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Abstract

In this work, a Hopf bifurcation at infinity in three-dimensional symmetric

continuous piecewise linear systems with three zones is analized. By adapting

the so-called closing equations method, which constitutes a suitable technique

to detect limit cycles bifurcation in piecewise linear systems, we give for the

first time a complete characterization of the existence and stability of the

limit cycle of large amplitude that bifurcates from the point at infinity. Ana-

lytical expressions for the period and amplitude of the bifurcating limit cycles

are obtained. As an application of these results, we study the appearance of

a large amplitude limit cycle in a Bonhoeffer-Van der Pol oscillator.
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1. Introduction

For sufficiently smooth differential systems the Poincaré-Andronov-Hopf

bifurcation theorem provides a general explanation for the birth of a small

amplitude limit cycle surrounding a certain equilibrium point when two eigen-

values of the linearization at the point cross the imaginary axis, see for in-5

stance [1, 2, 3, 4]. There are situations however, both for smooth and non-

smooth systems, where limit cycles appear or disappear with great amplitude,

coming from or going to infinity; then it is said that a Hopf bifurcation at

infinity takes place, see for instance [5, 6, 7, 8, 9, 10, 11, 12].

To the best of our knowledge, one of the first publications about the10

Hopf bifurcation at infinity appeared in [13], by adapting ideas from the

Hopf bifurcation at the origin taken from [14]. Another general study is

done in [15], where, by means of techniques of parameter functionalization

and methods of monotone concave and convex operators, authors show the

existence, uniqueness, and stability of large-amplitude periodic cycles arising15

in Hopf bifurcations at infinity for autonomous control systems with bounded

nonlinear feedback. Here, we will consider the general case of 3D symmetric

continuous piecewise linear systems with three zones, looking for an alterna-

tive approach to the quoted works that gives more quantitative information

on the bifurcating limit cycle.20

Piecewise linear systems have a notable, rather long pedigree. For in-

stance, in the seminal book of Andronov [16], there appears a plenty of
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mechanical, electrical and control applications whose nonlinearities are ad-

equately modeled as piecewise linear functions. They also have played a

remarkable role in the advance of nonlinear dynamics; as an outstanding ex-25

ample, we could remind how the work by Norman Levinson [17] on the forced

VanderPol equation with a piecewise constant nonlinearity was crucial in the

discovering of the horseshoe paradigm by Steve Smale [18]. In particular, the

class of continuous piecewise linear (CPWL, for short) systems has been used

in diverse areas to accurately model many physical phenomena, sometimes30

involving abrupt events or fast transitions. For three-dimensional piecewise

linear systems with two or three zones, different phenomena as bistability,

hysteresis, instantaneous transitions of a stable equilibrium to chaotic at-

tractor, as well as the existence of limit cycles of great amplitude have been

reported, see for instance [19, 20, 21, 22, 23].35

A suitable technique to detect limit cycles bifurcation in piecewise linear

systems is the so-called closing equations method. This method involves the

integration of the system in each linear zone and the subsequent matching of

solutions, and allows to obtain expressions for the period and amplitude of the

bifurcating limit cycle, see for instance [24, 25, 26, 27, 28]. The method needs40

to be adapted to deal with limit cycles of great amplitude, as firstly proposed

in [29]. Here, we show in detail how such method can be suited to the study of

periodic orbits of large amplitude in three-dimensional symmetric continuous

piecewise linear systems with three zones. We obtain general results for

quantitative estimates of the period and the amplitude, also determining45

the stability of the bifurcating limit cycle. As a direct application of the

previous results, we characterize one unreported bifurcation of limit cycles
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of great amplitude in a piecewise linear Bonhoeffer-Van der Pol oscillator

[30, 31, 32].

The paper is organized as follows. After a detailed setting of the problem50

and some auxiliary results, the main contributions of the work are Theorem

5 and Corollary 6, both presented in Section 2. The theoretical results are

applied to a Bonhoeffer-Van der Pol electronic oscillator in Section 3. In

Section 4, we show how our work improves a previous related result [15].

The proof of Theorem 5 is delayed to Section 5 for ease of reading. For55

the same reason, other auxiliary material is relegated to Appendix A, which

appears after a section devoted to some concluding remarks.

2. Introduction to modified closing equations and main results

We start by considering a piecewise linear system in R
3 defined by

ẋ =



















AEx+ b, if e⊤1 x < −1,

ACx, if |e⊤1 x| ≤ 1,

AEx− b, if e⊤1 x > 1,

(1)

where x = (x, y, z)⊤, e1 is the first canonical vector, the vector b ∈ R
3 is60

constant and the matrices A{C,E} are the 3 × 3 constant real matrices that

rule the dynamics in the central (C) and external (E) zones, which share the

last two columns. Therefore, system (1) is a symmetric continuous piecewise

linear system with three linearity zones separated by two parallel planes

defined by65

Σ1 = {x ∈ R
3 : e⊤1 x = 1}, Σ−1 = {x ∈ R

3 : e⊤1 x = −1}. (2)
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These sets define three regions of R3 where e⊤1 x < −1, |e⊤1 x| ≤ 1 and e⊤1 x > 1

and will be denoted by L (left), C (central) and R (right) zones. Due to the

symmetry of the vector field, we use the symbol E to denote both the left

and the right external zones.

After a linear change of variables (see Proposition 16 of [33]), system (1)70

can be rewritten into the so-called generalized Lienard’s form given by

ẋ =











tE −1 0

mE 0 −1

dE 0 0











x+











tC − tE

mC −mE

dC − dE











sat
(

e⊤1 x
)

, (3)

where t{C,E}, m{C,E} and d{C,E} are the linear invariants (trace, sum of prin-

cipal minors and determinant) of the matrices AC and AE, respectively, and

where sat (x) is the normalized saturation function

sat (x) =







x if |x| ≤ 1,

sgn(x) if |x| > 1.

We remark that for |x| ≤ 1 system (3) becomes ẋ = ACx with75

AC =











tC −1 0

mC 0 −1

dC 0 0











, (4)

so that the solutions in the central zone can be written as

x(τ) = eACτx(0), (5)

where the vector x(0) denotes the selected initial conditions.

The case dE = det(AE) = 0 corresponds to a degenerated situation,

corresponding to a pitchfork bifurcation at infinity, and in what follows we
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assume dE 6= 0. Under this generic condition, apart from the origin, system80

(3) always has the two additional equilibrium points xR and xL (to be virtual

or real), where

xR = −A−1

E b =
1

dE











dE − dC

tCdE − tEdC

mCdE −mEdC











, xL = −xR, (6)

so that the solutions x(τ) in the external zones can be written as

x(τ) = x{L,R} + eAEτ (x(0)− x{L,R}). (7)

Note that if dCdE < 0 then there exist three real equilibria, as it is easily

concluded checking the first component of (6).85

Assume the existence of a symmetric limit cycle in system (3) living in

the regions L, C and R and with four transversal intersection points with

the planes Σ1 and Σ−1, respectively x0, x3 and x1, x2, see Figure 1. Due to

the symmetry, it will be fulfilled x2 = −x0 ∈ Σ−1 and x3 = −x1 ∈ Σ1.

