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Abstract: We consider the reconstruction of the solution of a parabolic equation posed in Ω × (0, T), with
a bounded open subset Ω ofℝN , from a partial distributed observation. We employ a least-squares technique
and minimize the L2-norm of the distance from the observation to any solution. Taking the parabolic equa-
tion as the main constraint, the optimality conditions are reduced to a mixed formulation involving both the
state to reconstruct and a Lagrangemultiplier. Thewell-posedness of thismixed formulation, in particular the
inf-sup property, is a consequence of classical energy estimates. We then reproduce the arguments to a linear
first-order system, involving the normal flux, equivalent to the linear parabolic equation. Themethod, valid in
any spatial dimension N, may also be employed to reconstruct solutions from boundary observations. With
respect to the hyperbolic case, the parabolic situation requires, due to regularization properties, the intro-
duction of an appropriate weight function so as to make the reconstruction stable with respect to standard
Sobolev spaces.
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1 Introduction: Inverse problems for linear parabolic equations
Let Ω ⊂ ℝN be a bounded domain whose boundary ∂Ω is regular enough. For any T > 0 we denote

QT := Ω × (0, T) and ΣT := ∂Ω × (0, T).

We are concerned with inverse type problems for the following linear parabolic-type equation:

{{{
{{{
{

yt − ∇ ⋅ (c(x)∇y) + d(x, t)y = f in QT ,
y = 0 on ΣT ,

y(x, 0) = y0(x) in Ω.
(1.1)

Let MN(ℝ) be the set of real square matrices of order N. We assume that c := (ci,j) ∈ C1(Ω;MN(ℝ)) with
(c(x)ξ, ξ) ≥ c0|ξ|2 for any x ∈ Ω and ξ ∈ ℝN (c0 > 0), d ∈ L∞(QT) and y0 ∈ L2(Ω); here f = f(x, t) is a source
term (a function in L2(QT)) and y = y(x, t) is the associated state. For any y0 ∈ L2(Ω) and f ∈ L2(QT), there
exists exactly one solution y to (1.1) with the regularity (see [5, 24])

y ∈ C0([0, T]; L2(Ω)) ∩ L2(0, T;H1
0(Ω)).
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In what follows, we shall use the following notations:

Ly := yt − ∇ ⋅ (c(x)∇y) + d(x, t)y, L⋆φ := −φt − ∇ ⋅ (c(x)∇φ) + d(x, t)φ.

Let now ω be any nonempty open subset of Ω and let qT := ω × (0, T) ⊂ QT . A typical inverse problem for
(1.1) (see [20, 32]) is the following one: from an observation ormeasurement yobs on the open set qT , we aim
at recovering a solution y of the boundary value problem (1.1) which coincides with the observation on qT .
Assuming yobs in L2(qT) and introducing the operator P : Y → L2(QT) × L2(qT) defined by Py := (Ly, y|qT )
where the space Y is an appropriate Hilbert space (defined in Section 2.1), the problem is reformulated as the
following:

find a solution y ∈ Y of Py = (f, yobs). (IP)

From the unique continuation property for (1.1), if yobs is a restriction of a solution of (1.1) to qT , then
the problem is well-posed in the sense that the state y corresponding to the pair (f, yobs) is unique, i.e. P
is a bijective operator from Y to its range R(P). However, in view of the unavoidable uncertainties on the
data yobs (coming frommeasurements, numerical approximations, etc.), problem (IP) needs to be relaxed. In
this respect, the approach widely used in practice consists in introducing the following extremal problem (of
least-squares type):

minimize J(y0) :=
1
2 ‖ρ

−1
0 (y − yobs)‖2L2(qT ) overH, where y solves (1.1), (LS)

since y is uniquely and fully determined from the data y0. Here ρ0 denotes an appropriate positive weight
whileH denotes a Hilbert space related to the space Y; roughly,H is the set of initial data y0 for which the
solution of (1.1) satisfies ρ−10 y ∈ L2(qT).

Here, the constraint y − yobs = 0 in L2(qT) is relaxed; however, if yobs is a restriction to qT of a solution of
(1.1), then problems (LS) and (IP) coincide. Aminimizing sequence for J inH is easily defined in terms of the
solution of an auxiliary adjoint problem. From a numerical point of view, this extremal problem has mainly
two independent drawbacks:
∙ First, it is in general not possible to minimize over a discrete subspace of the set {y; Ly − f = 0} subject to

the equality Ly − f = 0 (in L2(QT)). Therefore, theminimization procedure first requires the discretization
of the functional J andof equation (1.1). This raises the issue,whenonewants to prove some convergence
result of any discrete approximation of the uniform coercivity property (typically here some uniform
discrete observability inequality for the adjoint solution) of the discrete functional with respect to the
approximation parameter. As far as we know, this delicate issue has received answers only for specific
and somehow academic situations (uniform Cartesian approximation of Ω, constant coefficients in (1.1),
etc.). We refer to [4, 28].

∙ Second, in view of the regularization property of the heat kernel, the space of initial data H for which
the corresponding solution of (1.1) belongs to L2(qT) is a huge space. It contains in particular the nega-
tive Sobolev space H−s(Ω) for any s > 0 and therefore is very hard to approximate numerically. For this
reason, the reconstruction of the initial condition y0 of (1.1) from a partial observation in L2(qT) is there-
fore known to be numerically severely ill-posed and requires, within this framework, a regularization to
enforce that the minimizer belongs to a standard Sobolev space (for instance L2(Ω)) which is easier to
approximate (see [12]). The situation is analogous for the so-called backward heat problem, where the
observation on qT is replaced by a final time observation.We refer to [7, 30, 31] where this ill-posedeness
is discussed.
Themain reason of this work is to reformulate problem (LS) and show that the use of variationalmethods

may overcome these two drawbacks. In the spirit of the works [1, 21] where Cauchy problems for parabolic
equations are addressed (based on the quasi-reversibility method; see [22] and Remark 2.5), we explore the
direct resolution of the optimality conditions associated to the extremal problem (LS), keeping the state y
as the main variable of the problem instead of y0. A Regularization method is not necessary anymore. This
strategy, advocated in [30], avoids any iterative process and allows a stable numerical framework. It has been
successfully applied in the closely related context of the exact controllability of (1.1) in [15, 27] and also to
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inverse problems for hyperbolic equations in [10, 11]. Keeping y as the main variable, the idea is to take
into account the state constraint Ly − f = 0 with a Lagrange multiplier. This allows to derive explicitly the
optimality systems associated to (LS) in terms of an elliptic mixed formulation and therefore reformulate
the original problem. Well-posedness of such new formulation is related to classical energy estimates and
unique continuation properties while the stability is guaranteed by some global observability inequality for
the homogeneous parabolic equation.

The outline of this paper is as follows: In Section 2, we consider the least-squares problem (P) and recon-
struct the solution of the parabolic equation from a partial observation localized on a subset qT of QT . For
that, in Section 2.1, we associate to (P) the equivalent mixed formulation (2.2) which relies on the optimality
conditions of the problem. Using the unique continuation for equation (1.1), we show the well-posedness
of this mixed formulation, in particular, we check the Babuska–Brezzi inf-sup condition (see Theorem 2.1).
Interestingly, in Section 2.2, we also derive an equivalent dual extremal problem, which reduces the deter-
mination of the state y to the minimization of an elliptic functional with respect to the Lagrange multiplier.
Then, in Section 3,we adapt these arguments to the first ordermixed system (3.1), equivalent to the parabolic
equation. There, the flux variable p := c(x)∇y appears explicitly and allows to reduce the order of regular-
ity of the involved functional spaces. The underlying inf-sup condition is obtained by adapting a Carleman
inequality due to Imanuvilov, Puel and Yamamoto (see [19]). The existence and uniqueness of a weak solu-
tion to this first-order system is studied in the Appendix. Section 4 concludes with some remarks and per-
spectives. In particular, we highlight why the mixed formulations developed and analyzed here are suitable
at the numerical level to get a robust approximation of the variable y on the whole domain QT .

2 Recovering the solution from a partial observation: A second
order mixed formulation

Assuming that the data y0 is unknown, we address the inverse problem (IP). We introduce and analyze firstly
a direct approach then an equivalent extremal problem. In view of the linearity of (1.1), we take for simplicity
a zero source term f .

2.1 Direct approach: Minimal local weighted L2-norm; a first mixed formulation

Let ρ⋆ ∈ ℝ⋆+ and let ρ0 ∈ R with

R := {w : w ∈ C0(QT), w ≥ ρ⋆ > 0 in QT , w ∈ L∞(Ω × (δ, T)) for all δ > 0} (2.1)

so that in particular, theweight ρ0may blow up as t→ 0+. We define the space Y0 := {y ∈ C2(QT) : y = 0 on ΣT}
and for any η > 0 and any ρ ∈ R, the bilinear form by

(y, y)Y0 := ⟨ρ−10 y, ρ
−1
0 y⟩L2(qT ) + η⟨ρ

−1Ly, ρ−1Ly⟩L2(QT ) for all y, y ∈ Y0.

Here ⟨ ⋅ , ⋅ ⟩X denotes the usual scalar product over X = L2(qT) or X = L2(QT). The introduction of the weight ρ
which does not appear in the original problem will be motivated at the end of this section. From the unique
continuation property for (1.1), this bilinear form defines a scalar product for any η > 0.

Let then Y be the completion of the space Y0 for this scalar product. We denote the norm over Y by ‖ ⋅ ‖Y
such that

‖y‖2Y := ‖ρ−10 y‖
2
L2(qT ) + η‖ρ

−1Ly‖2L2(QT ) for all y ∈ Y.

Finally, we define the closed subsetW of Y byW := {y ∈ Y : ρ−1Ly = 0 in L2(QT)} and we endowWwith
the same norm as Y.

For any r ≥ 0 we then define the following extremal problem:

Minimize Jr(y) :=
1
2 ‖ρ

−1
0 (y(x, t) − yobs(x, t))‖2L2(qT ) +

r
2 ‖ρ

−1Ly‖2L2(QT ) subject to y ∈ W. (P)
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This problem is well-posed: the functional Jr is continuous, strictly convex and such that Jr(y) → +∞ as
‖y‖Y → +∞. Note also that the solution of (P) does neither depend on η nor on ρ. Moreover, for any y ∈ W,
we have Ly = 0 a.e. in QT and ‖y‖Y = ‖ρ−10 y‖L2(qT ) so that the restriction y( ⋅ , 0) belongs, by definition, to the
abstract spaceH. Consequently, extremal problems (LS) and (P) are equivalent.

In order to solve problem (P), we have to deal with the constraint equality ρ−1Ly = 0which appears inW.
Proceeding as in [10, 27], we introduce a Lagrange multiplier and the following mixed formulation: find
a solution (y, λ) ∈ Y × L2(QT) of

{
{
{

ar(y, y) + b(y, λ) = l(y) for all y ∈ Y,

b(y, λ) = 0 for all λ ∈ L2(QT),
(2.2)

where

ar : Y × Y → ℝ, ar(y, y) := ⟨ρ−10 y, ρ
−1
0 y⟩L2(qT ) + r⟨ρ

−1Ly, ρ−1Ly⟩L2(QT ),
b : Y × L2(QT) → ℝ, b(y, λ) := ⟨ρ−1Ly, λ⟩L2(QT ),

l : Y → ℝ, l(y) := ⟨ρ−10 y, ρ
−1
0 yobs⟩L2(qT ).

