


power systems disturbances. There can be completely different definitions for power
quality, depending on the point of view of utilities, manufacturer of load equipment,
or customer. For instance, utilities may define power quality as reliability and show
statistics demonstrating that the system is almost 100 percent reliable. The
manufacturer of load equipment may define quality power as those characteristics of
the power supply that enable the equipment to work properly. However, power
quality is ultimately a customer-driven issue and the customer’s point of reference
must take precedence. Therefore, a power quality problem can be defined as any
power problem manifested in voltage, current, or frequency deviations that results in
failure or malfunctioning of customer equipment.

The subject of this paper is the analysis of the voltage quality for sensing any
deviation of the voltage waveform out of certain limits. Alternating current power
systems are designed to operate at a sinusoidal voltage of a given frequency (typically
50 or 60 Hz) and magnitude. Any significant deviation in the magnitude, frequency,
or purity of waveform is a potential power quality problem. These deviations must be
fast detected for further actions or storing for classification and statistical studies.

Software procedures have been developed, applying the FFT for analyzing these
disturbances [1]; however, due to the great amount of stored data and the time of
required processing, such procedure is slow and not very efficient. To minimize
storage space, we need to represent signals by as few bits as possible. This is the data
compression problem, and has been studied for several decades especially for image
compression [2]. Likewise, the noise reduction has been dealt with from a statistical
point of view [3-5].

 Continuous and discrete wavelet transform (DWT) have been used in analysis of
non-stationary signals and several papers [6-8] have proposed the use of wavelets for
the analysis of power systems. They are able to remove noise and achieve high
compression ratios because of the “concentrating” ability of the wavelet transform. If
a signal has its energy concentrated in a small number of wavelet coefficients, this
signal will be relatively large compared to any other signal or noise that has its energy
spread over a large number of coefficients. This means that thresholding the wavelet
transform will remove the low amplitude and undesired coefficients in the wavelet
domain and reconstructs the signal with little loss of information. Wavelet
thresholding has important applications in statistic. Donoho and Johnstone [9]
propose to start with a wavelet decomposition of the data set, thresholding later the
coefficients, and then use the wavelet reconstruction as an estimate function. This is
the model of the fast and efficient algorithm for data-compression that we consider in
this paper.

2. Power Quality Measurement for Three-Phase Systems

The power quality measurement system or power quality monitor (PQM) described in
this paper has been specifically developed for the analysis of three-phase line
voltages. It stores data by sampling the three phase-to-neutral voltages
simultaneously. Then, an efficient measurement algorithm, based on the power-
frequency data estimation obtained from three equidistant samples of a sinusoidal
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signal, calculates the instantaneous frequency for the synchronization of the voltage
and sampling periods. It allows the estimated power frequency to be defined from the
pondered mean of the estimation performed in each phase R-S-T.

Thus, the detected R-phase of the voltage signal can be processed to construct a
perfect three-phase system for being used as reference. The PQM detects individual
events, at the time of occurrence, by comparing the monitored signals to the reference
three-phase voltages. When a threshold parameter is exceeded, a disturbance event is
detected. Threshold parameters are adjustable over a specified range to accommodate
different monitoring circumstances.

•  Instantaneous voltage. Instantaneous voltage amplitude measured with respect to
the power-frequency sine wave. Short-duration voltage variations such as impulsive
and oscillatory transients, waveform distortion and voltage fluctuations can be
detected. The measurement interval for short-duration voltage variation is from 500ns
to 50ms.

• AC rms voltage. With rms sensing, according to the above strategy of
synchronization, the measurement interval is an integral number of cycles of the
fundamental power frequency. Harmonic content, swell, long-term interruptions and
voltage unbalance events can be detected. The measurement interval is from 1 cycle
to 1 min.

Having detected the disturbance event, the digitized samples are stored in memory.
As subsequent processing, measurement, and reporting of the disturbance event will
be based entirely upon the stored samples, the PQM retain two-cycles data from
before and after the detection point to accurately reconstruct the entire disturbance
event.

Furthermore, the digitized data is formatted to provide a compressed and detailed
graphic representation of the disturbance waveform. Therefore, the PQM includes two
algorithms: one for calculating the harmonic spectrum of the incoming voltage data,
using the discrete fourier transform (DFT), and other algorithm for filtering and
compressing the collected disturbance data using the discrete wavelet transform
(DWT). The two algorithms are applied concurrently.

The conventional DFT is applied to the original digitized samples, f(n), getting the
set of fourier coefficients and the first 50 harmonics in phasor form. The second
algorithm consists of the following steps.

A. Wavelet decomposition. f(n) samples are transformed in order to generate a set
of signal coefficients. The DWT used (Daubechies family Db4) is applied to f(n),
getting signals aj(n) and d1(n), where j is the index level. Family Db4 is particularly
appropriate for detecting disturbances of high frequency (transients), as it is more
localized in time than other members of the same family are.