Using solution (5) in zone C with x(0) = x0, where90

x0 =











1

y0

z0











∈ Σ1, (8)

with y0 > tC (so that ẋ < 0 at x0) and assuming a flight time τ = τC , to

arrive at x1, we will have

x1 =











−1

y1

z1











∈ Σ−1,
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and we obtain the condition










−1

y1

z1











= eACτC











1

y0

z0











.

Using solution (7) in zone L with x(0) = x1, where

x1 =











−1

y1

z1











∈ Σ−1, (9)

with y1 > −tC and assuming a flight time τ = τE , to arrive at the point x2,95

so that

x(τE) = x2 = −x0 = −











1

y0

z0











∈ Σ−1,

we obtain a new condition, that is,

−x0 − xL = eAEτE(x1 − xL).

Therefore, it is possible to identify symmetric limit cycles of system (3)

with the solutions of the equations

eACτCx0 − x1 = 0,

eAEτE(x1 − xL) + x0 + xL = 0,
(10)

where τC and τE are the times spent by the semi-orbit in each zone, and x0,

x1 and xL are defined in (8), (9) and (6) respectively. Equations (10) will be100

referred to as the closing equations. The use of these equations goes back to

Andronov and coworkers [16] and have been previously used for the analysis

of limit cycle bifurcations, see for instance [25, 26, 34, 35, 36].
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Figure 1: A symmetric limit cycle, using the three linearity zones of system (3), and some

distinguished points.

The above closing equations allow also to analyze the stability of the

closed orbits by studying the behavior of an adequate return map near the105

periodic orbit. If x̂0, x̂1 are the intersection points of given symmetric pe-

riodic orbit, due to the symmetry of system (1), we only need to consider

orbits that start at Σ1 near x̂0 ∈ Σ1, and look for their crossing points

at Σ−1 near x̂1 ∈ Σ−1 and next, look at the return points at Σ−1 near

−x̂0 ∈ Σ−1 (see Figure 1). For such near points, we denote by p0, p1 ∈ R
2,110

the coordinates of x0 and x1 restricted to their respective sections, so that

x0 = (1,p0)
⊤ ∈ Σ1 and x1 = (−1,p1)

⊤ ∈ Σ−1. From the transition maps

associated to the flow, locally defined at the points x̂0 and x̂1, it is possible

to define in adequate neighborhoods at the sections the functions providing

the corresponding restricted coordinates and flight times. Let us denote by115
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πC , πE such functions, satisfying πC(p̂0) = p̂1, πE(p̂1) = −p̂0, and let πEC

be its composition πEC = πE ◦ πC . We will denote by τC(p0) and τE(p1)

the times spent by near orbits in passing from generic points x0 to x1, and

from x1 to x2, respectively, in the adequate sections, and we will use Dp(·)
to indicate their derivatives with respect to the restricted coordinates. The120

following results will be useful to determine the stability of any symmetric

limit cycle, sense they allow to complete in an easy way its characteristic

multipliers.

Proposition 1. Consider a transversal symmetric periodic orbit Γ of system

(1) that uses the three zones of linearity and intersects transversally Σ1 at125

the point x̂0 = (1, p̂0)
⊤ and x̂3, and Σ−1 at x̂1 = (−1, p̂1)

⊤ and x̂2, where

x̂3 = −x̂1, x̂2 = −x̂0, with times τ̂C = τC(p̂0) and τ̂E = τE(p̂1) in zones C

and L respectively, see Figure 1. Then, the product of the next two matrices





1 DpτE(p̂1)

0 DpπE(p̂1)









−1 DpτC(p̂0)

0 DpπC(p̂0)



 =





−1 DpτC(p̂0) +DpτE(p̂1)DpπC(p̂0)

0 DpπEC(p̂0)





is similar to the matrix

M = eAE τ̂EeAC τ̂C . (11)

Proposition 1 is shown in Appendix A. Consequently, the product in (11)130

has always an eigenvalue equal to −1. More precisely, we can state the

following corollary.

Corollary 2. Let Γ be a symmetric periodic orbit of system (1), under hy-

potheses of Proposition 1. Then, an eigenvalue of

eAE τ̂EeAC τ̂C
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is −1 and the squares of the remaining two eigenvalues are the characteristic135

multipliers of the periodic orbit Γ.

To simplify the subsequent analysis, it is useful to take into account the

following result.

Remark 3. To lower the dimension of closing equations (10), it is useful to

rewrite the equations in the equivalent form140

eACτCx0 − x1 = 0,

x1 − xL + e−AEτE (x0 + xL) = 0,
(12)

so that we can eliminate the coordinates y1, z1 in the vector x1 by considering

only the equation

eACτCx0 − xL + e−AEτE(x0 + xL) = 0, (13)

along with the corresponding condition to the first coordinate of (10), namely

e⊤1 e
ACτCx0 + 1 = 0, (14)

what gives us a system with only four equations.

In order to deal with orbits of large amplitude for system (3), a new set of145

equations is introduced as follows. A reference coordinate for the intersection

of the orbit with the plane Σ1 is chosen, say y0 (it is generically assumed

for a large amplitude periodic orbit that y0 is positive and sufficiently big,

satisfying y0 > tC), and we define a new change of variables by using the

normalized coordinates150

r0 =
1

y0
, v0 =

z0
y0
. (15)
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Consequently, after multiplying all the equations of (13) and (14) by r0, it

becomes

e⊤1 e
ACτC (r0, 1, v0)

⊤ + r0 = 0,

eACτC (r0, 1, v0)
⊤ − r0xL + e−AEτE

[

(r0, 1, v0)
⊤ + r0xL

]

= 0.
(16)

In fact, if we have a branch of solutions of equations (16) and by moving

parameters we make r0 to tend to 0, then the corresponding periodic orbit

will approach a certain periodic orbit at infinity. This new set of closing155

equations will be analyzed for small r0 > 0, corresponding to large amplitude

limit cycles with a very large value for y0 > 0. Therefore, these equations

are useful to detect the bifurcation of a limit cycle from the periodic orbit at

infinity of system (3) that corresponds to the solution of (16) with τC = 0,

τE > 0, r0 = 0, v0 = tE and mEtE − dE = 0 with mE > 0; more precisely, we160

have the following result.

Lemma 4. The unique solution of equations (16) with τC = 0, dE 6= 0 and

τE > 0 is r0 = 0, v0 = tE and τE = π/
√
mE, with mEtE − dE = 0 and

mE > 0.

Proof. For τC = 0, the first equation of (16) is equivalent to 2r0 = 0 what165

implies r0 = 0. Substituting τC = 0 and r0 = 0 in the other equations of (16)

we obtain the equivalent condition

eAEτE











0

1

v0











+











0

1

v0











= 0, (17)

what tells us that the matrix exp (AEτE) has an eigenvector of the form

(0, 1, v0)
⊤ corresponding to the eigenvalue −1. If µE is the eigenvalue of AE
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corresponding to the eigenvalue −1 of the matrix exponential, then we will170

have eµEτE = −1, what implies µEτE = πi, so that µE is pure imaginary.

