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Abstract. This work is devoted to prove the local null controllabil-

ity of the Burgers-α model. The state is the solution to a regular-

ized Burgers equation, where the transport term is of the form zyx,

z = (Id − α2 ∂2

∂x2
)−1y and α > 0 is a small parameter. We also prove

some results concerning the behavior of the null controls and associated

states as α→ 0+.

1. Introduction and main results

Let L > 0 and T > 0 be positive real numbers. Let (a, b) ⊂ (0, L) be a

(small) nonempty open subset which will be referred as the control domain.

We will consider the following controlled system for the Burgers equation:
yt − yxx + yyx = v1(a,b) in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L).

(1.1)

In (1.1), the function y = y(x, t) can be interpreted as a one-dimensional

velocity of a fluid and y0 = y0(x) is an initial datum. The function v = v(x, t)
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(usually in L2((a, b)× (0, T ))) is the control acting on the system and 1(a,b)
denotes the characteristic function of (a, b).

In this paper, we will also consider a system similar to (1.1), where the

transport term is of the form zyx, where z is the solution to an elliptic

problem governed by y. Namely, we consider the following regularized version

of (1.1), where α > 0:


yt − yxx + zyx = v1(a,b) in (0, L)× (0, T ),

z − α2zxx = y in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = z(0, ·) = z(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L).

(1.2)

This will be called in this paper the Burgers-α system. It is a particular

case of the systems introduced in [18] to describe the balance of convection

and stretching in the dynamics of one-dimensional nonlinear waves in a fluid

with small viscosity. It can also be viewed as a simplified 1D version of

the so called Leray-α system, introduced to describe turbulent flows as an

alternative to the classical averaged Reynolds models, see [13]; see also [5].

By considering a special kernel associated to the Green’s function for the

Helmholtz operator, this model compares successfully with empirical data

from turbulent channel and pipe flows for a wide range of Reynolds numbers,

at least for periodic boundary conditions, see [5] (the Leray-α system is also

closely related to the systems treated by Leray in [22] to prove the existence

of solutions to the Navier-Stokes equations; see [17]).

Other references concerning systems of the kind (1.2) in one and several

dimensions are [4, 15] and [23, 26], respectively for numerical and optimal

control issues.

Let us present the notations used along this work. The symbols C, Ĉ and

Ci, i = 0, 1, . . . stand for generic positive constants (usually depending on a,

b, L and T ). For any r ∈ [1,∞] and any given Banach space X, ‖·‖Lr(X) will

denote the usual norm in Lr(0, T ;X). In particular, the norms in Lr(0, L)

and Lr((0, L)×(0, T )) will be denoted by ‖·‖r. We will also need the Hilbert

space K2(0, L) := H2(0, L) ∩H1
0 (0, L).

The null controllability problems for (1.1) and (1.2) at time T > 0 are the

following:



On the control of the Burgers-alpha model 3

For any y0 ∈ H1
0 (0, L), find v ∈ L2((a, b)× (0, T )) such that

the associated solution to (1.1) (resp. (1.2)) satisfies

y(·, T ) = 0 in (0, L). (1.3)

Recently, important progress has been made in the controllability analysis

of linear and semilinear parabolic equations and systems. We refer to the

works [8, 9, 12, 14, 27, 28]. In particular, the controllability of the Burgers

equation has been analyzed in [3, 7, 10, 14, 16, 19]. Consequently, it is

natural to try to extend the known results to systems like (1.2). Notice that

(1.2) is different from (1.1) at least in two aspects: first, the occurrence of

non-local in space nonlinearities; secondly, the fact that a small paramter α

appears.

Our first main results are the following:

Theorem 1. For each T > 0, the system (1.2) is locally null-controllable

at time T . More precisely, there exists δ > 0 (independent of α) such that,

for any y0 ∈ H1
0 (0, L) with ‖y0‖∞ ≤ δ, there exist controls vα ∈ L∞((a, b)×

(0, T )) and associated states (yα, zα) satisfying (1.3). Moreover, one has

‖vα‖∞ ≤ C ∀α > 0. (1.4)

Theorem 2. For each y0 ∈ H1
0 (0, L) with ‖y0‖∞ < π/L, the system (1.2) is

null-controllable at large time. In other words, there exist T > 0 (indepen-

dent of α), controls vα ∈ L∞((a, b) × (0, T )) and associated states (yα, zα)

satisfying (1.3) and (1.4).

Recall that π/L is the square root of the first eigenvalue of the Dirichlet

Laplacian in this case. On the other hand, notice that these results provide

controls in L∞((a, b)×(0, T )) and not only in L2((a, b)×(0, T )). In fact, this

is very convenient not only in (1.1) and (1.2), but also in some intermediate

problems arising in the proofs, since this way we obtain better estimates

for the states and the existence and convergence assertions are easier to

establish.

