇣
eipx´x0q¨p ⇣?

✏
` ⇠

✏ q
“ p´1q

k

ˆ
|x ´ x0|

2

✏

˙k

eipx´x0q¨p ⇣?
✏

` ⇠
✏ q k P N,

for |x ´ x0| • � and for any integer k ° N{4, we have

'̌✏
px, tq “ p´1q

k
✏k´N{4

p2⇡qN |x ´ x0|2k

º

|⇣|§1

eipx´x0q¨p ⇣?
✏

` ⇠
✏ q�k

⇣

`✓p⇣qe
´

| ⇣?
✏

` ⇠
✏

|2

p1`| ⇣?
✏

` ⇠
✏

|2q
pT´tq

1 ` |
⇣?
✏

`
⇠

✏
|2

˘
d⇣ (2.12)

For ✏ small, one can prove that the term in �k

⇣
in the above integral is bounded uniformly with respect

to ✏ and then the following estimate holds

|'̌✏
px, tq| § C

✏k´N{4

|x ´ x0|2k
. (2.13)

Analogously, we have

|r'̌✏
px, tq| § C

✏k´N{4

|x ´ x0|2k
(2.14)

and this gives the estimate for '̌✏.
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⇤

Claim 3. Let  ̂✏

T
as (2.7) and p'̌✏,  ̌✏

q the associated solution of (2.5). Then,

} ̌✏
p¨, 0q}

2

L2p|x´x0|§�q • C ° 0.

Proof. From (2.13) for t “ 0, we get

} ̌✏
p¨, 0q}

2

L2p|x´x0|•�q § C✏k´N{4

and from Claim 1 we have
e´2T

p2⇡q2N
§ } ̌✏

p¨, 0q}
2

L2pRnq,

which gives the result.
⇤

We now finish the proof of Proposition 2.1. To do that, consider x0 P ⌦z!̄0 and

0 † ⌘ † mintdistpx0, B⌦q, distpx0, B!0qu

such that tx : |x ´ x0| § ⌘u Ä ⌦.
As before, take p ̌✏, '̌✏

q the solution of (2.5) associated to  ̌✏

T
, the inverse Fourier transform of  ̂✏

T
.

Consider p ̄✏, '̄✏
q the restriction of p ̌✏, '̌✏

q to ⌦ ˆ p0, T q. Thus,
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

'̄✏
´ �'̄✏

“  ̄✏ in Q,

´ ̄✏

t
`  ̄✏

“ '̄✏ in Q,

'̄✏
“ q✏ on ⌃,

 ̄✏
p¨, T q “  ✏

T
in ⌦

(2.15)

where  ̄✏

T
:“  ̌✏

T
|⌦ˆp0,T q and q✏ :“ '̌✏

ˇ̌
B⌦ˆp0,T q.

From Claim 2 and Claim 3, we have that

} ̄✏
}
2

L2p0,T ;L2p!0qq § C✏k´N{4 and } ̄✏
p¨, 0q}

2

L2p⌦q • C ° 0, (2.16)

respectively.
Now, let p'‹

✏
, ‹

✏
q be the solution of

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

'‹
✏

´ �'‹
✏

“  ‹
✏

in Q,

´ ‹
✏,t

`  ‹
✏

“ '‹
✏

in Q,

'‹
✏

“ ´q✏ on ⌃,

 ‹
✏
p¨, T q “ 0 in ⌦.

Noticing that q✏ P L2
p0, T ;H1{2

pB⌦qq, one can show that  ‹
✏

P H1
p0, T ;L2

p⌦qq and the following
estimate holds

} ‹
✏
}H1p0,T ;L2p⌦qq § C}q✏}L2p0,T ;H1{2pB⌦qq.

Nevertheless, because q✏ :“ '̌✏
ˇ̌
B⌦ˆp0,T q, by trace estimate and Claim 2, we deduce that

} ‹
✏
}H1p0,T ;L2p⌦qq § C✏k´N{4. (2.17)

Finally, defining p ✏,'✏
q “ p ̄✏ `  ‹

✏
, '̄✏ ` '‹

✏
q, we see that p ✏,'✏

q solves (2.3) and by (2.16)–(2.17)
we obtain (2.4). ⇤
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2.2. Benjamin-Bona-Mahony with fixed controls. We now prove Theorem 1.2. Here we assume
that O “ ! ˆ p0, T q, where ! is a proper open subset of ⌦.