Therefore, for the values τC = 0 and r0 = 0, the matrix AE has a pair

of imaginary eigenvalues that we will denote by ±ωi, with ω > 0, and so

ωτE = π. Obviously, the third eigenvalue must be real, say λ, and the

following equalities hold175

tE = λ, mE = ω2, dE = λω2. (18)

The above equalities are equivalent to dE = mEtE with mE = ω2 > 0, so

that τE = π/ω = π/
√
mE .

Substituting these values in the matrix exponential of AE, we get

eAEτE + I =
e

πtE
ω + 1

t2E + ω2











t2E −tE 1

0 0 0

t2Eω
2 −tEω

2 ω2











and from the first component of equation (17), since the kernel of above

matrix must contain the vector (0, 1, v0)
⊤, we have that180

−tE + v0 = 0,

what implies v0 = tE, and the proof is completed.

As long as we are in a neighborhood of the solution of (16) studied in

Lemma 4, the eigenvalues of AE will be a real one λ and a pair of complex

numbers σ ± ωi, so that the linear invariants of AE can be written as

tE = 2σ + λ,

mE = 2σλ+ σ2 + ω2, (19)

dE = λ
(

σ2 + ω2
)

,

12



and we see that the quoted solution corresponds with σ = 0.

The idea is to study the closing equations (16) by looking for the branch

of solutions (r0, v0, τE , τC , σ) with r0 > 0 and positive flight times, that passes

through the point (r0, v0, τE, τC , σ) = (0, λ, π/
√
mE , 0, 0), by varying σ near185

0. The interesting points of this branch will satisfy r0 > 0 and τC > 0, and

will be associated to actual periodic solutions. As it will be shown, it is

possible to parameterize the branch of solutions in a local neighborhood of

the starting point. This can be done by means of a suitable application of

the Implicit Function Theorem.190

Now, we are in position to state the main result of this work by studying

the solutions of (16) with the conditions given in (19) in a neighborhood of

the critical values of Lemma 4. This theorem gives sufficient conditions for

system (3) to undergo a Hopf bifurcation from a periodic orbit at infinity,

that is, it gives conditions about existence and stability of the limit cycle195

that bifurcates from infinity.

Theorem 5. Consider system (3) under the assumptions (19) with λ 6= 0,

ω > 0 and define the non-degeneracy parameter

ρ = dC − λmC + ω2(λ− tC). (20)

If ρ 6= 0, then, for σ = 0 the system undergoes a Hopf bifurcation at infin-

ity, that is, one symmetric limit cycle appears for ρσ > 0 and σ sufficiently200

small. In particular, if ρ < 0 and λ < 0, then the limit cycle bifurcates for

σ < 0 and is orbitally asymptotically stable. Otherwise, if ρ > 0 or λ > 0

the bifurcating limit cycle is unstable, being completely unstable when both

inequalities hold, see Figure 2.
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Moreover, introducing the constant κ = exp(πλ/ω), the period P of the peri-205

odic oscillation is an analytic function at 0, in the variable σ, and its series

expansion is

P =
2π

ω
− 2π

[

λρ+
(

λ2 + ω2
) (

mC − ω2
)]

ω3ρ
σ +

π [A1 (1 + κ) +B1π (1− κ)]

λω5ρ3 (κ+ 1)
σ2 +O

(

σ3
)

,

where coefficients A1 and B1 are given in Table A.1 of Appendix A. The

amplitude a (measured as y0 = 1/r0) has the following series expansion,210

a =
2ωρ

π(λ2 + ω2)σ
+

A2 (1 + κ) +B2π (1− κ)− 2πκλ2ρω
(

λ2 + ω2
)2

πλωρ (κ+ 1) (λ2 + ω2)2
+O (σ) ,

where the coefficients A2 and B2 are given in Table A.1 of Appendix A.

This theorem is in agreement with the results obtained in [15] with differ-

ent techniques, but gives more quantitative information, see Section 4. For

a proof of Theorem 5 see Section 5.215

If we introduce the auxiliary parameter

ε = mEtE − dE (21)

and consider some critical values m∗
E , t∗E , d∗E for the linear invariants of

matrix AE, such that m∗
Et

∗
E = d∗E with m∗

E > 0, it is immediate to see that

in a neighborhood of such critical values all the conditions (19) are generically

fulfilled. Effectively, in such a case we have that the characteristic polynomial

of AE is

λ3 − t∗Eλ
2 +m∗

Eλ− t∗Em
∗
E = (λ− t∗E)(λ

2 +m∗
E)

14



so that the eigenvalues of AE are t∗E and ±
√

m∗
Ei. Therefore, we see that

for near values, conditions (19) are true and furthermore we have

ε = mEtE − dE = 2σ
[

(σ + λ)2 + ω2
]

,

so that sign(ε) = sign(σ). Thus, we can conclude the following corollary,

which is a direct consequence of Theorem 5.

Corollary 6. Consider system (3) with d∗E 6= 0, m∗
E > 0, m∗

Et
∗
E = d∗E and

define the parameter ε as in (21) for (mE , tE, dE) in a neighborhood of the220

critical values (m∗
E , t

∗
E, d

∗
E). Under the non-degeneracy condition

ρ = dC − t∗EmC +m∗
E(t

∗
E − tC) 6= 0 (22)

then for ε = 0 the system undergoes a Hopf bifurcation at infinity, that is,

one symmetric limit cycle appears for ρε > 0 and ε sufficiently small. In

particular, if ρ < 0 and d∗E < 0, then the limit cycle bifurcates for ε < 0 and is

orbitally asymptotically stable. Otherwise, if ρ > 0 or d∗E > 0 the bifurcating225

limit cycle is unstable, being completely unstable when both inequalities hold.

Regarding Figure 2, we see that the character of the predicted bifurcation

from infinity at the axis ε = 0 changes depending on the sign of the criti-

cality parameter ρ. This suggests that the point (ρ, ε) = (0, 0) is a higher

codimension bifurcation point. From such point there could emerge one or230

more bifurcation curves. Therefore, it is clear that the bifurcation sets of

Figure 2 have to be completed; for sake of brevity, we relegate such analysis

to a future work.

The rest of the paper is organized as follows. Next, in Section 3 we present

an interesting application of Theorem 5, whose proof is offered in Section235

15



0

0

0

0

(b)(a)

ε ε

s u

Σ−1 Σ1

Σ−1 Σ1

Σ1Σ−1

Σ−1 Σ1

d∗
E
> 0

ρρ

cu

d∗
E
< 0

u

Figure 2: The bifurcations predicted by Corollary 6 in the parameter plane (ρ, ε) under

hypotheses d∗
E

< 0 (left) and d∗
E

> 0 (right). The arrows indicate the direction of the

appearance of the bifurcating stable (s), unstable (u), or completely unstable (cu) limit

cycle.

5. In Section 4, we compare our results with those obtained with different

techniques in [15]. Finally, the somehow cumbersome proof of Proposition 1

is relegated to Appendix A for ease of reading.

