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Abstract

The two-electron atomic densities are analysed in both position and momentum
spaces in terms of different information-theoretic measures, such as disequilibrium,
Shannon entropy, shape complexity and its corresponding information plane. This
study is conveyed throughout the Periodic Table and the obtained results are discussed
in terms of varied atomic properties such as (i) atomic charge, (ii) shell filling patterns
and (iii) electronic correlation. A detailed discussion on how these properties modify
in a particular manner the electron density structure when considering a one-electron
or a two-electron density description is conducted.
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Instituto Carlos I de F́ısica Teórica y Computacional, Universidad de Granada, 18071-Granada, Spain

1






1 INTRODUCTION

One-electron densities have a straightforward meaning in atomic physics, as they are directly

related to the probability of finding an electron in a determinate region of the atom. One

can study different regions of the atomic density and thus one can understand the way

electrons populating that region behave. There is a huge amount of information coded inside

monoelectronic densities. However, there is some information that this kind of density lacks,

mainly information about the electron correlations. These densities don’t directly give us

any information at all about how the position of an electron conditions the position of the

others. It is in this context when electron pair densities arise1.

Nowadays Information Theory of quantum many-body systems is attracting the atten-

tion of scientists in several fields in physical sciences, wherein major areas of research are

interconnected, i.e., physics, mathematics, chemistry, and biology. It is so that there is an

inherent interest for applying information-theoretic ideas and methodologies to chemical,

mesoscopic and biological systems along with the processes they are involved with. In line

with the aforementioned developments, multidisciplinary research projects have been un-

dertaken so as to employ Information Theory at different levels, classical (Shannon, Fisher,

complexity, etc) and quantum (von Neumann and other entanglement measures), on a vari-

ety of physical, chemical and biological systems and processes2–4. The Information Theory

of quantum systems provides an entropy-based characterization of the atomic and molec-

ular systems, which complements the energy-based representation obtained with the wave

function and density functional methods. The physical and chemical properties of these

systems can be described by means of spreading measures of entropic character of the elec-

tron density5,6. These measures of uncertainty, randomness, disorder and localization are

basic ingredients encountered to play a relevant role for the identification and description of

numerous quantum phenomena in physical systems and chemical processes.

The magnitudes of the Information Theory are very useful when trying to understand

different traits and behaviours of atomic systems. There have been plenty of studies of

quantum systems by means of the informational measures7–9. Most of these studies have

been focused on the monoelectronic distributions, providing analyses on, e.g., the Shannon
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entropy10, Fisher information11, similarity indices12,13, different divergence measures14,15 and

complexity measures16–18. However, as previously mentioned, studies focused on two-electron

densities require another point of view in order to analyse correlation-like qualities19–24. In

past years there have been some successful attempts to study the electron pair densities,

exposing uncertainty relationships20, calculating information theoretical measures such as

Shannon-related ones10,21,23 or similarity measures20,21,25,26. This knowledge gained over the

electron pair densities has translated in numerous and diverse applications. Two-electron

densities have been employed to the analysis and detection of chemical bonds in molecules,

finding that regions where electrons presented a higher correlations were directly related

to the position of the bonds27,28. Electron pair densities have also been employed as a

scale-down method used to study many particle systems29–33. Even an alternative density

functional theory has been developed, with electron pair density as the functional key1,34,35.

Some of the analyses made in the past on the electron pair density could not be as

exhaustive as would have been desirable due to technical limitations of the numerical methods

used, unable to calculate the two electron densities for all the atomic systems in the Periodic

Table.

Preceeding studies on this subject are relatively recent36–39, as a consequence of dealing

with a subject considered some years ago, but not efficiently developed until very recently.

In fact, all those publications only deal with two-electron systems, usually restricted to the

analysis in terms of entropic functionals in position space. Such is the case of a pioneering

work36 regarding the information-theoretical analysis of interelectronic correlation in atomic

systems, by considering a N-body density, defined from the position-space wave function

Ψ(~r1, . . . , ~rN) of the N-electron atom. Then, the functionals Fisher information I, Shannon

entroy power J in terms of the Shannon entropy S, the information product P = (IJ)/3 and

the associated information plane I − J were considered, particularizing to the reduced one-

and two-body densities. Other points, considered there, are: (i) the discussion of the main

analytical properties regarding the aforementioned quantites (highlighting the superadditiv-

ity of I, the subadditivity of S, and the lower bound to the product P), (ii) a numerical

analysis of those quantities, limited to the 6 helium-like (N = 2 electrons) systems with

nuclear charge Z = 1 − 5, 10, (iii) the interpretation of the results, attending to the inter-
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electronic correlation.