The null controllability for system (1.3) with control supported in ! ˆ p0, T q is equivalent to the
existence of a constant C ° 0 such that the observability inequality

} p¨, 0q}
2

L2p⌦q § C

ª
T

0

ª

!

| |
2dxdt, (2.18)

holds for all  T P L2
p⌦q and  is the solution of the adjoint equation

ˇ̌
ˇ̌
ˇ̌
ˇ

´ t ` � t ´ A ¨ r “ 0 in Q,

 “ 0 on ⌃,

 p¨, T q “  T in ⌦.

(2.19)

In order to prove Theorem 1.2, we show that the observability inequality (2.18) does not hold for every
 T P L2

p⌦q.

Given x0 P ⌦z!0, we set ↵pxq “ x¨⇠0`i |x´x0|2
2

with ⇠0 P RN
zt0u and let � ° 0 be such that B�px0q Ä ⌦

and B�px0q X ! “ H. For h ° 0, we introduce the function

 hpx, tq “ ei
↵pxq
h

`
f0pxq ` hf1px, tq ` h2f2px, tq

˘
,

where
$
’’’’’’’’’&

’’’’’’’’’%

f0 P C8
0

pB�px0qq, f0 ” 1 in pB �
2

px0q,

f1px, tq “ ´if0pxq

ª
T

t

Apx, ⌧qd⌧ ¨ r↵pxq

|r↵pxq|2
,

f2px, tq “

´

ª
T

t

Apx, ⌧qd⌧ ¨ rf0 ´ i

ª
T

t

f1px, ⌧qApx, ⌧qd⌧ ¨ r↵ ´ 2irf1 ¨ r↵ ´ if1�↵

|r↵pxq|2
.

(2.20)

Remark 2.2. Since |r↵pxq| • |⇠0| ‰ 0 for all x P ⌦, f1 and f2 are well-defined and supp f1p¨, tq Ä

supp f0, supp f2p¨, tq Ä supp f0 for all t P r0, T s.

It is easy to check that  h P C8
pQq satisfies

ˇ̌
ˇ̌
ˇ̌
ˇ

´ h,t ` � h,t ´ A ¨ r h “ R in Q,

 h “ 0 on ⌃,

 hp¨, T q “ ei
↵
h f0 in ⌦,

(2.21)

with

R “ ei
↵
h

„`
´f1,t ` �f1,t ´ A ¨ rf1 ` 2ir↵ ¨ rf2,t ` i�↵f2,t ´ iA ¨ r↵f2

˘
h

`
`
´f2,t ` �f2,t ´ A ¨ rf2

˘
h2

⇢

:“ ei
↵
h

`
hR1 ` h2R2

˘
.

(2.22)

Let now ' P H1
p0, T ;H2

p⌦q X H1
0

p⌦qq be the unique solution of
ˇ̌
ˇ̌
ˇ̌
ˇ

´'t ` �'t ´ A ¨ r' “ ´R in Q,

' “ 0 on ⌃,

'p¨, 0q “ 0 in ⌦.

(2.23)
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The function  “  h ` ' solves

ˇ̌
ˇ̌
ˇ̌
ˇ

´ t ` � t ´ A ¨ r “ 0 in Q,

 “ 0 on ⌃,

 p¨, T q “ ei
↵
h f0 ` 'p¨, T q in ⌦.

(2.24)

For h small enough, we have

}R}
2

L2p⌦ˆp0,T qq “ h

ª
T

0

ª

BRpx0q
e´ |x´x0|2

h |R1px, tq ` hR2px, tq|
2 dx dt „ OphN{2`1

q. (2.25)

From standard energy estimates, one deduce that

}'}
2

L2p!ˆp0,T qq § }R}
2

L2p⌦ˆp0,T qq “ OphN{2`1
q, (2.26)

for h small enough.
Now, since  h

ˇ̌
!ˆp0,T q “ 0, it follows that

} }
2

L2p!ˆp0,T qq „ OphN{2`1
q. (2.27)

On the other hand, we have

} p¨, 0q}
2

L2p⌦q “

ª

⌦

e´ |x´x0|2
h

ˇ̌
f0 ` hf1 ` h2f2

ˇ̌2
dx

„ OphN{2
q.

(2.28)

From (2.27) and (2.28), it follows that the observability inequality (2.18) cannot hold for every  T P

L2
p⌦q. This proves Theorem 1.2.

3. Positive Controllability Results

This section is devoted to prove Theorems 1.5 and 1.8.

3.1. Barenblatt-Zheltov-Kochina with moving controls. In this section, we show the positive null
controllability for equation (1.2) under the MGCC-I. In fact, Theorem 1.5 is a direct consequence of
the following result.

