Environmental and Experimental Botany

Understanding the impact of a complex environmental matrix associated with climate change on the European marshes engineer species Spartina maritima --Manuscript Draft--

Manuscript Number:	EEB-D-20-00810R2
Article Type:	Research Paper
Keywords:	CO2 enrichment; climate change; Chlorophyll Fluorescence; Gas exchange; halophyte; Temperature Stress
Corresponding Author:	Enrique Mateos-Naranjo
	Sevilla, Spain
First Author:	Enrique Mateos-Naranjo
Order of Authors:	Enrique Mateos-Naranjo
	Javier López-Jurado
	Jennifer Mesa-Marín
	Carlos Javier Luque
	Eloy Manuel Castellanos
	Jesús Alberto Pérez-Romero
	Susana Redondo-Gómez
Abstract:	A challenge exists in the need to understand plant responses in complex environmental matrixes, such as those predicted by climate change models, being this information essential for species that support important ecosystem functions. A factorial climatic chamber experiment was designed to evaluate the impact of atmospheric CO 2 concentration (400 ppm and 700 ppm CO 2) in combination with two maximum and minimum temperature ranges (28/13°C and 32/17°C) and salinity concentrations (0 and 171 mM NaCl) on the growth and photosynthetic responses of the ecosystem engineer species Spartina maritima . Plants grown at 32/17°C showed a reduction ~39% on relative growth rate (RGR) and this was more drastic (i.e. 64%) in those exposed to 700 ppm CO 2 , which also showed an increment in the percentage of dead tillers regardless of salinity. These reductions were explained by the negative impact on net photosynthetic rate (A N), which decreased with temperature increment, being this reduction more acute at 700 ppm CO 2 . This response was associated with an augmentation in CO 2 diffusion limitations, as indicated the lower stomatal conductance (g s), together with a down-regulation photochemical apparatus efficiency, as indicated the lower electron transport rate (ETR) and energy fluxes derived from Kautsky curves. In addition, the greatest g s drop at 700 ppm CO 2 , would limit plant ability to cope with temperature excess through evapotranspiration, a fact that could have boosted temperature-triggered damage and, consequently, leaf senescence. Therefore, we can conclude that temperature and atmospheric CO 2 increments would compromise the development of S. maritima and consequently the maintaining of its ecosystem functions.
Suggested Reviewers:	Bernardo Duarte, Dr Universidade de Lisboa Faculdade de Ciencias baduarte@fc.ul.pt
	CONICET CENPAT yaninai@gmail.com
	Anthony J Davy University of East Anglia School of Biological Sciences A.Davy@uea.ac.uk
Response to Reviewers:	

Highlights

•

- Impact of a complex environmental matrix on *S. maritima* performance was evaluated.
- Temperature and atmospheric CO₂ increments had synergic injury effects.
- These conditions drastically reduced plant growth and increased its senescence.
- Carbon assimilation, light-harvesting and photoprotective impacts were found.
- Atmospheric CO₂ enrichment would limit stomata ability to cope with heat excess.

1	1	Understanding the impact of a complex environmental matrix associated with
1 2 3	2	climate change on the European marshes engineer species Spartina maritima
4 5	3	
6 7 8	4	Enrique Mateos-Naranjo ^{a,*} , Javier López-Jurado ^a , Jennifer Mesa-Marín ^b , Carlos Javier
9 10	5	Luque ^c , Eloy Manuel Castellanos ^c , Jesús Alberto Pérez-Romero ^a , Susana Redondo-
11 12 13	6	Gómez ^a
14 15	7	
16 17 18	8	^a Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de
19 20	9	Sevilla, 1095, 41080, Sevilla, Spain
21 22	10	^b Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias,
23 24 25	11	Universidad de Málaga, Campus de Teatinos, 29010, Málaga, Spain
26 27	12	^c Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales,
28 29 30	13	Universidad de Huelva, 21071 Huelva, Spain
31 32	14	
33 34	15	
35 36 37 38	16	*Corresponding author:
39 40 41	17	Enrique Mateos-Naranjo
42 43 44	18	Dpto. Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Av
45 46	19	Reina Mercedes s/n, 41012 Sevilla, Spain.
47 48 49 50	20	E-mail: emana@us.es
51 52 53	21	Tel.: +34-95-4557495; fax: +34-95-4615780
54 55 56 57 58 59 60 61 62 63	22	

ABSTRACT

A challenge exists in the need to understand plant responses in complex environmental matrixes, such as those predicted by climate change models, being this information essential for species that support important ecosystem functions. A factorial climatic chamber experiment was designed to evaluate the impact of atmospheric CO₂ concentration (400 ppm and 700 ppm CO₂) in combination with two maximum and minimum temperature ranges (28/13 °C and 32/17 °C) and salinity concentrations (0 and 171 mM NaCl) on the growth and photosynthetic responses of the ecosystem engineer species Spartina maritima. Plants grown at 32/17 °C showed a reduction ~39% on relative growth rate (RGR) and this was more drastic (i.e. 64%) in those exposed to 700 ppm CO₂, which also showed an increment in the percentage of dead tillers regardless of salinity. These reductions were explained by the negative impact on net photosynthetic rate (A_N), which decreased with temperature increment, being this reduction more acute at 700 ppm CO₂. This response was associated with an augmentation in CO₂ diffusion limitations, as indicated the lower stomatal conductance (g_s), together with a down-regulation photochemical apparatus efficiency, as indicated the lower electron transport rate (ETR) and energy fluxes derived from Kautsky curves. In addition, the greatest g_s drop at 700 ppm CO₂, would limit plant ability to cope with temperature excess through evapotranspiration, a fact that could have boosted temperature-triggered damage and, consequently, leaf senescence. Therefore, we can conclude that temperature and atmospheric CO₂ increments would compromise the development of S. maritima and consequently the maintaining of its ecosystem functions.

Keywords: CO₂ enrichment; Climate change; Chlorophyll fluorescence; Gas exchange; Halophyte; Temperature stress.

1. Introduction

Climate change arises as one of the greatest challenges for worldwide ecosystems conservation. Thus, along with recognized atmospheric CO_2 enrichment to values ~700 ppm by the end of the century (IPCC, 2014), climate models predict a parallel increase in daily temperature range (between 1.8 - 6.0 °C, depending on the region) and rainfalls pattern alteration which would lead to a decrease in water availability and soil salinization (IPCC, 2014). An important part of the effect of climate change on ecosystems will be related to those variations triggered by environmental conditions in the structure and composition of plant species (Allen and Ort, 2001; Hooper et al., 2005; Short et al., 2016; Zhao et al., 2018), being this impact greater in those ecosystems dominated by few species, which also sustain key functions (such as the control of the fluxes of energy and matter) and contribute to functional diversity and species assemblages (Hooper et al., 2005).

The genus *Spartina* is integrated by grass species widely distributed on every continent except for Antarctica, being many of them frequently found in coastal salt marshes (Bortolus et al., 2019). It has been highlighted the importance of these species in salt marshes ecosystem functions, with a relevant role on coastal accretion and marsh creation, as well as the maintenance of ecosystem primary and secondary production (Bortolus et al., 2019). Among Spartina genus species, the European Spartina maritima (Curtis) Fernald is an important pioneer and ecosystem engineer in European salt marshes (Castellanos et al., 1994), playing also an important role for the maintenance and conservation of marsh ecosystem biodiversity (Curado et al., 2018). This species develops its populations mainly in the lowest parts of the marshes, acting as a primary colonist contributing to facilitate succession in marsh ecosystems (Castellano et al.,

73	1994, 1998; Castillo et al., 2008) and playing a key role in shoreline stabilization
74	(Duarte et al. 2014). In addition, this species has demonstrated a high biotechnological
75	potential as a tool for monitoring and phytoremediating metal polluted areas (Padinha et
76	al., 2000; Mesa et al., 2015). Furthermore, many studies have been developed to
77	understand the impact of environmental factors associated with future global change
78	scenarios on the development of this important salt marsh species (Mateos-Naranjo et
79	al., 2010a; Couto et al., 2014; Duarte et al., 2014). Thus, a certain effort has been made
80	to assess the effect of atmospheric CO ₂ enrichment on S. maritima development, having
81	observed an improvement on plant growth and physiological performance under
82	optimal and suboptimal salinity conditions, despite being a C4 species (Mateos-Naranjo
83	et al., 2010a). Besides, S. maritima has demonstrated the ability to maintain its
84	photosynthetic activity even during prolonged submersion periods associated with the
85	sea level rise due to global warming (Duarte et al., 2014). In addition, a rising
86	temperature model has demonstrated an enhancement in this salt marsh species
87	aboveground biomass (Couto et al., 2014), but it has been identified that an increase in
88	the frequency and duration of high temperature events will lead to a decrease of its
89	photo-biological fitness (Duarte et al., 2016). Despite these efforts, there is great
90	uncertainty about the real effects of climate change on the conservation of this species,
91	since most of those studies only have evaluated plant responses to one or two
92	environmental stressors in combination. Therefore, a challenge exists in determining
93	plant responses in a complex environmental matrix, such as the one predicted by
94	climate models. Consequently, this study was designed and carried out to understand
95	the influence of a complex environmental matrix, characterized by atmospheric CO ₂
96	concentration, air temperature and medium saline concentration variations on S.
97	maritima growth and development as well as key photosynthetic parameters. We

hypothesized that, although a direct positive physiological impact of increased atmospheric CO₂ concentration on S. maritima has been previously identified (Mateos-Naranjo et al., 2010a), the co-occurrence of other stress factors such as temperature pattern variation and medium salinization could trigger metabolic responses that could jeopardize the development of this important salt marsh species and, consequently, the maintenance of the ecosystem functions in which this plant is involved. 2. Material and Methods 2.1. Plant material Clumps of S. maritima of 20 cm diameter with between 25-30 mature tillers were collected in June of 2019 from a well-established population in a low-marsh site located in the Odiel salt marshes (37°15'N, 6°58'O; SW Spain). Clumps were planted in individual plastic pots (15 cm high \times 18 cm diameter) using its own soil as a potting substrate, and placed in a greenhouse under the follow controlled conditions: maximum

temperature between 21/25 °C, minimum temperature between 13/11 °C, 40-60%

relative humidity and natural daylight of 200 µmol m⁻² s⁻¹ as minimum and 1000 µmol m^{-2} s⁻¹ as maximum light flux). Pots were irrigated with tap water, and plants were kept for a stabilization period of 7 days under the previously described conditions before the experiment's onset.

2.2. Experimental design

At the beginning of the experiment, the number of tillers in each pot was homogenized to 20 tillers completely developed and healthy in order to standardize our

122	samples before the experiment onset and to avoid any effect of tiller health and age in
123	our results. Then, pots were randomly assigned to eight different experimental blocks
124	with ten plants in each one, as follows: two concentrations of atmospheric CO_2 (400
125	ppm and 700 ppm CO ₂) in combination with two ranges of ambient maximum and
126	minimum temperature (28/13 °C and 32/17 °C) and irrigation with two salinity
127	concentrations (0 and 171 mM NaCl) for 40 days. For the atmospheric CO ₂
128	concentration and temperature range treatments, pots were placed in controlled-
129	environment chambers (Aralab/Fitoclima 18.000EH, Lisbon, Portugal), which were
130	programmed with alternating diurnal regime of 14 h of light and 10 h of darkness with
131	the specific maximum and minimum temperature range, light intensity of 300 $\mu mol \; m^{-2}$
132	s^{-1} , 40–60% relative humidity and the specific atmospheric CO ₂ concentration.
133	Atmospheric CO ₂ concentrations in chambers were continuously monitored by CO ₂
134	sensors and maintained by supplying pure CO ₂ from a compressed gas cylinder (Air
135	liquide, B50 35K). Finally, NaCl concentrations were established by combining tap
136	water with appropriate amounts of NaCl. At the beginning of the experiment, the pots
137	were placed in plastic trays containing the appropriate NaCl solutions for each specific
138	salinity concentration treatment to a depth of 1 cm. In order to avoid changes of the
139	NaCl concentration caused by water evaporation, levels in the trays were monitored
140	continuously throughout the experimental period.

142 2.3. Plant growth analysis

At the beginning and at the end of the experiment, three and seven plants from each specific treatment were harvested and divided into roots and tillers. Then, these biomass fractions were oven dried at 60 °C for 48 h and weighed to obtain both initial and final

dry biomass estimates. In addition, the number of dead tillers was recorded at the end of the experiment.

The relative growth rate (RGR) of whole plants was calculated using the formula:

 $RGR = (ln B_f - ln B_i) \cdot D^{-1} (g g^{-1} day^{-1})$

where B_f = final dry mass (the mean of the seven plants from each treatment at the end of the experiment), B_i = initial dry mass (the mean of the three plants from each treatment at the beginning of the experiment) and D = duration of experiment (days).