More recent studies afford: (i) the analysis of the four helium-like systems H−, He, Li+

and Ps− (positronium negative ion)37, attending to the dependence of the position-space

Shannon entropy on the continuous variable Z (nuclear charge), particularly around the

critical value for which the system becomes unstable, and posing as future work determining

the momentum space entropy and checking the uncertainty relation for the total entropy

Sr +Sp ≥ 3(1+ ln π); (ii) the analysis of three Rydberg series of He doubly excited states38,

by means of Shannon entropy and Fisher information (for the reduced one-particle spatial

density) and von Neumann and linear entropies (as measures of entanglement, from the

reduced one-particle density matrix); and (iii) a comparative study39 of the atomic Rényi

entropies for the exponential-cosine screened Coulomb potential, by using different wave

functions for the 1s2-state of the helium isoelectronic series.

We want to complete those studies with a more extensive list of informational quantities,

using these past results as a supporting floor, and extending them to all the neutral atomic

systems in the Periodic Table.

This paper is structured as follows: in the first section we show the formulation of the

pair densities and how their aspect would be when used in the context of the Hartree-Fock

method. The applied measures comprise the Shannon entropy, the disequilibrium and the

LMC complexity, as well as the corresponding information planes. In the second section we

will provide and discuss the numerical results regarding the measures showed in the previous

section. Finally, some conclusions will be discussed and future works will be proposed

2 ELECTRON PAIR DENSITIES AND RELATED INFOR-

MATION THEORETIC MEASURES

In terms of the N -electron wave function, the two-electron densities are defined as

Γ(~r1, ~r2) =

∫
Ψ(~x1, ~x2, · · · , ~xN)Ψ

∗(~x1, ~x2, · · · , ~xN)dσ1dσ2d~x3 · · · d~xN (1)
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in the position space, and

Π(~p1, ~p2) =

∫
Φ(~y1, ~y2, · · · , ~yN)Φ

∗(~y1, ~y2, · · · , ~yN)dσ1dσ2d~y3 · · · d~yN (2)

in the momentum space. The variables ~xi = ~riσi and ~yi = ~piσi are combined coordinates

which include the spin. It is well known that the physical meaning of these densities regards

the probability of finding an electron with given quantum numbers within the region ~r1d~r1 if

there is another electron with allowed/compatible quantum numbers within the region ~r2d~r2,

and similarly regarding the momentum regions ~p1d~p1 and ~p2d~p2. These densities are directly

related to the electron correlations, as the compatibility of an electron state is organically

determined by the compatibility of its state with those of the others. They naturally give us

quantifiers of correlation between electrons.

The two-electron densities are going to be calculated by the Hartree-Fock approach and

can be expressed as follows40:

Γ(~r1, ~r2) =
1

N − 1
[Nρ(~r1)ρ(~r2)− Γx(~r1, ~r2)] (3)

in the position space, and

Π(~p1, ~p2) =
1

N − 1
[Nγ(~p1)γ(~p2)− Πx(~p1, ~p2)] (4)

in the momentum space, respectively. The functions ρ(~ri) and γ(~pi) are the one-electron den-

sities and Γx(~r1, ~r2) and Πx(~p1, ~p2) are the exchange densities in the position and momentum

space respectively. Let us remark that, using Hartree-Fock functions, we are studying the

Fermi correlation between same-spin electrons which arises from the antisymmetry of the

wave function. In this sense, the term electron correlation, mentioned before, alludes to the

statistical correlation. This point must be clarified in order to not lead to confusion if one

considers a correlated system as one beyond the Hartree-Fock approximation (the Löwdin

definition of correlation energy).

The Shannon entropy, S, of the normalized-to-unity electron pair densities are given by:

S(Γ) = −

∫
Γ(~r1, ~r2) ln Γ(~r1, ~r2)d~r1d~r2 (5)

for the position space, and

S(Π) = −

∫
Π(~p1, ~p2) lnΠ(~p1, ~p2)d~p1d~p2 (6)
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for the momentum space, respectively. This quantity measures the extent to which the

density is spread, so that it is a measure of delocalization. Let us point out that the Shannon

entropy could reach negative values. To avoid this and to guarantee that the uncertainty is

non-negative, sometimes it is useful to define the exponential Shannon entropy as

L = eS (7)

Notice, in addition, that the exponential Shannon entropy is defined in this way in order

to have the same dimensions as the variable considered, as the variance does, one of the most

commonly used uncertainty measures.

Considering that the electron pair density is, in its spherically averaged form, bidimen-

sional, while its corresponding monoelectronic counterpart is monodimensional, a higher

value on the Shannon entropy can be expected just due to the more natural spreading of

the electron pair density. The Shannon entropy has already been employed in the past for

studying electron pair densities10,20,21,26 showing how correlation effects can be successfully

detected with this measure, and establishing relationships between its values and atomic

properties.