Proposition 3.1. Let T ° 0 and assume that O satisfies MGCC-I. For any z0 P L2
p⌦q, there exists a

moving control v P L2
pOq such that the solution py, zq of

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

y ´ �y “ z in Q,

zt ` z “ y ` v�O in Q,

y “ 0 on ⌃,

zp¨, 0q “ z0 in ⌦.

(3.1)

satisfies

yp¨, T q “ zp¨, T q “ 0 in ⌦.

Proof of Theorem 1.5. Given y0 P H2
p⌦q X H1

0
p⌦q, we take z0 “ y0 ´ �y0 P L2

p⌦q and it follows from
Proposition 3.1 that there exists v P L2

pOq such that the associated solution py, zq to (3.1) satisfies
ypT q “ zpT q “ 0. Replacing (3.1)

1
into (3.1)

2
, we readily see that y, with the control v, solves the null

controllability problem for the Barenblatt-Zheltov-Kochina equation (1.2). ⇤
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Let us now prove Proposition 3.1. Indeed, we only have to show the existence of a constant C ° 0
such that

} p¨, 0q}
2

L2p⌦q § C

ªª

O

| |
2dxdt, @ T P L2

p⌦q, (3.2)

where p', q is the solution of ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

'´ �' “  in Q,

´ t `  “ ' in Q,

' “ 0 on ⌃,

 pT q “  T in ⌦.

(3.3)

Before proving Proposition 3.1, let us introduce some notation. For any ✏ ° 0 and any A Ä RN`1, let

M✏pAq “ tz P RN`1; distpz,Aq † ✏u

and
O✏ :“ OzM✏pBOz⌃q.

Remark 3.2. Since O satisfies the MGCC-I, there exists ✏0 ° 0 such that O 3
2 ✏0

(and hence O✏0) still
fulfils the MGCC-I.

Proof of Proposition 3.1. For any t P p0, T q and x P O✏0ptq, where O✏0ptq the cross section of O✏0 at time
t, it follows from (3.3)

2
that

| ps, xq|
2

§ C

˜
| pt, xq|

2
`

ª
T

0

|'p⌧, xq|
2d⌧

¸
, @s P pt, T q. (3.4)

Since O✏0 satisfies the MGCC-I, integrating (3.4) in O✏0 and using the definition of LO✏0
, we can show

that

LO✏0

ª
T

0

ª

⌦

| ps, xq|
2dxds § C

¨

˝
ªª

O✏0

| pt, xq|
2dxdt `

º

Q

|'pt, xq|
2dxdt

˛

‚,

or equivalently

} }
2

L2pQq § C
´

} }
2

L2pO✏0 q ` }'}
2

L2pQq
¯
. (3.5)

By standard energy estimates applied to (3.3)
1
, we also have that

}'}
2

L2pQq ` }r'}
2

L2pQq § C} }
2

L2pQq. (3.6)

Also, di↵erentiating (3.3)
1
with respect to time and using energy estimates again, we get

}'t}
2

L2pQq ` }r't}
2

L2pQq § C
´

} }
2

L2pQq ` }'}
2

L2pQq
¯
. (3.7)

Hence, from (3.5), (3.6) and (3.7), we obtain the estimate

} }
2

L2pQq ` }'}
2

H1pQq § C
´

} }
2

L2pO✏0 q ` }'}
2

L2pQq
¯
. (3.8)

In what follows we are going to get rid of the last term in (3.8) by a compactness-uniqueness argument.
In fact, we will prove that

} }
2

L2pQq ` }'}
2

H1pQq § C} }
2

L2pO✏0 q. (3.9)

Indeed, if (3.9) does not hold, there exists p'n, n
q Ä H1

pQq ˆ L2
pQq solution of (3.3) such that

} n
}
2

L2pQq ` }'n
}
2

H1pQq “ 1 (3.10)
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and

} n
}
2

L2pO✏0 q §
1

n
. (3.11)

Since (3.10) holds, there exists a subsequence (still denoted by the same index) such that

p'n, n
q converges weakly to some p'‹, ‹

q in H1
pQq ˆ L2

pQq.

It is not di�cult to see that p'‹, ‹
q is a weak solution of (3.3) and that

'n converges strongly to '‹ in L2
pQq. (3.12)

Using the weak convergence and (3.11), it follows that

} ‹
}
2

L2pO✏0 q § lim inf
nÑ8

} n
}
2

L2pO✏0 q “ 0

Therefore, we have that

 ‹
“ 0 in O✏0 (3.13)

and

} ‹
}
2

L2pQq ` }'‹
}
2

H1pQq § C}'‹
}
2

L2pQq. (3.14)

Since p n
´ ‹,'n

´'‹
q solves a problem like (3.3) and (3.8) and also (3.11)-(3.14) hold, we have that

 n converges strongly to  ‹ in L2
pQq. (3.15)

From (3.8), (3.10) and (3.11), we see that

1 §
C

n
` C}'n

}
2

L2pQq, @n P N. (3.16)

According to (3.12) and (3.16), we get that

0 † }'‹
}
2

L2pQq. (3.17)

Thus, we conclude that p'‹, ‹
q is not zero.