2.4. Leaf gas exchange analysis

At the end of the experiment, instantaneous leaf gas exchange measurements were taken on fully developed expanded leaves (n = 10) using an infrared gas analyzer in an open system (LI-6400-XT, Li-COR Inc., NE., USA) equipped with a light leaf chamber (Li-6400-02B, Li-Cor Inc.). Net photosynthesis rate (A_N), stomatal conductance (g_s) and intercellular CO₂ concentration (C_i) were recorded under the following leaf chamber settings: a photosynthetic photon flux density (PPFD) of 1000 µmol photons m⁻² s⁻¹ (with 15% blue light to maximize stomatal aperture), vapour pressure deficit of 2.0–3.0 kPa, $50 \pm 5\%$ relative humidity, CO₂ concentration surrounding the leaf (C_a) of 400 or μ mol CO₂ mol⁻¹ air depending on the atmospheric CO₂ concentration treatment and air temperature of 28 °C or 32 °C for plants grown at low and high temperature range treatments, respectively. All measurements were made between 10:00 and 13:00 h inserting the order between the different treatments to standardize samples, and before to record each measurement, gas exchange was allowed to equilibrate for 120 s. Finally,

intrinsic water use efficiency ($_iWUE$) was calculated as the ratio between A_N and g_s [mmol (CO₂ assimilated) mol⁻¹ (H₂O transpired)].

171 2.5. Chlorophyll fluorescence analysis

Two different fluorescence protocols were developed at the end of the experiment in the same leaves of gas exchange analysis in order to test how the different combinations of atmospheric CO₂ concentration, air temperature and medium salinity concentration used in this study affect photosystem II (PSII) energy use efficiency. Thus, the saturation pulse method was used to determine the maximum quantum efficiency of PSII photochemistry (F_v/F_m) and quantum efficiency of PSII (Φ_{PSII} ; Genty et al., 1989). As described by Schreiber et al. (1986), a 0.8 s saturating actinic light pulse of 10000 μ mol m⁻² s⁻¹ was applied at midday (1400 μ mol photons m⁻² s⁻¹) in previously dark- and light-adapted leaves (n = 10) for 30 min using a modulated fluorimeter (FMS-2; Hansatech Instruments Ltd., UK). Using this information, the electron transport rate (ETR) was calculated according to Krall and Edwards (1992). On the other hand, the chlorophyll *a* fast kinetics, by the OJIP-test (or Kautsky curves), which depicts the rate of reduction kinetics of various components of PSII, was also measured in 30 min dark-adapted leaves (n = 7), using the pre-programmed OJIP protocols of the FluorPen FP100 (Photo System Instruments, Czech Republic). Moreover, absorbed (ABS/RC), trapped (TR/RC), electron transport (ET/RC) and dissipated (DI/RC) energy fluxes per reaction center derived from OJIP were calculated according to Strasser et al. (2004).

2.6. Statistical analysis

192	R software ver. 4.0.0 (R Core Team, 2020) was used to perform the statistical
193	analyses. Firstly, a multivariate statistical approach using a principal component
194	analysis (PCA) was performed to get an overview of the plant growth and physiological
195	performance in response to the different experimental treatments. Missing values in the
196	PCA dataset appeared as a result of the different number of measurements in each
197	variable. They were handled using the expectation-maximization (EM) algorithm in the
198	'missMDA' R package (Josse and Husson, 2016). Secondly, a downscaling assessment
199	was carried out through generalized linear models (GLMs) to analyze the main and/or
200	interaction effects of atmospheric CO2 concentration, maximum and minimum
201	temperature range and low and high NaCl concentration (as categorical factors) on the
202	growth and physiological parameters (as dependent variables) of S. maritima plants. In
203	case of significant results, multiple comparisons were analyzed by post hoc LSD test
204	(i.e. Fisher's Least Significant Difference). Before statistical analysis, Kolmogorov-
205	Smirnov and Levene tests were used to verify the assumptions of normality and
206	homogeneity of variances, respectively.
207	
208	3. Results
209	3.1. Multivariate approach: global overview of S. maritima growth and physiological
210	status
211	Growth and physiological performance variations of S. maritima during the
212	experimental setup were mainly represented in the first two PCA axes. They explained,
213	respectively, 36.0% and 18.4% of the total variation in the recorded data, being both
214	temperature range and atmospheric CO_2 enrichment the experimental factors which led
215	the main groupings (Fig. 1A, B; Table 1). Hence, the PC1 axis reflected a clear
216	divergence of plants grown at 32/17 °C of maximum and minimum temperature range,

which were located in the left part of the plot (especially those grown at 700 ppm CO₂). This separation was mainly explained by the lower RGR, A_N , F_v/F_m , Φ_{PSII} and ETR values, together with an increment in the percentage of dead tillers and DI/RC in those plants compared to the rest of the treatments (Fig. 1B; Table 1). In addition, the PCA revealed a certain divergence between both atmospheric CO₂ concentration treatments along the PC2 axis, with most of non-CO₂ enriched plants located in the upper part, being this response pattern mainly linked with higher g_s and lower C_i values of plants grown at 400 ppm CO₂ (Fig. 1B; Table 1).

3.2. Effects of atmospheric CO₂ enrichment, temperature augmentation and NaCl concentration on S. maritima growth

A summary of generalized linear model (GLM) results is made available as supplementary material, including fitting tests and confidence intervals (Table A.1). There was a significant effect of temperature range treatment on the RGR of S. *maritima* after 40 days of treatment (GLM: Temp., p < 0.01; Table A.1). Additionally, this effect was, to some extent, modulated by atmospheric CO_2 concentration treatment (GLM: $[CO_2]$ x Temp., p < 0.05; Table A.1). Thus, RGR decreased considerably in plants grown under the highest maximum and minimum temperature range treatment (i.e. 32/17 °C), and this effect was more acute in those exposed to 700 ppm CO₂ regardless of saline irrigation treatment (Fig. 2A). Similarly, the percentage of dead tillers augmented with temperature and atmospheric CO₂ enrichment regardless of saline irrigation treatment (GLM: Temp., p < p

0.01; $[CO_2]$, p < 0.05; Table A.1), being this increase more pronounced in plants grown

at 700 ppm CO₂ and 32/17 °C compared to the rest of treatments, although no significant differences were found (Fig. 2B).

3.3. Effects of atmospheric CO₂ enrichment, temperature augmentation and NaCl concentration on photosynthetic apparatus performance

There was a significant effect of the environmental factors tested on leaf gas exchange characteristics and PSII photochemical effiency of S. maritima after 40 days of exposure (GLM, p < 0.05). Thus, A_N values decreased in plants grown at 32/17 °C (GLM: Temp., p < 0.01; Fig. 3A; Table A.1), and these values were overall lower at 700 ppm CO₂ although without significant differences. A very similar trend was recorded for g_s in relation to temperature increment (GLM: Temp., p < 0.01) but, in addition, g_s values were significantly lower in plants grown at 700 ppm CO₂ (GLM: $[CO_2]$, p < 0.01; Fig. 3B; Table A.1). Contrarily, C_i and _iWUE values were significantly higher in plants grown at 700 ppm CO₂ compared to their non-CO₂ enriched counterparts, regardless of temperature and saline irrigation treatments (GLM: [CO₂], p < 0.01; Fig. 3C, D; Table A.1).

Regarding photochemical parameters, F_v/F_m values were lower in plants subjected to the highest minimum and maximum temperature range treatment at both salinity irrigation conditions (GLM: Temp., p < 0.01), being this reduction also more pronounced in plants grown at 700 ppm CO₂ (GLM: $[CO_2]$ x Temp., p < 0.05; Table A.1), and especially in those plants irrigated with 171 mM NaCl (Fig. 4A). Likewise, minimum and maximum temperature augmentation led to a marked reduction in S. *maritima* Φ_{PSII} values, although this overall effect was much more marked in those plants exposed to high atmospheric CO₂ concentration and saline irrigation (GLM: $[CO_2]$ x Temp., p < 0.05; Fig. 4B; Table A.1). A very similar response was detected for

ETR, with the lowest values recorded in plants subjected to 700 ppm CO₂, 32/17 °C and irrigation with 171 mM NaCl (Fig. 4C).

Focusing on the chlorophyll *a* fast kinetics results, there were remarkable differences in the shape of Kautsky curves between plants grown under the different environmental factors after 40 days of treatments. Thus, overall fluorescence kinetics values were lower in plants subjected to 700 ppm CO₂ and 32/17 °C, being this trend also more pronounced in plants irrigated with 171 mM NaCl (Fig. 5). These Kautsky curve shape divergence was also accompanied by marked differences in energy fluxes through photosystems. Thus, ABS/RC was lower in plants grown at 700 ppm CO₂ and 28/13 °C, compared to those exposed to 400 ppm CO₂ (GLM: $[CO_2]$ x Temp., p < 0.01; Table A.1). Moreover, ABS/RC showed an increase in plants subjected to 700 ppm, 32/17 °C and irrigation with 171 mM NaCl compared to the rest of treatments (GLM: [CO₂] x Temp. x [NaCl], p < 0.05; Fig. 6A; Table A.1). A very similar trend was recorded for DI/RC (Fig. 6D). Oppositely, both ET/CS and TR/CS tended to decrease in plants exposed to 700 ppm CO₂ compared with their non-CO₂ enriched counterparts (GLM: $[CO_2]$, p < 0.05; Fig. 6B, C; Table A.1). However, this effect was more pronounced for TR/CS in plants grown at 28/13 °C compared to those grown in a higher temperature range (GLM: $[CO_2]$ x Temp., p < 0.01; Fig. 6C; Table A.1).

4. Discussion

Gaining a mechanistic understanding of the effect of the main coexisting factors linked with climate change, such as atmospheric CO₂ enrichment, temperature pattern variations and medium salinization, on the growth and physiological performance of key plant species in ecosystem functionality is crucial to obtain a more realistic view on how this global phenomenon influences ecosystems conservation and the developmentof these plant communities (Bernacchi et al., 2013).

Our results demonstrated that atmospheric CO₂ enrichment, as a consequence of climatic change, would not cause a substantial improvement on growth and development of the important pioneer and salt marsh ecosystem engineer species S. maritima. However, an increase up to 4 °C in the maximum and minimum daily temperature range, as expected by the end of the century (IPCC, 2007), would entail a negative effect on the development of this species, being this impact even more acute in a CO₂ enriched atmosphere. Thus, our results revealed that S. maritima plants grown at 400 ppm atmospheric CO₂ concentration and 32/17 °C of maximum and minimum daily temperature range showed a drastic growth reduction, measured as RGR, of ~39% compared to their counterparts exposed to the colder temperature range. This reduction was up to 64% in those plants also exposed to 700 ppm CO₂, regardless of the saline irrigation treatment. The lack of salinity effects on plant growth, as well as for most of the studied parameters, was somewhat expected since S. maritima is a halophyte species that has demonstrated a high tolerance to a wide range of salinities (Adams and Bate, 1995; Castillo et al., 2008; Mateos-Naranjo et al., 2010a). However, it should be highlighted that the absence of beneficial effects of atmospheric CO₂ enrichment on plant development contrasts with the previous results obtained by Mateos-Naranjo et al. (2010a) for this plant species, who observed that an increment of atmospheric CO₂ concentration to 700 ppm stimulated plant RGR ~40% through a salinity range between 0 and 510 mM NaCl. Similarly, our results also varied with respect to those shown by other Spartina species, such as S. densiflora, which experienced an increase in biomass production of 35% and 20%, respectively at 0 and 171 mM NaCl, compared to plants grown at 400 ppm CO₂ (Mateos-Naranjo et al., 2010b). These differences could be

related to the variation in the experimental conditions of each specific study. In this study, plants were subjected to different environmental synergies growing in natural soil whilst, in the aforementioned experiments, plants were grown in pearlite. The use of б this substrate would allow the previous studies to assess the direct effect of atmospheric CO₂ enrichment on plant performance avoiding the influence of other factors associated to soil physicochemical properties, which could alter plant direct responses to atmospheric CO₂ enrichment. However, we believe that the use of a natural soil-plant complex, as we have done in this study, would allow a more realistic view of the real impact of climate change factors on plant development. In fact, according to our results, Curtis et al. (1989), in an experiment developed under field conditions using OTC chambers, were unable to detect a response to atmospheric CO₂ enrichment in Spartina patens. Furthermore, Rozema et al. (1991) obtained different results regarding the effect of atmospheric CO₂ enrichment on S. patens performance, depending on growth medium aeration level in plants grown in hydroponic conditions. To some degree, this lack of response to atmospheric CO₂ enrichment is consistent with multitude of CO₂ enrichment experiments, which indicated that plants with C₄ photosynthetic metabolism, as S. maritima, would not be as benefited by the air CO₂ fertilization effect (Ghannoum et al., 2000). However, this overall response could be modified by interactions with other co-occurring stress factors related to climate change, such as temperature pattern variation or medium salinization (IPPC, 2014). Therefore, it has been described that the effect of atmospheric CO₂ enrichment on plant development could be neutral, positive through the improvement of plant tolerance against environmental stress or negative by enhancing environmental stress deleterious effects, being also these responses species-specific (Balfagón et al., 2019). In this respect, as we previously indicated, the increment in temperature together with an atmospheric CO₂

concentration enrichment would substantially reduce S. maritima growth. Besides, it is important to emphasize that this lower plant development was accompanied by an increase in senescence level, as reflected by the higher percentage of dead stems at the end of the experiment.