System (2.2) corresponds to the optimality conditions of Jr while r stands as an augmentation parameter
(see [16]). We have the following result.

Theorem 2.1. Let ρ0 ∈ R, ρ ∈ R ∩ L∞(QT) and r ≥ 0. Then the following hold:
(i) The mixed formulation (2.2) is well-posed.
(ii) The unique solution (y, λ) ∈ Y × L2(QT) is the unique saddle-point of the Lagrangian Lr : Y × L2(QT) → ℝ

defined by Lr(y, λ) := 1
2ar(y, y) + b(y, λ) − l(y).

(iii) The solution (y, λ) satisfies the estimates

‖y‖Y ≤ ‖ρ−10 yobs‖L2(qT ), ‖λ‖L2(QT ) ≤ 2√C2Ω,Tρ
−2
⋆ ‖ρ‖2L∞(QT ) + η ‖ρ−10 yobs‖L2(qT )

for some constant CΩ,T > 0.

Proof. We use classical results for saddle point problems (see [3, Chapter 4]).
We easily check the continuity of the symmetric and positive bilinear form ar over Y × Y, the continuity

of the bilinear form b over Y × L2(QT) and the continuity of the linear form l over Y. In particular, we get

‖l‖Y� ≤ ‖ρ−10 yobs‖L2(qT ), ‖ar‖L 2(Y) ≤ max{1, η−1r}, ‖b‖L 2(Y,L2(QT )) ≤ η
−1/2, (2.3)

whereL 2(E, F) denotes the space of the continuous bilinear functions defined on the product Banach space
E × F; when E = F we simply write L 2(E).

Moreover, the kernel
N(b) := {y ∈ Y : b(y, λ) = 0 for all λ ∈ L2(QT)}

coincides withW: we have ar(y, y) = ‖y‖2Y for all y ∈ N(b) = W leading to the coercivity of ar over the kernel
of b.

Therefore, in view of [3, Theorem 4.2.2], it remains to check the following so-called inf-sup property:
there exists δ > 0 such that

inf
λ∈L2(QT )

sup
y∈Y

b(y, λ)
‖y‖Y‖λ‖L2(QT )

≥ δ. (2.4)

We proceed as follows: For any fixed λ0 ∈ L2(QT), using the fact that ρ is bounded in QT , we define the
unique element y0 as the solution of

ρ−1L y0 = λ0 in QT , y0 = 0 on ΣT , y0( ⋅ , 0) = 0 in Ω.

Using energy estimates, we have

‖ρ−10 y
0‖L2(qT ) ≤ ρ

−1
⋆ ‖y0‖L2(QT ) ≤ CΩ,Tρ

−1
⋆ ‖ρλ0‖L2(QT ) ≤ CΩ,Tρ

−1
⋆ ‖ρ‖L∞(QT )‖λ0‖L2(QT ),
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which proves that y0 ∈ Y and that

sup
y∈Y

b(y, λ0)
‖y‖Y‖λ0‖L2(QT )

≥
b(y0, λ0)

‖y0‖Y‖λ0‖L2(QT )
=

‖λ0‖L2(QT )
(‖ρ−10 y0‖

2
L2(qT ) + η‖λ0‖

2
L2(QT ))

1
2
.

Combining the above two inequalities, we obtain

sup
y∈Y

b(y, λ0)
‖y‖Y‖λ0‖L2(QT )

≥
1

√C2Ω,Tρ
−2
⋆ ‖ρ‖2L∞(QT ) + η ,

and hence (2.4) holds with
δ = (C2Ω,Tρ

−2
⋆ ‖ρ‖2L∞(QT ) + η)−1/2.

Point (ii) is due to the positivity and symmetry of the form ar. Point (iii) is a consequence of classical
estimates (see [3], Theorem 4.2.3), namely

‖y‖Y ≤
1
α0

‖l‖Y� , ‖λ‖L2(QT ) ≤
1
δ (

1 +
‖ar‖L 2(Y)

α0
)‖l‖Y� ,

where α0 := infy∈N(b) ar(y, y)/‖y‖2Y. Estimates (2.3) and the equality α0 = 1 lead to the results.

In order to get a global estimate of the reconstructed solution, we now recall the following important result.

Proposition 2.2 ([14, Lemma 3.1]). Assume that Ω is at least of class C2. We define the Carleman weights
ρc , ρc,0, ρc,1 ∈ R (see (2.1)) be defined as follows:

ρc(x, t) := exp(β(x)t ), β(x) := K1(eK2 − eβ0(x)),

ρc,0(x, t) := t3/2ρc(x, t), ρc,1(x, t) := t1/2ρc(x, t),
(2.5)

with β0 ∈ C∞(Ω) and where the positive constants Ki are sufficiently large (depending on T, c0, ‖c‖C1(Ω) and
‖d‖L∞(QT )) such that

β0 > 0 in Ω, β0 = 0 on ∂Ω, ∇β0(x) ̸= 0 for all x ∈ Ω \ ω0,

where ω0 is an open subset of Ω such that ω0 ⊂ ω. Then there exists a constant C > 0, depending only on T, ω
and Ω, such that

‖ρ−1c,0y‖L2(QT ) + ‖ρ−1c,1∇y‖L2(QT ) ≤ C‖y‖Yc for all y ∈ Yc , (2.6)

where Yc is the completion of Y0,c := Y0 with respect to the scalar product

(y, y)Y0,c = ⟨ρ−1c,0y, ρ
−1
c,0 y⟩L2(qT ) + η⟨ρ

−1
c Ly, ρ−1c Ly⟩L2(QT ).

Estimate (2.6) is a consequence of the celebrated global Carleman inequality satisfied by the solution of (1.1),
introduced and popularized in [17]. We refer to the review [32] for applications to inverse problems. This
result implies the following stability estimate which allows us to estimate a global norm of the solution y in
term of the norm Y.

Corollary 2.3. Let ρ0 ∈ R and ρ ∈ R ∩ L∞(QT) and assume that there exists a positive constant K such that

ρ0 ≤ Kρc,0, ρ ≤ Kρc in QT . (2.7)

If (y, λ) is the solution of the mixed formulation (2.2), then there exists C > 0 such that

‖ρ−1c,0y‖L2(QT ) ≤ C‖y‖Y. (2.8)

Proof. Hypothesis (2.7) implies that Y ⊂ Yc. Therefore, estimate (2.6) implies that

‖ρ−1c,0y‖L2(QT ) ≤ C‖y‖Yc ≤ C‖y‖Y ≤ C‖ρ−10 yobs‖L2(qT ).
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Remark 2.4. The well-posedness of the mixed formulation (2.2), precisely the inf-sup property (2.4), is open
in the casewhere theweight ρ is simply inR, i.e. ρmay blowup as time t → 0+. In order to get (2.4), it suffices
to prove that the function z := ρ−10 y as the solution of the boundary value problem

ρ−1L(ρ0z) = λ0 in QT , z = 0 on ΣT , z( ⋅ , 0) = 0 in Ω

for any λ0 ∈ L2(QT) satisfies the following estimate for some C > 0:

‖z‖L2(qT ) ≤ C‖ρ
−1L(ρ0z)‖L2(QT ).

In the cases of interest for which both ρ0 and ρ blow up as t → 0+ (for instance given by ρc,0 and ρc), this
estimate is open and does not seem to be a consequence of (2.6).

Let us now comment the introduction of the weight ρ0 in problem (P). The space Yc, which contains the
element y such that ρ−1c Ly ∈ L2(QT) and ρ−1c,0y ∈ L2(qT) satisfy the embedding Yc ⊂ C0([δ, T], H1

0(Ω)) for any
δ > 0 (see [14]). Under condition (2.7), the same embedding holds for Y. In particular, there is no control of
the restriction of the solution at time t = 0, which is due to the regularization property of the heat kernel. Con-
sequently, from the observation yobs ∈ L2(qT) and the knowledge of Ly ∈ L2(QT), there is no hope to recover,
for a Sobolev norm, the solution of y at the initial time t = 0. It is then suitable to add to the cost J a vanishing
weight ρ−10 at time t = 0. The weight ρ is introduced here for similar reasons. Note that the solution y of (2.2)
belongs toW and therefore does not depend on ρ (recall that ρ is strictly positive); this is in agreement with
the fact that ρ does not appear in the equivalent problem (LS). However, very likely, a singular behavior for
the L2(QT) function Ly occurs as well near Ω × {0} so that the constraint Ly = 0 in L2(QT) is too “strong”
and must be replaced, for numerical purposes, by the relaxed one ρ−1Ly = 0 in L2(QT) with ρ−1 small near
Ω × {0}. This is actually the effect and the role of the Carleman weights ρc defined in (2.5). As a partial con-
clusion, the introduction of appropriate weights in the cost J allows us to use estimate (2.8) and to guarantee
a Lipschitz stable reconstruction of the solution y on the whole domain except at the initial time.

We also emphasize that the mixed formulation (2.2) is still well defined with constant weights ρ and ρ0
equal to one, but leading to weaker stability estimates and reconstruction results. We refer to [6, 7].

Remark 2.5. The first equation of the mixed formulation (2.2) reads as (recall that y ∈ W)

∬
qT

ρ−20 y y dx dt +∬
QT

ρ−1Ly λ dx dt = ∬
qT

ρ−20 yobs y dx dt for all y ∈ Y

and means that ρ−1λ ∈ L2(QT) is the solution of the parabolic equation in the transposition sense, i.e. ρ−1λ
solves the problem

L⋆ (ρ−1λ) = −ρ−20 (y − yobs)1ω in QT , ρ−1λ = 0 on ΣT , (ρ−1λ)( ⋅ , T) = 0 in Ω (2.9)

where 1ω denotes the characteristic function associated to the open subset ω. However, since

−ρ−20 (y − yobs)1ω ∈ L2(qT),

we have that ρ−1λ is indeed a weak solution of (2.9) and

ρ−1λ ∈ C0([0, T];H1
0(Ω)) ∩ L2(0, T;H2(Ω) ∩ H1

0(Ω)).

∙ Moreover, if yobs is the restriction of a solution of (1.1) to qT , then the unique multiplier λ, a solution
of (2.9), vanishes almost everywhere. In that case, we have

sup
λ∈L2(QT )

inf
y∈Y

Lr(y, λ) = inf
y∈Y

Lr(y, 0) = inf
y∈Y

Jr(y).

The corresponding variational formulation, well-posed for r > 0 is then the following: find y ∈ Y such
that

ar(y, y) = l(y) for all y ∈ Y.



A. Münch and D. A. Souza, Inverse problems for linear parabolic equations | 451

∙ In the general case, (2.2) can be rewritten as follows: find a solution (y, λ) ∈ Y × L2(QT) of

{
{
{

⟨Pry, Pry⟩L2(QT )×L2(qT ) + ⟨ρ−1Ly, λ⟩L2(QT ) = ⟨(0, ρ−10 yobs), Pry⟩L2(QT )×L2(qT ) for all y ∈ Y,

⟨ρ−1Ly, λ⟩L2(QT ) = 0 for all λ ∈ L2(QT),
(2.10)

with Pry := (√rρ−1L y, ρ−10 y|qT ).
Formulation (2.10) may be seen as a generalization of the following quasi-reversibility formulation (ini-
tially introduced in [22]): for any Tikhonov like parameter ε > 0, find the solution yε ∈ Y of

⟨Pyε , Py⟩L2(QT )×L2(qT ) + ε⟨yε , y⟩Y = ⟨(f, yobs), Py⟩L2(QT )×L2(qT ) for all y ∈ Y.