B. Threshold wavelet estimators and reconstructed signal A process of comparison
between the input signal and the reconstructed signal aj(n) begins. This process stops
when the difference between the two signals is less than the set threshold. One of the
goals of the present work is to reach a high compression ratio. This expresses the
minimum amount of data necessary for recovering the original signal.
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In a first phase, the algorithm of coefficient filtering performs a comparison of
signals aj with the original signal f(n) to obtain the error signal ξj. In a second phase,
the absolute maximum value of ξj is compared with a fixed threshold λ. If the
magnitude of the error signal is less than λ, then the signal resulting (reconstructed
signal) is the new reconstructed signal f(n)*. In both phases, the optimal relative error
between the original f(n) and the reconstructed f(n)* signal is used for measuring the
quality of the estimator.

These recording mechanisms make the PQM most suitable for automatic
classifying of disturbance waveforms and analyzing complex power-quality problems
when properly applied by the expert user.

2.1. Three-Phase Arbitrary-Function Generator

We are developing a three-phase arbitrary-function generator (Fig. 1) that simulates
all kinds of electrical disturbances in line voltages such as oscillatory transients,
waveform distortion, voltage fluctuations, sag, swell, interruptions and voltage
unbalance. Generated signals simulate those obtained at low-voltage level by line
voltage transducers.

Fig. 1. Three phase arbitrary-function generator

A wide range of parameter settings and combination possibilities make the
instrument an appropriate tool for training artificial neural networks in the
classification process of electrical disturbances. Local operation via PC-control, using
the LabView program running under Windows, makes the unit user-friendly during
test parameter set-up.

The instrument enables tests to be performed in accordance with EN-50160 and the
other common standards of the European Union (EU). Tests can be pre-programmed
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and stored for being recalled at any arbitrary time at the touch of a button.
Continuously varying values for three-phase voltages and dropout time can be defined
to occur autonomously.  These tests can also be programmed to run in an endless
loop.

At present, three arbitrary functions are generated after completion of the
parameter settings using the initial program. It superimposes three sinusoidal signals
with combined harmonic content (up to the 50th harmonic). Power frequency
variations, total harmonic distortion and voltage imbalance of the three-phase voltage
signals can be initially selected too. Fig. 2 shows the screen for parameter settings in
case of the voltage waveforms of Fig. 1.

Unlike a natural environment, however, where disturbance events are
unpredictable, the instrument allows the user to develop controlled, repeatable
simulations. Results from simulation testing can be used to validate in real time a
complete system of power disturbance analysis, including data capture, recording,
classification, and reporting the results. These waveforms can be used to train an
ANN too. The system can also generate three analogue sinusoidal signals to be
utilized as AC threshold or, for example, as reference in the disturbance classification
training processes of the ANN.

Fig. 2. Parameter settings showing the harmonic content of the voltage waveform

3. PQ Disturbances Classification Using Neural Networks

In power engineering, the analysis of PQ problems is not focused only to the detection
of electrical disturbances. Far more important is the ability to classify various types of
disturbances as well. As an alternative to classify the PQ disturbances, we consider
using an artificial neural network (ANN). This technology has been widely used in
Power Systems management [10-14]. After to evaluate several alternatives (ART2,
LVQ, Counterpropagation, etc), authors selected a fully connected feedforward ANN
with a backpropagation learning method [15,16] based on Generalized Delta Rule.
This type of network can resolve the function approximation problem (to find the
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unknown function that relates a set of training patterns) [17,18]. To simulate ANNs
we used simultaneously a set of five Intel PIII 450Mhz computers.

Fig. 3. Feedfordward Neural Network

The feedforward neural network type has an input layer, one or more hidden
layers, and an output layer, as shown in Fig. 3.

The neurons in different layers are connected by means of weights. When a
training pattern p is presented, the input for a neuron j is the sum of the weighted
input signal ipi :

(1)

where wji is the weight of ith input at jth node. The output
opj from the neuron is given by

(2)

when a sigmoid activation function is used.

Training process is carried out using the backpropagation algorithm. This learning
method updates the interconnection weights using the Generalized Delta Rule. In this
method, the error at a given output node opj, when a training pattern p is presented, is:

(3)

where tpj = target value for jth output node produced by input pattern p; and f´’=
first derivative of activation function used by node j. The error at a given non-output
node j, when training pattern p is  presented, is:

(4)
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in which k = number of neurons in next layer; and δpk = already computed for the
kth neuron in the next layer. Weights may be modified after each training pattern is
presented. So, the weight change applied to weight wji , after pattern p has been
presented, is:

(5)

where η = learning rate; and α = momentum factor. Effectiveness and convergence
of the learning algorithm depend on the value of  and . If the selected learning rate  is
too high, the network tends to oscillate avoiding the learning process of the correct
mapping from the input to the target. If the value of   is very small, the network can
take a very long time to learn. Momentum factor is used to speed network training.
Proper selection of a momentum factor  can prevent network from oscillating.