Let us introduce the linear space E Ä H1
pQq ˆ L2

pQq given by

E :“

"
p', q P H1

pQq ˆ L2
pQq : p', q satisfies (3.3)

1
´ (3.3)

2
, '

ˇ̌
⌃

“ 0 and  “ 0 in O✏0

*
. (3.18)

Since p'‹, ‹
q P E, we have that E ‰ t0u. Let us now show that E “ t0u, which is a contradiction.

Claim 4. E Ä H5
pQq ˆ H3

pQq.

Proof of Claim 4. Let p', q P E. Since  “ 0 in O✏0 , it follows from (3.3)
1

´ (3.3)
2
that

´�' “ 0 in O✏0

and hence
' P Hk`1

pO 3
2 ✏0

q, @k P N.
Since O 3

2 ✏0
also satisfies the MGCC-I, we can use similar arguments to those in (3.8) and equation

(3.3)2 to show that

} }
2

H1pQq § C

ˆ
} }

2

H1pO 3
2
✏0

q ` }'}
2

H1pQq

˙
(3.19)

§ C}'}
2

H1pQq (3.20)
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and then, by a bootstrap argument and elliptic regularity for (3.3)
1
, it follows that

' P H3
pQq.

Arguing in the same way, we see that

} }
2

H3pQq § C

ˆ
} }

2

H3pO 3
2
✏0

q ` }'}
2

H3pQq

˙
(3.21)

§ C}'}
2

H3pQq (3.22)

and that
' P H5

pQq,

which proves the Claim. ⇤
Claim 5. E is a finite dimensional vector space.

Proof of Claim 5. Let tp'n, n
qu

8
n“1

Ä E with

} n
}
2

L2pQq ` }'n
}
2

H1pQq § 1, @n P N.
Then, (using the same index) we see that

p'n, n
q converges weakly to some p p', p q in H1

pQq ˆ L2
pQq.

One can also see that p p', p q is a weak solution of (3.3) and that

'n converges strongly to p' in L2
pQq.

From (3.8), we have that

} }
2

L2pQq ` }'}
2

H1pQq § C}'}
2

L2pQq, @p', q P E. (3.23)

Therefore, it follows that

p'n, n
q converges strongly to p p', p q in H1

pQq ˆ L2
pQq,

which proves that E is finite dimensional. ⇤
Now, for any p', q P E, by Claim 4, and noting that O✏0 satisfies the MGCC-I and  “ 0 in O✏0 , we

see that  “ 0 on ⌃ and
ˇ̌
ˇ̌
ˇ̌

pI ´ �q'´ �ppI ´ �q'q “ pI ´ �q in Q,
´ppI ´ �q qt ` pI ´ �q “ pI ´ �q' in Q,
pI ´ �q' “ 0 on ⌃.

Thus, we have that ppI ´ �q', pI ´ �q q belongs to E.
Since E is finite dimensional, the operator I ´ � must have an eigenvalue � P C and an eigenvector

p'�, �
q P Ezt0u.

Claim 6. � ‰ 0.

Proof of Claim 6. Suppose � “ 0. Then, for any t P p0, T q we have that
ˇ̌
ˇ̌
ˇ

pI ´ �q'�
p¨, tq “ 0 in ⌦,

'�
p¨, tq “ 0 on B⌦,

which gives
'�

p¨, tq “ 0 in ⌦ for all t P p0, T q.

In particular, from the PDE equation we see that  �
“ 0 in Q. Then p'�, �

q “ p0, 0q, which is a
contradiction. ⇤
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To finish the proof, we notice that since

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

 �
“ �'� in Q,

´ �

t
`  �

“ '� in Q,

'�
“ 0 on ⌃,

 �
“ '�

“ 0 in O✏0 .

Now, for a fixed t0 P p0, T q and x0 P O✏0pt0q, it follows that p'�
px0, .q, �

px0, .qq is the solution of

ˇ̌
ˇ̌
ˇ̌
ˇ

 �
px0, tq “ �'�

px0, tq in p0, T q,

´ �

t
px0, tq `  �

px0, tq “ '�
px0, tq in p0, T q,

'�
px0, t0q “ 0,  �

px0, t0q “ 0

and since � ‰ 0 and MGCC-I holds, we conclude that

'�
“  �

“ 0 in Q.