The main novelty of these results is that they ensure the control of a

kind of nonlocal nonlinear parabolic equations. This makes the difference

with respect to other previous works, such as [9] or [8, 12]. This is not

frequent in the analysis of the controllability of PDEs. Indeed, in general

when we deal with nonlocal nonlinearities, it does not seem easy to transmit
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the information furnished by locally supported controls to the whole domain

in a satisfactory way.

We will also prove a result concerning the controllability in the limit,

as α→ 0+. More precisely, the following holds:

Theorem 3. Let T > 0 be given and let δ > 0 be the constant furnished

by Theorem 1. Assume that y0 ∈ H1
0 (0, L) with ‖y0‖L∞ ≤ δ, let vα be a

null control for (1.2) satisfying (1.4) and let (yα, zα) be an associated state

satisfying (1.3). Then, at least for a subsequence, one has

vα → v weakly-∗ in L∞((a, b)× (0, T )),

zα → y and yα → y weakly-∗ in L∞((0, L)× (0, T ))
(1.5)

as α→ 0+, where (v, y) is a control-state pair for (1.1) that verifies (1.3).

The rest of this paper is organized as follows. In Section 2, we prove some

results concerning the existence, uniqueness and regularity of the solution

to (2.1). Sections 3, 4, and 5 deal with the proofs of Theorems 1, 2 and 3,

respectively. Finally, in Section 6, we present some additional comments and

questions.

2. Preliminaries

In this Section, we will first establish a result concerning global existence

and uniqueness for the Burgers-α system
yt − yxx + zyx = f in (0, L)× (0, T ),

z − α2zxx = y in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = z(0, ·) = z(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L).

(2.1)

It is the following:

Proposition 1. Assume that α > 0. Then, for any f ∈ L∞((0, L)× (0, T ))

and y0 ∈ H1
0 (0, L), there exists exactly one solution (yα, zα) to (2.1), with

yα ∈ L2(0, T ;H2(0, L)) ∩ C0([0, T ];H1
0 (0, L)),

zα ∈ L2
(
0, T ;H4(0, L)

)
∩ L∞

(
0, T ;H1

0 (0, L) ∩H3(0, L)
)
,

(yα)t ∈ L2((0, L)× (0, T )), (zα)t ∈ L2
(
0, T ;H2(0, L)

)
.
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Furthermore, the following estimates hold:

‖(yα)t‖2 + ‖yα‖L2(H2) + ‖yα‖L∞(H1
0 )
≤ C(‖y0‖H1

0
+ ‖f‖2)eC(M(T ))2 ,

‖zα‖2L∞(L2) + 2α2‖zα‖2L∞(H1
0 )
≤ ‖yα‖2L∞(L2),

2α2‖(zα)x‖2L∞(L2) + α4‖(zα)xx‖2L∞(L2) ≤ ‖yα‖
2
L∞(L2),

‖yα‖∞ ≤ M(T ),

‖zα‖∞ ≤ M(T ),

(2.2)

where M(t) := ‖y0‖∞ + t‖f‖∞.

Proof. a) Existence: We will reduce the proof to the search of a fixed

point of an appropriate mapping Λα.

Thus, for each y ∈ L∞((0, L) × (0, T )), let z = z(x, t) be the unique

solution to {
z − α2zxx = y, in (0, L)× (0, T ),

z(0, ·) = z(L, ·) = 0 on (0, T ).
(2.3)

Since y ∈ L∞((0, L)× (0, T )), it is clear that z ∈ L∞(0, T ;K2(0, L)). Then,

thanks to the Sobolev embedding, we have z, zx ∈ L∞((0, L)× (0, T )) and

the following is satisfied:

‖z‖2L∞(L2) + 2α2‖z‖2L∞(H1
0 )
≤ ‖y‖2L∞(L2),

2α2‖zx‖2L∞(L2) + α4‖zxx‖2L∞(L2) ≤ ‖y‖
2
L∞(L2),

‖z‖∞ ≤ ‖y‖∞.

(2.4)

From this z, we can obtain y as the unique solution to the linear problem
yt − yxx + zyx = f in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L).

(2.5)

Since z, f ∈ L∞((0, L)× (0, T )) and y0 ∈ H1
0 (0, L), it is clear that

y ∈ L2(0, T ;K2(0, L)) ∩ C0([0, T ];H1
0 (0, L)),

yt ∈ L2((0, L)× (0, T ))

and we have the following estimate:

‖yt‖2 + ‖y‖L2(H2) + ‖y‖L∞(H1
0 )
≤ C(‖y0‖H1

0
+ ‖f‖2)eC‖z‖

2
∞ . (2.6)
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Indeed, this can be easily deduced, for instance, from a standard Galerkin

approximation and Gronwall’s Lemma; see for instance [6].

We will use the following result, whose proof is given below, after the

proof of this Theorem.