The deleterious effect of increased temperatures and, to a greater extent, CO₂-enriched atmosphere conditions on S. maritima development was partly explained by the negative impact of these factors on some essential steps of plant photosynthetic apparatus performance. Thus, our results showed a substantial reduction in plant carbon fixation capacity, measured as A_N, at elevated temperature range treatment being this reduction in certain degree more pronounced at elevated atmospheric CO₂ concentration. This effect was associated with an augmentation in CO₂ diffusion limitations through stoma in plants grown at 32/17 °C, as indicated their lower g_s values. Temperature is one of the most variable environmental factors and it can affect many plant physiological processes, including plant gas exchange characteristics, but little is known about its effect on g_s, especially at high temperatures (Teskey et al., 2015). In fact, several studies have recorded a wide range of plant responses to temperature increment, including stomal opening (Lu et al., 2000; Mott and Peak, 2010) and closure (Weston and Bauerle, 2007; Lahr et al., 2015) but also non-significant responses (Cerasoli et al., 2014; von Caemmerer and Evans, 2015). Moreover, stomatal behaviour to temperature could be modified by interactions with other environmental factors (Flexas et al., 2012). In this sense, there is a need to highlight that g_s reduction with temperature increment was even more acute in those plants exposed to 700 ppm CO₂. In addition, this reduction was greater than the one reported in A_N, contributing to overall higher iWUE values under rising atmospheric CO₂ conditions. Thus, this decoupling between g_s and A_N in plants grown at 700 ppm CO₂ and 32/17 °C would reflect the

higher stomatal sensitivity to CO₂ variations. In fact, different studies have shown that one of the most consistent responses of C_4 plant species to atmospheric CO_2 concentration enrichment is a decrease in g_s (Ainsworth and Rogers, 2007). Robredo et al. (2007) explained that C_i increase caused by the high CO₂ concentration could promote partial closure of the stoma, as it was recorded in this study. However, the higher stomatal sensitivity to elevated CO₂ regardless of temperature, could have had also important consequences for plant tolerance to heat stress. Thus, although stomatal behaviour is a key factor to preserve the trade-off between CO₂ acquisition for photosynthetic processes and water losses, it is necessary to emphasize its role for plant adaptation to thermal stress through the regulation of heat excess by increasing leaf evapotranspiration (Feller, 2006). Therefore, the importance of stoma in leaf cooling has been identified, and while the stomata remains open, the evaporative cooling can mitigate the negative effect of temperature excess, positively affecting plant photosynthesis, yield and survival (Lu et al., 1994; Ameye et al., 2012). Therefore, the higher g_s drop in S. maritima plants under elevated atmospheric CO₂ concentration could have been limiting their ability to modulate leaf temperature compared to plants grown at 400 ppm, which could also contribute to explain the greater injury effect of temperature increment at these experimental conditions.

On the other hand, the impact of temperature increase, alone or in combination with
atmospheric CO₂ enrichment, had a great impact on *S. maritima* photochemical
apparatus functionality. According to our results, one of the best recognized effects of
high temperature on plant photosynthetic apparatus is the destruction of PSII
components (Flexas et al., 2012; Pérez-Romero et al., 2019a; López-Jurado et al.,
2020). Likewise, in concordance with this study, Mateos-Naranjo et al. (2010b) and
Duarte et al. (2014) also found that CO₂ enrichment affected PSII photochemistry in the

1	389	halophytes S. densiflora and S. maritima, respectively. However, this is the first study
1 2 3	390	that corroborates that this effect would be exacerbated with an increase up to 4 °C in the
4 5	391	maximum and minimum daily temperature range and, to some extent, with the
6 7 8	392	augmentation in medium salinity concentration. Thus, our results showed that F_v/F_m and
9 10	393	Φ_{PSII} values were affected by the elevated temperature range and this effect was more
12 13	394	acute in plants grown at 700 ppm CO ₂ and irrigated with 171 mM NaCl, suggesting that
14 15 16	395	the combination of these environmental conditions would increase photoinhibition
17 18	396	(Werner et al., 2002). Likewise, we attributed the negative impact of these
19 20 21	397	environmental factors on S. maritima photochemical apparatus to the down-regulation
21 22 23	398	of its electron transport chain functionality, as indicated by the lower ETR values
24 25	399	recorded in plants grown at 700 ppm CO ₂ , 32/17 °C and irrigated with 171 mM NaCl.
26 27 28	400	This fact indicated that these plants would have had more difficulties to transform the
29 30	401	captured energy in their photosystems, suggesting the synergistic impact of elevated
31 32 22	402	temperature and atmospheric CO ₂ enrichment on the functionality of reaction centers.
34 35	403	Thus, this idea was also supported by the assessment of energy fluxes per reaction
36 37	404	center derived from Kautsky curves, which showed that, although plants were exposed
38 39 40	405	to elevated atmospheric CO ₂ and air temperature range, they increased their ABS/RC
41 42	406	values compared to the rest of treatments. This would mean a greater number of active
43 44 45	407	reaction centers functioning as a heat radiator, hence protecting plant photosystems
46 47	408	against high temperature and light intensities (Strasser et al., 2004; Pérez-Romero et al.,
48 49 50	409	2018, 2019a,b). This elevated absorption rate would excess the capacity of
50 51 52	410	photosystems to metabolize energy, as was corroborated by the decoupling with TR/RC
53 54	411	and ET/RC values. Moreover, the high ABS/RC would unbalance the trade-off between
55 56 57	412	the energy absorbed and metabolized, being necessary the activation of some defense
58 59	413	mechanisms to dissipate the energy excess as heat, as indicated also higher DI/RC
60 61		
62		

values recorded. As a consequence, much of the absorbed energy would not take the photochemical pathway (Flexas et al., 2012), a circumstance that would affect photosynthetic productivity and, consequently, plant growth, a fact which would contribute to explain the observed growth pattern in response to tested environmental factors. Therefore, our results would suggest that temperature and atmospheric CO₂ increments related to climate change would jeopardize the development and maintenance of natural populations of S. maritima. This circumstance would cause significant structural and functional changes in the drainage system of the marshes systems dominated by this grass species, due to its importance in shoreline stabilization and salt marsh accretion during the first phases of ecological succession, with the consequent alteration of sediment, mineral elements and nutrient cycles, as well as the fluxes of energy necessary for other levels of the trophic chain in the ecosystem. 5. Conclusion

This study reveals the high vulnerability of the salt marsh key species *S. maritima* to increases up to 4 °C in the maximum and minimum daily temperature, as predicted for future scenarios by global change models, being this susceptibility even higher under CO_2 enriched atmosphere conditions. This idea would be motivated by drastic plant growth decrease and leaf senescence increment recorded at 700 ppm CO_2 and 32/17 °C of maximum and minimum daily temperature range. This response was associated with the negative effect of temperature and atmospheric CO_2 concentration on plant carbon fixation machinery through increased stomatal limitations to CO_2

diffusion and the unbalance between the energy absorbed and metabolized in S. maritima photosystems, linked with a down-regulation of the electron transport chain functionality. The higher g_s drop at 700 ppm CO₂ would also limit plant ability to regulate heat excess through leaf evapotranspiration, a fact that could have boosted temperature-triggered damage and, consequently, leaf senescence compared to plants grown at 400 ppm. Finally, from a conservational perspective, these results suggest that temperature increment and atmospheric CO₂ enrichment associated with future climate change scenarios would jeopardize the development of S. maritima populations and, consequently, the maintenance of ecosystem functions derived from the presence of this important pioneer and ecosystem engineer salt marshes plant species.

449 Funding

 This study has been supported by Ministerio de Economía y Competitividad (MINECO
Project CGL2016-75550-R cofunded by FEDER). J. López-Jurado thanks the Fifth
Research Plan from the University of Seville for its personal predoctoral grant (VPPIUS). J. Mesa-Marín is grateful for personal funding to Ministerio de Ciencia,
Innovación y Universidades, Spain, (Juan de la Cierva – Formación Ref FJC2018-

454 Innovación y Universidades, Spain, (Juan de la Cierva – Formación Ref FJC2018455 036625-I).

CRediT authorship contribution statement

Enrique Mateos-Naranjo: Conceptualization, Methodology, Formal analysis, Funding acquisition, Writing - original draft, Writing - review & editing. Javier López Jurado: Methodology, Formal analysis, Writing - review & editing. Jennifer Mesa Marín: Methodology, Writing - review & editing. Carlos Javier Luque: Conceptualization, Methodology, Writing - review & editing. Eloy Manuel **Castellanos:** Conceptualization, Methodology, Writing - review & editing. Jesús Alberto Pérez-Romero: Methodology. Susana Redondo-Gómez: Conceptualization, Methodology, Funding acquisition, Writing - review & editing.

468 Declaration of Competing Interest

469 The authors declare that they have no known competing financial interests or personal

470 relationships that could have appeared to influence the work reported in this paper.

1	472	
2		
3 4 5	473	Acknowledgements
6 7	474	
8 9 10	475	We are grateful to University of Seville Greenhouse General Services (CITIUS)
11 12 12	476	for their collaboration and providing the facilities. Thanks to the anonymous referees for
13 14 15	477	their constructive comments on a previous version of the manuscript. We also thank
16 17	478	Carmen Alcántara for their collaboration and technical assistance.
18 19 20	479	
21 22	480	
23 24 25	481	
25 26 27		
28 29		
30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47		
48 49		
50		
51 52		
53		
54		
55 56		
57		
58 59		
60		
61 62		
63		
64		
65		

Fig. 1. Representation of the principal component analysis (PCA) biplot obtained for the growth and physiological data of *Spartina maritima* plants in the experimental setup. Panel A represents the distribution of the selected variables loading on these axes and the percentage of explained variance for these axes (see Table 1 for a description of these variables and their contribution to the two main axes of PCA). Panel B shows the ellipses (95% confidence level) which encompass occurrence points in the two main axes for the environmental factors tested.

Fig. 2. Relative growth rate, RGR (A) and percentage of dead tillers (B) in *Spartina maritima* plants in response to treatment with two atmospheric CO₂ concentrations (400 ppm and 700 ppm) in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 7. [CO₂], Temp., NaCl or their interactions in the corner of the panels indicate main or interaction significant effects (GLM test, *P < 0.05, **P < 0.01).

Fig. 3. Net photosynthetic rate, $A_N(A)$, stomatal conductance, $g_s(B)$, intercellular CO₂ concentration, C_i (C) and intrinsic water use efficiency (iWUE) in randomly selected fully developed expanded leaves of *Spartina maritima* in response to treatment with two atmospheric CO₂ concentrations (400 ppm and 700 ppm) in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 10. [CO₂], Temp., NaCl or their interactions in the corner of the panels indicate main or interaction significant effects (GLM test, ${}^{*}P < 0.05$, ${}^{**}P < 0.01$).

Fig. 4. Maximum quantum efficiency of PSII photochemistry, F_v/F_m (A), quantum efficiency of PSII, Φ_{PSII} (B) and electron transport rate, ETR (C), at midday in randomly selected fully developed expanded leaves of *Spartina maritima* in response to treatment
with two atmospheric CO₂ concentrations (400 ppm and 700 ppm) in combination with
two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or

509 171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 10. [CO₂], Temp.,

510 NaCl or their interactions in the corner of the panels indicate main or interaction

significant effects (GLM test, $^{*}P < 0.05$, $^{**}P < 0.01$).

Fig. 5. Transient fluorescence (Kautsky curves) of dark-adapted leaves of *Spartina maritima* plants grown at 400 ppm (A) and 700 ppm (B) atmospheric CO₂ in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean of seven measurements per treatment combination.

Fig. 6. Absorbed energy flux, ABS/RC (A), electron transport energy flux, ET/RC (B), trapped energy flux, TR/RC (C) and dissipated energy flux, DI/RC (D), per reaction centre in randomly selected fully developed expanded dark-adapted leaves of Spartina *maritima* in response to treatment with two atmospheric CO_2 concentrations (400 ppm) and 700 ppm) in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 7. [CO₂], Temp., NaCl or their interactions in the corner of the panels indicate main or interaction significant effects (GLM test, ${}^{*}P < 0.05$, ${}^{**}P < 0.01$).