This contradicts the fact that p'�, �
q is not zero.

Therefore, we have proved the observability inequality

} }
2

L2pQq ` }'}
2

H1pQq § C} }
2

L2pO✏0 q. (3.24)

and the proof of Proposition 3.1 is finished.
⇤

3.2. Benjamin-Bona-Mahony with moving controls. In this section, we prove the positive null con-
trollability for the Benjamin-Bona-Mahony equation (1.3). Here we use an approach based on Carleman
estimates.

In what follows, we assume that X and !0 satisfy Assumption 1.6, and for each open set ! Ä RN ,
with !0 Ä !, we choose !1, !2 nonempty open sets in RN such that

!0 Ä !1, !1 Ä !2, !2 Ä !.

The following weight function is constructed in [5].

Lemma 3.3 ([5]). There exist a positive number ⌧ P p0,mint1, T {2uq and a function ⌘ P C8
p⌦ ˆ r0, T sq

such that

r⌘px, tq ‰ 0, t P r0, T s, x P ⌦zO!1ptq, (3.25)

⌘tpx, tq ‰ 0, t P r0, T s, x P ⌦zO!1ptq, (3.26)

⌘tpx, tq ° 0, t P r0, ⌧ s, x P ⌦zO!1ptq, (3.27)

⌘tpx, tq † 0, t P rT ´ ⌧, T s, x P ⌦zO!1ptq, (3.28)

B⌘

B⌫
px, tq § 0, t P r0, T s, x P B⌦, (3.29)

⌘px, tq °
3

4
}⌘}8, t P r0, T s, x P ⌦. (3.30)
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Next, we introduce a real function r P C8
p0, T q, symmetric with respect to t “

T

2
and such that for

⌧ ° 0, as above,

rptq “

$
’’’’’&

’’’’’%

1

t
for 0 † t §

⌧

2
,

strictly decreasing for ⌧

2
† t † ⌧,

1 for ⌧ § t §
T

2
,

rpT ´ tq for T

2
§ t † T

and define the weights

�px, tq “ e�⌘px,tq
px, tq P ⌦ ˆ p0, T q,

↵px, tq “ rptqpe2�}⌘}8 ´ �px, tqq px, tq P ⌦ ˆ p0, T q,

⇠px, tq “ rptq�px, tq px, tq P ⌦ ˆ p0, T q,
↵˚

ptq “ max
xP⌦

↵px, tq t P p0, T q,

⇠˚
ptq “ min

xP⌦
⇠px, tq t P p0, T q.

where � ° 0 is a parameter that will be chosen large enough.
The following Carleman inequality was proved in [5].

Lemma 3.4. Let T ° 0 and let ! Ä RN satisfy Definition 1.7. There exist positive real numbers �1 ° 0,
s1 ° 0 and C1 ° 0 pdepending on ⌦ and !q such that for all � • �1, all s • s1 and all q P H1

p0, T ;L2
p⌦qq,

the following inequality holds

s�2
º

Q

⇠|q|
2e´2s↵ dxdt § C1

¨

˝
º

Q

|qt|
2e´2s↵ dxdt ` s2�2

ª
T

0

ª

O!2 ptq
e´2s↵⇠2|q|

2 dxdt

˛

‚.

We recall that O!2ptq “ Xp!2, t, 0q X ⌦ (see Definition 1.7).
To our purposes, we prove the following new Carleman inequality for the Laplace operator.

Lemma 3.5. Let T ° 0 and let ! Ä RN satisfy Definition 1.7. There exist positive real numbers
�2 ° 0, ⌧2 ° 0 and C2 ° 0, independent of t, such that for all � • �2, all ⌧ • ⌧2 and all pg,Gq P

H1
p0, T ;L2

p⌦q ˆ L2
p⌦q

N
q, the solution y of

ˇ̌
ˇ̌ ´�y “ g ` r ¨ G in Q,
y “ 0 on ⌃,

(3.31)

satisfies

ª

⌦

“
�2p⌧�q

2
|y|

2
`|ry|

2
‰
e2⌧�dx § C2

ˆ ª

⌦

“
�´2

p⌧�q
´1

|g|
2

`p⌧�q|G|
2
‰
e2⌧�dx

`

ª

O!2 ptq
�2p⌧�q

2
|y|

2e2⌧� dx `

ª

O!2 ptq
e2⌧� |ry|

2 dx

˙
, (3.32)

for all t P r0, T s.