3. Application to a Bonhoeffer-van der Pol oscillator.

In this section we consider an extended Bonhoeffer-van der Pol (BVP)240

oscillator, which consists of two capacitors, an inductor, a linear resistor and

a nonlinear conductance, as shown in Figure 3. More information about this

circuit can be found in [37], where a smooth nonlinearity is assumed for the

conductance and a rich variety of dynamical behaviors is numerically and

experimentally demonstrated. For the purposes of this work, we emphasize245
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R C2

L
iL

C1 g(v1)

Figure 3: The extended BVP oscillator proposed in [37], where the voltages across the

capacitors C1 and C2 are v1 and v2 respectively.

that in some significant region of the parameter space there was detected one

stable oscillation of big amplitude.

The circuit equations are the following:

C
dv1
dt

= −iL − g(v1), C
dv2
dt

= iL − v2
R
, L

diL
dt

= v1 − v2,

where v1 and v2 are the voltages across the capacitors C1 and C2 respectively,

and iL stands for the current through the inductance L. Note that we take250

C1 = C2 = C, and the v− i characteristics of the nonlinear resistor is written

as g(v) = −av−b sat(cv), where a, b, c > 0. Therefore, we assume a piecewise

linear version of the nonlinearity considered in [37], since such assumption is

a very good approximation of the actual nonlinear characteristics.

After some standard manipulations, the normalized equations of the ex-255

tended BVP oscillator are given by

ẋ = −z + αx+ sat(βx),

ẏ = z − δy,

ż = x− y,

(23)
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where the dot represents derivative with respect to the new time τ ,

τ =
1√
LC

t, α = a

√

L

C
, β = bc

√

L

C
, δ =

1

R

√

L

C
,

being α, β, δ positive adimensional parameters, and

x =
v1
b

√

C

L
, y =

v2
b

√

C

L
, z =

iL
b
,

the new dimensionless variables.

System (23) can be rewritten into the generalized Liénard form (3), as260

follows

ẋ =











tE −1 0

mE 0 −1

dE 0 0











x+











tC − tE

mC −mE

dC − dE











sat
(

e⊤1 x
)

, (24)

where the linear invariants are

tC = α− δ + β, mC = 2− δ(α+ β), dC = α− δ + β,

tE = α− δ, mE = 2− αδ, dE = α− δ.
(25)

We start by giving some basic information about possible equilibria of

the system. The origin is always an equilibrium point and that, from the

first component of (6), we have an extra symmetric pair of real equilibria265

whenever dCdE < 0, and due to the positiveness of parameters α, β and δ,

such inequality is equivalent to the condition

α < δ < α + β, (26)

which corresponds to region II of the parameter plane in Figure 4(a). Thus,

while for α > δ or α + β < δ there is only one equilibrium at the origin,

we pass to have three equilibria in crossing the line α + β = δ (degenerate270

18



pitchfork bifurcation at the origin) or in crossing the line α = δ (pitchfork

bifurcation at infinity). The origin is the only equilibrium point and is stable

whenever α+ β < 1/δ, which corresponds to region I of the parameter plane

in Figure 4(a).

It will be assumed for δ a fixed value δ∗ > 1, as in [37], and we will study275

the possible existence of a Hopf bifurcation at infinity that could explain the

presence of big stable oscillations for certain parameter values. To this end,

we will apply Corollary 6.

We start by seeing that ε = (α − δ∗)(1 − αδ∗), and recalling that the

bifurcation appears when such a parameter vanishes. However, as dE =

α− δ∗ 6= 0 is a nondegeneracy condition for the bifurcation, we will assume

that only the second factor can vanish; that is, our parameters are in a

neighborhood of a critical value (m∗
E , t

∗
E, d

∗
E) with α∗ = 1/δ∗ < 1, so that

t∗E = d∗E < 0, since δ∗ > 1. Note that m∗
E = 1 and so all the initial hypotheses

in Corollary 6 are fulfilled. For the criticality coefficient ρ, we have from (22)

that

ρ = α∗ − δ∗ − [2− δ∗ (α∗ + β)] (α∗ − δ∗) =

(

1− 1

α∗2

)

β < 0.

As a direct consequence of Corollary 6 we get the following result.

Proposition 7. Consider system (23) with δ fixed to a certain value δ∗ > 1,280

and α > 0 in a sufficiently small neighborhood of α∗ = 1/δ∗ < 1. For α = α∗

the system undergoes a Hopf bifurcation from a periodic orbit at infinity, that

is, one symmetric and orbitally asymptotically stable limit cycle appears for

α∗ − α > 0 and sufficiently small.

It should be remarked that the bifurcation predicted by Proposition 7,285
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which could be difficult to be observed in practice, deserves to be understood

because it gives a proper explanation for certain ’big’ periodic orbits that

appear in these circuits, far enough from other possible attractors (see for

instance [19, 22]).

We show in Figure 4(a) a partial bifurcation set in the parameter plane290

(α,β) for fixed δ = 6/5, the same value that was considered in [37], but

drawing only the main bifurcation lines that can be analytically justified,

and omitting other secondary bifurcation curves that could be numerically

detected. We emphasize the vertical line α = 1/δ, denoted by H∞
PWL, where

the system undergoes a Hopf bifurcation at infinity, according to Proposition295

7, which was a missing bifurcation line in the bifurcation sets given in [37].

The vertical line α = δ, denoted by HZE
PWL, represents a Hopf-Zero singular-

ity for the external linearization matrices, leading in particular to a pitchfork

bifurcation at infinity for equilibria. There appear other two straight lines

of bifurcation points related to the linear part at the central zone, namely300

he focus-center-limit cycle bifurcation line α + β = 1/δ, denoted by HC
PWL

and analyzed in [26], and the Hopf-Zero bifurcation line α+β = δ studied in

[38], denoted by HZC
PWL. Following for β = 3/5 the path from α = 7/30 to

α = 6/5 we observe, in Figure 4(b) how the value of y0 evolves from α1 = 3/5

growing and growing, and tending to infinity near the curve α = 1/δ. By305

computing Poincaré map on the plane x = 1, fixing the parameters δ = 1.2,

β = 0.3 and taking α as the bifurcation parameter of system (23), we obtain

for the coordinate y0 the numerical bifurcation diagram given in 4(c), that

corresponds to the blue horizontal segment on two-parameter plane α × β

showed in Figure 4(a). The bifurcation diagram shows the presence of peri-310
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Figure 4: (a) Partial bifurcation set in the plane (α, β) for fixed δ = 1.2. At the vertical

line α = 1/δ, denoted by H∞

PWL
, a stable limit cycle comes from (or goes to) infinity.

The other vertical line α = δ, denoted by HZE

PWL
, represents a pitchfork bifurcation at

infinity of equilibria. In region I there is only one stable equilibrium at the origin, while

in region II there are three equilibria being stable the external ones. (b) Continuation

for β = 0.6 and α1 = 0.6 of the limit cycle generated in the BVP oscillator from the

focus-center-limit cycle bifurcation (HC

PWL
) to the Hopf bifurcation at Infinity (H∞

PWL
)

that occurs at α = 1/δ = 5/6, following the red horizontal segment on the panel (a). We

see how the value of y0 for the intersection point of the orbit with the plane x = 1 grows

with α and tends to infinity when α tends to 1/δ = 5/6. (c) Following the blue horizontal

segment on the panel (a), fixing β = 0.3 and taking the coordinate y0 at the Poincaré

section x = 1, we show a bifurcation diagram varying parameter α in the interval (α2, δ)

where α2 = 1.03.
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odic windows that alternate with strange attractors (quasiperiodicity) that

are apparently not chaotic, see Figure 5(b). We also remark that the partial

bifurcation set of Figure 4(a) is not complete; we can anticipate the existence

of some additional bifurcation curves emanating from the higher codimension

points (1/δ, (δ2 − 1)/δ), (1/δ, 0) and (δ, 0), see the red points in Figure 4(a).315

A further analysis will appear elsewhere.