528	Adams, J.B., Bate, G.C., 1995. Ecological implications of tolerance of salinity and
529	inundation by Spartina maritima. Aquat. Bot. 52(3), 183-191.
530	Ainsworth, E.A., Rogers, A., 2007. The response of photosynthesis and stomatal
531	conductance to rising [CO ₂]: mechanisms and environmental interactions. Plant
532	cell Environ. 30(3), 258-270.
533	Allen, D.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis in
534	warm-climate plants. Trends Plant Sci. 6, 36–42.
535	Ameye, M., Wertin, T.M., Bauweraerts, I., McGuire, M.A., Teskey, R.O., Steppe, K.,
536	2012. The effect of induced heat waves on Pinus taeda and Quercus rubra
537	seedlings in ambient and elevated CO2 atmospheres. New Phyt. 196(2), 448-461.
538	Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F. B., Azad, R. K., Mittler,
539	R., Zandalinas, S. I., 2019. Jasmonic acid is required for plant acclimation to a
540	combination of high light and heat stress. Plant Physiol. 181(4), 1668-1682.
541	Bernacchi, C.J., Bagley, J.E., Serbin, S.P., Ruiz-Vera, U.M., Rosenthal, D.M.,
542	Vanloocke, A., 2013. Modelling C3 photosynthesis from the chloroplast to the
543	ecosystem. Plant Cell Environ. 36(9), 1641-1657.
544	Bortolus, A., Adam, P., Adams, J.B., Ainouche, M.L., Ayres, D., Bertness, M.D.,
545	Bouma, T. J., Bruno, J.F., Caçador, I., Carlton, J.T., Castillo, J.M., Costa, C.S.B.,
546	Davy, A.J., Deegan, L., Duarte, B., Figueroa, E., Gerwein, J., Gray, A.J.,
547	Grosholz, E.D., Hacker, S.D., Hughes, A.R., Mateos-Naranjo, E., Mendelssohn,
548	I.A., Morris, J.T., Munoz-Rodríguez, A.F., Nieva, F.J.J., Levin, L.A., Li, B., Liu,
549	W., Pennings, S.C., Pickart, A., Redondo-Gomez, S., Richardson, D.M., Salmon,
550	A., Schwindt, E., Silliman, B.R., Sotka, E.E., Stace, C., Sytsma, M., Temmerman,
551	S., Turner, R.E., Valiela, I., Weinstein, M.P., Weis, J.S., 2019. Supporting

Spartina: interdisciplinary perspective shows *Spartina* as a distinct solid genus. Ecology 100, e02863.

Castellanos, E.M., Figueroa, M.E., Davy, A.J., 1994. Nucleation and facilitation in saltmarsh succession: interactions between *Spartina maritima* and *Arthrocnemum perenne*. J. Ecol. 82, 239-248.

557 Castellanos, E.M., Heredia, C., Figueroa, M.E., Davy, A.J., 1998. Tiller dynamics
558 of *Spartina maritima* in successional and non-successional Mediterranean salt
559 marsh. Plan Ecol. 137, 213-225.

560 Castillo, J.M., Mateos-Naranjo, E., Nieva, F.J., Figueroa, M., 2008. Plant zonation at
561 salt marshes of the endangered cordgrass *Spartina maritima* invaded by *Spartina*562 *densiflora*. Hydrobiologia 614, 363-371.

Cerasoli, S., Wertin, T., McGuire, M.A., Rodrigues, A., Aubrey, D.P., Pereira, J.S.,
Teskey, R.O., 2014. Poplar saplings exposed to recurring temperature shifts of
different amplitude exhibit differences in leaf gas exchange and growth despite
equal mean temperature. AoB Plants 6, plu018.

567 Couto, T., Martins, I., Duarte, B., Caçador, I., Marques, J.C., 2014. Modelling the

effects of global temperature increase on the growth of salt marsh plants. Appli.
Ecol. Environ. Manag. 12, 753-764.

570 Curado, G., Gallego Tévar, B., Figueroa, M.E., Castillo, J.M., 2018. Effects of removal
571 of alien *Spartina densiflora* and restoration of native *S. maritima* on succession
572 and zonation in European salt marshes. Estuar. Coast. Shelf Sci. In Press. DOI:
573 10.1016/j.ecss.2018.04.011

574 Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J., Whigham, D. F., 1989. Growth
575 and senescence in plant communities exposed to elevated CO2 concentrations on
576 an estuarine marsh. Oecologia 78(1), 20-26.

577	Duarte, B., Santos, D., Marques, J. C., Caçador, I., 2014. Biophysical probing of
578	Spartina maritima photo-system II changes during prolonged tidal submersion
579	periods. Plant Physiol. Biochem. 77, 122-132.
580	Duarte, B., Santos, D., Marques, J. C., Caçador, I., 2016. Ecophysiology response of
581	native and invasive Spartina species to extreme temperature events in
582	Mediterranean marshes. Biol. Invasions 18, 2189-2205.
583	Feller, U., 2006. Stomatal opening at elevated temperature: an underestimated
584	regulatory mechanism. Gen. Appl. Plant Physiol. Special Issue: 19–31.
585	Flexas, J., Loreto, F., Medrano, H., 2012. Terrestrial Photosynthesis in a Changing
586	Environment. A Molecular, Physiological and Ecological Approach. Cambridge
587	University Press, Cambridge, pp. 723.
588	Ghannoum, O., Caemmerer, S. V., Ziska, L.H., Conroy, J.P., 2000. The growth
589	response of C4 plants to rising atmospheric CO ₂ partial pressure: a reassessment.
590	Plant Cell Environ. 23(9), 931-942.
591	Genty, B., Briantais, J.M., Baker, N.R., 1989. The relationship between the quantum
592	yield of photosynthetic electron transport and quenching of chlorophyll
593	fluorescence. Biochem. Biophys. Acta 990, 87–92.
594	Hooper, D.U., Chapin, F.S., Ewell, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton,
595	J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J.,
596	Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem
597	functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3-35.
598	
599	IPCC, 2007. Climate Change: Impacts, Adaptation and Vulnerability. Contribution of
600	Working Group II to the Fourth Assessment Report of the Intergovernmental
601	Panel on Climate Change. Cambridge University Press, Cambridge, UK.

-	602	IPCC, 2014. Climate Change: Managing the Risks of Extreme Events and Disasters to
1 2 3	603	Advance Climate Change Adaptation. A Special Report of Working Groups I and
4 5	604	II of the Intergovernmental Panel on Climate Change. (eds Field, C. B. et al.).
6 7 8	605	Cambridge University Press., Cambridge, UK.
9 10	606	Josse, J., Husson, F., 2016. MissMDA: A package for handling missing values in
11 12 13	607	multivariate data analysis. J. Stat. Softw. 70.
14 15	608	Krall, J.P., Edwards, G.E., 1992. Relationship between photosystem II activity and CO ₂
16 17 18	609	fixation in leaves. Physiol. Plant. 86, 180-187.
19 20	610	Lahr, E.C., Schade, G.W., Crossett, C.C., Watson, M.R., 2015. Photosynthesis and
21 22 22	611	isoprene emission from trees along an urban-rural gradient in Texas. Global
23 24 25	612	Change Biol. 21(11), 4221-4236.
26 27	613	López-Jurado, J., Balao, F., Mateos-Naranjo, E., 2020. Polyploidy-mediated divergent
28 29 30	614	light-harvesting and photoprotection strategies under temperature stress in a
31 32	615	Mediterranean carnation complex. Environ. Exp. Bot. 171, 103956.
33 34 35	616	Lu, Z., Zeiger, E., 1994. Selection for higher yields and heat resistance in pima cotton
36 37	617	has caused genetically determined changes in stomatal conductances. Physiol.
38 39 40	618	Plant. 92(2), 273- 278.
41 42	619	Lu, Z., Quiñones, M. A., Zeiger, E., 2000. Temperature dependence of guard cell
43 44 45	620	respiration and stomatal conductance co-segregate in an F2 population of Pima
46 47	621	cotton. Func. Plant Biol. 27(5), 457-462.
48 49	622	Mateos-Naranjo, E., Redondo-Gómez, S., Andrades-Moreno, L., Davy, A. J., 2010a.
50 51 52	623	Growth and photosynthetic responses of the cordgrass Spartina maritima to CO ₂
53 54	624	enrichment and salinity. Chemosphere 81(6), 725-731.
55 56 57	625	Mateos-Naranjo, E., Redondo-Gómez, S., Álvarez, R., Cambrollé, J., Gandullo, J.,
58 59	626	Figueroa, M. E., 2010b. Synergic effect of salinity and CO ₂ enrichment on growth
60 61 62		
63 64		
65		

1	627	and photosynthetic responses of the invasive cordgrass Spartina densiflora. J.
1 2 3	628	Exp. Bot. 61(6), 1643-1654.
4 5	629	Mesa, J., Mateos-Naranjo, E., Caviedes, M.A., Redondo-Gómez, S., Pajuelo, E.,
6 7 8	630	Rodríguez-Llorente, I.D., 2015. Scouting contaminated estuaries: Heavy metal
9 10	631	resistant and plant growth promoting rhizobacteria in the native metal
11 12 12	632	rhizoaccumulator Spartina maritima. Mar. Pollut. Bull. 90, 150–159.
14 15	633	Mott, K. A., Peak, D., 2010. Stomatal responses to humidity and temperature in
16 17	634	darkness. Plant Cell Environ. 33(7), 1084-1090.
18 19 20	635	Padinha, C., Santos, R., Brown, M. T., 2000. Evaluating environmental contamination
21 22	636	in Ria Formosa (Portugal) using stress indexes of Spartina maritima. Mar.
23 24 25	637	Environ. Res. 49(1), 67-78.
26 27	638	Pérez-Romero, J.A., Idaszkin, Y., Barcia-Piedras, J.M., Duarte, B., Redondo-Gomez,
28 29 20	639	S., Caçador, I., Mateos-Naranjo, E., 2018. Disentangling the effect of atmospheric
31 32	640	CO ₂ enrichment on the halophyte Salicornia ramosissima J. Woods physiological
33 34	641	performance under optimal and suboptimal saline conditions. Plant Physiol.
35 36 37	642	Biochem. 127, 617–629.
38 39	643	Pérez-Romero, J.A., Barcia-Piedras, J.A., Redondo-Gómez, S., Mateos-Naranjo, E.,
40 41 42	644	2019a. Impact of short-term extreme temperature events on physiological
43 44	645	performance of Salicornia ramosissima J. Woods under optimal and sub-optimal
45 46	646	saline conditions. Sci. Reports 9, 659.
48 49	647	Pérez-Romero, J.A., Duarte, B., Barcia-Piedras, J.M., Matos, A.R., Redondo-Gómez,
50 51	648	S., Caçador, I., Mateos-Naranjo, E., 2019b. Investigating the physiological
52 53 54	649	mechanisms underlying Salicornia ramosissima response to atmospheric CO2
55 56	650	enrichment under coexistence of prolonged soil flooding and saline excess. Plant
57 58 59	651	Physiol. Biochem. 135, 149-159.
60 61		
62 63		
64 65		

652	R Core Team, 2020. R: a language and environment for statistical computing. Version
653	4.0.0. R Foundation for Statistical Computing, Vienna, Austria.
654	Robredo, A., Pérez-López, U., de la Maza, H. S., González-Moro, B., Lacuesta, M.,
655	Mena-Petite, A., Munoz-Rueda, A., 2007. Elevated CO ₂ alleviates the impact of
656	drought on barley improving water status by lowering stomatal conductance and
657	delaying its effects on photosynthesis. Environ. Exp. Bot. 59(3), 252-263.
658	Rozema, J., Dorel, F., Janissen, R., Lenssen, G., Broekman, R., Arp, W., Drake, B. G.,
659	1991. Effect of elevated atmospheric CO ₂ on growth, photosynthesis and water
660	relations of salt marsh grass species. Aquat. Bot. 39(1-2), 45-55.
661	Short, F.T., Kosten, S., Morgan, P.A., Malone, S., Moore, G.E., 2016. Impacts of
662	climate change on submerged and emergent wetland plants. Aquat. Bot. 135, 3-
663	17.
664	Schreiber, U., Schliwa, U., Bilger, W., 1986. Continuous recording of photochemical
665	and nonphotochemical chlorophyll fluorescence quenching with a new type of
666	modulation fluorometer. Photosynth. Res.10(1-2), 51-62
667	Strasser R.J., Tsimilli-Michael M., Srivastava A., 2004. Analysis of the Chlorophyll a
668	Fluorescence Transient. In: Papageorgiou G.C., Govindjee (Ed.), Chlorophyll a
669	Fluorescence. Advances in Photosynthesis and Respiration. Vol. 19. Springer,
670	Dordrecht, pp. 321-362.
671	Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M.A., Steppe, K., 2015.
672	Responses of tree species to heat waves and extreme heat events. Plant Cell
673	Environ. 38(9), 1699-1712.
674	von Caemmerer, S., Evans, J. R., 2015. Temperature responses of mesophyll
675	conductance differ greatly between species. Plant Cell Environ. 38(4), 629-637.