For sake of completeness, we give a sketch of the proof of Lemma 3.5 in Appendix A.
Theorem 1.8 is a consequence of the following result:
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Proposition 3.6. Let T ° 0, A P W 1,8
p0, T ;W 1,8

p⌦q
NˆN

q and let ! Ä RN satisfy Definition 1.7.
Then, for any z0 P L2

p⌦q, there exists a moving control v P L2
pO!q such that the solution

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

y ´ �y “ z in Q,

zt ` r ¨ pApx, tqyq “ v�O! in Q,

y “ 0 on ⌃,

zp¨, 0q “ z0 in ⌦.

(3.33)

satisfies

yp¨, T q “ zp¨, T q “ 0 in ⌦.

Proof of Theorem 1.8. Given y0 P H2
p⌦qXH1

0
p⌦q, we consider z0 “ y0 ´�y0 P L2

p⌦q. From Proposition
3.6, there exists v P L2

pO!q such that the associated solution py, zq to (3.33) satisfies ypT q “ zpT q “ 0.
It is not di�cult to see that y solves, together with the control v, the null controllability problem for the
Benjamin-Bona-Mahony equation (1.3). ⇤

The rest of this section is devoted to prove Proposition 3.6. As before, proving Proposition 3.6 is
equivalent to find C ° 0 such that

} p¨, 0q}
2

L2p⌦q § C

ª
T

0

ª

O!ptq
| |

2dxdt, @ T P L2
p⌦q, (3.34)

for all p', q solution of ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

'´ �' “ A ¨ r in Q,

´ t “ ' in Q,

' “ 0 on ⌃,

 pT q “  T in ⌦.

(3.35)

Inequality (3.34) is a consequence of the following Carleman inequality:

Theorem 3.7. Let T ° 0, A P W 1,8
p0, T ;W 1,8

p⌦q
NˆN

q and let ! Ä RN satisfy Definition 1.7. There
exist positive constants s0, �0 • 1 and C, only depending on ⌦ and !0, such that, for any  T P L2

p⌦q,
the solution p', q to the adjoint system (3.35) satisfies:

º

Q

e´2s↵
r|r'|

2
` s2�2⇠2|'|

2
sdxdt ` s�2

º

Q

⇠| |
2e´2s↵dxdt

`

ª

Q

rs�2⇠˚
|r't|

2
` s�2⇠˚

|'t|
2
se´2s↵

˚
dxdt

§ Cs6�2
ª

T

0

ª

O!ptq
⇠6e´4s↵`2s↵

˚
| |

2dxdt.

for all s • s0pT ` T 2
q and for all � • �0.

Proof. We begin applying the Carleman inequality given by Lemma 3.4 to (3.35)
2
, which gives

º

Q

s�2⇠| |
2e´2s↵dxdt §

º

Q

|'|
2e´2s↵dxdt `

ª
T

0

ª

O!2 ptq
s2�2⇠2| |

2e´2s↵dxdt. (3.36)

Next, noticing that

A ¨ r “ r ¨ pA q ´  r ¨ A
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and applying the Carleman inequality given in Lemma 3.5 for (3.35)
1
, we see that

⌧2�2
ª

⌦

e2⌧��2|'|
2 dx `

ª

⌦

e2⌧� |r'|
2 dx § C

ˆ
1

⌧�2

ª

⌦

e2⌧�
| |

2

�
dx ` ⌧

ª

⌦

e2⌧��| |
2dx

` ⌧2�2
ª

O!2 ptq
e2⌧��2|'|

2 dx `

ª

O!2 ptq
e2⌧� |r'|

2 dx

¸
,

for � • �0 and ⌧ • ⌧0.
To connect this elliptic estimate with (3.36), we set

⌧ “ srptq,

multiply by

e´2srptqe2}⌘}8

and integrate with respect to t in p0, T q. If we take s0 • ⌧0 then we have that ⌧ • ⌧0 and the following
estimate holds

s2�2
º

Q

e´2s↵⇠2|'|
2 dxdt `

º

Q

e´2s↵
|r'|

2 dxdt

§ C

¨

˝ 1

s�2

º

Q

e´2s↵
| |

2

⇠
dxdt ` s

º

Q

e´2s↵⇠| |
2 dxdt

` s2�2
ª

T

0

ª

O!2 ptq
e´2s↵⇠2|'|

2 dxdt `

ª
T

0

ª

O!2 ptq
e´2s↵

|r'|
2 dxdt

¸
.