Figure 5: (a) For the point A of Figure 4(a), with α = 1.2 and β = 0.6, we show three

stable limit cycles that coexist with two stable equilibria. The appearance of both the

new equilibria symmetric and the two bi-zonal limit cycles, along with other unstable limit

cycles not shown in the picture, can be explained via a Hopf-Zero bifurcation (HZC

PWL
).

If we increase the value of α until it approaches α = 1/δ = 5/6 then the stable limit

cycle grows to disappear in the Hopf bifurcation at infinity H∞

PWL
. (b) For the point

B of Figure 4(a), with α = 1.15 and β = 0.3, we show two stable symmetrical strange

attractors. (c) The Poincaré section at x = 1 for the upper stable symmetrical strange

attractor shown in panel (b).

Figure 5(a) shows that system (23) exhibits a dynamic behavior of mul-

tiple attractors for the parameters δ = 1.2, α = 1.2 and β = 0.6, that is, the

systems has three stable limit cycles that coexist with two stable equilibria.
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In Figure 4(b), we show for the parameters δ = 1.2, α = 1.15 and β = 0.3320

(the point B of Figure 4(a)) the phase portrait of the two strange symmetric

attractors that are apparently not chaotic (for more details see [39]). This

dynamical behavior coincides with the presence of quasiperiodicity that was

reported numerically in [37], where the nonlinearity g(v) of the extended

BVP oscillator was considerer as a smooth function.325

A final remark is in order. If under hypotheses of Proposition 7, condition

(26) holds for the critical values of parameters, then it should be remarked

that at α = 1/δ∗ the additional equilibria undergo the so called focus-center-

limit cycle bifurcation studied in [24], leading to a symmetric pair of non

symmetric limit cycles. Therefore, under hypotheses of Proposition 7, there330

could appear more than one limit cycle. This simultaneous bifurcation of

limit cycles, one of them coming from infinity will be studied elsewhere.

4. Comparison with a previous analysis

In [15], a Hopf bifurcation at infinity is analyzed for the class of control

systems with a bounded nonlinearity asymptotically homogeneous at infinity.335

While the required hypotheses for the nonlinearity in the results in [15] are

weaker than the ones in Theorem 5, some other related with the linear part

at infinity are more restrictive. They consider systems of the form

dz

dt
= A(µ)z+ γ(µ)f(x(t))), x(t) = c⊤z(t) (27)

where the scalar nonlinearity f and the matrix A(µ) satisfy the following

properties.340

(i) There exist finite limits f− = limx→−∞ f(x), f+ = limx→∞ f(x) and

f− 6= f+.
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(ii) The function f is globally Lipschitz continuous and moreover

|f(x1)− f(x2)| ≤ α(r)|x1 − x2|, |x1|, |x2| ≥ r, x1x2 > 0,

where α(r) = o(r−1), r → ∞.

(iii) The numbers σ(µ)±iω(µ) are simple eigenvalues ofA(µ), where σ(µ0) =345

0, ω(µ0) = 0 and every other eigenvalue has negative real part.

(iv) The inequality c⊤PEγ(µ0) 6= 0 holds, where PE is the projection matrix

onto the two dimensional invariant subspace E of the matrix A(µ0),

following the direction of its complementary invariant subspace E ′.

In [15] the following result was proven.350

Theorem 8. Under hypotheses (i)-(iv), after introducing the criticality co-

efficient

η = 2(f+ − f−)c
⊤PEγ(µ0) (28)

and the sets

M δ
+ = µ : σ(µ)η ≥ 0, |µ− µ0| < δ, (29)

M δ
− = µ : σ(µ)η < 0, |µ− µ0| < δ, (30)

the following statements hold.

There exist r0 > 0 and δ > 0 such that system (3) has no r0-large periodic355

cycles whenever µ ∈ M δ
+. System (3) has a unique r0-large periodic cycle

z∗(t, µ) for every µ ∈ M δ
−. The cycle z∗(t, µ) depends continuously on µ and

‖z∗(·, µ)‖ → ∞ as µ → µ0, µ ∈ M δ
−, being orbitally asymptotically stable if

η > 0 and orbitaly unstable if η < 0.
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Since system (3) is endowed with a bounded nonlinearity (the saturation360

function) that fulfills all the required hypotheses, it seems interesting to com-

pare our results with the predicted ones by Theorem 8. Clearly, for system

(3), as f(x) = sat(x), we have f− = −1, f+ = 1, and (i), (ii) are trivially

satisfied with α(r) ≡ 0. Hypothesis (iii) is included in the hypotheses of

Theorem 5 (but note we only require λ 6= 0 and not λ < 0). To compute365

the matrix PE , it suffices to take a left eigenvector of AE for σ = 0, namely

w⊤
0 = (λ2,−λ, 1) so that E = {(x, y, z) : λ2x − λy + z = 0}, and to derive

the corresponding projection matrix, following the direction of the comple-

mentary invariant subspace E ′ = {(x, y, z) : y = 0, z = ω2x}. Taking the

vector v⊤
0 = (1, 0, ω2)⊤ as generator of E ′, we have370

PE′ =
v0w

⊤
0

w⊤
0 v0

=
1

λ2 + ω2











λ2 −λ 1

0 0 0

λ2ω2 −λω2 ω2











,

so that

PE = I− v0w
⊤
0

w⊤
0 v0

=
1

λ2 + ω2











ω2 λ −1

0 1 0

−λ2ω2 λω2 λ2











.

Finally, noting that c⊤ = e⊤1 and that γ(µ0) is the vector in the non-

homogeneous part of (3) for tE = t∗E = λ, mE = m∗
E = ω2 and dE =

d∗E = λω2, that is γ(µ0) = (tC − λ,mC − ω2, dC − λω2)
⊤
, we obtain

η = 4e⊤1 PEb =
4

λ2 + ω2
[ω2(tC − λ) + λ(mC − ω2)− (dC − λω2)],

and after substituting the value (22) and simplifying, it results375

η = − 4ρ

λ2 + ω2
,
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equality that establishes the relationship between coefficients η and ρ. Thus,

we conclude that our results are in agreement with [15]. Note however, that

as we are working with a specific family of piecewise linear systems, we obtain

much more information that in the quoted study.

5. Proof of Theorem 5380

We proceed by studying the closing equations (16) looking for the solu-

tions, with small r0 that can bifurcate from the critical solution of Lemma 4.