1	676	Werner, C., Correia, O., Beyschlag, W., 2002. Characteristic patterns of chronic and
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	677	dynamic photoinhibition of different functional groups in a Mediterranean
	678	ecosystem. Func. Plant Biol. 29(8), 999-1011.
	679	Weston, D. J., Bauerle, W. L., 2007. Inhibition and acclimation of C3 photosynthesis to
	680	moderate heat: a perspective from thermally contrasting genotypes of Acer
	681	rubrum (red maple). Tree Physiol. 27(8), 1083-1092.
	682	Zhao, L., Dai, A., Dong, B., 2018. Changes in global vegetation activity and its driving
	683	factors during 1982–2013. Agric. Forest Met., 249,198-209.
20 21 22 23 24		
25 26 27		
28 29		
30 31		
32 33 24		
35 36		
37 38		
39 40		
4⊥ 42 43		
44 45		
46 47		
48 49 50		
51 52		
53 54		
55 56		
57 58 59		
60 61		
62 63		
64 65		

1	1	Understanding the impact of a complex environmental matrix associated with
⊥ 2 3	2	climate change on the European marshes engineer species Spartina maritima
4 5	3	
6 7 8	4	Enrique Mateos-Naranjo ^{a,*} , Javier López-Jurado ^a , Jennifer Mesa-Marín ^b , Carlos Javier
9 10	5	Luque ^c , Eloy Manuel Castellanos ^c , Jesús Alberto Pérez-Romero ^a , Susana Redondo-
11 12 13	6	Gómez ^a
14 15	7	
16 17 18	8	^a Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de
19 20	9	Sevilla, 1095, 41080, Sevilla, Spain
21 22	10	^b Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias,
23 24 25	11	Universidad de Málaga, Campus de Teatinos, 29010, Málaga, Spain
26 27	12	^c Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales,
28 29 30	13	Universidad de Huelva, 21071 Huelva, Spain
31 32	14	
33 34 35	15	
36 37 38	16	*Corresponding author:
39 40 41	17	Enrique Mateos-Naranjo
42 43 44	18	Dpto. Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Av
45 46 47	19	Reina Mercedes s/n, 41012 Sevilla, Spain.
48 49 50	20	E-mail: emana@us.es
51 52 53 54	21	Tel.: +34-95-4557495; fax: +34-95-4615780
55 56 57 58 59 60 61 62 63	22	

ABSTRACT

A challenge exists in the need to understand plant responses in complex environmental matrixes, such as those predicted by climate change models, being this information essential for species that support important ecosystem functions. A factorial climatic chamber experiment was designed to evaluate the impact of atmospheric CO₂ concentration (400 ppm and 700 ppm CO₂) in combination with two maximum and minimum temperature ranges (28/13 °C and 32/17 °C) and salinity concentrations (0 and 171 mM NaCl) on the growth and photosynthetic responses of the ecosystem engineer species Spartina maritima. Plants grown at 32/17 °C showed a reduction ~39% on relative growth rate (RGR) and this was more drastic (i.e. 64%) in those exposed to 700 ppm CO₂, which also showed an increment in the percentage of dead tillers regardless of salinity. These reductions were explained by the negative impact on net photosynthetic rate (A_N), which decreased with temperature increment, being this reduction more acute at 700 ppm CO₂. This response was associated with an augmentation in CO₂ diffusion limitations, as indicated the lower stomatal conductance (g_s), together with a down-regulation photochemical apparatus efficiency, as indicated the lower electron transport rate (ETR) and energy fluxes derived from Kautsky curves. In addition, the greatest g_s drop at 700 ppm CO₂, would limit plant ability to cope with temperature excess through evapotranspiration, a fact that could have boosted temperature-triggered damage and, consequently, leaf senescence. Therefore, we can conclude that temperature and atmospheric CO₂ increments would compromise the development of S. maritima and consequently the maintaining of its ecosystem functions.

Keywords: CO₂ enrichment; Climate change; Chlorophyll fluorescence; Gas exchange; Halophyte; Temperature stress.
1. Introduction

Climate change arises as one of the greatest challenges for worldwide ecosystems conservation. Thus, along with recognized atmospheric CO_2 enrichment to values ~700 ppm by the end of the century (IPCC, 2014), climate models predict a parallel increase in daily temperature range (between 1.8 - 6.0 °C, depending on the region) and rainfalls pattern alteration which would lead to a decrease in water availability and soil salinization (IPCC, 2014). An important part of the effect of climate change on ecosystems will be related to those variations triggered by environmental conditions in the structure and composition of plant species (Allen and Ort, 2001; Hooper et al., 2005; Short et al., 2016; Zhao et al., 2018), being this impact greater in those ecosystems dominated by few species, which also sustain key functions (such as the control of the fluxes of energy and matter) and contribute to functional diversity and species assemblages (Hooper et al., 2005).

The genus *Spartina* is integrated by grass species widely distributed on every continent except for Antarctica, being many of them frequently found in coastal salt marshes (Bortolus et al., 2019). It has been highlighted the importance of these species in salt marshes ecosystem functions, with a relevant role on coastal accretion and marsh creation, as well as the maintenance of ecosystem primary and secondary production (Bortolus et al., 2019). Among Spartina genus species, the European Spartina maritima (Curtis) Fernald is an important pioneer and ecosystem engineer in European salt marshes (Castellanos et al., 1994), playing also an important role for the maintenance and conservation of marsh ecosystem biodiversity (Curado et al., 2018). This species develops its populations mainly in the lowest parts of the marshes, acting as a primary colonist contributing to facilitate succession in marsh ecosystems (Castellano et al.,

73	1994, 1998; Castillo et al., 2008) and playing a key role in shoreline stabilization
74	(Duarte et al. 2014). In addition, this species has demonstrated a high biotechnological
75	potential as <u>a</u> tool for monitoring and phytoremediating metal polluted areas (Padinha et
76	al., 2000; Mesa et al., 2015). Furthermore, many studies have been developed to
77	understand the impact of environmental factors associated with future global change
78	scenarios on the development of this important salt marsh species (Mateos-Naranjo et
79	al., 2010a; Couto et al., 2014; Duarte et al., 2014). Thus, a certain effort has been made
80	to assess the effect of atmospheric CO ₂ enrichment on S. maritima development, having
81	observed an improvement on plant growth and physiological performance under
82	optimal and suboptimal salinity conditions, despite being a C4 species (Mateos-Naranjo
83	et al., 2010a). Besides, S. maritima has demonstrated the ability to maintain its
84	photosynthetic activity even during prolonged submersion periods associated with the
85	sea level rise due to global warming (Duarte et al., 2014). In addition, a rising
86	temperature model has demonstrated an enhancement in this salt marsh species
87	aboveground biomass (Couto et al., 2014), but it has been identified that an increase in
88	the frequency and duration of high temperature events will lead to a decrease of its
89	photo-biological fitness (Duarte et al., 2016). Despite these efforts, there is great
90	uncertainty about the real effects of climate change on the conservation of this species,
91	since most of those studies only have evaluated plant responses to one or two
92	environmental stressors in combination. Therefore, a challenge exists in determining
93	plant responses in a complex environmental matrix, such as the one predicted by
94	climate models. Consequently, this study was designed and carried out to understand
95	the influence of a complex environmental matrix, characterized by atmospheric CO ₂
96	concentration, air temperature and medium saline concentration variations on S.
97	maritima growth and development as well as key photosynthetic parameters. We

hypothesized that, although a direct positive physiological impact of increased atmospheric CO₂ concentration on S. maritima has been previously identified (Mateos-Naranjo et al., 2010a), the co-occurrence of other stress factors such as temperature pattern variation and medium salinization could trigger metabolic responses that could jeopardize the development of this important salt marsh species and, consequently, the maintenance of the ecosystem functions in which this plant is involved. 2. Material and Methods 2.1. Plant material Clumps of S. maritima of 20 cm diameter with between 25-30 mature tillers were collected in June of 2019 from a well-established population in a low-marsh site located in the Odiel salt marshes (37°15'N, 6°58'O; SW Spain). Clumps were planted in individual plastic pots (15 cm high \times 18 cm diameter) using its own soil as a potting substrate, and placed in a greenhouse under the follow controlled conditions: maximum

temperature between 21/25 °C, minimum temperature between 13/11 °C, 40-60%

relative humidity and natural daylight of 200 µmol m⁻² s⁻¹ as minimum and 1000 µmol m^{-2} s⁻¹ as maximum light flux). Pots were irrigated with tap water, and plants were kept for a stabilization period of 7 days under the previously described conditions before the experiment's onset.

2.2. Experimental design

At the beginning of the experiment, the number of tillers in each pot was homogenized to 20 tillers completely developed and healthy in order to standardize our

122	samples before the experiment onset and to avoid any effect of tiller health and age in
123	our results. Then, pots were randomly assigned to eight different experimental blocks
124	with ten plants in each one, as follows: two concentrations of atmospheric CO_2 (400
125	ppm and 700 ppm CO ₂) in combination with two ranges of ambient maximum and
126	minimum temperature (28/13 °C and 32/17 °C) and irrigation with two salinity
127	concentrations (0 and 171 mM NaCl) for 40 days. For the atmospheric CO ₂
128	concentration and temperature range treatments, pots were placed in controlled-
129	environment chambers (Aralab/Fitoclima 18.000EH, Lisbon, Portugal), which were
130	programmed with alternating diurnal regime of 14 h of light and 10 h of darkness with
131	the specific maximum and minimum temperature range, light intensity of 300 $\mu mol \; m^{-2}$
132	s^{-1} , 40–60% relative humidity and the specific atmospheric CO ₂ concentration.
133	Atmospheric CO ₂ concentrations in chambers were continuously monitored by CO ₂
134	sensors and maintained by supplying pure CO ₂ from a compressed gas cylinder (Air
135	liquide, B50 35K). Finally, NaCl concentrations were established by combining tap
136	water with appropriate amounts of NaCl. At the beginning of the experiment, the pots
137	were placed in plastic trays containing the appropriate NaCl solutions for each specific
138	salinity concentration treatment to a depth of 1 cm. In order to avoid changes of the
139	NaCl concentration caused by water evaporation, levels in the trays were monitored
140	continuously throughout the experimental period.

142 2.3. Plant growth analysis

At the beginning and at the end of the experiment, three and seven plants from each specific treatment were harvested and divided into roots and tillers. Then, these biomass fractions were oven dried at 60 °C for 48 h and weighed to obtain both initial and final

dry biomass estimates. In addition, the number of dead tillers was recorded at the end of the experiment.

The relative growth rate (RGR) of whole plants was calculated using the formula:

 $RGR = (ln B_f - ln B_i) \cdot D^{-1} (g g^{-1} day^{-1})$

where B_f = final dry mass (the mean of the seven plants from each treatment at the end of the experiment), B_i = initial dry mass (the mean of the three plants from each treatment at the beginning of the experiment) and D = duration of experiment (days).

2.4. Leaf gas exchange analysis

At the end of the experiment, instantaneous leaf gas exchange measurements were taken on fully developed expanded leaves (n = 10, one in each plant per treatment and three extra randomly selected for each treatment) using an infrared gas analyzer in an open system (LI-6400-XT, Li-COR Inc., NE., USA) equipped with a light leaf chamber (Li-6400-02B, Li-Cor Inc.). Net photosynthesis rate (A_N), stomatal conductance (g_s) and intercellular CO₂ concentration (C_i) were recorded under the following leaf chamber settings: a photosynthetic photon flux density (PPFD) of 1000 µmol photons m⁻² s⁻¹ (with 15% blue light to maximize stomatal aperture), vapour pressure deficit of 2.0-3.0 kPa, $50 \pm 5\%$ relative humidity, CO₂ concentration surrounding the leaf (C_a) of 400 or μ mol CO₂ mol⁻¹ air depending on the atmospheric CO₂ concentration treatment and air temperature of 28 °C or 32 °C for plants grown at low and high temperature range treatments, respectively. All measurements were made between 10:00 and 13:00 h inserting the order between the different treatments to standardize samples, and before to record each measurement, gas exchange was allowed to equilibrate for 120 s. Finally,

intrinsic water use efficiency (iWUE) was calculated as the ratio between A_N and g_s [mmol (CO₂ assimilated) mol⁻¹ (H₂O transpired)].

2.5. Chlorophyll fluorescence analysis

Two different fluorescence protocols were developed at the end of the experiment in the same leaves of gas exchange analysis in order to test how the different combinations of atmospheric CO₂ concentration, air temperature and medium salinity concentration used in this study affect photosystem II (PSII) energy use efficiency. Thus, the saturation pulse method was used to determine the maximum quantum efficiency of PSII photochemistry (F_v/F_m) and quantum efficiency of PSII (Φ_{PSII} ; Genty et al., 1989). As described by Schreiber et al. (1986), a 0.8 s saturating actinic light pulse of 10000 μ mol m⁻² s⁻¹ was applied at midday (1400 μ mol photons m⁻² s⁻¹) in previously dark- and light-adapted leaves (n = 10, one in each plant per treatment and three extra randomly selected for each treatment) for 30 min using a modulated fluorimeter (FMS-2; Hansatech Instruments Ltd., UK). Using this information, the electron transport rate (ETR) was calculated according to Krall and Edwards (1992). On the other hand, the chlorophyll *a* fast kinetics, by the OJIP-test (or Kautsky curves), which depicts the rate of reduction kinetics of various components of PSII, was also measured in 30 min dark-adapted leaves (n = 7, one in each plant per treatment), using the pre-programmed OJIP protocols of the FluorPen FP100 (Photo System Instruments, Czech Republic). Moreover, absorbed (ABS/RC), trapped (TR/RC), electron transport (ET/RC) and dissipated (DI/RC) energy fluxes per reaction center derived from OJIP were calculated according to Strasser et al. (2004).