Lemma 1. The solution y to (2.5) satisfies

‖y‖∞ ≤M(T ). (2.7)

Now, we introduce the Banach space

W = {w ∈ L∞(0, T ;H1
0 (0, L)) : wt ∈ L2((0, L)× (0, T ))}, (2.8)

the closed ball

K = {w ∈ L∞((0, L)× (0, T )) : ‖w‖∞ ≤M(T )}

and the mapping Λ̃α, with Λ̃α(y) = y for all y ∈ L∞((0, L) × (0, T )). Ob-

viously Λ̃α is well defined and, in view of Lemma 1, maps the whole space

L∞((0, L)× (0, T )) into W ∩K.

Let us denote by Λα the restriction to K of Λ̃α. Then, thanks to Lemma 1,

Λα maps K into itself. Moreover, it is clear that Λα : K 7→ K satisfies

the hypotheses of Schauder’s Theorem. Indeed, this nonlinear mapping is

continuous and compact (the latter is a consequence of the fact that, if B is

bounded in L∞((0, L)×(0, T )), then Λα(B) is bounded in W and therefore it

is relatively compact in the space L∞((0, L)× (0, T )), in view of the classical

results of the Aubin-Lions’ kind, see for instance [24]). Consequently, Λα
possesses at least one fixed point in K.

This immediately achieves the proof of existence.

b) Uniqueness: Let (z′α, y
′
α) be another solution to (2.1) and let us

introduce u := yα − y′α and m := zα − z′α. Then
ut − uxx + zαux = −m(y′α)x in (0, L)× (0, T ),

m− α2mxx = u in (0, L)× (0, T ),

u(0, ·) = u(L, ·) = m(0, ·) = m(L, ·) = 0 on (0, T ),

u(·, 0) = 0 in (0, L).

Since y′α ∈ L2(0, T ;H2(0, L)), thanks to the Sobolev embedding, we have

y′α ∈ L2(0, T ;C1[0, L]). Therefore, we easily get from the first equation of
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the previous system that

1

2

d

dt
‖u‖22 + ‖ux‖22 ≤ ‖zα‖∞‖ux‖2‖u‖2 + ‖(y′α)x‖∞‖m‖2‖u‖2.

Since ‖m‖2 ≤ ‖u‖2, we have

d

dt
‖u‖22 + ‖ux‖22 ≤

(
‖zα‖2∞ + 2‖(y′α)x‖∞

)
‖u‖22.

Therefore, in view of Gronwall’s Lemma, we necessarily have u ≡ 0. Accor-

dingly, we also obtain m ≡ 0 and uniqueness holds. �

Let us now return to Lemma 1 and establish its proof.

Proof of Lemma 1. Let y be the solution to (2.5) and let us set w = (y −
M(t))+. Notice that w(x, 0) ≡ 0 and w(0, t) ≡ w(L, t) ≡ 0.

Let us multiply the first equation of (2.5) by w and let us integrate on

(0, L). Then we obtain the following for all t:∫ L

0
(ytw + zyxw) dx+

∫ L

0
yxwx dx =

∫ L

0
fw dx.

This can also be written in the form∫ L

0
(wtw + zwxw) dx+

∫ L

0
|wx|2 dx =

∫ L

0
(f −Mt)w dx

and, consequently, we obtain the identity

1

2

d

dt
‖w‖22 + ‖wx‖22 −

1

2

∫ L

0
zx|w|2 dx =

∫ L

0
(f − ‖f‖∞)w dx

and, therefore,

1

2

d

dt
‖w‖22 + ‖wx‖22 −

1

2

∫ L

0
zx|w|2 dx ≤ 0. (2.9)

Since zx ∈ L∞((0, L)× (0, T )), it follows by (2.9) that

d

dt
‖w‖22 ≤ ‖zx‖∞‖w‖22.

Then, using again Gronwall’s Lemma, we see that w ≡ 0.

Analogously, if we introduce w̃ = (y+M(t))−, similar computations lead

to the identity w̃ ≡ 0. Therefore, y satisfies (2.7) and the Lemma is proved.

�
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We will now see that, when f is fixed and α → 0+, the solution to (2.1)

converges to the solution to the Burgers system
yt − yxx + yyx = f in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L).

(2.10)

Proposition 2. Assume that y0 ∈ H1
0 (0, L) and f ∈ L∞((0, L)× (0, T )) are

given. For each α > 0, let (yα, zα) be the unique solution to (2.1). Then

zα → y and yα → y strongly in L2(0, T ;H1
0 (0, L)) (2.11)

as α→ 0+, where y is the unique solution to (2.10).

Proof. Since (yα, zα) is the solution to (2.1), we have (2.2). Therefore, there

exists y such that, at least for a subsequence, we have

yα → y weakly in L2(0, T ;H2(0, L)),

yα → y weakly- ∗ in L∞(0, T ;H1
0 (0, L)),

(yα)t → yt weakly in L2((0, L)× (0, T )).