Assuming λ and ω fixed for the configuration of eigenvalues (19), we have a

set of four equations in five variables, to be denoted by

F(z) = 0, (31)

where z = (r0, v0, τE , τC , σ), to be analyzed in a neighborhood of the critical385

point z̄ = (0, λ, π/ω, 0, 0), via a straightforward application of the Implicit

Function Theorem. We note that to evaluate the left hand side in (31)

or equivalently (16) we need to compute some matrix exponentials, namely

exp(ACτC) and exp(−AEτE). While from (19) we can explicitly compute

the last one, for the first one we resort to the expansion390

eACτC = I+ACτC +
A2

Cτ
2
C

2!
+ · · · .

Our first auxiliary result is the following.

Lemma 9. Under hypotheses (19) with λ 6= 0 and ω > 0, the point z̄ is a reg-

ular point of the modified closing equations (16). Consequently, in a neighbor-

hood of z̄, there exists only one branch of solutions (r0(σ), v0(σ), τE(σ), τC(σ), σ),

with the analytic expansions395
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r0 =
π
(

λ2 + ω2
)

2ωρ
σ +

π
[

A3(1 + κ) +B3π(1 + κ) + 2πκλ2ρω(λ2 + ω2)2
]

2λρ3ω5(1 + κ)
σ2 +O(σ3),

(32)

v0 =
π
[

λω2 − ρ− tC(λ
2 + ω2) + κ(ρ+ ω2(tC − λ) + (λ2(tC − 2λ))

]

(λ2 + ω2)

2λρω(1 + κ)
σ+

(33)

+
π
[

A4 +B4π + κ(A5 +B5π) + κ2(A6 +B6π)
]

2λ2ρ3ω4(1 + κ)2
σ2 +O(σ3), (34)

τE = −π
(

λρ+mC

(

λ2 + ω2
))

ω3ρ
σ +

π [A7(1 + κ) +B7π(1− κ)]

2λρ3ω5(1 + κ)
σ2 +O(σ3), (35)

τC =
π
(

λ2 + ω2
)

ωρ
σ +

π [A8(1 + κ)−B8π(1− κ)]

2λρ3ω5(1 + κ)
σ2 +O(σ3), (36)

where ρ = dC − λmC + ω2(λ− tC), κ = exp(πλ/ω) and the expressions Ai,

Bi with i, j = 3, . . . , 8 are shown in Table A.1 of Appendix A.

Proof. The set of equations (31) is defined by analytic functions near z̄. For

the Jacobian matrix, we have400

DzF(z)|z̄ =

















2 0 0 −1 0

2 +
dC(ω2φ−2)

λω2 + (λtC −mC)φ φ −1 −1 0

2tC − 2dC
ω2 0 −λ −λ π

ω

2mC +
dC(ω2φ−2)

λ
+ (λtC −mC)ω

2φ φ 0 0 πλ
ω

















where

φ =
1 + e−

πλ
ω

λ2 + ω2
=

κ+ 1

κ(λ2 + ω2)
6= 0.

We note that the determinant of the submatrix obtained by removing the

last column, which corresponds to σ, is equal to 2ρφ 6= 0, so that the rank of
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the Jacobian matrix is 4 and we can apply the Implicit Function Theorem for

analytic functions in (31), see [1]. Consequently, the given series expansions405

r0(σ), v0(σ), τE(σ) and τC(σ) have been obtained from the closing equations

(31) using symbolic computation with [40], and the Lemma follows.

Remark 10. From the branch of solutions obtained in Lemma 9, we must

only consider the part giving τC > 0, that is we need ρσ > 0; otherwise, the

solution cannot be identified with a periodic orbit of the original system (3).410

According to the above remark, and assuming ρσ > 0, we can study

the stability of the bifurcating periodic orbits by resorting to Corollary 2.

Instead of computing the eigenvalues of such product of matrix exponentials

(as done in [26]) we follow here the approach given in [28], which is based in

the following elementary results.415

Lemma 11. The two solutions of the equation x2 − px + q = 0, where p,

q ∈ R, are inside the unit circle of the complex plane if and only if |q| < 1

and |p| < 1 + q.

Using the above lemma, the following remark will be used to determine

the stability of period orbits.420

Remark 12. The matrix M in (11) has one eigenvalue equal to −1. We

will denote by λ1 and λ2 the other two eigenvalues. Therefore, if we take

p = λ1 + λ2 and q = λ1λ2, we have trace(M) = −1 + p and det(M) = −q,

and thus the characteristic equation of matrix M is (λ+1)(λ2−pλ+ q) = 0.

Then λ1 and λ2 are the eigenvalues of the derivative DpπEC, see Proposition425

1, and from Lemma 11 both eigenvalues λ1 and λ2 are inside the unit circle
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if and only if

| det(M)| < 1 and | trace(M) + 1| < 1− det(M). (37)

Finally, as the eigenvalues of the derivative of the complete Poincaré map

are λ2
1 and λ2

2, if the conditions (37) are fulfilled, then we can assure that the

corresponding periodic orbit is stable.430

Taking into account the expressions for τE and τC of Lemma 9, and

substituting in (11) we get

trace(M) = e
πλ
ω − 2−

π
[

−ρω2 + e
πλ
ω

(

ρ
(

ω2 − λ2
)

+
(

tCω
2 − λmC

) (

λ2 + ω2
))

]

ω3ρ
σ +O(σ2),

det(M) = e
πλ
ω − πe

πλ
ω

ω3ρ

[

ρ
(

λ2 − 2ω2
)

+
(

λmC − tCω
2
) (

λ2 + ω2
)]

σ +O(σ2).

The first condition of (37) is fulfilled for λ < 0 and σ sufficiently small.

Assuming λ < 0, we get the expression

| trace(M) + 1| − 1 + det(M) =
π

ω

(

1 + e
πλ
ω

)

σ +O(σ2),

so that the second condition of (37) leads to

π

ω

(

1 + e
πλ
ω

)

σ < 0.

Therefore, the bifurcating limit cycle is stable for λ < 0 and σ < 0. Using now

that the bifurcating limit cycle exists for σρ > 0, we obtain the equivalent

conditions ρ < 0 and λ < 0 for stability, as stated in Theorem 5.

The expansions of the period and the amplitude of the bifurcating limit

cycle are obtained straightforwardly using the series expansions of Lemma 9.435
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6. Concluding remarks

Bifurcations at infinity are not usually considered in the bifurcation anal-

ysis of nonlinear systems. However, in the framework of piecewise linear sys-

tems such bifurcations appear in a natural way defining parametric frontiers

for the existence of periodic orbits. Thus, our study fills a gap in the relevant440

case of three-dimensional symmetric continuous piecewise linear systems with

three zones, by studying their possible Hopf bifurcations at infinity.

After adapting the so-called closing equations method for making it able

to work with periodic orbits of great amplitude (periodic orbits near the

point at infinity), we provide a complete characterization of the stability,445

amplitude and period of the limit cycle that can bifurcate from the point at

infinity in the piecewise linear family of systems under study.