We refer to the book of Klibanov [21] and to the more recent work [1] where a Cauchy problem for the
heat equation is addressed. In (2.10), the parameter ε is replaced by the Lagrange multiplier function λ,
which is adjusted automatically to the situation, while the choice of ε is in general a delicate issue.

The optimality system (2.9) can be used to define an equivalent saddle-point formulation, very suitable at
the numerical level. Precisely, we introduce, in view of (2.9), the space Λ given by

Λ := {λ : ρ−1λ ∈ C0([0, T]; L2(Ω)), ρ0 L⋆(ρ−1λ) ∈ L2(QT), ρ−1λ = 0 on ΣT , (ρ−1λ)( ⋅ , T) = 0}.

Endowed with the scalar product

⟨λ, λ⟩Λ := ⟨ρ−1λ, ρ−1λ⟩L2(QT ) + ⟨ρ0L⋆(ρ−1λ), ρ0L⋆(ρ−1λ)⟩L2(QT ),

we check that Λ is a Hilbert space. Then, for any parameter α ∈ (0, 1), we consider the following mixed for-
mulation: find (y, λ) ∈ Y × Λ such that

{
{
{

ar,α(y, y) + bα(y, λ) = l1,α(y) for all y ∈ Y,

bα(y, λ) − cα(λ, λ) = l2,α(λ) for all λ ∈ Λ,
(2.11)

where

ar,α : Y × Y → ℝ, ar,α(y, y) := (1 − α)⟨ρ−10 y, ρ
−1
0 y⟩L2(qT ) + r⟨ρ

−1Ly, ρ−1Ly⟩L2(QT ),
bα : Y × Λ → ℝ, bα(y, λ) := ⟨ρ−1Ly, λ⟩L2(QT ) − α⟨ρ0L⋆(ρ−1λ), ρ−10 y⟩L2(qT ),

cα : Λ × Λ → ℝ, cα(λ, λ) := α⟨ρ0L⋆(ρ−1λ), ρ0L⋆(ρ−1λ)⟩L2(QT ),

l1,α : Y → ℝ, l1,α(y) := (1 − α)⟨ρ−10 yobs, ρ
−1
0 y⟩L2(qT ),

l2,α : Λ → ℝ, l2,α(λ) := −α⟨ρ−10 yobs, ρ0 L
⋆(ρ−1λ)⟩L2(qT ).

From the symmetry of ar,α and cα, we easily check that this formulation corresponds to the saddle-point
problem

{{
{{
{

sup
λ∈Λ

inf
y∈Y

Lr,α(y, λ),

Lr,α(y, λ) := Lr(y, λ) −
α
2
""""ρ0L

⋆(ρ−1λ) + ρ−10 (y − yobs)1ω""""
2
L2(QT ).

(2.12)

Proposition 2.6. Let ρ0 ∈ R and ρ ∈ R ∩ L∞(QT). Then, for any α ∈ (0, 1) and r > 0, formulation (2.11) is well-
posed. Moreover, the unique pair (y, λ) in Y × Λ satisfies

θ1‖y‖2Y + θ2‖λ‖2Λ ≤ (
(1 − α)2

θ1
+
α2

θ2
)‖ρ−10 yobs‖

2
L2(qT ) (2.13)

with θ1 := min(1 − α, η−1r) and θ2 := αρ⋆/(ρ⋆ + CΩ,T) where CΩ,T is the continuity constant so that

‖ρ−1λ‖L2(QT ) ≤ CΩ,T‖L
⋆(ρ−1λ)‖L2(QT )

for any λ ∈ Λ.
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Proof. We easily get the continuity of the bilinear forms ar,α, bα and cα as

|ar,α(y, y)| ≤ max(1 − α, η−1r)‖y‖Y‖y‖Y for all y, y ∈ Y,
|bα(y, λ)| ≤ max(α, η−1/2‖ρ‖L∞(QT ))‖y‖Y‖λ‖Λ for all y ∈ Y and λ ∈ Λ,

|cα(λ, λ)| ≤ α‖λ‖Λ‖λ‖Λ for all λ, λ ∈ Λ,

and the continuity of the linear form l1,α and l2,α as

‖l1,α‖Y� ≤ (1 − α)‖ρ−10 yobs‖L2(qT ) and ‖l2,α‖Λ� ≤ α‖ρ−10 yobs‖L2(qT ).
Moreover, since α ∈ (0, 1), we also obtain the coercivity of ar,α and of cα. Precisely, we check that

ar,α(y, y) ≥ θ1‖y‖2Y for all y ∈ Y while, for any m ∈ (0, 1), by writing

cα(λ, λ) = α‖ρ0L⋆(ρ−1λ)‖2L2(QT ) = αm‖ρ0L⋆(ρ−1λ)‖2L2(QT ) + α(1 − m)‖ρ0L⋆(ρ−1λ)‖2L2(QT )

≥ αm‖ρ0L⋆(ρ−1λ)‖2L2(QT ) +
α(1 − m)ρ⋆

CΩ,T
‖ρ−1λ‖2L2(QT ) ≥ αmin(m, (1 − m)ρ⋆

CΩ,T
)‖λ‖2Λ ,

we get cα(λ, λ) ≥ θ2‖λ‖2Λ for all λ ∈ Λ with m = ρ⋆(ρ⋆ + CΩ,T)−1.
The result [3, Proposition 4.3.1] implies the well-posedness of the mixed formulation (2.11) and of

estimate (2.13).

The α-term inLr,α is a stabilization term. It ensures a coercivity property ofLr,α with respect to the variable λ
and automatically the well-posedness, assuming here r > 0. In particular, there is no need to prove any inf-
sup property for the application bα.

Proposition 2.7. For any r > 0, The solutions of (2.2) and (2.11) coincide.

Proof. For any r > 0, let us check that the saddle-point (yr , λr) ∈ Y × L2(QT)ofLr is also a saddle-point ofLr,α.
From Remark 2.5, we first have (yr , λr) ∈ Y × Λ. Moreover, for any μ ∈ Λ, we have

Lr,α(yr , μ) ≤ Lr(yr , μ) ≤ Lr(yr , λr) = Lr,α(yr , λr) +
α
2
""""ρ0L

⋆(ρ−1λr) + ρ−10 (yr − yobs)1ω""""
2
L2(QT ) = Lr,α(yr , λr)

since (yr , λr) solves (2.9) for any r ≥ 0. Therefore, λr maximizes μ Ü→ Lr,α(yr , μ). Conversely, the functional
F : Y → ℝ, given by F(z) = Lr,α(z, λr), admits a unique extremal point for any r > 0 and any α ∈ (0, 1) (in view
of the ellipticity of ar,α). Moreover, for all z ∈ Y, we compute that

⟨F�(z), z⟩Y� ,Y = ar(z, z) + b(z, λr) − l(z) − α⟨ρ−10 z, ρ0L
⋆(ρ−1λr) + ρ−10 (z − yobs)1ω⟩L2(QT )

and conclude in view of (2.2) and (2.9) that ⟨F�(yr), z⟩Y� ,Y = 0 for all z ∈ Y. Therefore, yr minimizes the map
z Ü→ Lr,α(z, λr). Consequently, the pair (yr , λr) is also a saddle-point forLr,α. The conclusion follows from the
uniqueness of the saddle-point.

Remark 2.8. The least-squares functional I : Y × Λ → ℝ defined by

I(y, λ) = ‖ρ−1Ly‖2L2(QT ) +
""""ρ0L

⋆(ρ−1λ) + ρ−10 (y − yobs)1ω""""
2
L2(qT )

is continuous, strictly convex and enjoys the property I(y, λ) → ∞ as ‖y‖Y + ‖λ‖Λ → ∞. Therefore, I admits
a unique minimum (y0, λ0) for which I vanishes, i.e. (y0, λ0) ∈ Y × Λ solves the optimality conditions (1.1)
and (2.9). Therefore, the saddle point problem (2.12) is equivalent to the extremal problem inf(y,λ)∈Y×Λ I(y, λ).

2.2 Dual formulation of the extremal problem (2.2)

As discussed at length in [9], we may also associate to problem (P) an equivalent problem involving only the
variable λ. This is very relevant at the numerical level. For any r > 0 let Tr : L2(QT) → L2(QT) be the linear
operator defined by Trλ := ρ−1Ly where y ∈ Y is the unique solution to

ar(y, y) = b(y, λ) for all y ∈ Y. (2.14)

Remark that (2.14) is well-posed if and only if r > 0. The following important lemma holds.
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Lemma 2.9. Let ρ0 ∈ R and ρ ∈ R ∩ L∞(QT). For any r > 0 the operator Tr is a strongly elliptic, symmetric iso-
morphism from L2(QT) into L2(QT).

Proof. From the definition of ar, we easily get that ‖Trλ‖L2(QT ) ≤ r−1‖λ‖L2(QT ) and the continuity of Tr.
Next, consider any λ� ∈ L2(QT) and denote by y� ∈ Y the corresponding unique solution of (2.14) so that
Trλ� := ρ−1Ly�. Relation (2.14) with y = y� then implies that

⟨Trλ�, λ⟩L2(QT ) = ar(y, y�), (2.15)

and therefore the symmetry and positivity of Tr. The last relation with λ� = λ, and the unique continuation
property for (1.1), and (2.14) imply that Tr is also positive definite. Finally, let us check the strong ellipticity
of Tr, equivalently that the bilinear functional (λ, λ�) Ü→ ⟨Trλ, λ�⟩L2(QT ) is L2(QT)-elliptic. Thus, we want to
show that

⟨Trλ, λ⟩L2(QT ) ≥ C‖λ‖2L2(QT ) for all λ ∈ L2(QT) (2.16)

for some positive constant C. Suppose that (2.16) does not hold. Then there exists a sequence {λn}n≥0 of
L2(QT) such that ‖λn‖L2(QT ) = 1 for all n ≥ 0 and limn→∞⟨Trλn , λn⟩L2(QT ) = 0.

Let us denote by yn the solution of (2.14) corresponding to λn. From (2.15), we then obtain that

lim
n→∞

(r‖ρ−1Lyn‖2L2(QT ) + ‖ρ−10 yn‖
2
L2(qT )) = 0. (2.17)

From (2.14) with y = yn and λ = λn, we have

⟨rρ−1Lyn − λn , ρ−1Ly⟩L2(QT ) + ⟨ρ−10 yn , ρ
−1
0 y⟩L2(qT ) = 0 (2.18)

for every y ∈ Y. We define the sequence {yn}n≥0 as follows:

ρ−1Lyn = r ρ−1Lyn − λn in QT , yn = 0 in ΣT , yn( ⋅ , 0) = 0 in Ω,

so that, for all n ≥ 0, the term yn is the solution of the heat equation with zero initial data and source term
rρ−1Lyn − λn in L2(QT). Energy estimates imply that

‖ρ−10 yn‖L2(qT ) ≤ CΩ,Tρ
−1
⋆ ‖ρ‖L∞(QT )‖rρ−1Lyn − λn‖L2(QT )

and that yn ∈ Y. Then, using (2.18) with y = yn, we get

‖rρ−1Lyn − λn‖L2(QT ) ≤ CΩ,Tρ
−1
⋆ ‖ρ‖L∞(QT )‖ρ−10 yn‖L2(qT ).