2.6. Statistical analysis

R software ver. 4.0.0 (R Core Team, 2020) was used to perform the statistical analyses. Firstly, a multivariate statistical approach using a principal component analysis (PCA) was performed to get an overview of the plant growth and physiological performance in response to the different experimental treatments. Missing values in the PCA dataset appeared as a result of the different number of measurements in each variable. They were handled using the expectation-maximization (EM) algorithm in the 'missMDA' R package (Josse and Husson, 2016). Secondly, a downscaling assessment was carried out through generalized linear models (GLMs) to analyze the main and/or interactive interaction effects of atmospheric CO₂ concentration, maximum and minimum temperature range and low and high NaCl concentration (as categorical factors) on the growth and physiological parameters (as dependent variables) of S. *maritima* plants. In case of significant results, multiple comparisons were analyzed by post hoc LSD test (i.e. Fisher's Least Significant Difference). Before statistical analysis, Kolmogorov-Smirnov and Levene tests were used to verify the assumptions of normality and homogeneity of variances, respectively. A summary of generalized linear model (GLM) results is made available as supplementary material, including fitting tests and confidence intervals (Table A.1). 3. Results 3.1. Multivariate approach: global overview of S. maritima growth and physiological status Growth and physiological performance variations of S. maritima during the experimental setup were mainly represented in the first two PCA axes. They explained, respectively, 36.0% and 18.4% of the total variation in the recorded data, being both temperature range and atmospheric CO₂ enrichment the experimental factors which led

219	the main groupings (Fig. 1A, B; Table 1). Hence, the PC1 axis reflected a clear
220	divergence of plants grown at 32/17 °C of maximum and minimum temperature range,
221	which were located in the left part of the plot (especially those grown at 700 ppm CO_2).
222	This separation was mainly explained by the lower RGR, A_N , F_v/F_m , Φ_{PSII} and ETR
223	values, together with an increment in the percentage of dead tillers and DI/RC in those
224	plants compared to the rest of the treatments (Fig. 1B; Table 1). In addition, the PCA
225	revealed a certain divergence between both atmospheric CO ₂ concentration treatments
226	along the PC2 axis, with most of non-CO2 enriched plants located in the upper part,
227	being this response pattern mainly linked with higher g_s and lower C_i values of plants
228	grown at 400 ppm CO ₂ (Fig. 1B; Table 1).
229	
230	3.2. Effects of atmospheric CO_2 enrichment, temperature augmentation and NaCl
231	concentration on S. maritima growth
232	A summary of generalized linear model (GLM) results is made available as
233	supplementary material, including fitting tests and confidence intervals (Table A.1).
234	There was a significant effect of temperature range treatment on the RGR of S.
235	maritima after 40 days of treatment (GLM: Temp., p < 0.01; Table A.1). Additionally,
236	this effect was, to some extent, modulated by atmospheric CO ₂ concentration treatment
237	(GLM: $[CO_2]$ x Temp., p < 0.05; Table A.1). Thus, RGR decreased considerably in
238	plants grown under the highest maximum and minimum temperature range treatment
239	(i.e. 32/17 °C), and this effect was more acute in those exposed to 700 ppm $\rm CO_2$
240	regardless of saline irrigation treatment (Fig. 2A).
241	Similarly, the percentage of dead tillers augmented with temperature and
242	atmospheric CO ₂ enrichment regardless of saline irrigation treatment (GLM: Temp., p <

0.01; [CO₂], p < 0.05; Table A.1), being this increase more pronounced in plants grown
at 700 ppm CO₂ and 32/17 °C compared to the rest of treatments, although no
significant differences were found (Fig. 2B).

247 3.3. Effects of atmospheric CO₂ enrichment, temperature augmentation and NaCl
248 concentration on photosynthetic apparatus performance

There was a significant effect of the environmental factors tested on leaf gas exchange characteristics and PSII photochemical effiency of S. maritima after 40 days of exposure (GLM, p < 0.05). Thus, A_N values decreased in plants grown at 32/17 °C (GLM: Temp., p < 0.01; Fig. 3A; Table A.1), and these values were overall lower at 700 ppm CO₂ although without significant differences. A very similar trend was recorded for g_s in relation to temperature increment (GLM: Temp., p < 0.01) but, in addition, g_s values were significantly lower in plants grown at 700 ppm CO₂ (GLM: $[CO_2]$, p < 0.01; Fig. 3B; Table A.1). Contrarily, C_i and _iWUE values were significantly higher in plants grown at 700 ppm CO₂ compared to their non-CO₂ enriched counterparts, regardless of temperature and saline irrigation treatments (GLM: [CO₂], p < 0.01; Fig. 3C, D; Table A.1).

Regarding photochemical parameters, F_v/F_m values were lower in plants subjected to the highest minimum and maximum temperature range treatment at both salinity irrigation conditions (GLM: Temp., p < 0.01), being this reduction also more pronounced in plants grown at 700 ppm CO₂ (GLM: $[CO_2]$ x Temp., p < 0.05; Table A.1), and especially in those plants irrigated with 171 mM NaCl (Fig. 4A). Likewise, minimum and maximum temperature augmentation led to a marked reduction in S. maritima Φ_{PSII} values, although this overall effect was much more marked in those plants exposed to high atmospheric CO₂ concentration and saline irrigation (GLM:

[CO₂] x Temp., p < 0.05; Fig. 4B; Table A.1). A very similar response was detected for ETR, with the lowest values recorded in plants subjected to 700 ppm CO₂, 32/17 °C and irrigation with 171 mM NaCl (Fig. 4C).

Focusing on the chlorophyll *a* fast kinetics results, there were remarkable differences in the shape of Kautsky curves between plants grown under the different enviromental factors after 40 days of treatments. Thus, overall fluorescence kinetics values were lower in plants subjected to 700 ppm CO₂ and 32/17 °C, being this trend also more pronounced in plants irrigated with 171 mM NaCl (Fig. 5). These Kautsky curve shape divergence was also accompanied by marked differences in energy fluxes through photosystems. Thus, ABS/RC was lower in plants grown at 700 ppm CO₂ and 28/13 °C, compared to those exposed to 400 ppm CO₂ (GLM: $[CO_2]$ x Temp., p < 0.01; Table A.1). Moreover, ABS/RC showed an increase in plants subjected to 700 ppm, 32/17 °C and irrigation with 171 mM NaCl compared to the rest of treatments (GLM: [CO₂] x Temp. x [NaCl], p < 0.05; Fig. 6A; Table A.1). A very similar trend was recorded for DI/RC (Fig. 6D). Oppositely, both ET/CS and TR/CS tended to decrease in plants exposed to 700 ppm CO₂ compared with their non-CO₂ enriched counterparts (GLM: $[CO_2]$, p < 0.05; Fig. 6B, C; Table A.1). However, this effect was more pronounced for TR/CS in plants grown at 28/13 °C compared to those grown in a higher temperature range (GLM: $[CO_2]$ x Temp., p < 0.01; Fig. 6C; Table A.1).

4. Discussion

Gaining a mechanistic understanding of the effect of the main coexisting factors linked with climate change, such as atmospheric CO₂ enrichment, temperature pattern variations and medium salinization, on the growth and physiological performance of key plant species in ecosystem functionality is crucial to obtain a more realistic view on how this global phenomenon influences ecosystems conservation and the developmentof these plant communities (Bernacchi et al., 2013).

Our results demonstrated that atmospheric CO₂ enrichment, as a consequence of climatic change, would not cause a substantial improvement on growth and development of the important pioneer and salt marsh ecosystem engineer species S. maritima. However, an increase up to 4 °C in the maximum and minimum daily temperature range, as expected by the end of the century (IPCC, 2007), would entail a negative effect on the development of this species, being this impact even more acute in a CO₂ enriched atmosphere. Thus, our results revealed that S. maritima plants grown at 400 ppm atmospheric CO₂ concentration and 32/17 °C of maximum and minimum daily temperature range showed a drastic growth reduction, measured as RGR, of ~39% compared to their counterparts exposed to the colder temperature range. This reduction was up to 64% in those plants also exposed to 700 ppm CO₂, regardless of the saline irrigation treatment. The lack of salinity effects on plant growth, as well as for most of the studied parameters, was somewhat expected since S. maritima is a halophyte species that has demonstrated a high tolerance to a wide range of salinities (Adams and Bate, 1995; Castillo et al., 2008; Mateos-Naranjo et al., 2010a). However, it should be highlighted that the absence of beneficial effects of atmospheric CO₂ enrichment on plant development contrasts with the previous results obtained by Mateos-Naranjo et al. (2010a) for this plant species, who observed that an increment of atmospheric CO₂ concentration to 700 ppm stimulated plant RGR ~40% through a salinity range between 0 and 510 mM NaCl. Similarly, our results also varied with respect to those shown by other Spartina species, such as S. densiflora, which experienced an increase in biomass production of 35% and 20%, respectively at 0 and 171 mM NaCl, compared to plants grown at 400 ppm CO₂ (Mateos-Naranjo et al., 2010b). These differences could be

related to the variation in the experimental conditions of each specific study. In this study, plants were subjected to different environmental synergies growing in natural soil whilst, in the aforementioned experiments, plants were grown in pearlite. The use of б this substrate would allow the previous studies to assess the direct effect of atmospheric CO₂ enrichment on plant performance avoiding the influence of other factors associated to soil physicochemical properties, which could alter plant direct responses to atmospheric CO₂ enrichment. However, we believe that the use of a natural soil-plant complex, as we have done in this study, would allow a more realistic view of the real impact of climate change factors on plant development. In fact, according to our results, Curtis et al. (1989), in an experiment developed under field conditions using OTC chambers, were unable to detect a response to atmospheric CO₂ enrichment in Spartina patens. Furthermore, Rozema et al. (1991) obtained different results regarding the effect of atmospheric CO₂ enrichment on S. patens performance, depending on growth medium aeration level in plants grown in hydroponic conditions. To some degree, this lack of response to atmospheric CO₂ enrichment is consistent with multitude of CO₂ enrichment experiments, which indicated that plants with C₄ photosynthetic metabolism, as S. maritima, would not be as benefited by the air CO₂ fertilization effect (Ghannoum et al., 2000). However, this overall response could be modified by interactions with other co-occurring stress factors related to climate change, such as temperature pattern variation or medium salinization (IPPC, 2014). Therefore, it has been described that the effect of atmospheric CO₂ enrichment on plant development could be neutral, positive through the improvement of plant tolerance against environmental stress or negative by enhancing environmental stress deleterious effects, being also these responses species-specific (Balfagón et al., 2019). In this respect, as we previously indicated, the increment in temperature together with an atmospheric CO₂

concentration enrichment would substantially reduce *S. maritima* growth. Besides, it is
important to emphasize that this lower plant development was accompanied by an
increase in senescence level, as reflected by the higher percentage of dead stems at the
end of the experiment.

The deleterious effect of increased temperatures and, to a greater extent, CO₂-enriched atmosphere conditions on S. maritima development was partly explained by the negative impact of these factors on some essential steps of plant photosynthetic apparatus performance. Thus, our results showed a substantial reduction in plant carbon fixation capacity, measured as A_N, at elevated temperature range treatment being this reduction in certain degree more pronounced at elevated atmospheric CO₂ concentration. This effect was associated with an augmentation in CO₂ diffusion limitations through stoma in plants grown at 32/17 °C, as indicated their lower g_s values. Temperature is one of the most variable environmental factors and it can affect many plant physiological processes, including plant gas exchange characteristics, but little is known about its effect on g_s, especially at high temperatures (Teskey et al., 2015). In fact, several studies have recorded a wide range of plant responses to temperature increment, including stomal opening (Lu et al., 2000; Mott and Peak, 2010) and closure (Weston and Bauerle, 2007; Lahr et al., 2015) but also non-significant responses (Cerasoli et al., 2014; von Caemmerer and Evans, 2015). Moreover, stomatal behaviour to temperature could be modified by interactions with other environmental factors (Flexas et al., 2012). In this sense, there is a need to highlight that g_s reduction with temperature increment was even more acute in those plants exposed to 700 ppm CO₂. In addition, this reduction was greater than the one reported in A_N, contributing to overall higher iWUE values under rising atmospheric CO₂ conditions. Thus, this decoupling between gs and A_N in plants grown at 700 ppm CO₂ and 32/17 °C would reflect the

higher stomatal sensitivity to CO₂ variations. In fact, different studies have shown that one of the most consistent responses of C_4 plant species to atmospheric CO_2 concentration enrichment is a decrease in g_s (Ainsworth and Rogers, 2007). Robredo et al. (2007) explained that C_i increase caused by the high CO₂ concentration could promote partial closure of the stoma, as it was recorded in this study. However, the higher stomatal sensitivity to elevated CO₂ regardless of temperature, could have had also important consequences for plant tolerance to heat stress. Thus, although stomatal behaviour is a key factor to preserve the trade-off between CO₂ acquisition for photosynthetic processes and water losses, it is necessary to emphasize its role for plant adaptation to thermal stress through the regulation of heat excess by increasing leaf evapotranspiration (Feller, 2006). Therefore, the importance of stoma in leaf cooling has been identified, and while the stomata remains open, the evaporative cooling can mitigate the negative effect of temperature excess, positively affecting plant photosynthesis, yield and survival (Lu et al., 1994; Ameye et al., 2012). Therefore, the higher g_s drop in S. maritima plants under elevated atmospheric CO₂ concentration could have been limiting their ability to modulate leaf temperature compared to plants grown at 400 ppm, which could also contribute to explain the greater injury effect of temperature increment at these experimental conditions.