Mean Square Error (MSE) is the measure of how well the network output matches
target output. MSE is calculated at the end of each training cycle. MSE is summed
over each output node for each pattern. The MSE at the end of a given cycle is:

(6)

in which N = number of patterns; and T = number of outputs nodes.

There are not specific rules to select an optimal ANN architecture [19]. In the PQ
problem the number of input neurons is 113, clustering in three groups:

- 48 time inputs, sampling an electrical signal period of 20 ms, in order to detect
impulsive or oscillatory voltage-transients.

- 50 RMS inputs, one for each electrical signal cycle during 2 second, in order
to detect long-duration disturbances like overvoltages or undervoltages.

- 15 main harmonics of the signal inputs, to detect waveform distortions.

The number of output neurons is 8: one for a global evaluation of the voltage
quality (PQ) and 7 for each disturbance: power frequency variations, transients, sags,
short duration interruptions, swells, long duration interruptions and waveform
distortions.

To select the other variables related with the ANN design and training is usually
very complex. For example, the number of hidden neurons and the number of hidden
layers to use are difficult to be determined. If the architecture is too small, the
network may not have enough degrees of freedom to learn the process correctly. On
the other hand, if the network is too large, the solution may not converge during
training or the network may overlearn the data.

In order to select the best alternative, we have developed a three phase heuristic
method. The first phase began testing the transfer functions for each neuron layer
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(linear, sigmoid or tanh), weight initialization (randomly or used specified values),
learning rule (Generalized or Cumulative Delta Rule), and the order of training
patterns presentation. A second phase sets the number of hidden neurons (10 to 140),
the number of hidden layers (3 to 5), the learning rate (0.1 to 0.5) and momentum
factor (0.1 to 0.5). Other objective of this design phase is to establish the utility of
using partially connected networks (each ANN output only depends on a part of the
inputs). In this second phase 200 network architectures were tested. The third phase
objective is to test the addition of Gaussian noise to input training pattern and little
variations on hidden neurons number.

Fig. 4. Variation of MSE during the training process  (1800 epochs)

Another problem is to select the training patterns. In the PQ problem we generate
1100 patterns by using the three-phase generator of electrical disturbances described
above. Authors selected 900 patterns to use during training, 110 validation patterns to
avoid that the ANN overlearns the training patterns, and 90 testing patterns used for
evaluate the performances of the network. The training, validation and testing patterns
range values are between -1 and 1 (inputs are scaled by the maximum value of the
patterns). Authors employed a total of 5,000 training cycles. Fig. 4 shows the
reduction of MSE during the training process for one architecture. The results
obtained after training the ANN for each possibility with different architectures are
shown in Table 1. The best test result is a MSE of 0.0554 (94.5% of correct PQ
disturbances classification).
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Table 1. Results of the ANN selection heuristic process

Phase Parameter Best results

Ph.1 Transfer function per layer Linear (first layer), Sigmoid (other layers)
Weight initialization Randomly between -1 and 1
Learning rule Generalized Delta Rule
Training patterns presentation Randomly

Ph.2 Architecture 113 - 100 - 100 - 9 partially connected
Learning rate 0.5
Momentum factor 0.5

Ph.3 Gaussian input noise Irrelevant
Variation on hidden neurons 113 - 100 - 100 - 9 partially connected

If we analyze the error obtained for each output (Table 2) we can see that the worst
figure is the output number 8 (waveforms distortions problems), but even in this case,
the test MSE is minor than 8%. The only other output MSE upper 5% is the MSE for
output 1 (that offers a global evaluation of the signal PQ). As conclusion, the errors
obtained are satisfactory to detect and classify PQ disturbances. The next phase in our
project is to integrate the ANN into the power disturbance monitor for three phase
systems describes above.

Table 2. MSE for each ANN output.

ANN Output     MSE value

Unit 1: Global voltage quality (PQ) 0.051
Unit 2: Power frequency variations 0.009
Unit 3: Transients 0.026
Unit 4: Sags 0.005
Unit 5: Short duration interruption 0.001
Unit 6: Swells 0.032
Unit 7: Long duration interruption 0.001
Unit 8: Waveform distortion 0.075

4. Conclusions

This paper describes the developing of a power disturbance monitor for three-phase
systems. This system classifies and stores short-term and long term disturbances, and
waveform distortions in electrical three-phase AC signals, using a fully connected
feedforward neural network with a backpropagation learning method. Wavelet
transform is used for compress data. An arbitrary function generator has been
developed for training the ANN. Preliminary tests show that the system obtains good
results in the classification of electrical PQ incidences. The next project phase is to
integrate the ANN into the power disturbance monitor.
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