(3.37)

Adding (3.36) and (3.37), and absorbing the lower order terms by taking � large enough, we get

s�2
º

Q

e´2s↵⇠| |
2dxdt ` s2�2

º

Q

e´2s↵⇠2|'|
2 dxdt `

º

Q

e´2s↵
|r'|

2 dxdt

§ C

˜
s2�2

ª
T

0

ª

O!2 ptq
e´2s↵⇠2| |

2dxdt ` s2�2
ª

T

0

ª

O!2 ptq
e´2s↵⇠2|'|

2 dxdt

`

ª
T

0

ª

O!2 ptq
e´2s↵

|r'|
2 dxdt

¸
.

Now, let us introduce !3 such that !2 Ä !3 Ä !3 Ä ! and the function

⇣px, tq :“ #pXpx, 0, tqq,

where # is a cut-o↵ function satisfying

# P C8
0

p!3q, 0 § #pxq § 1, # ” 1 in !2.

This way, we have that

ª
T

0

ª

O!2 ptq
e´2s↵

|r'|
2 dxdt §

º

Q

⇣e´2s↵
|r'|

2 dxdt. (3.38)
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Then, since ⇣e´2s↵r' “ rp⇣e´2s↵'q ´ rp⇣e´2s↵
q', we obtain

º

Q

⇣e´2s↵
|r'|

2 dxdt “

º

Q

rp⇣e´2s↵'q ¨ r' dxdt ´

º

Q

rrp⇣e´2s↵
q ¨ r's' dxdt

“
1

2

º

Q

�p⇣e´2s↵
q|'|

2 dxdt `

º

Q

rp⇣e´2s↵'q ¨ r' dxdt

:“ B1 ` B2.

Now, let us estimate the terms B1 and B2. For that, we use that

�p⇣e´2s↵
q :“ e´2s↵

 
�⇣ ` 4s�⇠ rr⇣ ¨ r⌘s ` 2s�⇠⇣

“
�|r⌘|

2
p2s⇠ ` 1q ` �⌘

‰(
,

to see that

B1 § C s2�2
ª

T

0

ª

O!3 ptq
e´2s↵⇠2|'|

2 dxdt.

Since A ¨ r :“ r ¨ pA q ´  r ¨ A P H´1
p⌦q, the solution for (3.35)

1
satisfies the following weak

formulation
p', wq ` pr',rwq “ ´pA ,rwq ´ p r ¨ A,wq @w P H1

0
p⌦q.

Using the previous formulation with w “ ⇣e´2s↵', we obtain

B2 “ ´

º

Q

⇣e´2s↵
|'|

2 dxdt ´

º

Q

pr ¨ Aq ⇣e´2s↵' dxdt ´

º

Q

 
“
A ¨ rp⇣e´2s↵'q

‰
dxdt

:“ B1

2
` B2

2
` B3

2
.

Now, for B1
2
, we easily deduce that

|B1

2
| § C s2�2

ª
T

0

ª

O!3 ptq
e´2s↵⇠2|'|

2 dxdt.

For B2
2
, we notice that, for every � ° 0, we obtain

|B2

2
| § �s�2

º

Q

e´2s↵⇠| |
2 dxdt ` C� s

2�2
ª

T

0

ª

O!3 ptq
e´2s↵⇠2|'|

2 dxdt.

Since rp⇣e´2s↵
q “ e´2s↵

pr⇣ ` 2s�⇠⇣r⌘q, for every � ° 0, we have that

B3

2
§ "

¨

˝s2�2
º

Q

e´2s↵⇠2|'|
2 dxdt `

º

Q

e´2s↵
|r'|

2 dxdt

˛

‚` C� s
2�2

ª
T

0

ª

O!3 ptq
e´2s↵⇠2| |

2 dxdt.

This way, we get

s�2
º

Q

e´2s↵⇠| |
2dxdt ` s2�2

º

Q

e´2s↵⇠2|'|
2 dxdt `

º

Q

e´2s↵
|r'|

2 dxdt

§ C

˜
s2�2

ª
T

0

ª

O!3 ptq
e´2s↵⇠2| |

2dxdt ` s2�2
ª

T

0

ª

O!3 ptq
e´2s↵⇠2|'|

2 dxdt

¸
.