On the other hand, the impact of temperature increase, alone or in combination with
atmospheric CO₂ enrichment, had a great impact on *S. maritima* photochemical
apparatus functionality. According to our results, one of the best recognized effects of
high temperature on plant photosynthetic apparatus is the destruction of PSII
components (Flexas et al., 2012; Pérez-Romero et al., 2019a; López-Jurado et al.,
2020). Likewise, in concordance with this study, Mateos-Naranjo et al. (2010b) and
Duarte et al. (2014) also found that CO₂ enrichment affected PSII photochemistry in the

ra
thi
um
um
cte
at '
ese
Li
on
rt c
wn
ut tl
eir j
spł
so :
lau
ic (
e r
ion
ure
elev
bol
ore
nd
ate

halophytes S. densiflora and S. maritima, respectively. However, this is the first study
that corroborates that this effect would be exacerbated with an increase up to 4 °C in the
maximum and minimum daily temperature range and, to some extent, with the
augmentation in medium salinity concentration. Thus, our results showed that F_v/F_m and
Φ_{PSII} values were affected by the elevated temperature range and this effect was more
acute in plants grown at 700 ppm CO ₂ and irrigated with 171 mM NaCl, suggesting that
the combination of these environmental conditions would increase photoinhibition
(Werner et al., 2002). Likewise, we attributed the negative impact of these
environmental factors on S. maritima photochemical apparatus to the down-regulation
of its electron transport chain functionality, as indicated by the lower ETR values
recorded in plants grown at 700 ppm CO ₂ , 32/17 °C and irrigated with 171 mM NaCl.
This fact indicated that these plants would have had more difficulties to transform the
captured energy in their photosystems, suggesting the synergistic impact of elevated
temperature and atmospheric CO ₂ enrichment on the functionality of reaction centers.
Thus, this idea was also supported by the assessment of energy fluxes per reaction
center derived from Kautsky curves, which showed that, although plants were exposed
to elevated atmospheric CO ₂ and air temperature range, they increased their ABS/RC
values compared to the rest of treatments. This would mean a greater number of active
reaction centers functioning as a heat radiator, hence protecting plant photosystems
against high temperature and light intensities (Strasser et al., 2004; Pérez-Romero et al.,
2018, 2019a,b). This elevated absorption rate would excess the capacity of
photosystems to metabolize energy, as was corroborated by the decoupling with TR/RC
and ET/RC values. Moreover, the high ABS/RC would unbalance the trade-off between
the energy absorbed and metabolized, being necessary the activation of some defense
mechanisms to dissipate the energy excess as heat, as indicated also higher DI/RC

1	418	values recorde
1 2 3	419	photochemica
4 5	420	photosynthetic
6 7 8	421	contribute to e
9 10	422	factors. There
11 12 13	423	increments rel
14 15	424	maintenance of
16 17 18	425	significant stru
19 20	426	systems domin
21 22 23	427	and salt marsh
24 25	428	consequent alt
26 27 28	429	fluxes of energ
20 29 30	430	
31 32 33 34	431	
35 36 37	432	5. Conclusion
38 39	433	
40 41 42	434	This study
43 44	435	to increases up
45 46 47	436	for future scen
48 49	437	under CO ₂ enr
50 51 52	438	plant growth d
53 54	439	32/17 °C of m
55 56 57	440	associated wit
58 59	441	on plant carbo
60 61		
62 63		
64 65		

1	418	values recorded. As a consequence, much of the absorbed energy would not take the
1 2 3	419	photochemical pathway (Flexas et al., 2012), a circumstance that would affect
4 5	420	photosynthetic productivity and, consequently, plant growth, a fact which would
7 8	421	contribute to explain the observed growth pattern in response to tested environmental
9 10 11	422	factors. Therefore, our results would suggest that temperature and atmospheric CO_2
12 13	423	increments related to climate change would jeopardize the development and
14 15	424	maintenance of natural populations of S. maritima. This circumstance would cause
16 17 18	425	significant structural and functional changes in the drainage system of the marshes
19 20	426	systems dominated by this grass species, due to its importance in shoreline stabilization
21 22 23	427	and salt marsh accretion during the first phases of ecological succession, with the
24 25	428	consequent alteration of sediment, mineral elements and nutrient cycles, as well as the
26 27 28	429	fluxes of energy necessary for other levels of the trophic chain in the ecosystem.
29 30	430	
31 32 33 34	431	
35 36 37	432	5. Conclusion
38 39	433	
40 41 42	434	This study reveals the high vulnerability of the salt marsh key species S. maritima
43 44	435	to increases up to 4 °C in the maximum and minimum daily temperature, as predicted
45 46 47	436	for future scenarios by global change models, being this susceptibility even higher
48 49	437	under CO ₂ enriched atmosphere conditions. This idea would be motivated by drastic
50 51 52	438	plant growth decrease and leaf senescence increment recorded at 700 ppm $\rm CO_2$ and
53 54	439	32/17 °C of maximum and minimum daily temperature range. This response was
55 56 57	440	associated with the negative effect of temperature and atmospheric CO ₂ concentration
57 58 59 60 61 62 63 64	441	on plant carbon fixation machinery through increased stomatal limitations to CO_2

diffusion and the unbalance between the energy absorbed and metabolized in S. maritima photosystems, linked with a down-regulation of the electron transport chain functionality. The higher g_s drop at 700 ppm CO₂ would also limit plant ability to regulate heat excess through leaf evapotranspiration, a fact that could have boosted temperature-triggered damage and, consequently, leaf senescence compared to plants grown at 400 ppm. Finally, from a conservational perspective, these results suggest that temperature increment and atmospheric CO₂ enrichment associated with future climate change scenarios would jeopardize the development of S. maritima populations and, consequently, the maintenance of ecosystem functions derived from the presence of this important pioneer and ecosystem engineer salt marshes plant species.

453 Funding

 This study has been supported by Ministerio de Economía y Competitividad (MINECO
Project CGL2016-75550-R cofunded by FEDER). J. López-Jurado thanks the Fifth
Research Plan from the University of Seville for its personal predoctoral grant (VPPIUS). J. Mesa-Marín is grateful for personal funding to Ministerio de Ciencia,
Innovación y Universidades, Spain, (Juan de la Cierva – Formación Ref FJC2018036625-I).

CRediT authorship contribution statement

Enrique Mateos-Naranjo: Conceptualization, Methodology, Formal analysis, Funding acquisition, Writing - original draft, Writing - review & editing. Javier López Jurado: Methodology, Formal analysis, Writing - review & editing. Jennifer Mesa Marín: Methodology, Writing - review & editing. Carlos Javier Luque: Conceptualization, Methodology, Writing - review & editing. Eloy Manuel **Castellanos:** Conceptualization, Methodology, Writing - review & editing. Jesús Alberto Pérez-Romero: Methodology. Susana Redondo-Gómez: Conceptualization, Methodology, Funding acquisition, Writing - review & editing.

Declaration of Competing Interest

473 The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

1	476	
2		
3 4 5	477	Acknowledgements
6 7	478	
8 9 10	479	We are grateful to University of Seville Greenhouse General Services (CITIUS)
11 12 12	480	for their collaboration and providing the facilities. Thanks to the anonymous referees for
14 15	481	their constructive comments on a previous version of the manuscript. We also thank
16 17	482	Carmen Alcántara for their collaboration and technical assistance.
18 19 20	483	
21 22	484	
23 24 25	485	
25 26 27		
28		
29 30		
31		
32		
34		
35 36		
30 37		
38		
39 40		
40 41		
42		
43 44		
45		
46		
47 48		
49		
50		
5⊥ 52		
53		
54		
55 56		
57		
58		
59 60		
61		
62		
63 64		
65		

Fig. 1. Representation of the principal component analysis (PCA) biplot obtained for the growth and physiological data of *Spartina maritima* plants in the experimental setup. Panel A represents the distribution of the selected variables loading on these axes and the percentage of explained variance for these axes (see Table 1 for a description of these variables and their contribution to the two main axes of PCA). Panel B shows the ellipses (95% confidence level) which encompass occurrence points in the two main axes for the environmental factors tested.

Fig. 2. Relative growth rate, RGR (A) and percentage of dead tillers (B) in *Spartina maritima* plants in response to treatment with two atmospheric CO₂ concentrations (400 ppm and 700 ppm) in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 7. [CO₂], Temp., NaCl or their interactions in the corner of the panels indicate main or interaction significant effects (GLM test, *P < 0.05, **P < 0.01).

Fig. 3. Net photosynthetic rate, $A_N(A)$, stomatal conductance, $g_s(B)$, intercellular CO₂ concentration, C_i (C) and intrinsic water use efficiency (iWUE) in randomly selected fully developed expanded leaves of *Spartina maritima* in response to treatment with two atmospheric CO₂ concentrations (400 ppm and 700 ppm) in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 10. [CO₂], Temp., NaCl or their interactions in the corner of the panels indicate main or interaction significant effects (GLM test, ${}^{*}P < 0.05$, ${}^{**}P < 0.01$).

Fig. 4. Maximum quantum efficiency of PSII photochemistry, F_v/F_m (A), quantum efficiency of PSII, Φ_{PSII} (B) and electron transport rate, ETR (C), at midday in randomly

selected fully developed expanded leaves of *Spartina maritima* in response to treatment with two atmospheric CO₂ concentrations (400 ppm and 700 ppm) in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or

171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 10. [CO₂], Temp.,

NaCl or their interactions in the corner of the panels indicate main or interaction

significant effects (GLM test, ${}^{*}P < 0.05$, ${}^{**}P < 0.01$).

Fig. 5. Transient fluorescence (Kautsky curves) of dark-adapted leaves of Spartina maritima plants grown at 400 ppm (A) and 700 ppm (B) atmospheric CO₂ in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean of seven measurements per treatment combination.

Fig. 6. Absorbed energy flux, ABS/RC (A), electron transport energy flux, ET/RC (B), trapped energy flux, TR/RC (C) and dissipated energy flux, DI/RC (D), per reaction centre in randomly selected fully developed expanded dark-adapted leaves of Spartina *maritima* in response to treatment with two atmospheric CO_2 concentrations (400 ppm) and 700 ppm) in combination with two temperature ranges (28/13 °C and 32/17 °C) and irrigation with 0 mM NaCl (-) or 171 mM NaCl (+) for 40 days. Values represent mean \pm SE, n = 7. [CO₂], Temp., NaCl or their interactions in the corner of the panels indicate main or interaction significant effects (GLM test, ${}^{*}P < 0.05$, ${}^{**}P < 0.01$).

532	Adams, J.B., Bate, G.C., 1995. Ecological implications of tolerance of salinity and
533	inundation by Spartina maritima. Aquat. Bot. 52(3), 183-191.
534	Ainsworth, E.A., Rogers, A., 2007. The response of photosynthesis and stomatal
535	conductance to rising [CO ₂]: mechanisms and environmental interactions. Plant
536	cell Environ. 30(3), 258-270.
537	Allen, D.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis in
538	warm-climate plants. Trends Plant Sci. 6, 36–42.
539	Ameye, M., Wertin, T.M., Bauweraerts, I., McGuire, M.A., Teskey, R.O., Steppe, K.,
540	2012. The effect of induced heat waves on Pinus taeda and Quercus rubra
541	seedlings in ambient and elevated CO2 atmospheres. New Phyt. 196(2), 448-461.
542	Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F. B., Azad, R. K., Mittler,
543	R., Zandalinas, S. I., 2019. Jasmonic acid is required for plant acclimation to a
544	combination of high light and heat stress. Plant Physiol. 181(4), 1668-1682.
545	Bernacchi, C.J., Bagley, J.E., Serbin, S.P., Ruiz-Vera, U.M., Rosenthal, D.M.,
546	Vanloocke, A., 2013. Modelling C3 photosynthesis from the chloroplast to the
547	ecosystem. Plant Cell Environ. 36(9), 1641-1657.
548	Bortolus, A., Adam, P., Adams, J.B., Ainouche, M.L., Ayres, D., Bertness, M.D.,
549	Bouma, T. J., Bruno, J.F., Caçador, I., Carlton, J.T., Castillo, J.M., Costa, C.S.B.,
550	Davy, A.J., Deegan, L., Duarte, B., Figueroa, E., Gerwein, J., Gray, A.J.,
551	Grosholz, E.D., Hacker, S.D., Hughes, A.R., Mateos-Naranjo, E., Mendelssohn,
552	I.A., Morris, J.T., Munoz-Rodríguez, A.F., Nieva, F.J.J., Levin, L.A., Li, B., Liu,
553	W., Pennings, S.C., Pickart, A., Redondo-Gomez, S., Richardson, D.M., Salmon,
554	A., Schwindt, E., Silliman, B.R., Sotka, E.E., Stace, C., Sytsma, M., Temmerman,
555	S., Turner, R.E., Valiela, I., Weinstein, M.P., Weis, J.S., 2019. Supporting