(2.12)

The Hilbert space

Y = {w ∈ L2(0, T ;K2(0, L)) : wt ∈ L2((0, L)× (0, T )) }

is compactly embedded in L2(0, T ;H1
0 (0, L)). Consequently,

yα → y strongly in L2(0, T ;H1
0 (0, L)). (2.13)

Let us see that y is the unique solution to (2.10).

Using the second equation in (2.1), we have

(zα − y)− α2(zα − y)xx = (yα − y) + α2yxx.

Multiplying this equation by −(zα − y)xx and integrating in (0, L)× (0, T ),

we obtain∫ T

0

∫ L

0
|(zα − y)x|2 dx dt + α2

∫ T

0

∫ L

0
|(zα − y)xx|2 dx dt

=

∫ T

0

∫ L

0
(yα − y)x(zα − y)x dx dt

− α2

∫ T

0

∫ L

0
yxx(zα − y)xx dx dt,
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whence∫ T

0

∫ L

0
|(zα − y)x|2 dx dt ≤

∫ T

0

∫ L

0
|(yα − y)x|2 dx dt+ α2‖yxx‖22.

This shows that

zα → y strongly in L2(0, T ;H1
0 (0, L)) (2.14)

and, consequently,

zα(yα)x → yyx, strongly in L1((0, L)× (0, T )). (2.15)

Finally, for each ψ ∈ L∞(0, T ;H1
0 (0, L)), we have∫ T

0

∫ L

0
((yα)tψ + (yα)xψx + zα(yα)xψ) dx dt =

∫ T

0

∫ L

0
fψ dx dt. (2.16)

Using (2.12) and (2.15), we can take limits in all terms and find that∫ T

0

∫ L

0
(ytψ + yxψx + yyxψ) dx dt =

∫ T

0

∫ L

0
fψ dx dt, (2.17)

that is, y is the unique solution to (2.10).

This proves that (2.11) holds at least for a subsequence. But, in view of

uniqueness, not only a subsequence but the whole sequence converges. �

Remark 1. In fact, a result similar to Proposition 2 can also be established

with varying f and y0. More precisely, if we introduce data fα and (y0)α
with

fα → f weakly-∗ in L∞((0, L)× (0, T ))

and

(y0)α → y0 weakly-∗ in L∞(0, L),

then we find that the associated solutions (yα, zα) satisfy again (2.11). �

To end this Section, we will now recall a result dealing with the null

controllability of general parabolic linear systems of the form
yt − yxx +Ayx = v1(a,b) in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L).

(2.18)

where y0 ∈ L2(0, L), A ∈ L∞((0, L)× (0, T )) and v ∈ L2((a, b)× (0, T )).
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It is well known that there exists exactly one solution y to (2.18), with

y ∈ C0([0, T ];L2(0, L)) ∩ L2(0, T ;H1
0 (0, L)).

Related to controllabilty result, we have the following:

Theorem 4. The linear system (2.18) is null controllable at any time T > 0.

In other words, for each y0 ∈ L2(0, L) there exists v ∈ L2((a, b) × (0, T ))

such that the associated solution to (2.18) satisfies (1.3). Furthermore, the

extremal problemMinimize
1

2

∫ T

0

∫ b

a
|v|2 dx dt

Subject to: v ∈ L2((a, b)× (0, T )), (2.18), (1.3)

(2.19)

possesses exactly one solution v̂ satisfying

‖v̂‖2 ≤ C0‖y0‖2, (2.20)

where

C0 = eC1(1+1/T+(1+T )‖A‖2∞)

and C1 only depends on a, b and L.

The proof of this result can be found in [20].

3. Local null controllability of the Burgers-α model

In this Section, we present the proof of Theorem 1.

Roughly speaking, we fix y, we solve (2.3), we control exactly to zero the

linear system (2.18) with A = z and we set Λα(y) = y. Then the task is to

solve the fixed point equation y = Λα(y).

Several fixed point theorems can be applied. In this paper, we have pre-

ferred to use Schauder’s Theorem, although other results also lead to the

good conclusion; for instance, an argument relying on Kakutani’s Theorem,

like in [8], is possible.

As mentioned above, in order to get good properties for Λα, it is very

appropriate that the control belongs to L∞. This can be achieved by several

ways; for instance, using an “improved” observability estimate for the solu-

tions to the adjoint of (2.18) and arguing as in [8]. We have preferred here

to use other techniques that rely on the regularity of the states and were

originally used in [1]; see also [2].
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Let y0 ∈ H1
0 (0, L) and a′, a′′, b′ and b′′ be given, with 0 < a < a′ < a′′ <

b′′ < b′ < b < L. Let θ and η satisfy

θ ∈ C∞([0, T ]), θ ≡ 1 in [0, T/4], θ ≡ 0 in [3T/4, T ],

η ∈ D(a, b), η ≡ 1 in a neighborhood of [a′, b′], 0 ≤ η ≤ 1.