Then, from (2.17), we conclude that limn→+∞‖λn‖L2(QT ) = 0, leading to a contradiction (since ‖λn‖L2(QT ) = 1
for all n ≥ 0) and to the strong ellipticity of the operator Tr.

The introduction of the operator Tr is motivated by the following proposition.

Proposition 2.10. For any r > 0 let y0 ∈ Y be the unique solution of

ar(y0, y) = l(y) for all y ∈ Y

and let J⋆⋆r : L2(QT) → L2(QT) be the functional defined by

J⋆⋆r (λ) := 1
2 ⟨Trλ, λ⟩L

2(QT ) − b(y
0, λ).

The following equality holds:

sup
λ∈L2(QT )

inf
y∈Y

Lr(y, λ) = − inf
λ∈L2(QT )

J⋆⋆r (λ) + Lr(y0, 0).

The proof is standard and we refer for instance to [9] in a similar context. This proposition reduces the search
for a solution y of problem (P) to the minimization of J⋆⋆r with respect to λ. The well-posedness is a conse-
quence of the ellipticity of the operator Tr stated in Lemma 2.9.
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Remark 2.11. Let us assume that the domain Ω is of class C2. The results of this section apply if the dis-
tributed observation on qT is replaced by a Neumann boundary observation on the open subset γ of ∂Ω
(i.e. assuming yobs := ∂y

∂ν ∈ L2(γT) is known on γT := γ × (0, T)). This is due to the following Carleman
inequality, proved in [17]: there exists a positive constant

C = C(ω, Ω, T, ‖c‖C1(Ω), ‖d‖L∞(QT ))
such that

‖ρ̃−1c,0y‖
2
L2(QT ) + ‖ρ̃−1c,1∇y‖

2
L2(QT ) ≤ C‖y‖

2
Ỹ0

for any
y ∈ Ỹ0 := {y ∈ C2(QT) : y = 0 on ΣT \ γT},

where

(y, y)Ỹ0
= ⟨ρ̃−1c,1

∂y
∂ν
, ρ̃−1c,1

∂y
∂ν⟩L2(γT )

+ η⟨ρ̃−1c Ly, ρ̃−1c Ly⟩L2(QT ),

‖y‖2
Ỹ0

= (y, y)Ỹ0
and η > 0. Here, ρ̃c, ρ̃c,0 and ρ̃c,1 are appropriate weight functions, similar to those in (2.5),

associated to some β̃0 ∈ C∞(Ω) such that β̃0 > 0 in Ω, β̃0 = 0 on ∂Ω\γ and ∇β̃0(x) ̸= 0 for all x ∈ Ω. It suffices
to re-define the forms ar and l in (2.2) by

ãr(y, y) := ⟨ρ̃−1c,1
∂y
∂ν
, ρ̃−1c,1

∂y
∂ν⟩L2(γT )

+ r⟨ρ̃−1c L y, ρ̃−1c L y⟩L2(QT ) for all y, y ∈ Ỹ

for any r ≥ 0, and
̃l(y) := ⟨ρ̃−1c,1

∂y
∂ν
, ρ̃−1c,1yobs⟩L2(γT )

for all y, y ∈ Ỹ,

where Ỹ is the completion of Ỹ0 with respect to the scalar product ( ⋅ , ⋅ )Ỹ0
.

Remark 2.12. The mixed formulation (2.2) is similar to the one we get when we address, using the same
approach, the null controllability of (1.1): the control of minimal L2(qT)-norm which drives to rest the initial
data y0 ∈ L2(Ω) given by v = ρ−20 φ 1qT , where (φ, λ) ∈ Φ × L2(QT) solves the formulation

{
{
{

ar(φ, φ) + b(φ, λ) = l(φ) for all φ ∈ Φ,

b(φ, λ) = 0 for all λ ∈ L2(QT),

where

ar : Φ × Φ → ℝ, ar(φ, φ) := ⟨ρ−10 φ, ρ
−1
0 φ⟩L2(qT ) + r⟨ρ

−1L⋆φ, ρ−1L⋆φ⟩L2(QT ),
b : Φ × L2(QT) → ℝ, b(φ, λ) := ⟨ρ−1L⋆φ, λ⟩L2(QT ),

l : Φ → ℝ, l(φ) := −(φ( ⋅ , 0), y0)L2(Ω).

Here, the weights ρ and ρ0 are taken in a space of functions that blow up at time t = T and Φ is a complete
space associated to these weights. Remark that an observability inequality (similar to (2.8)) is needed here to
guarantee the continuity of l. We refer to [27].

3 Recovering the solution from a partial observation: A first order
mixed formulation

We consider a first order mixed formulation of (1.1) introducing the flux variable p := c(x)∇y. We then apply
to this first-order system the procedure developed in the previous section and address the reconstruction of
y and p from a distributed observation yobs. The introduction of this equivalent first-order system is advanta-
geous at the numerical level as it allows us to reduce the regularity order of the involved spaces.
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3.1 Direct approach: Minimal local weighted L2-norm

We rewrite the parabolic equation (1.1) into the following equivalent first-order system:

{{{
{{{
{

yt − ∇ ⋅ p + d y = f, c(x)∇y − p = 0 in QT ,
y = 0 on ΣT ,

y(x, 0) = y0(x) in Ω.
(3.1)

The reformulation of (1.1) into a first-order system is standard and has been analyzed notably in [18, 23].
There, the existence and uniqueness of a solution for an associated L2 − H(div) weak formulation is proved,
together with a priori estimates assuming that y0 ∈ H1

0(Ω). We use here instead the H1
0 − L2 weak formula-

tion associated to (3.1) and refer to the appendix where the well-posedness of such a formulation is proved
assuming y0 ∈ L2(Ω) (see notably Proposition A.2).

In the sequel, we use the following notations:

I(y, p) := yt − ∇ ⋅ p + d(x, t) y, J(y, p) := c(x)∇y − p

andassumeagain for simplicity that f = 0. Then, in order to set up the least-squares approach,wepreliminary
define various spaces. First, let

U0 := {(y, p) ∈ C1(QT) × C1(QT) : y = 0 on ΣT}

and for any η1, η2 > 0 and any ρ, ρ0, ρ1 ∈ R, we define the bilinear form

((y, p), (y, p))U0 := ⟨ρ−10 y, ρ
−1
0 y⟩L2(qT ) + η1⟨ρ

−1
1 J(y, p), ρ−11 J(y, p)⟩L2(QT ) + η2⟨ρ

−1I(y, p), ρ−1I(y, p)⟩L2(QT )
for all (y, p), (y, p) ∈ U0.

Fromunique continuationproperties for parabolic equations (see also Proposition3.2), this bilinear form
defines a scalar product. We denote by U the completion of U0 for this scalar product and denote the norm
over U by ‖ ⋅ ‖U such that

‖(y, p)‖2U := ‖ρ−10 y‖
2
L2(qT ) + η1‖ρ

−1
1 J(y, p)‖2L2(QT ) + η2‖ρ

−1I(y, p)‖2L2(QT ).

Finally, we define the closed subset V of U by

V := {(y, p) ∈ U : ρ−11 J(y, p) = 0 in L2(QT) and ρ−1I(y, p) = 0 in L2(QT)}

and we endow V with the same norm as U.
Within this setting, the analogue of the least-squares problem (P) reads as follows (without augmentation

parameter in a first step, see Remark 3.5):

Minimize J(y, p) := 1
2 ∬
qT

ρ−20 |y(x, t) − yobs(x, t)|2 dx dt subject to (y, p) ∈ V. (3.2)

As in Section 2.1, this extremal problem, equivalent to (P), is well-posed in view of the definition of V; there
exists a unique pair (y, p) which is a minimizer for J. With respect to (P), the scalar constraint ρ−1Ly = 0 is
now replaced by the (N + 1) constraints ρ−11 J(y, p) = 0 (in L2(QT)) and ρ−1I(y, p) = 0 (in L2(QT)). As before,
these constraints are addressed by introducing Lagrange multipliers.

We set X := L2(QT) × L2(QT) and then we consider the following mixed formulation: find the solution
((y, p), (λ, μ)) ∈ U × X of

{
{
{

a((y, p), (y, p)) + b((y, p), (λ, μ)) = l(y, p) for all (y, p) ∈ U,

b((y, p), (λ, μ)) = 0 for all (λ, μ) ∈ X,
(3.3)

where

a : U × U → ℝ, a((y, p), (y, p)) := ⟨ρ−10 y, ρ
−1
0 y⟩L2(qT ),

b : U × X → ℝ, b((y, p), (λ, μ)) := ⟨ρ−11 J(y, p), μ⟩L2(QT ) + ⟨ρ−1I(y, p), λ⟩L2(QT ),
l : U → ℝ, l(y, p) := ⟨ρ−10 y, ρ

−1
0 yobs⟩L2(qT ).

We have the following result.
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Theorem 3.1. Let ρ0 ∈ R and ρ, ρ1 ∈ R ∩ L∞(QT). We have the following:
(i) The mixed formulation (3.3) is well-posed.
(ii) The unique solution ((y, p), (λ, μ)) ∈ U × X is the unique saddle-point of the Lagrangian L : U × X → ℝ

defined by
L((y, p), (λ, μ)) := 1

2a((y, p), (y, p)) + b((y, p), (λ, μ)) − l(y, p). (3.4)

(iii) The unique solution ((y, p), (λ, μ)) satisfies the estimate

‖(y, p)‖U ≤ ‖ρ−10 yobs‖L2(qT ),

‖(λ, μ)‖X ≤ 2√max{CΩ,Tρ−2⋆ ‖ρ1‖2L∞(QT ) + η1, CΩ,Tρ−2⋆ ‖ρ‖2L∞(QT ) + η2} ‖ρ−10 yobs‖L2(qT ). (3.5)

Proof. The proof is similar to the proof of Theorem 2.1. From the definition, the bilinear form a is continuous
overU × U, symmetric and positive and the bilinear form b is continuous overU × X. Furthermore, the linear
form l is continuous over X. In particular, we get

‖l‖X� ≤ ‖ρ−10 yobs‖L2(qT ), ‖a‖L 2(U) ≤ 1, ‖b‖L 2(U,X) ≤ max{η−1/21 , η−1/22 }. (3.6)

Therefore, the well-posedness of formulation (3.3) is the consequence of two properties: First, the coer-
civity of the form a on the kernel

N(b) := {(y, p) ∈ U : b((y, p), (λ, μ)) = 0 for all (λ, μ) ∈ X}.

This holds true since the kernelN(b) coincides with V. Second, the existence of a constant δ > 0 such that

inf
(λ,μ)∈X

sup
(y,p)∈U

b((y, p), (λ, μ))
‖(y, p)‖U‖(λ, μ)‖X

≥ δ. (3.7)

This inf-sup property holds true as follows: For any fixed (λ0, μ0) ∈ X, we define the (unique) element (y0, p0)
such that

ρ−1I(y0, p0) = λ0 in QT , ρ−11 J(y0, p0) = μ0 in QT , y0 = 0 on ΣT , y0( ⋅ , 0) = 0 in Ω.