(3.39)

Finally, to estimate the local integral of ' in the right-hand side of (3.39), we need to have some global
integral of 't on the left-hand side. For that, we first take the time derivative in (3.35)

1
, use the fact
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that pA ¨ r qt “ r ¨ pAt ` A tq ´  tr ¨ A ´  r ¨ At and (3.35)
2
, to see that 't solves the following

elliptic equation ˇ̌
ˇ̌ 't ´ �'t “ r ¨ pAt ´ A'q ` 'r ¨ A ´  r ¨ At in Q,

't “ 0 on ⌃.
(3.40)

From (3.39) and energy estimates for (3.40), it is not di�cult to see that
ª

Q

rs�2⇠˚
|r't|

2
` s�2⇠˚

|'t|
2
se´2s↵

˚
dxdt

§ C

˜
s2�2

ª
T

0

ª

O!3 ptq
e´2s↵⇠2| |

2dxdt ` s2�2
ª

T

0

ª

O!3 ptq
e´2s↵⇠2|'|

2 dxdt

¸
.

(3.41)

Combining (3.39) and (3.41), we get
º

Q

e´2s↵
r|r'|

2
` s2�2⇠2|'|

2
sdxdt ` s�2

º

Q

⇠| |
2e´2s↵dxdt

`

ª

Q

rs�2⇠˚
|r't|

2
` s�2⇠˚

|'t|
2
se´2s↵

˚
dxdt

§ C

˜
s2�2

ª
T

0

ª

O!3 ptq
e´2s↵⇠2| |

2dxdt ` s2�2
ª

T

0

ª

O!3 ptq
e´2s↵⇠2|'|

2 dxdt

¸
.

(3.42)

The proof of Theorem 3.7 is finished noticing that ´ t “ ' and using integration by parts to estimate
the local integral in '.

⇤

4. Comments and Open Problems

‚ We have proved Theorems 1.5 and 1.8 assuming that y0 P H2
p⌦q XH1

0
p⌦q. We do not know whether

these results are true if we take only y0 P H1
0

p⌦q. Indeed, in this case the initial condition for both
decompositions (3.1) and (3.33) will be in H´1

p⌦q and it seems that both the compactness-uniqueness
argument and the argument based on Carleman inequalities does not work.

‚ If the vector field A is regular enough and depends only on time, i.e., A “ Aptq, we can weaken
the hypothesis on the movement of the control for equation (1.3). In fact, we can use a compactness-
uniqueness argument as in the proof of Theorem 1.5 and deduce the following result.

Theorem 4.1. Let T ° 0, O satisfying MGCC-I and A P C8
p0, T q. Then, for any y0 P H2

p⌦qXH1
0

p⌦q,
there exists a moving control v P L2

pOq such that the associated solution to (1.3) satisfies

yp¨, T q “ 0 in ⌦.

‚ Concerning the geometrical requirements for the movement of controls given by the MGCC-II, i.e.
Assumption 1.6, we do not know if all the conditions (1.4)-(1.8) are really necessary in order to get
null controllability for equation (1.3) when A is x-dependent. Indeed, we use these conditions only to
construct the function ⌘ given in Lemma 3.3. Removing any of the conditions (1.4)-(1.8) is interesting
and, as far as we know, completely open.

‚ It would be interesting to study controllability issues for nonlinear pseudo-parabolic equations such
as the nonlinear BBM equation. Indeed, it is not even clear whether nonlinear pseudo-parabolic equations
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can be driven or not to zero by means of controls applied to fixed control domains. Moreover, assuming
that null controllability does not hold with fixed controls, it is a challenging problem to control nonlinear
equations using moving controls and we are only aware of the paper [11] where a similar one-dimensional
problem has been considered. We leave this study to a forthcoming paper.

Acknowledgements. We would like to thank Prof. G. Lebeau for several discussions about this work
and Prof. S. Ervedoza for pointing out references [14, 15]. Also, we thank the anonymous referees for
their helpful comments.

Appendix A. Carleman inequality for the Laplace operator

We give the sketch of the proof of Lemma 3.5, which is inspired by the arguments in [9].
For every t P r0, T s, we set the function �px, tq “ e�⌘px,tq and consider wpx, tq “ e⌧�px,tqzpx, tq.
We have the following decomposition

e⌧��z “ e⌧��pe´⌧�wq “ r�w`⌧2|r�|
2ws ´r2⌧r� ¨rw`⌧��ws “ e⌧�g`e⌧�r ¨G “ e⌧� g̃`r ¨ pe⌧�Gq,

where g̃ “ g ´ ⌧r� ¨ G.
Multiplying the previous equation by w and integrating by parts, one can see that:

ª

⌦

|rw|
2 dx ` ⌧2

ª

⌦

|r�|
2
|w|

2 dx “

ª

⌦

e⌧� g̃w dx ´

ª

⌦

e⌧�G ¨ rw dx

which, together with the properties of the weigh function, gives the result.
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