As in the proof of Proposition 1, we can associate to each y ∈ L∞((0, L)×
(0, T )) the function z through (2.3). Recall that z, zx ∈ L∞((0, L)× (0, T ))

and the inequalities (2.4) are satisfied. In view of Theorem 4, we can asso-

ciate to z the null control v̂ of minimal norm in L2((a′′, b′′)× (0, T )), that is,

the solution to (2.18)–(2.19) with a, b and A respectively replaced by a′′, b′′

and z. Let us denote by ŷ the corresponding solution to (2.18).

Then, we can write that ŷ = θ(t)û + ŵ, where û and ŵ are the unique

solutions to the linear systems
ût − ûxx + zûx = 0 in (0, L)× (0, T ),

û(0, ·) = û(L, ·) = 0 on (0, T ),

û(·, 0) = y0 in (0, L)

(3.1)

and 
ŵt − ŵxx + zŵx = v̂1(a′′,b′′) − θtû in (0, L)× (0, T ),

ŵ(0, ·) = ŵ(L, ·) = 0 on (0, T ),

ŵ(·, 0) = 0, ŵ(·, T ) = 0 in (0, L),

(3.2)

respectively.

If we now set w := (1−η(x))ŵ, then we have that w is the unique solution

of the parabolic system
wt − wxx + zwx = v − θtû in (0, L)× (0, T ),

w(0, ·) = w(L, ·) = 0 on (0, T ),

w(·, 0) = 0, w(·, T ) = 0 in (0, L),

(3.3)

where v := ηθtû− ηxzŵ + 2ηxŵx + ηxxŵ + (1− η(x))v̂1(a′′,b′′).

Notice that (1− η)v̂1(a′′,b′′) ≡ 0, since η ≡ 1 in [a′, b′]. Therefore, one has

v = ηθtû− ηxzŵ + 2ηxŵx + ηxxŵ (3.4)

and then supp v ⊂ (a, b).

Let us prove that v ∈ L∞((a, b)× (0, T )) and

‖v‖∞ ≤ Ĉ‖y0‖∞, (3.5)
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for some

Ĉ = eC(a,b,L)(1+1/T+(1+T )‖y‖2∞). (3.6)

First, note that û ∈ L∞((0, L)× (0, T )) and ‖û‖∞ ≤ ‖y0‖∞. Defining

G = (a, a′) ∪ (b′, b),

we see that it suffices to check that ηxzŵ, ηxŵx and ηxxŵ belong to L∞(G×
(0, T )), with norms in L∞(G× (0, T )) bounded by a constant times the L2-

norm of v̂ and the L∞-norm of y0, since ηx and ηxx are identically zero in a

neighborhood of [a′, b′].

From the usual parabolic estimates for (3.2) and the estimate (2.4), we

first obtain that

‖ŵt‖L2(L2) + ‖ŵ‖L2(H2) + ‖ŵ‖L∞(H1
0 )
≤ ‖v̂1(a′′,b′′)− θtû‖L2(L2)e

C‖y‖2∞ . (3.7)

In particular, we have ŵ ∈ L∞((a, b)× (0, T )), with appropriate estimates.

On the other hand, θtû ∈ L∞((0, L) × (0, T )) and, from the equation

satisfied by ŵ, we have

ŵt − ŵxx + zŵx = −θtû in [(0, a′′) ∪ (b′′, L)]× (0, T ).

Hence, from standard (local in space) parabolic estimates, we deduce

that ŵ belongs to the space Xp(0, T ;G) = {ŵ ∈ Lp(0, T ;W 2,p(G)) : ŵt ∈
Lp(0, T ;Lp(G))} for all 2 < p < +∞.

Then, using Lemma 3.3 (p. 80) of [21], we can take p > 3 to get the

embedding Xp(0, T ;G) ↪→ C0([0, T ];C1(G)) and ŵx ∈ C0(G× [0, T ]). This

proves that ŵx ∈ L∞(G), again with the appropriate estimates.

Therefore, if we define y := θ(t)û+ w, one has
yt − yxx + zyx = v1(a,b) in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L),

(3.8)

and (1.3). Moreover, the control v satisfies (3.5)–(3.6).

Let us set Λα(y) = y. In this way, we have been able to introduce a

mapping

Λα : L∞((0, L)× (0, T )) 7→ L∞((0, L)× (0, T ))

for which the following properties are easy to check:
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a) Λα is continuous and compact. The compactness can be explained

as follows: if B ⊂ L∞((0, L) × (0, T )) is bounded, then Λα(B) is

bounded in the space W in (2.8) and, therefore, it is relatively com-

pact in L∞((0, L)× (0, T )), in view of classical results of the Aubin-

Lions’ kind, see for instance [24]).

b) If R > 0 and ‖y0‖∞ ≤ ε(R) (independent of α!), then Λα maps the

ball BR := { y ∈ L∞((0, L)× (0, T )) : ‖y‖∞ ≤ R } into itself.