The pair (y0, p0) is therefore the solution of a parabolic equation in the mixed form with source term
(ρλ0, ρ1μ0) in L2(0, T; L2(Ω)) × L2(0, T;L2(Ω)), null Dirichlet boundary condition and null initial state.
From Proposition A.2 applied with f = ρλ0 ∈ L2(QT) and F = ρ1μ0 ∈ L2(QT), the weak solution satisfies

(y0, p0) ∈ (L2(0, T;H1
0(Ω)) ∩ C0([0, T]; L2(Ω))) × L2(QT).

Moreover, from (A.2), there exists a constant CΩ,T such that the unique pair (y0, p0) satisfies the inequality

‖ρ−10 y
0‖2L2(qT ) ≤ CΩ,Tρ

−2
⋆ (‖ρ‖2L∞(QT )‖λ0‖2L2(QT ) + ‖ρ1‖2L∞(QT )‖μ0‖2L2(QT )), (3.8)

which proves that (y0, p0) ∈ U. Consequently,

sup
(y,p)∈U

b((y, p), (λ0, μ0))
‖(y, p)‖U‖(λ0, μ0)‖X

≥
b((y0, p0), (λ0, μ0))

‖(y0, p0)‖U‖(λ0, μ0)‖X
=

‖(λ0, μ0)‖X
(‖ρ−10 y0‖

2
L2(qT ) + η1‖μ

0‖2L2(QT ) + η2‖λ
0‖2L2(QT ))

1/2 ,

leading together with (3.8) to

sup
(y,p)∈U

b((y, p), (λ0, μ0))
‖(y, p)‖U‖(λ0, μ0)‖X

≥ δ,

with
δ := (max{CΩ,Tρ−2⋆ ‖ρ1‖2L∞(QT ) + η1, CΩ,Tρ−2⋆ ‖ρ‖2L∞(QT ) + η2})−1/2.

Hence, (3.7) holds.
Point (ii) is due to the positivity and symmetry of the form a. Point (iii) is a consequence of classical

estimates (see [3], Theorem 4.2.3), namely

‖(y, p)‖U ≤
1
α0

‖l‖U� , ‖(λ, μ)‖X ≤
1
δ (

1 +
‖a‖L 2(U)

α0
)‖l‖U� ,

where α0 := infy∈N(b) a((y, p), (y, p))/‖(y, p‖2U. Estimates (3.6) and the equality α0 = 1 lead to the results.

Again, we emphasize that the solution of (3.3) does not depend on the parameters η1, η2 only introduced in
order to construct a scalar product over U0. In particular, η1 and η2 can be arbitrarily small.
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Now, let us recall the following important result, analogue of Proposition 2.2, which provides a global
estimate of y, the solution of a parabolic equation with right-hand side L2(0, T;H−1(Ω)), from a local (in qT)
observation.

Proposition 3.2 (Theorem 2.2 in [19]). Suppose that Ω is at least of class C2 and assume that the weights
ρp , ρp,0, ρp,1 ∈ R (see (2.1)) are defined as follows:

ρp(x, t) := exp(β(x)
t2

), β(x) := K1(eK2 − eβ0(x)),

ρp,0(x, t) := tρp(x, t), ρp,1(x, t) := t−1ρp(x, t), ρp,2(x, t) := t−2ρp(x, t)
(3.9)

with β0 ∈ C∞(Ω) and Ki as in Proposition 2.2. Then there exists a constant C = C(T, ω, Ω) > 0 such that the
following inequality holds:

‖ρ−1p,0y‖
2
L2(QT ) + ‖ρ−1p,1∇y‖

2
L2(QT ) ≤ C(‖ρ

−1
p G‖2L2(QT ) + ‖ρ−1p,2g‖

2
L2(QT ) + ‖ρ−1p,0y‖

2
L2(qT )), (3.10)

where y belongs to
K := {y ∈ L2(0, T;H1

0(Ω)) : yt ∈ L2(0, T;H−1(Ω))}

and satisfies Ly = g + ∇ ⋅ G in QT , with g ∈ L2(QT) and G ∈ L2(QT).

This proposition allows us to get the following second global estimate.

Proposition 3.3. Assume that Ω is at least of class C2 and let ρp , ρp,0, ρp,1 ∈ R be the weights defined by (3.9).
There exists a constant C > 0, depending only on ω, Ω, T such that

‖ρ−1p,0y‖
2
L2(QT ) + ‖ρ−1p,1∇y‖

2
L2(QT ) + ‖ρ−1p,1p‖

2
L2(QT ) ≤ C‖(y, p)‖

2
Up

for all (y, p) ∈ Up , (3.11)

where Up is the completion of U0,p := U0 with respect to the scalar product

((y, p), (y, p))U0,p = ⟨ρ−1p,0y, ρ
−1
p,0⟩L2(qT ) + η1⟨ρ

−1
p,1J(y, p), ρ

−1
p,1J(y, p)⟩L2(QT ) + η2⟨ρ

−1
p I(y, p), ρ−1p I(y, p)⟩L2(QT ).

Proof. First, let us prove this inequality for (y, p) ∈U0 for which y ∈K. We denoteG := J(y, p) and g := I(y, p),
leading to Ly = g − ∇ ⋅ G in QT . The Carleman inequality (3.10) then provides

‖ρ−1p,0y‖
2
L2(QT ) + ‖ρ−1p,1∇y‖

2
L2(QT ) ≤ C(‖ρ

−1
p G‖2L2(QT ) + ‖ρ−1p,2g‖

2
L2(QT ) + ‖ρ−1p,0y‖

2
L2(qT )).

Moreover, noting that p = c(x)∇y − G, we get

‖ρ−1p,1p‖
2
L2(QT ) ≤ 2(‖ρ−1p,1c∇y‖

2
L2(QT ) + ‖ρ−1p,1G‖

2
L2(QT )).

Finally, since ρ−1p,1 ≤ Tρ−1p , we combine the last two inequalities to obtain

‖ρ−1p,0y‖
2
L2(QT ) + ‖ρ−1p,1∇y‖

2
L2(QT ) + ‖ρ−1p,1p‖

2
L2(QT ) ≤ C‖(y, p)‖

2
U0,p

for all (y, p) ∈ U0.

A standard density argument leads to (3.11).

Eventually, assuming that the weights ρ0, ρ1, ρ (from (3.3)) are related to the Carleman-type weights
ρp,0, ρp,1, ρp so that U ⊂ Up, we get the following stability result and a global estimate, analogue to (2.8), of
any pair (y, p) ∈ U in terms of the norm ‖(y, p)‖U (in particular for the solution of (3.3)).

Corollary 3.4. Let ρ0 ∈ R and ρ, ρ1 ∈ R ∩ L∞(QT) and assume that there exists a constant K > 0 such that

ρ0 ≤ Kρp,0, ρ1 ≤ Kρp,1, ρ ≤ Kρp,2 in QT . (3.12)

If ((y, p), (λ, μ)) ∈ U × X is the solution of the mixed formulation (3.3), then there exists C > 0 such that

‖ρ−1p,0y‖L2(QT ) + ‖ρ−1p,1p‖L2(QT ) ≤ C‖(y, p)‖U.

Proof. Hypothesis (3.12) implies that U ⊂ Up. Therefore, estimates (3.5) and (3.11) lead to

‖ρ−1p,0y‖L2(QT ) + ‖ρ−1p,1p‖L2(QT ) ≤ C‖(y, p)‖Up ≤ C‖(y, p)‖U ≤ C‖ρ−10 yobs‖L2(qT ).
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Again, the functions ρ−1p,0, ρ
−1
p,1 vanish at time t = 0, so that the variable y and the flux p are reconstructed

from the observation yobs everywhere in QT except on the set Ω × {0}. Similarly, the weights ρ1 and ρ are
introduced in the definition of V in order to reduce the effect of the "singularity" of the variable y and p in the
neighborhood of Ω × {t = 0}. We refer to the discussion at the end of Section 2.1.

Remark 3.5. As in Section 2, it is convenient to augment the Lagrangian L defined in (3.4) as follows:

{{
{{
{

Lr((y, p), (λ, μ)) :=
1
2ar((y, p), (y, p)) + b((y, p), (λ, μ)) − l(y, p),

ar((y, p), (y, p)) := a((y, p), (y, p)) + r1‖ρ−11 J(y, p)‖2L2(QT ) + r2‖ρ
−1I(y, p)‖2L2(QT )

for any r = (r1, r2) ∈ (ℝ+)2. The two Lagrangian L and Lr share the same saddle-point, since the solution
of (3.3) satisfies the constraint ρ−11 J(y, p) = 0 and ρ−1I(y, p) = 0.

Remark 3.6. Similarly to Remark 2.5, the first equation of (3.3) reads as follows:

∬
qT

ρ−20 y y dx dt +∬
QT

ρ−11 J(y, p) ⋅ μ dx dt +∬
QT

ρ−1I(y, p)λ dx dt = ∬
qT

ρ−20 y yobs dx dt for all (y, p) ∈ U.

But, according to Definition A.4, this means that the pair

(φ, σ) := (ρ−1λ, cρ−11 μ) ∈ L
2(QT) × L2(QT)

is a solution of the parabolic equation in the mixed form in the transposition sense, i.e. (φ, σ) solves the
problem:

{{{
{{{
{

I⋆(φ, σ) = −ρ−20 (y − yobs)1ω , J(φ, σ) = 0 in QT ,
φ = 0 on ΣT ,

φ( ⋅ , T) = 0 in Ω,
(3.13)

where
I⋆(φ, σ) := −φt − ∇ ⋅ σ + d(x, t)φ.

Moreover, since
ρ−10 (y − yobs)1ω ∈ L2(qT),

we have that (φ, σ) is a weak solution and

(φ, σ) ∈ C([0, T], L2(Ω)) ∩ L2(0, T;H1
0(Ω)) × L2(QT).

System (3.13) also means that the pair (λ, μ), a solution of a backward mixed system, vanishes if yobs is the
restriction to qT of a solution of (3.1). In this context, the rest of Remark 2.5, in particular (2.10), can be
adapted to (3.3) as follows: the two multipliers λ and μ measure how good the observation yobs is to recon-
struct the state y satisfying y = yobs on qT under the constraints ρ−11 J(y, p) = 0 in L2(QT) and ρ−1I(y, p) = 0
in L2(QT).

Eventually, as in Section 2, we emphasize that the additional optimality system (3.13) can be used to define
an equivalent saddle-point formulation. Precisely, in view of (3.13), we introduce the space Ψ defined by

Ψ := {(φ, σ) ∈ (C0([0, T]; L2(Ω)) ∩ L2(0, T;H1
0(Ω))) × L2(QT) : ρ0I⋆(φ, σ) ∈ L2(QT), φ( ⋅ , T) = 0}.