-	556	Spartina: interdisciplinary perspective shows Spartina as a distinct solid genus.
1 2 3 4 5 6 7 8	557	Ecology 100, e02863.
	558	Castellanos, E.M., Figueroa, M.E., Davy, A.J., 1994. Nucleation and facilitation in
	559	saltmarsh succession: interactions between Spartina maritima and Arthrocnemum
9 10	560	perenne. J. Ecol. 82, 239-248.
11 12 13	561	Castellanos, E.M., Heredia, C., Figueroa, M.E., Davy, A.J., 1998. Tiller dynamics
14 15	562	of Spartina maritima in successional and non-successional Mediterranean salt
16 17 10	563	marsh. Plan Ecol. 137, 213-225.
19 20	564	Castillo, J.M., Mateos-Naranjo, E., Nieva, F.J., Figueroa, M., 2008. Plant zonation at
21 22 22	565	salt marshes of the endangered cordgrass Spartina maritima invaded by Spartina
23 24 25	566	densiflora. Hydrobiologia 614, 363-371.
26 27	567	Cerasoli, S., Wertin, T., McGuire, M.A., Rodrigues, A., Aubrey, D.P., Pereira, J.S.,
28 29 30	568	Teskey, R.O., 2014. Poplar saplings exposed to recurring temperature shifts of
31 32	569	different amplitude exhibit differences in leaf gas exchange and growth despite
33 34 35	570	equal mean temperature. AoB Plants 6, plu018.
36 37	571	Couto, T., Martins, I., Duarte, B., Caçador, I., Marques, J.C., 2014. Modelling the
38 39 40	572	effects of global temperature increase on the growth of salt marsh plants. Appli.
41 42	573	Ecol. Environ. Manag. 12, 753-764.
43 44	574	Curado, G., Gallego Tévar, B., Figueroa, M.E., Castillo, J.M., 2018. Effects of removal
45 46 47	575	of alien Spartina densiflora and restoration of native S. maritima on succession
48 49	576	and zonation in European salt marshes. Estuar. Coast. Shelf Sci. In Press. DOI:
50 51 52	577	10.1016/j.ecss.2018.04.011
53 54	578	Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J., Whigham, D. F., 1989. Growth
55 56 57	579	and senescence in plant communities exposed to elevated CO2 concentrations on
58 59	580	an estuarine marsh. Oecologia 78(1), 20-26.
60 61 62		
63 64		
65		

581	Duarte, B., Santos, D., Marques, J. C., Caçador, I., 2014. Biophysical probing of
582	Spartina maritima photo-system II changes during prolonged tidal submersion
583	periods. Plant Physiol. Biochem. 77, 122-132.
584	Duarte, B., Santos, D., Marques, J. C., Caçador, I., 2016. Ecophysiology response of
585	native and invasive Spartina species to extreme temperature events in
586	Mediterranean marshes. Biol. Invasions 18, 2189-2205.
587	Feller, U., 2006. Stomatal opening at elevated temperature: an underestimated
588	regulatory mechanism. Gen. Appl. Plant Physiol. Special Issue: 19–31.
589	Flexas, J., Loreto, F., Medrano, H., 2012. Terrestrial Photosynthesis in a Changing
590	Environment. A Molecular, Physiological and Ecological Approach. Cambridge
591	University Press, Cambridge, pp. 723.
592	Ghannoum, O., Caemmerer, S. V., Ziska, L.H., Conroy, J.P., 2000. The growth
593	response of C4 plants to rising atmospheric CO ₂ partial pressure: a reassessment.
594	Plant Cell Environ. 23(9), 931-942.
595	Genty, B., Briantais, J.M., Baker, N.R., 1989. The relationship between the quantum
596	yield of photosynthetic electron transport and quenching of chlorophyll
597	fluorescence. Biochem. Biophys. Acta 990, 87–92.
598	Hooper, D.U., Chapin, F.S., Ewell, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton,
599	J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J.,
600	Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem
601	functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3-35.
602	
603	IPCC, 2007. Climate Change: Impacts, Adaptation and Vulnerability. Contribution of
604	Working Group II to the Fourth Assessment Report of the Intergovernmental
605	Panel on Climate Change. Cambridge University Press, Cambridge, UK.

-	606	IPCC, 2014. Climate Change: Managing the Risks of Extreme Events and Disasters to
1 2 3 4 5 6 7 8	607	Advance Climate Change Adaptation. A Special Report of Working Groups I and
	608	II of the Intergovernmental Panel on Climate Change. (eds Field, C. B. et al.).
	609	Cambridge University Press., Cambridge, UK.
9 10	610	Josse, J., Husson, F., 2016. MissMDA: A package for handling missing values in
11 12 13	611	multivariate data analysis. J. Stat. Softw. 70.
14 15	612	Krall, J.P., Edwards, G.E., 1992. Relationship between photosystem II activity and CO ₂
16 17 18	613	fixation in leaves. Physiol. Plant. 86, 180-187.
19 20	614	Lahr, E.C., Schade, G.W., Crossett, C.C., Watson, M.R., 2015. Photosynthesis and
21 22	615	isoprene emission from trees along an urban-rural gradient in Texas. Global
23 24 25	616	Change Biol. 21(11), 4221-4236.
26 27	617	López-Jurado, J., Balao, F., Mateos-Naranjo, E., 2020. Polyploidy-mediated divergent
28 29 30 31 32	618	light-harvesting and photoprotection strategies under temperature stress in a
	619	Mediterranean carnation complex. Environ. Exp. Bot. 171, 103956.
33 34 35	620	Lu, Z., Zeiger, E., 1994. Selection for higher yields and heat resistance in pima cotton
36 37 38 39 40	621	has caused genetically determined changes in stomatal conductances. Physiol.
	622	Plant. 92(2), 273- 278.
40 41 42	623	Lu, Z., Quiñones, M. A., Zeiger, E., 2000. Temperature dependence of guard cell
43 44	624	respiration and stomatal conductance co-segregate in an F2 population of Pima
45 46 47	625	cotton. Func. Plant Biol. 27(5), 457-462.
48 49	626	Mateos-Naranjo, E., Redondo-Gómez, S., Andrades-Moreno, L., Davy, A. J., 2010a.
50 51 52	627	Growth and photosynthetic responses of the cordgrass Spartina maritima to CO_2
52 53 54 55 56	628	enrichment and salinity. Chemosphere 81(6), 725-731.
	629	Mateos-Naranjo, E., Redondo-Gómez, S., Álvarez, R., Cambrollé, J., Gandullo, J.,
58 59	630	Figueroa, M. E., 2010b. Synergic effect of salinity and CO ₂ enrichment on growth
60 61		
63 64		
65		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	631	and photosynthetic responses of the invasive cordgrass Spartina densiflora. J.
	632	Exp. Bot. 61(6), 1643-1654.
	633	Mesa, J., Mateos-Naranjo, E., Caviedes, M.A., Redondo-Gómez, S., Pajuelo, E.,
	634	Rodríguez-Llorente, I.D., 2015. Scouting contaminated estuaries: Heavy metal
	635	resistant and plant growth promoting rhizobacteria in the native metal
	636	rhizoaccumulator Spartina maritima. Mar. Pollut. Bull. 90, 150–159.
	637	Mott, K. A., Peak, D., 2010. Stomatal responses to humidity and temperature in
	638	darkness. Plant Cell Environ. 33(7), 1084-1090.
	639	Padinha, C., Santos, R., Brown, M. T., 2000. Evaluating environmental contamination
21 22	640	in Ria Formosa (Portugal) using stress indexes of Spartina maritima. Mar.
23 24 25 26 27 28 29 30 31 32 33 34	641	Environ. Res. 49(1), 67-78.
	642	Pérez-Romero, J.A., Idaszkin, Y., Barcia-Piedras, J.M., Duarte, B., Redondo-Gomez,
	643	S., Caçador, I., Mateos-Naranjo, E., 2018. Disentangling the effect of atmospheric
	644	CO2 enrichment on the halophyte Salicornia ramosissima J. Woods physiological
	645	performance under optimal and suboptimal saline conditions. Plant Physiol.
35 36 37	646	Biochem. 127, 617–629.
38 39	647	Pérez-Romero, J.A., Barcia-Piedras, J.A., Redondo-Gómez, S., Mateos-Naranjo, E.,
40 41 42	648	2019a. Impact of short-term extreme temperature events on physiological
43 44	649	performance of Salicornia ramosissima J. Woods under optimal and sub-optimal
45 46	650	saline conditions. Sci. Reports 9, 659.
48 49	651	Pérez-Romero, J.A., Duarte, B., Barcia-Piedras, J.M., Matos, A.R., Redondo-Gómez,
50 51 52 53 54 55 56	652	S., Caçador, I., Mateos-Naranjo, E., 2019b. Investigating the physiological
	653	mechanisms underlying Salicornia ramosissima response to atmospheric CO2
	654	enrichment under coexistence of prolonged soil flooding and saline excess. Plant
57 58 59	655	Physiol. Biochem. 135, 149-159.
60 61		
62 63		
64 65		

656	R Core Team, 2020. R: a language and environment for statistical computing. Version
657	4.0.0. R Foundation for Statistical Computing, Vienna, Austria.
658	Robredo, A., Pérez-López, U., de la Maza, H. S., González-Moro, B., Lacuesta, M.,
659	Mena-Petite, A., Munoz-Rueda, A., 2007. Elevated CO ₂ alleviates the impact of
660	drought on barley improving water status by lowering stomatal conductance and
661	delaying its effects on photosynthesis. Environ. Exp. Bot. 59(3), 252-263.
662	Rozema, J., Dorel, F., Janissen, R., Lenssen, G., Broekman, R., Arp, W., Drake, B. G.,
663	1991. Effect of elevated atmospheric CO ₂ on growth, photosynthesis and water
664	relations of salt marsh grass species. Aquat. Bot. 39(1-2), 45-55.
665	Short, F.T., Kosten, S., Morgan, P.A., Malone, S., Moore, G.E., 2016. Impacts of
666	climate change on submerged and emergent wetland plants. Aquat. Bot. 135, 3-
667	17.
668	Schreiber, U., Schliwa, U., Bilger, W., 1986. Continuous recording of photochemical
669	and nonphotochemical chlorophyll fluorescence quenching with a new type of
670	modulation fluorometer. Photosynth. Res.10(1-2), 51-62
671	Strasser R.J., Tsimilli-Michael M., Srivastava A., 2004. Analysis of the Chlorophyll a
672	Fluorescence Transient. In: Papageorgiou G.C., Govindjee (Ed.), Chlorophyll a
673	Fluorescence. Advances in Photosynthesis and Respiration. Vol. 19. Springer,
674	Dordrecht, pp. 321-362.
675	Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M.A., Steppe, K., 2015.
676	Responses of tree species to heat waves and extreme heat events. Plant Cell
677	Environ. 38(9), 1699-1712.
678	von Caemmerer, S., Evans, J. R., 2015. Temperature responses of mesophyll
679	conductance differ greatly between species. Plant Cell Environ. 38(4), 629-637.

1	680	Werner, C., Correia, O., Beyschlag, W., 2002. Characteristic patterns of chronic and
12345678901123456789012234567890012234556789001223455678900122345567890012234556789001223455678900122345567890012234556789001223455678900122345567890012234556789001223455678900122345567890012234556789001223455678900122345567890012234556789000000000000000000000000000000000000	681	dynamic photoinhibition of different functional groups in a Mediterranean
	682	ecosystem. Func. Plant Biol. 29(8), 999-1011.
	683	Weston, D. J., Bauerle, W. L., 2007. Inhibition and acclimation of C3 photosynthesis to
	684	moderate heat: a perspective from thermally contrasting genotypes of Acer
	685	rubrum (red maple). Tree Physiol. 27(8), 1083-1092.
	686	Zhao, L., Dai, A., Dong, B., 2018. Changes in global vegetation activity and its driving
	687	factors during 1982–2013. Agric. Forest Met., 249,198-209.
64 65		

Figure 3

Figure 5

Fig. 5

Table 1

Click here to access/download **Table** Table 1.docx Table A.1

Click here to access/download **Table** Table A.1.docx

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Enrique Mateos-Naranjo: Conceptualization, Methodology, Formal analysis, Funding acquisition, Writing - original draft, Writing - review & editing. Javier López Jurado: Methodology, Formal analysis, Writing - review & editing. Jennifer Mesa Marín: Methodology, Writing - review & editing. Carlos Javier Luque: Conceptualization, Methodology, Writing - review & editing. Eloy Manuel Castellanos: Conceptualization, Methodology, Writing - review & editing. Jesús Alberto Pérez-Romero: Methodology. Susana Redondo-Gómez: Conceptualization, Methodology, Funding acquisition, Writing - review & editing.