The consequence is that, again, Schauder’s Theorem can be applied and

there exists controls vα ∈ L∞((0, L) × (0, T )) such that the corresponding

solutions to (1.2) satisfy (1.3). This achieves the proof of Theorem 1.

4. Large time null controllability of the Burgers-α system

The proof of Theorem 2 is similar. It suffices to replace the assumption

“y0 is small” by an assumption imposing that T is large enough. Again, this

makes it possible to apply a fixed point argument.

More precisely, let us accept that, if y0 ∈ H1
0 (0, L) and ‖y0‖∞ < π/L,

then the associted uncontrolled solution yα to (1.2) satisfies

‖yα(· , t)‖H1
0
≤ C(y0)e

− 1
2
((π/L)2−‖y0‖2∞)t (4.1)

where C(y0) is a constant only depending on ‖y0‖∞ and ‖y0‖H1
0
. Then, if

we first take v ≡ 0, the state yα(· , t) becomes small for large t. In a second

step, when ‖yα(· , t)‖H1
0

is sufficiently small, we can apply Theorem 1 and

drive the state exactly to zero.

Let us now see that (4.1) holds. Arguing as in the proof of Proposition 1,

we see that
d

dt
‖yα‖22 + ‖(yα)x‖22 ≤ ‖y0‖2∞‖yα‖22 (4.2)

and, using Poincaré’s inequality, we obtain:

d

dt
‖yα‖22 + (π/L)2‖yα‖22 ≤ ‖y0‖2∞‖yα‖22.

Let us introduce r = 1
2((π/L)2 − ‖y0‖2∞). It then follows that

‖yα(· , t)‖22 ≤ ‖y0‖22e−2rt. (4.3)

Hence, by combining (4.2) and (4.3), it is easy to see that

d

dt

(
ert‖yα‖22

)
+ ert‖(yα)x‖22 ≤ (r + ‖y0‖2∞)‖y0‖22 e−rt.
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Integrating from 0 to t yields∫ t

0
erσ‖(yα)x‖22 dσ ≤

(
2 +
‖y0‖2∞
r

)
‖y0‖22. (4.4)

Now, we take the L2-inner product of (2.1) and −(yα)xx and get

d

dt
‖(yα)x‖22 ≤ ‖y0‖2∞‖(yα)x‖2.

Multiplying this inequality by ert, we deduce that

d

dt

(
ert‖(yα)x‖22

)
≤ (r + ‖y0‖2∞) ert ‖(yα)x‖22

and, consequently, we see from (4.4) that

‖(yα)x(· , t)‖22 ≤
[
(r + ‖y0‖2∞)

(
2 +
‖y0‖2∞
r

)
‖y0‖22 + ‖y0‖2H1

0

]
e−rt,

which implies (4.1).

Remark 2. To our knowledge, it is unknown what can be said when the

smallness assumption ‖y0‖∞ < π/L is not satisfied. In fact, it is not clear

whether or not the solutions to (1.2) with large initial data and v ≡ 0 decay

as t→ +∞. �

5. Controllability in the limit

In this Section, we are going to prove Theorem 3.

For the null controls vα furnished by Theorem 1 and the associated so-

lutions (yα, zα) to (1.2), we have the uniform estimates (3.5) and (2.2)

with f = vα1(a,b). Then, there exists y ∈ L2(0, T ;K2(0, L)), with yt ∈
L2((0, L) × (0, T )), and v ∈ L∞((a, b) × (0, T )) such that, at least for a

subsequence, one has:

yα → y weakly in L2(0, T ;K2(0, L)),

(yα)t → yt weakly in L2((0, L)× (0, T ))

vα → v weakly− ∗ in L∞((a, b)× (0, T )).

(5.1)

As before, the Aubin-Lions’ Lemma implies that

yα → y strongly in L2(0, T ;H1
0 (0, L)). (5.2)
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Using the second equation in (1.2), we see that

(zα − y)− α2(zα − y)xx = (yα − y) + α2yxx.

Multiplying this equation by −(zα − y)xx and integrating in (0, L)× (0, T ),

we deduce∫ T

0

∫ L

0
|(zα − y)x|2 dx dt+ α2

∫ T

0

∫ L

0
|(zα − y)xx|2 dx dt

=

∫ T

0

∫ L

0
(yα − y)x(zα − y)x dx dt

− α2

∫ T

0

∫ L

0
yxx(zα − y)xx dx dt.

Whence,∫ T

0

∫ L

0
|(zα − y)x|2 dx dt ≤

∫ T

0

∫ L

0
|(yα − y)x|2 dx dt+ α2‖yxx‖22.