Endowed with the scalar product

⟨(φ, σ), (φ, σ)⟩Ψ := ⟨σ, σ⟩L2(QT ) + ⟨ρ−1∇φ, ρ−1∇φ⟩L2(QT ) + ⟨ρ0 I⋆(φ, σ), ρ0I⋆(φ, σ)⟩L2(QT ),

we first check thatΨ is a Hilbert space. Then, for any parameters α = (α1, α2) ∈ (0, 1)2 and r = (r1, r2) ∈ (ℝ+⋆)2,
we consider the following mixed formulation: find ((y, p), (φ, σ)) ∈ U × Ψ such that

{
ar,α((y, p), (y, p)) + bα((y, p), (φ, σ)) = l1,α(y, p) for all y, p ∈ U

bα((y, p), (φ, σ)) − cα((φ, σ), (φ, σ)) = l2,α(φ, σ) for all φ, σ ∈ Ψ,
(3.14)
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where

ar,α : U × U → ℝ, bα : U × Ψ → ℝ, cα : Ψ × Ψ → ℝ, l1,α : U → ℝ, l2,α : Ψ → ℝ

are defined as

ar,α((y, p), (y, p)) := (1 − α1)⟨ρ−10 y, ρ
−1
0 y⟩L2(qT ) + r1⟨ρ

−1
1 J(y, p), ρ−11 J(y, p)⟩L2(QT )

+ r2⟨ρ−1I(y, p), ρ−1I(y, p)⟩L2(QT ),

bα((y, p), (φ, σ)) := ⟨J(y, p), σ⟩L2(QT ) + ⟨I(y, p), φ⟩L2(QT ) − α1⟨ρ0I⋆(φ, σ), ρ−10 y⟩L2(qT ),

cα((φ, σ), (φ, σ)) := α1⟨ρ0I⋆(φ, σ), ρ0I⋆(φ, σ)⟩L2(QT ) + α2⟨J(φ, σ), J(φ, σ)⟩L2(QT )
l1,α(y, p) := (1 − α1)⟨ρ−10 yobs, ρ

−1
0 y⟩L2(qT ),

l2,α(φ, σ) := −α1⟨ρ−10 yobs, ρ0I
⋆(φ, σ)⟩L2(qT ).

Similarly to Proposition 2.6 we have the following result.

Proposition 3.7. Let ρ0 ∈ R and ρ, ρ1 ∈ R ∩ L∞(QT). Then, for any α1, α2 ∈ (0, 1) and r = (r1, r2) ∈ (ℝ⋆+)2,
formulation (3.14) is well-posed. Moreover, the unique pair ((y, p), (φ, σ)) in U × Ψ satisfies

θ1‖(y, p)‖2U + θ2‖(φ, σ)‖2Ψ ≤ (
(1 − α1)2

θ1
+
α21
θ2

)‖ρ−10 yobs‖
2
L2(qT ), (3.15)

with θ1 := min(1 − α1, r1η−11 , r2η
−1
2 ) and θ2 given by (3.16).

Proof. We get the continuity of the bilinear forms ar,α, bα and cα from

|ar,α((y, p), (y, p))| ≤ max{1 − α1, r1η−11 , r2η
−1
2 }‖(y, p)‖U‖(y, p)‖U,

|bα((y, p), (φ, σ))| ≤ max{α1, η−1/21 ‖ρ1‖L∞(QT ), η−1/22 ‖ρ‖L∞(QT )}‖(y, p)‖U‖(φ, σ)‖Ψ ,
|cα((φ, σ), (φ, σ))| ≤ max{α1, α2}max{2, 1 + ‖cρ‖2L∞(QT )}‖(φ, σ)‖Ψ‖(φ, σ)‖Ψ

for all (y, p), (y, p) ∈ U and for all (φ, σ), (φ, σ) ∈ Ψ. Also, we can easily deduce the continuity of the linear
forms l1,α and l2,α from

‖l1,α‖U� ≤ (1 − α1)‖ρ−10 yobs‖L2(qT ) and ‖l2,α‖Ψ� ≤ α1‖ρ−10 yobs‖L2(qT ).
Moreover, the two symmetric forms ar,α and cα are coercive since

ar,α((y, p), (y, p)) ≥ θ1‖(y, p)‖2U for all (y, p) ∈ U.

Also, using Proposition (A.2) for the pair (φ, σ), we get that there exists a continuity constant CΩ,T such that

‖∇φ‖2L2(QT ) + ‖σ‖2L2(QT ) ≤ CΩ,T(‖I
⋆(φ, σ)‖2L2(QT ) + ‖G‖2)

≤ CΩ,T max{‖ρ−10 ‖2L∞(QT )α−11 , α−12 }(α1‖g‖2L2(QT ) + α2‖G‖
2),

where we denote g := ρ0I⋆(φ, σ), G := J(φ, σ) and where we have used that φ( ⋅ , T) = 0. Consequently, for
any m ∈ (0, 1), we may write

cα((φ, σ), (φ, σ)) = α1‖g‖2L2(QT ) + α2‖G‖
2
L2(QT )

≥ m(α1‖g‖2L2(QT ) + α2‖G‖
2
L2(QT ))

+ (1 − m)(CΩ,T max{‖ρ−10 ‖2L∞(QT )α−11 , α−12 })−1(‖∇φ‖2L2(QT ) + ‖σ‖2L2(QT ))

≥ mα1‖g‖2L2(QT ) + (1 − m)(CΩ,T max{‖ρ−10 ‖2L∞(QT )α−11 , α−12 })−1(ρ2⋆‖ρ−1∇φ‖2L2(QT ) + ‖σ‖2L2(QT )),

leading to cα((φ, σ), (φ, σ)) ≥ θ2‖(φ, σ)‖2Ψ for all (φ, σ) ∈ Ψ with

θ2 := min(mα1,
(1 − m)min{1, ρ2⋆}

CΩ,T max{‖ρ−10 ‖2L∞(QT )α−11 , α−12 }
). (3.16)
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The result [3, Proposition 4.3.1] now implies the well-posedness of the mixed formulation (3.14) and of
estimate (3.15).

Moreover, in view of the symmetry of the bilinear forms ar,α and cα, formulation (3.14) corresponds to the
following saddle point problem:

{{{{{{
{{{{{{
{

sup
(φ,σ)∈Ψ

inf
(y,p)∈U

Lr,α((y, p), (φ, σ)),

Lr,α((y, p), (φ, σ)) := Lr((y, p), (ρφ, ρ1c−1σ)) −
α2
2 ‖J(φ, σ)‖2L2(QT )

−
α1
2 ‖ρ0I⋆(φ, σ) + ρ−10 (y − yobs)1ω‖2L2(QT ).

The α-terms inLr,α are stabilization terms; they ensure the ellipticity ofLr,α with respect to the variables
(φ, σ) and automatically the well-posedness. In particular, there is no need to prove any inf-sup property for
the bilinear form bα.

Eventually, since the pair of multipliers (λ, μ) ∈ X, a solution of (3.3) belongs indeed to Ψ, then arguing
as in Proposition 2.7, we have the following result.

Proposition 3.8. If r ∈ (ℝ⋆+)2 and α1, α2 ∈ (0, 1), then the solution of (3.3) and (3.14) coincide.

3.2 Dual formulation of the extremal problem (3.3)

For any r = (r1, r2) ∈ (ℝ⋆+)2 we define the linear operator Tr from X := L2(QT) × L2(QT) into X by

Tr(λ, μ) := (ρ−11 J(y, p), ρ−1I(y, p)),

where (y, p) ∈ U solves, for any r = (r1, r2) ∈ (ℝ⋆+)2, the following equation:

ar((y, p), (y, p)) = b((y, p), (λ, μ)) for all (y, p) ∈ U. (3.17)

Similarly to Lemma 2.9, the following lemma holds true.

Lemma 3.9. For any r = (r1, r2) ∈ (ℝ⋆+)2 the operator Tr is a strongly elliptic, symmetric isomorphism from X

into X.

Proof. From the definition of ar we get that

‖Tr(λ, μ)‖X ≤ min(r1, r2)−1‖(λ, μ)‖X,

leading to the continuity of Tr. Next, consider any (λ�, μ�) ∈ X and denote by (y�, p�) the corresponding
solution of (3.17) so that Tr(λ�, μ�) = (ρ−11 J(y�, p�), ρ−1I(y�, p�)). Relation (3.17) with (y, p) = (y�, p�) implies
that

⟨Tr(λ�, μ�), (λ, μ)⟩X = ar((y, p), (y�, p�)) (3.18)

and therefore the symmetry and positivity of Tr. The last relation with (λ�, μ�) and the unique continuation
property for (3.1) and (3.17) imply that the operator Tr is also positive definite. Actually, as announced, we
can check that Tr is strongly elliptic, i.e. there exists a constant C > 0 such that

⟨Tr(λ, μ), (λ, μ)⟩X ≥ C‖(λ, μ)‖2X for all (λ, μ) ∈ X.

We argue by contradiction and suppose that there exists a sequence {(λn , μn)}n≥0 of X such that

‖(λn , μn)‖X = 1 for all n ≥ 0 and lim
n→∞

⟨Tr(λn , μn), (λn , μn)⟩X = 0. (3.19)

We denote by (yn , pn) the solution of (3.17) corresponding to (λn , μn). From (3.18) we then obtain that

lim
n→∞

(‖ρ−10 yn‖
2
L2(qT ) + r1‖ρ

−1
1 J(yn , pn)‖2L2(QT ) + r2‖ρ

−1I(yn , pn)‖2L2(QT )) = 0. (3.20)
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Moreover, from (3.17) with (y, p) = (yn , pn) and (λ, μ) = (λn , μn), we get the equality

⟨(ρ−11 J(y, p), r1ρ−11 J(yn , pn)−μn⟩L2(QT )⟨ρ−1I(y, p), r2ρ−1I(yn , pn)−λn⟩L2(QT )+⟨ρ−10 yn , ρ
−1
0 y⟩L2(qT ) = 0 (3.21)

for every (y, p) ∈ U. Then, in order to get a contradiction, we define the sequence {(yn , pn)}n≥0 as follows:

{{{{{{
{{{{{{
{

ρ−11 J(yn , pn) = r1ρ−11 J(yn , pn) − μn in QT ,
ρ−1I(yn , pn) = r2ρ−1I(yn , pn) − λn in QT ,

yn = 0 on ΣT ,
yn(x, 0) = 0 in Ω,

so that, for all n ≥ 0, the pair (yn , pn) is the solution of a first-order system as discussed in the appendix with
zero initial data and source term in X. The energy estimate (A.2) implies that

‖ρ−10 yn‖L2(qT ) ≤ CΩ,Tρ
−1
⋆ (‖ρ1‖L∞(QT )‖r1ρ−11 J(yn , pn) − μn‖L2(QT )

+ ‖ρ‖L∞(QT )‖r2ρ−1I(yn , pn) − λn‖L2(QT ))
for some constant CΩ,T and that (yn , pn) ∈ U. Then, using this inequality and (3.21) with (y, p) = (y, pn), we
get that

‖r1ρ−11 J(yn , pn) − μn‖L2(QT ) + ‖r2ρ−1I(yn , pn) − λn‖L2(QT )
≤ 2CΩ,Tρ−1⋆ max(‖ρ1‖L∞(QT ), ‖ρ‖L∞(QT ))‖ρ−10 yn‖L2(qT ).

Eventually, from (3.20), we conclude that

lim
n→∞

‖λn‖L2(QT ) = lim
n→∞

‖μn‖L2(QT ) = 0,

which is a contradiction to the first hypothesis of (3.19).