Our achievements are compared with previous known results on the Hopf

bifurcation at infinity, emphasizing the information gained with the followed

approach. The appearance or disappearance of a large amplitude limit cycle450

in a Bonhoeffer-Van der Pol oscillator, which had been missed in a previous

analysis, is reported here as an illustrative example of the usefulness of our

work.
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Appendix A. Proof of Proposition 1

Let be p0, p1, p2, p3 ∈ R
2 the reduced coordinates of intersection points

x0, x1, x2, x3, respectively for a given orbit near a symmetric periodic orbit

Γ. The points x1, x2 are on the Σ−1 while x0, x3 are on Σ1. The first equation465

of (12) can be written as

FC(τC , y1, z1, y0, z0) = eACτC





1

p0



−





−1

p1



 = 0, (A.1)

where p0 = (y0, z0)
⊤ and p1 = (y1, z1)

⊤. In what follows, we will denote the

Jacobian matrix of FC respect to (τC , y1, z1) as

B1 =
DFC(τC , y1, z1, y0, z0)

D(τC , y1, z1)

∣

∣

∣

∣

Γ

,

evaluated on the periodic orbit Γ. Recall that we denote with hats the coor-

dinates and flight times corresponding with the involved symmetric periodic

orbit. Using the closing equation (12), such matrix turns out to be

B1 =



ACe
AC τ̂C x̂0

∣

∣

∣

∣

∣

∣

0

−I2



 =



ACx̂1

∣

∣

∣

∣

∣

∣

0

−I2



 ,

where x̂0 = (1, p̂0)
⊤ and x̂1 = (−1, p̂1)

⊤ and its determinant is det (B1) =

−tC + ŷ1 6= 0, due to the transversality of the periodic orbit Γ. Here I2470

represents the identity matrix of order two.
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Analogously, in the external zone L we rewrite the second equation of

(12) as

FL(τE , y0, z0, y1, z1) = eAEτE









−1

p1



− xL



+





1

p0



 + xL = 0, (A.2)

so that on the periodic orbit Γ, we have eAE τ̂E (x̂1 − xL) + x̂0 + xL = 0, and

it is easy to show that

∂FL(τE , y0, z0, y1, z1)

∂τE

∣

∣

∣

∣

Γ

= AEe
AE τ̂E (x̂1 − xL) = AE (x̂2 − xL) = −AEx̂0 − b,

where the symmetry of the periodic orbit (x̂2 = −x̂0) has been used.

The Jacobian matrix of FL evaluated on the periodic orbit is computed

taking into account the continuity of the vector field, as follows.

B0 =
DFL(τE , y0, z0, y1, z1)

D(τE , y1, z1)

∣

∣

∣

∣

Γ

=



−AEx̂0 − b

∣

∣

∣

∣

∣

∣

0

−I2



 =



−ACx̂0

∣

∣

∣

∣

∣

∣

0

−I2



 ,

with determinant −tC + ŷ0 6= 0 due to the transversality hypothesis.475

Applying the Implicit Function Theorem to equation (A.1), we obtain the

existence of certain functions Ψ1(y0, z0), Ψ2(y0, z0) and Ψ3(y0, z0), such that,

in an open neighborhood of the point p̂0 = (ŷ0, ẑ0), we have

FC (Ψ1(y0, z0),Ψ2(y0, z0),Ψ3(y0, z0), y0, z0) = 0,

that is, τC = Ψ1(y0, z0), p1 = [Ψ2(y0, z0),Ψ3(y0, z0)]
⊤. Taking implicit deriva-

tives in equation (A.1) respect to variables y0, z0, we obtain the following

equations

∂FC(τC , y1, z1, y0, z0)

∂y0
+

DFC(τC , y1, z1, y0, z0)

D(τC ,p1)

(

∂Ψ1

∂y0
,

∂Ψ2

∂y0
,

∂Ψ3

∂y0

)⊤

= 0,

∂FC(τC , y1, z1, y0, z0)

∂z0
+

DFC(τC , y1, z1, y0, z0)

D(τC ,p1)

(

∂Ψ1

∂z0
,

∂Ψ2

∂z0
,

∂Ψ3

∂z0

)⊤

= 0,
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which after being evaluated on the periodic orbit Γ, they can be rewriten as

DFC(τC , y1, z1, y0, z0)

D(y0, z0)

∣

∣

∣

∣

Γ

+
DFC(τC , y1, z1, y0, z0)

D(τC , y1, z1)

∣

∣

∣

∣

Γ



























∂Ψ1

∂y0

∂Ψ1

∂z0

∂Ψ2

∂y0

∂Ψ2

∂z0

∂Ψ3

∂y0

∂Ψ3

∂z0



























Γ

= 0.

From (A.1) and taking into account that πC(p̂0) = p̂1 on the periodic480

orbit Γ, we obtain the equivalent equation

B1





DpτC(p̂0)

DpπC(p̂0)



 = eAC τ̂C











0

−1

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

0

0

−1











.

Since

B1











−1

0

0











= −ACe
AC τ̂C x̂0,

we finally obtain

B1QC = eAC τ̂CB0, (A.3)

where

QC =





−1 DpτC(p̂0)

0 DpπC(p̂0)



 .

In what follows, an analogous analysis for the equations of zone L is

done. Using again the transversality hypothesis we can apply the Implicit485

Function Theorem to equation (A.2) and obtain the existence of some func-

tions Φ1(y1, z1) and Φ2(y1, z1), such that, in an open neighborhood of the
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point p̂1 = (ŷ1, ẑ1), satisfy

FL (Φ1(y1, z1),Φ2(y1, z1),Φ3(y1, z1), y1, z1) = 0, (A.4)

with τL = Φ1(y1, z1), y0 = Φ2(y1, z1) and z0 = Φ3(y1, z1).

Taking implicit derivatives of equation (A.4) respect to variables y1 and

z1, we obtain the following equations

∂FL(τL, y0, z0, y1, z1)

∂y1
+

DFL(τL, y0, z0, y1, z1)

D(τL, y0, z0)

(

∂Φ1

∂y1
,

∂Φ2

∂y1
,

∂Φ3

∂y1

)⊤

= 0,

∂FL(τL, y0, z0, y1, z1)

∂z1
+

DFL(τL, y0, z0, y1, z1)

D(τL, y0, z0)

(

∂Φ1

∂z1
,

∂Φ2

∂z1
,

∂Φ3

∂z1

)⊤

= 0.

Evaluating these equations on the periodic orbit Γ we obtain490

DFL(τL, y0, z0, y1, z1)

D(y0, z0)

∣

∣

∣

∣

Γ

+
DFL(τL, y0, z0, y1, z1)

D(τL, y0, z0)

∣

∣

∣

∣

Γ



























∂Φ1

∂y1

∂Φ1

∂z1

∂Φ2

∂y1

∂Φ2

∂z1

∂Φ3

∂y1

∂Φ3

∂z1



























Γ

= 0.

Since πL(p̂1) = p̂2 = −p̂0 on the periodic orbit, we have

B0





DpτL(p̂1)

DpπL(p̂1)



 = eAE τ̂E











0

−1

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

0

0

−1











.