This shows that

zα → y strongly in L2(0, T ;H1
0 (0, L)). (5.3)

and the transport terms in (1.2) satisfy

zα(yα)x → yyx strongly in L1((0, L)× (0, T )). (5.4)

In this way, for each ψ ∈ L∞(0, T ;H1
0 (0, L)), we obtain∫ T

0

∫ L

0
((yα)tψ + (yα)xψx + zα(yα)xψ) dx dt =

∫ T

0

∫ L

0
vα1(a,b)ψ dx dt. (5.5)

Using (5.1) and (5.4), we can pass to the limit, as α→ 0+, in all the terms

of (5.5) to find∫ T

0

∫ L

0
(ytψ + yxψx + yyxψ) dx dt =

∫ T

0

∫ L

0
v1(a,b)ψ dx dt, (5.6)

that is, y is the unique solution of (1.1) and y satisfies (1.3).



16 Fágner D. Araruna, Enrique Fernández-Cara, and Diego A. Souza

6. Additional comments and questions

6.1. A boundary controllability result. We can use an extension argu-

ment to prove local boundary controllability results similar to those above.

For instance, let us see that the analog of Theorem 1 remains true. Thus,

let us introduce the controlled system
yt − yxx + zyx = 0 in (0, L)× (0, T ),

z − α2zxx = y in (0, L)× (0, T ),

z(0, ·) = z(L, ·) = y(0, ·) = 0, y(L, ·) = u on (0, T ),

y(·, 0) = y0 in (0, L),

(6.1)

where u = u(t) stands for the control function and y0 ∈ H1
0 (0, L) is given.

Let a, b and L̃ be given, with L < a < b < L̃. Then, let us define

ỹ0 : [0, L̃] 7→ R, with ỹ0 := y01[0,L]. Arguing as in Theorem 1, it can be

proved that there exists (ỹ, ṽ), with ṽ ∈ L∞((a, b)× (0, T )),
ỹt − ỹxx + z1[0,L] ỹx = ṽ1(a,b) in (0, L̃)× (0, T ),

z − α2zxx = ỹ in (0, L)× (0, T ),

ỹ(0, ·) = z(0, ·) = z(L, ·) = ỹ(L̃, ·) = 0 on (0, T ),

ỹ(·, 0) = ỹ0 in (0, L̃),

and ỹ(x, T ) ≡ 0. Then, y := ỹ1(0,L), z and u(t) := ỹ(L, t) satisfy (6.1).

Notice that the control that we have obtained satisfies u ∈ C0([0, T ]),

since it can be viewed as the lateral trace of a strong solution of the heat

equation with a L∞ right hand side.

6.2. No global null controllability? To our knowledge, it is unknown

whether a general global null controllability result holds for (1.2). We can

prove global null controllability “for large α”.

More precisely, the following holds:

Theorem 5. Let y0 ∈ H1
0 (0, L) and T > 0 be given. There exists α0 =

α0(y0, T ) such that (1.2) can be controlled to zero for all α > α0.

Proof. The main idea is, again, to apply a fixed point argument in

L∞(0, T ;L2(0, L)).
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For each y ∈ L∞(0, T ;L2(0, L)), we introduce the solution z to (2.3). We

notice that z satisfies

‖z‖22 + 2α2‖zx‖22 ≤ ‖y‖22,

2α2‖zx‖22 + α4‖zxx‖22 ≤ ‖y‖22.

Then, as in the proof of Theorem 1, we consider the solution (y, v) to the

system 
yt − yxx + zyx = v1(a,b) in (0, L)× (0, T ),

y(0, ·) = y(L, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L),

(6.2)

where we assume that y satisfies (1.3) and v satisfies the estimate

‖v‖∞ ≤ Ĉ‖y0‖∞, (6.3)

with

Ĉ = eC(a,b,L)(1+1/T+(1+T )‖z‖2∞).

It is then clear that

‖yt‖2 + ‖y‖L2(H2) + ‖y‖L∞(H1
0 )
≤ C‖y0‖H1

0
eC(a,b,L)(1+1/T+(1+T )‖z‖2∞). (6.4)

Since ‖z‖2∞ ≤ C
α2 ‖y‖22, we have

‖yt‖2 + ‖y‖L2(H2) + ‖y‖L∞(H1
0 )
≤ C‖y0‖H1

0
e
C(a,b,L)

(
1+1/T+(1+T ) 1

α2
‖y‖2

L∞(L2)

)
.