Again, the introduction of the operator Tr is motivated by the following proposition, which reduces the deter-
mination of the solution (y, p) of problem (3.2) to the unconstrained minimization of an elliptic functional.

Proposition 3.10. For any r = (r1, r2) ∈ (ℝ⋆+)2 let (y0, p0) ∈ U be the unique solution of

ar((y0, p0), (y, p)) = l(y, p) for all (y, p) ∈ U

and let J⋆⋆r : X → X be the functional defined by

J⋆⋆r (λ, μ) = 1
2 ⟨Tr(λ, μ), (λ, μ)⟩X − b((y0, p0), (λ, μ)).

Then the following equality holds:

sup
(λ,μ)∈X

inf
(y,p)∈U

Lr((y, p), (λ, μ)) = − inf
(λ,μ)∈X

J⋆⋆r (λ, μ) + Lr((y0, p0), (0, 0)),

where the lagrangian Lr is defined in Remark 3.5.

A similar procedure may be conducted for the stabilized Lagrangian Lr,α.

4 Concluding remarks and perspectives
Themixed formulations introduced to address inverse problems for linear parabolic equations correspond to
the optimality systems associated to weighted least-squares type functionals. These formulations depend on
both the state to reconstruct and a Lagrange multiplier, introduced to take into account the state constraint
Ly − f = 0. The multiplier turns out to be a measure of how good the observation data is for reconstructing
the solution. This approach, recently used in a controllability context in [27], leads to variational problems
defined over time-space Hilbert spaces, without distinction between the time and the space variable. The
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main ingredient is the unique continuation property leading to well-posedness in appropriate constructed
Hilbert spaces. Moreover, global Carleman estimates then allow to precise in which norm the full solution
can be reconstructed. For these reasons, the method can be applied to many systems for which such esti-
mates are available, as in [10] for linear hyperbolic equations, or as in Section 3 for a first-order system. In
the parabolic situation, in view of the regularization property, the method requires the introduction of expo-
nentially vanishingweights at the initial time; this guarantees a stable Lipschitz reconstructionof the solution
on the whole domain, the initial condition excepted.

From the theoretical standpoint, the minimization of the L2-weighted least-squares norm with respect
either to y ∈ W (problem (P), Section 2.1), or to the initial data y0 ∈ H (problem (LS), Section 1) are equiv-
alent. However, the completed space W embedded in the space C([δ, T], H1

0(Ω)) is a priori much more
“practical” than the huge space H, a fortiori since from the definition of the cost, the variable of interest is
not y but

ρ−10 y ∈ C([0, T], H
1
0(Ω)) with ρ−10 ( ⋅ , t = 0) = 0 in Ω.

Therefore, from a practical (i.e. numerical) viewpoint, as enhanced in [19, 29] and recently used in [1, 2]
for inverse problems and in [26, 27] in the close controllability context (see Remark 2.12), variational meth-
ods where the state y is kept unknown are very appropriate and lead to robust approximations. Moreover, as
detailed in [10], the space-time framework allows us to use classical approximation and interpolation theory
leading to strong convergence results with error estimates, again without the need of proving any discrete
Carleman inequalities. We refer to the second part [25] of this work where the numerical approximation of
the mixed formulations (2.2) in (y, λ) and (3.3) in ((y, p), (λ, μ)) is examined, implemented and compared
with the standardminimization of the cost with respect to the initial data. As observed in [27, Section 3.2] for
the related control problem, described in Remark 2.12, an appropriate preliminary change (renormalization)
of variable, i.e. ỹ := ρ−10 y, so as to eliminate (by compensation) the exponential behavior of the coefficient
in ρ−1Ly = ρ−1L(ρ0 ỹ), leads to an impressive low condition number of the corresponding discrete system.
We also emphasize, that the second mixed formulation (3.3), apparently more involved with more variables
allows us to use (standard) continuous finite dimensional approximation spaces for U, in contrast to formu-
lation (2.2) which requires continuously differentiable approximation spaces.

Eventually, we also emphasize that such a direct method may be used to reconstruct the state as well as
a source term.By the assumption that the source f(x, t) = σ(t)μ(x)with σ ∈ C1([0, T]), σ(0) ̸= 0and μ ∈ L2(Ω),
it is shown in [8] that the knowledge of ∂t(∂νu) ∈ L2(∂Ω × (0, T)) allows one to reconstruct uniquely the pair
(y, μ) satisfying the state equation Ly − σμ = 0. This allows one to construct appropriate Hilbert spaces, asso-
ciate a least-squares functional in (y, μ) and the corresponding optimality system. The (logarithmic) stability
estimate proved in [8, Theorem 1.2] guarantees the reconstruction of the solution.We refer to [11, Section 3],
where this strategy is implemented in the simpler case of the wave equation.

A Appendix: Well-posedness of parabolic equations in the mixed
form

The aimof this appendix is to study the existence anduniqueness of a solution for the following linear bound-
ary value problem, which appears in Section 3: find (y, p) such that

{{{
{{{
{

yt − ∇ ⋅ p + d y = f, c(x)∇y − p = F in QT ,
y = 0 on ΣT ,

y(x, 0) = y0(x) in Ω.
(A.1)

We assume that the initial datum y0 belongs to L2(Ω) and that the source terms f and F belong to L2(QT)
and L2(QT), respectively. The functions c and d enjoy the regularity described in the introduction, namely
c := (ci,j) ∈ C1(Ω;MN(ℝ)) with (c(x)ξ, ξ) ≥ c0|ξ|2 for any x ∈ Ω, ξ ∈ ℝN (c0 > 0) and d ∈ L∞(QT). Moreover,
we assume that c is symmetric and (c−1(x)ξ, ξ) ≥ c0|ξ|2 for any x ∈ Ω and ξ ∈ ℝN (c0 > 0).
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Let us introduce a definition of weak solution in accordance to the classical definition of weak solution
for the standard parabolic equation (1.1).

Definition A.1. We say that a pair (y, p) satisfying

p ∈ L2(QT), y ∈ L2(0, T;H1
0(Ω)) with yt ∈ L2(0, T;H−1(Ω))

is a weak solution of the parabolic equation in the mixed form (A.1) if and only if the following hold:
(i) ⟨yt , w⟩H−1(Ω),H1

0(Ω) + (p, ∇w) + (d y, w) = (f, w) for all w ∈ H1
0(Ω) and a.e. time t ∈ [0, T],

(ii) (∇y, u) − (c−1p, u) = (c−1F, u) for all u ∈ L2(Ω) and a.e. time t ∈ [0, T],
(iii) y( ⋅ , 0) = y0.

In this way, we have the following result.

Proposition A.2. There exists a unique weak solution for the parabolic equation in the mixed form (A.1). More-
over, there exists a constant C > 0 such that

‖yt‖L2(0,T;H−1(Ω)) + ‖y‖L2(0,T;H1
0(Ω)) + ‖p‖L2(QT ) ≤ C(yL2(Ω) + ‖f‖L2(QT ) + ‖F‖L2(QT )). (A.2)

Proof. Following [18], we proof the existence of a solution relying on the Faedo–Galerkin method and we
divide it into several steps.

(a) Galerkin approximations. We first introduce some notations. Let {wk : k ∈ ℕ} be an orthogonal basis of
H1
0(Ω) (which is orthonormal in L2(Ω)) and let {uk : k ∈ ℕ} be an orthonormal basis of L2(Ω). For each pair

(m, n) ∈ ℕ ×ℕ we look for a pair (yn , pm) : [0, T] → H1
0(Ω) × L2(Ω) of the form

yn(t) =
n
∑
k=1

akn(t)wk and pm(t) =
m
∑
k=1

bkm(t)uk , (A.3)

as a solution of the weak formulation

{
(y�n , wi) + (pm , ∇wi) + (d yn , wi) = (f, wi) (0 ≤ t ≤ T, i = 1, . . . , n),

(∇yn , uj) − (c−1pm , uj) = (c−1F, uj) (0 ≤ t ≤ T, j = 1, . . . ,m)
(A.4)

(the prime � stands for the derivation in time). We denote by (akn)nk=1 and (bkm)mk=1 some time functions from
[0, T] toℝ for each pair (m, n) ∈ ℕ ×ℕ. We assume that the akn satisfy

akn(0) = (y0, wk) (k = 1, . . . , n). (A.5)

We also denote

(fn(t))i = (f(t), wi), (Y0)i = (y0, wi), (An)ij = (wj , wi), (Dn(t))ij = (d( ⋅ , t)wj , wi)

for all i, j = 1, . . . , n,
(Bm)ij = (c−1uj , ui), (Fm(t))i = (c−1F(t), ui)

for all i, j = 1, . . . ,m, and
(Enm)ij = (uj , ∇wi)

for all i = 1, . . . , n and j = 1, . . . ,m.
Eventually, we also denote byYn(t) the vector formed by akn (k = 1, . . . , n) and byPm(t) the vector formed

by bkm (k = 1, . . . ,m). With these notations, (A.4) and (A.5) may be rewritten as

{{{
{{{
{

Y�
n(t) + EnmPm(t) + Dn(t)Yn(t) = fn(t),

ETnmYn(t) − BmPm(t) = Fm(t),
Yn(0) = Y0.

(A.6)

From the positivity and the symmetry of c−1, we obtain thatBm is a symmetric andpositive definite square
matrix of order m. Therefore, Bm is invertible and the second equation of (A.6) implies the relation

Pm(t) = B−1
m (ETnmYn(t) − Fm(t)).
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Using this equality in the first equation of (A.6), we obtain

{
Y�
n(t) + (EnmB−1

m ETnm + Dn(t))Yn(t) = fn(t) + EnmB−1
m Fm(t) for a.e. t ∈ [0, T],

Yn(0) = Y0.
(A.7)

System (A.7) is a system of n linear ODEs of order 1. Hence, from standard theory for ODEs, there exists
a unique absolutely continuous Yn : [0, T] → ℝn satisfying (A.7). Consequently, the pair (yn , pm) given by
(A.3) is the unique solution of (A.4) and (A.5).

(b) A priori estimates. We now derive some uniform estimates for the pair (yn , pm) with respect to m and n.
This allows us to see that the sequences {yn}n>0, {pm}m>0 converge to y and p, respectively, such that (y, p) is
the weak solution of (A.1).

Multiplying the first equation of (A.4) by akn(t) and summing over k = 1, . . . , n and multiplying the sec-
ond equation of (A.4) by −bkm(t) and summing over k = 1, . . . ,m, we obtain the relations

{
(y�n , yn) + (pm , ∇yn) + (d yn , yn) = (f, yn) (0 ≤ t ≤ T),

−(∇yn , pm) + (c−1pm , pm) = −(c−1F, pm) (0 ≤ t ≤ T).