From equation (A.2) and using the continuity of the vector field, we see that

−ACx̂0 = −AEx̂0 − b = AE

[

x̂L + eAE τ̂E (x̂1 − xL)
]

− b =

= eAE τ̂EAE (x̂1 − xL) = eAE τ̂E (AEx̂1 − b) = eAE τ̂EACx̂1,
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Therefore, we conclude that

B0











1

0

0











= −AC x̂0 = eAE τ̂EACx̂1,

so that

B0QL = eAE τ̂EB1, (A.5)

where

QL =





1 DpτE(p1)

0 DpπE(p1)



 .

Multiplying (A.3) by eAE τ̂E and taking into account (A.5), we finally have

eAE τ̂EeAC τ̂CB0 = eAL τ̂LB1QC = B0QLQC ,

where B0 is non-singular. The proposition is shown.495
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A1 = 4λρ
[

λ2ρ2 + λ4m2

C
+ 2λ3mCρ + ω2

(

−2λ3ρ + 2λ2m2

C
− 2λ4mC + 3λmCρ + λ3mC tC + ρ2 + λ2ρtC

)]

+

+4λρ
[

ω4
(

λ4
− 3λρ + m2

C
− 3λ2mC + λmC tC − λ3tC + ρtC

)

+ ω6
(

λ2
− mC − λmC

)]

B1 = ω
(

λ2 + ω2
) [

λ2ω4
− 2λρω2 + m2

C

(

λ2 + ω2
)

− 2mC

(

λ2ω2
− λρ + ω4

)

+ ρ2 + ω6
] [

−λ3
− λω2 + ρ + tC

(

λ2 + ω2
)]

A2 = 4λρ

{

mC

(

λ2 + ω2
)

2

+ λ
[

−λ3ω2
− λω4 + 2ρω2 + λ2

(

ρ + tCω2
)

+ tCω4
]

}

B2 = ω
(

λ2 + ω2
){

−ρω4 + λ5ω2
− λ4ρ + 2λ3ω4

− 2λ2ρω2 + 2λρ2 + λω6 + mC

(

λ2 + ω2
) [

−λ3
− λω2 + ρ + tC

(

λ2 + ω2
)]

− tC

(

λ2 + ω2
) (

λ2ω2
− 2λρ + ω4

)}

A3 = −4λρ

{

mC

(

λ2 + ω2
)

2
+ λ

[

−λ3ω2
− λω4 + 2ρω2 + λ2

(

ρ + tCω2
)

+ tCω4
]

}

B3 = −ω
(

λ2 + ω2
){

ρω4 + λ5ω2
− λ4ρ + 2λ3ω4

− 2λ2ρω2 + 2λρ2 + λω6 + mC

(

λ2 + ω2
) [

−λ3
− λω2 + ρ + tC

(

λ2 + ω2
)]

− tC

(

λ2 + ω2
) (

λ2ω2
− 2λρ + ω4

)}

+

A4 = 4λρω
[

−λω2 + ρ + tC

(

λ2 + ω2
)]

{

mC

(

λ2 + ω2
)

2

+ λ
[

−λ3ω2
− λω4 + 2ρω2 + λ2

(

ρ + tCω2
)

+ tCω4
]

}

B4 = ω2
(

λ2 + ω2
) [

−λω2 + ρ + tC

(

λ2 + ω2
)]

{

(

λω2
− ρ

) (

λ2 + ω2
)

2

+ 2λρ2 − tC

(

λ2 + ω2
) (

λ2ω2
− 2λρ + ω4

)

+ mC

(

λ2 + ω2
) [

−λ3
− λω2 + ρ + tC

(

λ2 + ω2
)]

}

A5 = 8λ4ρω

{

mC

(

λ2 + ω2
)

2

+ λ
[

−λ3ω2
− λω4 + 2ρω2 + λ2

(

ρ + tCω2
)

+ tCω4
]

}

B5 = −2
(

λ2 + ω2
)

2
[

2λ5ρω2
− 2λ4ρ2 − 2λ4ω6 + 5λ3ρω4

− 5λ2ρ2ω2
− λ2ω8 + 2λρ3 + 2λρω6

− t2
C
ω2

(

λ2 + ω2
) (

λ2ω2
− 2λρ + ω4

)]

−

−2
(

λ2 + ω2
)

2
{

−ρ2ω4
− λ6ω4 + tC

[

2λ5ω4
− 5λ4ρω2 + 2λ3

(

ρ2 + 2ω6
)

− 7λ2ρω4 + 2λ
(

2ρ2ω2 + ω8
)

− 2ρω6
]}

−

−2
(

λ2 + ω2
)

2

mC

[

λ6ω2
− 2λ5ρ + 2λ4ω4

− 4λ3ρω2 + λ2
(

2ρ2 + ω6
)

− 2λρω4 + ρ2ω2 + tC

(

λ2 + ω2
) (

ω2 (tC − 2λ) + 2ρ
)]

A6 = −4λρω
[

−2λ3
− λω2 + ρ + tC

(

λ2 + ω2
)]

{

mC

(

λ2 + ω2
)

2

+ λ
[

−λ3ω2
− λω4 + 2ρω2 + λ2

(

ρ + tCω2
)

+ tCω4
]

}

B6 = ω2
(

λ2 + ω2
) (

−2λ8ω2 + 8λ7ρ − 5λ6ω4 + 16λ5ρω2
− 9λ4ρ2 − 4λ4ω6 + 10λ3ρω4

− 8λ2ρ2ω2
− λ2ω8 + 2λρ3 + 2λρω6

− ρ2ω4
)

+

+ω2
(

λ2 + ω2
)

2
[

2λ6mC + 3λ4mCω2
− 3λ3mCρ + λ2mCω4

− 2λmCρω2 + mCρ2 + tC

(

3λ5ω2
− 9λ4ρ + 5λ3ω4

− 9λ2ρω2 + 4λρ2 + 2λω6
− 2ρω4

)]

−

−ω2
(

λ2 + ω2
)

3
[

t2
C

(

λ2ω2
− 2λρ + ω4

)

+ mC tC

(

3λ3 + 2λω2
− 2ρ

)]

+ ω2
(

λ2 + ω2
)

4

mCt2
C

A7 = 4λρ

{

m2

C

(

λ2 + ω2
)

2

+ λmC

[

−λ3ω2
− λω4 + 3ρω2 + λ2

(

2ρ + tCω2
)

+ tCω4
]

+ ρ
(

λ2 + ω2
) [

ρ + ω2 (tC − λ)
]

}

B7 = ω
(

λ2 + ω2
) [

m2

C

(

λ2 + ω2
)

− mC

(

λ2ω2
− 2λρ + ω4

)

+ ρ2
] [

−λ3
− λω2 + ρ + tC

(

λ2 + ω2
)]

A8 = −4λρ

{

mC

(

λ2 + ω2
)

2

+ λ
[

−λ3ω2
− λω4 + 2ρω2 + λ2

(

ρ + tCω2
)

+ tCω4
]

}

B8 = −ω
(

λ2 + ω2
) [

−λ2ω2 + 2λρ + mC

(

λ2 + ω2
)

− ω4
] [

−λ3
− λω2 + ρ + tC

(

λ2 + ω2
)]

Table A.1: The coefficients Ai and Bi of Theorem 5 and Lemma 9.
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