We can check that there exist R and α0 such that

C‖y0‖H1
0
eC(a,b,L)

(
1+1/T+(1+T ) 1

α2
R2
)
< R,

for all α > α0. Therefore, we can apply the fixed point argument in the ball

BR of L2((0, L)× (0, T )) for these α. This ends the proof. �

Notice that we cannot expect (1.2) to be globally null-controllable with

controls bounded independently of α, since the limit problem (1.1) is not

globally null-controllable, see [10, 16]. More precisely, let y0 ∈ H1
0 (0, L) and

T > 0 be given and let us denote by α̂(y0, T ) the infimum of all α0 furnished

by Theorem 5. Then, either α̂(y0, T ) > 0 or the associated cost of null

controllability grows to infinity as α → 0, i.e. the null controls of minimal

norm vα satisfy

lim sup
α→0+

‖vα‖L∞((a,b)×(0,T )) = +∞.
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6.3. The situation in higher spatial dimensions. The Leray-α sys-

tem. Let Ω ⊂ RN be a bounded connected and regular open set (N = 2

or N = 3) and let ω ⊂ Ω be a (small) open set. We will use the notation

Q := Ω × (0, T ) and Σ := ∂Ω × (0, T ) and we will use bold symbols for

vector-valued functions and spaces of vector-valued functions.

For any f and any y0 in appropriate spaces, we will consider the Navier-

Stokes system 
yt −∆y + (y · ∇)y +∇p = f in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 in Ω.

(6.5)

As before, we will also introduce a smoothing kernel and a related modifica-

tion of (6.5). More precisely, the following so called Leray-α model will be

of interest: 

yt −∆y + (z · ∇)y +∇p = f in Q,

∇ · y = ∇ · z = 0 in Q,

z− α2∆z +∇π = y in Q,

y = z = 0 on Σ,

y(0) = y0 in Ω.

(6.6)

Let us recall the definitions of some function spaces that are frequently

used in the analysis of incompressible fluids:

H =
{
ϕ ∈ L2(Ω) : ∇ ·ϕ = 0 in Ω, ϕ · n = 0 on ∂Ω

}
,

V =
{
ϕ ∈ H1

0(Ω) : ∇ ·ϕ = 0 in Ω
}
.

It is not difficult to prove that, for any α > 0, under some reasonable

conditions on f and y0, (6.6) possesses a unique global weak solution. This

is stated rigorously in the following proposition, that we present without

proof (the arguments are similar to those in [25]; the detailed proof will

appear in a forthcoming paper):

Proposition 3. Assume that α > 0. Then, for any f ∈ L2(0, T ;H−1(Ω))

and any y0 ∈ H, there exists exactly one solution (yα, pα, zα, πα) to (6.6),

with

yα ∈ L2(0, T ;V) ∩ C0([0, T ];H), (yα)t ∈ L1(0, T ;V′),

zα ∈ L2
(
0, T ;H2(Ω) ∩V

)
∩ L∞

(
0, T ;H

)
.
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Furthermore, the following estimates hold:

‖(yα)t‖L1(V′) + ‖yα‖L2(V) + ‖yα‖L∞(H) ≤ C(‖y0‖2 + ‖f‖L2(H−1)),

‖zα‖2L∞(H) + 2α2‖zα‖2L∞(V) ≤ ‖yα‖
2
L∞(H),

2α2‖(zα)x‖2L∞(H) + α4‖∆(zα)‖2L∞(H) ≤ ‖yα‖
2
L∞(H).

(6.7)

In view of the estimates (6.7), there exists y ∈ L2 (0, T ;V)) with yt ∈
L1(0, T ;V′) such that, at least for a subsequence,

yα → y weakly in L2 (0, T ;V)) ,

(yα)t → yt weakly-* in L1(0, T ;V′).
(6.8)

Thanks to the Aubin-Lions’ Lemma, the Hilbert space

W = {w ∈ L2 (0, T ;V) ;wt ∈ L1(0, T ;V′)}

is compactly embedded in L2(Q) and we thus have

yα → y strongly in L2(Q). (6.9)

Also, using the second equation in (6.6) we see that

(zα − y)− α2∆(zα − y) +∇π = (yα − y) + α2∆y.

Therefore, after some computations, we deduce that

zα → y strongly in L2(Q). (6.10)

This proves that we can find p such that (y, p) is solution to (6.5).

In other words, at least for a subsequence, the solutions to the Leray-α

system converge (in the sense of (6.8)) towards a solution to the Navier-

Stokes system.

Let us now consider the following controlled systems for the Navier-Stokes

and Leray-α systems:
yt −∆y + (y · ∇)y +∇p = v1ω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 in Ω

(6.11)
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and 

yt −∆y + (z · ∇)y +∇p = v1ω in Q,

∇ · y = ∇ · z = 0 in Q,

z− α2∆z +∇π = y in Q,

y = z = 0 on Σ,

y(0) = y0 in Ω,

(6.12)

where v = v(x, t) stands for the control function.

With arguments similar to those in [11], it can be proved that, for any T >

0, there exists ε > 0 such that, if ‖y0‖ < ε, for each α > 0 we can find controls

vα ∈ L2(ω × (0, T )) and associate states (yα, pα, zα, πα) satisfying

yα(x, T ) = 0 in Ω.

In a forthcoming paper, we will show that these null controls vα can

be bounded independently of α and a result similar to Theorem 3 holds

for (6.12).
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