Adding these two equations and applying the Cauchy–Bunyakovski–Schwarz inequality, we get

d
dt

‖yn(t)‖2L2(Ω) + ‖pm(t)‖2L2(Ω) ≤ C(‖yn(t)‖
2
L2(Ω) + ‖f( ⋅ , t)‖L2(Ω)‖yn(t)‖L2(Ω) + ‖F( ⋅ , t)‖L2(Ω)‖pm(t)‖L2(Ω))

for some positive constant C = C(‖c‖C1(Ω), ‖d‖L∞(QT )). Then, by using the Gronwall’s Lemma, we deduce, that
for all m, n > 0, we have

‖yn‖2L∞(0,T;L2(Ω)) ≤ C(‖y0‖2L2(Ω) + ‖f‖2L2(QT ) + ‖F‖2L2(QT )) (A.8)

and
‖pm‖2L2(QT ) ≤ C(‖y0‖

2
L2(Ω) + ‖f‖2L2(QT ) + ‖F‖2L2(QT )). (A.9)

Now we derive a uniform estimate for y�n. To do this, fix any w ∈ H1
0(Ω)with ‖w‖H1

0(Ω) ≤ 1. Notice that we
can decompose w as w = w1 + w2 with w1 ∈ span{wk}nk=1 and (w2, wk) = 0 for k = 1, . . . , n. Using the first
equation of (A.4), we can deduce, for a.e. 0 ≤ t ≤ T, that

(y�n , w1) + (pm , ∇w1) + (d yn , w1) = (f, w1).

Then, using that (w2, wk) = 0 for k = 1, . . . , n and y�n(t) = ∑n
k=1(akn)�(t)wk, we write

(y�n , w) = (y�n , w1 + w2) = (y�n , w1) = (f, w1) − (pm , ∇w1) − (d yn , w1).

Consequently,

|(y�n(t), w)| ≤ ‖f( ⋅ , t)‖L2(Ω)‖w1‖L2(Ω) + ‖pm(t)‖L2(Ω)‖∇w1‖L2(Ω) + ‖d‖L∞(QT )‖yn(t)‖L2(Ω)‖w1‖L2(Ω)

≤ C(‖f( ⋅ , t)‖L2(Ω) + ‖pm‖L2(Ω) + ‖yn‖L2(Ω))

since ‖w1‖H1
0(Ω) ≤ 1. Finally, using (A.8), (A.9) and the identification of the duality

⟨y�n(t), w⟩H−1(Ω),H1
0(Ω) := (y�n(t), w),

we get
‖y�n‖2L2(0,T;H−1(Ω)) ≤ C(‖y0‖2L2(Ω) + ‖f‖2L2(QT ) + ‖F‖2L2(QT )). (A.10)

To end this second step, let us prove a uniform estimate for ∇yn. To do this, let us fix n ≥ 1 and as
∇yn(t) ∈ L2(Ω), we can write

∇yn(t) =
+∞

∑
k=1

ξ kn (t)uk for a.e. 0 ≤ t ≤ T, (A.11)
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where ξ kn denotes a time function for [0, T] → ℝ for each k. Then, fixingm ≥ 1, multiplying the second equa-
tion of (A.4) by ξ kn (t) and summing over k = 1, . . . ,m, we deduce

(∇yn(t),
m
∑
k=1

ξ kn (t)uk) ≤
C
2 (‖F(t)‖

2
L2(Ω) + ‖pm(t)‖2L2(Ω)) +

1
2
""""""

m
∑
k=1

ξ kn (t)uk
""""""
2

L2(Ω)
.

Integrating with respect to the time variable and recalling (A.9), we find
T

∫
0

(∇yn(t),
m
∑
k=1

ξ kn (t)uk) dt ≤ C(‖F‖2L2(QT ) + ‖f‖2L2(QT ) + ‖y0‖2L2(Ω)) +
1
2

T

∫
0

""""""

m
∑
k=1

ξ kn (t)uk
""""""
2

L2(Ω)
dt.

Let m → +∞ and using (A.11), we finally obtain

‖∇yn‖2L2(QT ) ≤ C(‖y0‖
2
L2(Ω) + ‖f‖2L2(QT ) + ‖F‖2L2(QT )). (A.12)

(c) Building a weak solution. Let us pass to the limit in the sequence (yn , pm).
From the apriori estimates (A.8), (A.9), (A.10) and (A.12), there exist subsequences (ynl)∞l=1 ⊂ (yn)∞n=1 and

(pml)∞l=1 ⊂ (pm)∞m=1 and functions p ∈ L2(QT) and y ∈ L2(0, T;H1
0(Ω)) with yt ∈ L2(0, T;H−1(Ω)) such that

ynl → y weakly in L2(0, T;H1
0(Ω)),

y�nl → y� weakly in L2(0, T;H−1(Ω)),
pml → p weakly in L2(QT).

(A.13)

Next, let w ∈ C1([0, T]; span{wk}rk=1) with r ≤ n and let u ∈ C1([0, T]; span{uk}sk=1) with s ≤ m. Taking
w and u as the test functions in (A.4) and integrating with respect to time, we obtain

{{{{{{{{
{{{{{{{{
{

T

∫
0

[⟨y�n , w⟩H−1(Ω),H1
0(Ω) + (pm , ∇w) + (d yn , w)] dt =

T

∫
0

(f, w) dt,

T

∫
0

[(∇yn , u) − (c−1pm , u)] dt =
T

∫
0

(c−1F, u) dt.

(A.14)

Taking n = nl and m = ml in the above equalities and passing to the limit, we obtain,

{{{{{{{{
{{{{{{{{
{

T

∫
0

[⟨y�, w⟩ + (p, ∇w) + (d y, w)] dt =
T

∫
0

(f, w) dt,

T

∫
0

[(∇y, u) − (c−1p, u)] dt =
T

∫
0

(c−1F, u) dt.

(A.15)

in view of the weak convergence in (A.13). Eventually, by a density property of C1([0, T]; span{wk}rk=1) and
C1([0, T]; span{uk}sk=1) in L

2(0, T;H1
0(Ω)) andL2(QT), respectively, it follows from (A.15) that items (i) and (ii)

of Definition A.1 hold true for the pair (y, p).

(d) Initial datum. Wenowcheck that item (iii) of DefinitionA.1holds also true. First, since y ∈ L2(0, T;H1
0(Ω))

with yt ∈ L2(0, T;H−1(Ω)), we can deduce that y ∈ C0([0, T]; L2(Ω)) (see [13, Theorem 3, p. 303]). Hence,
from (A.15), we deduce that

T

∫
0

[−⟨y, w�⟩ + (p, ∇w) + (d y, w)] dt =
T

∫
0

(f, w) dt + (y( ⋅ , 0), w( ⋅ , 0)) (A.16)

for all w ∈ C1([0, T];H1
0(Ω)) such that w( ⋅ , T) = 0.

And from (A.14) we have the same for the sequence (yml , pml), namely
T

∫
0

[−⟨ynl , w�⟩ + (pml , ∇w) + (d ynl , w)] dt =
T

∫
0

(f, w) dt + (ynl( ⋅ , 0), w( ⋅ , 0)).
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Taking the limit, we obtain
T

∫
0

[−⟨y, w�⟩ + (p, ∇w) + (d y, w)] dt =
T

∫
0

(f, w) dt + (y0, w( ⋅ , 0)). (A.17)

Comparing (A.16) and (A.17), we conclude y( ⋅ , 0) = y0.

(e) Uniqueness. The uniqueness is deduced from the energy estimate (A.2).

Remark A.3. According to Definition A.1, the unique weak solution for (A.1) gives us the weak solution for
the standard parabolic equation

{{{
{{{
{

yt − ∇ ⋅ (c(x)∇y) + d y = f − ∇ ⋅ F in QT ,
y = 0 on ΣT ,

y(x, 0) = y0(x) in Ω.
(A.18)

Indeed, using the fact that c is symmetric and taking u = c ∇w for w ∈ H1
0(Ω) and summing the equations in

(i) and (ii), we obtain the classical definition of weak solution for (A.18).

Now, let us introduce another concept of solution for (A.1) weaker than the previous one.

Definition A.4. We say that the pair (y, p) ∈ L2(QT) × L2(QT) is a solution by transposition of (A.1) if and only
if the following hold:
(i) We have the identity

∬
QT

(y(x, t), p(x, t)) ⋅ (g(x, t),G(x, t)) dx dt = M(g,G) for all (g,G) ∈ L2(QT) × L2(QT),

withM : L2(QT) × L2(QT) → ℝ given by

M(g,G) := ∬
QT

f(x, t)φ(x, t) dx dt + (y0, φ( ⋅ , 0)) +∬
QT

c−1F(x, t) ⋅ σ(x, t) dx dt,

where (φ, σ) is the unique strong solution of

{{{
{{{
{

−φt − ∇ ⋅ σ + d φ = g, ∇φ − c−1σ = G in QT ,
φ = 0 on ΣT ,

φ(x, T) = 0 in Ω.
(A.19)

(ii) y( ⋅ , 0) = y0.

Now we can deduce the following existence/uniqueness result.

Proposition A.5. There exists a unique solution by transposition for (A.1). Moreover, there exists a constant
C > 0 such that

‖y‖L2(QT ) + ‖p‖L2(QT ) ≤ C(‖y0‖L2(Ω) + ‖f‖L2(QT ) + ‖F‖L2(QT )).

Proof. Firstly, notice that M : L2(QT) × L2(QT) → ℝ is a linear form. Then, since (φ, σ) is the unique weak
solution, we obtain

‖φ‖2L2(QT ) + ‖φ( ⋅ , 0)‖2H1
0(Ω)

+ ‖σ‖2L2(QT ) ≤ C‖(g,G)‖
2
L2(QT )×L2(QT ).

in view of Proposition A.2. This implies that the linear formM is continuous. Therefore, by the Riesz repre-
sentation Theorem, there exists a unique pair

(y, p) ∈ L2(QT) × L2(QT)

such that

∬
QT

(y(x, t), p(x, t)) ⋅ (g(x, t),G(x, t)) dx dt = M(g,G) for all (g,G) ∈ L2(QT) × L2(QT).
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Furthermore,
‖(y, p)‖L2(QT×L2(QT ) = ‖M‖(L2(QT×L2(QT ))� .

The uniqueness is obtained by Du Bois–Reymond’s Lemma.

Remark A.6. According to Definition A.4, the solution by transposition for (A.1) gives us the unique solution
by transposition for the standard parabolic equation (A.18). Indeed, taking G = 0 we have that σ = c∇φ in
L2(QT) and then

∬
QT

y(x, t)g(x, t) dx dt = ∬
QT

f(x, t)φ(x, t) dx dt + (y0, φ( ⋅ , 0)) +∬
QT

F(x, t) ⋅ ∇φ(x, t) dx dt

for any g ∈ L2(QT), where, recalling Remark A.3, the function φ is the associated solution for

{{{
{{{
{

−φt − ∇ ⋅ (c(x)∇φ) + d φ = g, in QT ,
φ = 0 on ΣT ,

φ(x, T) = 0 in Ω.

Then we can use a similar argument from Proposition A.2 and a regularization of the initial datum to
deduce item (ii). This is in fact the classical definition of solution by transposition for equation (A.18).

Remark A.7. The concept of solution by transposition appears due to the low regularity on the data. In fact,
this kind of solution can be viewed as a generalization of weak solution, in the sense that every weak solu-
tion is a solution by transposition. This way, we can see that if (y, p) is a weak solution, in agreement with
Definition A.1, then (y, p) is a solution by transposition, in agreement with Definition A.4. Indeed, taking
(w, u) = (φ, σ) in the weak formulation for (A.1) and taking (w, u) = (y, p) in the weak formulation for (A.19),
we can deduce that (y, u) is a solution by transposition in agreement with Definition A.4.
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