The disequilibrium, self-similarity41 or information energy42, D, quantifies the depar-

ture from uniformity of the probability density (equiprobability). In position space, the

disequilibrium for two-electron density is given by

D(Γ) =

∫
Γ2(~r1, ~r2)d~r1d~r2, (8)

and in momentum space is defined as

D(Π) =

∫
Π2(~p1, ~p2)d~p1d~p2. (9)

.

It is worthy to point out that both quantities S and D posses a global character, i.e.,

they consider the behavior of the distribution over its whole domain.

Aside of the properties of the entropic measures described above, it is interesting to

quantify the complexity of the physical systems. The characterization of complexity is not

unique and the utility of each definition depends on the type of system or process, the
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level of the description, and the scale of the interactions among the constituents of the

systems considered, e.g., elementary particles, atoms, molecules, biological systems, etc.

Fundamental concepts such as uncertainty or randomness are frequently employed in the

definitions of complexity, although some other concepts such as clustering, order, localization

or organization might be also important for characterizing the complexity of systems or

processes.

Here, we focus our attention on a complexity measure defined as a product of two infor-

mation theoretical measures in order to simultaneously quantify two facets of the electron

density of the system; namely, the LMC shape complexity, C(LMC). This quantity was

introduced in 1995 by López-Ruiz, Mancini and Calbet43 although, later on, it has been crit-

icized44, modified45,46 and generalized47 leading to a useful estimator which reaches minimal

values for both extremely ordered and disordered limits (i.e., for the Dirac-delta distribu-

tion and for the highly flat ones, respectively), satisfying also the desirable properties of

invariance under scaling transformation, translation and replication48,49. The utility of this

improved complexity has been clearly shown in many different fields50–52 allowing reliable

detection of periodic, quasiperiodic, linear stochastic and chaotic dynamics43,48,49.

The LMC complexity is defined by the product of two single-facet entropy measures (the

disequilibrium D and the exponential Shannon entropy eS) as

CLMC(Γ) = D(Γ)× eS(Γ) (10)

in position space, and

CLMC(Π) = D(Π)× eS(Π) (11)

in momentum space. This composite information-theoretic quantity measures the complexity

of the system by means of a combined balance of the average height of the probability

density (as given by D) and its total bulk extent (as given by S), i.e., the uniformity and

delocalization features. This quantity satisfies the bound CLMC ≥ 1 for any probabilty

density, with domain of arbitrary dimensionality53.
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3 RESULTS AND DISCUSSION

In recent years, there has been an increasing interest in the information-theoretical analysis

of interelectronic correlation in atomic systems. Different works have been performed within

this field36–39, nevertheless, all of them deal with two-electron systems, usually restricted to

the analysis in terms of entropic functionals in position space.

This section is aimed to perform a comparative study among atomic one- and two-particle

densities, on the basis of the respective information-theoretic functionals considered in the

previous section. The analysis is two-fold, by considering densities in both conjugated spaces:

that is, the position-space ones ρ(~r) and Γ(~r1, ~r2), and the momentum-space ones γ(~p) and

Π(~p1, ~p2). Functions normalized to unity will be managed in what follows, for the sake of

their interpretation as probability distributions.

Note that for the one-particle density, the Shannon entropy is given by

S(ρ) = −

∫
ρ(~r) ln ρ(~r)d~r, (12)

S(γ) = −

∫
γ(~p) ln γ(~p)d~p, (13)

in position space and momentum space, respectively.

The disequilibrium for the one-electron density in position space can be defined as

D(ρ) =

∫
ρ2(~r)d~r, (14)

and in momentum space is given by

D(γ) =

∫
γ2(~p)d~p. (15)

The LMC complesity for the one-electron density can be defined as

CLMC(ρ) = D(ρ)× eS(ρ), (16)

in position space, and

CLMC(γ) = D(γ)× eS(γ) (17)

in momentum space.
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Let us mention that the results for the electron-pair density have been very difficult to

obtain compared to the one-electron ones, mostly due to the higher computational prowess

needed to perform the calculations. Although we work with spherically averaged densities,

the integration grid is still bidimensional which greatly increases the number of calculations

needed to reach a required precision, i.e., if a grid with n points along a real interval is needed

for the case of one-electron density, the electron-pair density will require n2/2 points along

a surface. In addition, calculations in momentum space require a much more extensive grid

than in the position space due to the asymptotic behaviour of the densities. Computations

have been performed, in both position and momentum spaces, by means of the accurate

Near-Hartree-Fock wave functions of Koga et al54,55

3.1 Shannon entropy and disequilibrium

The electron pair density or, equivalently, two-particle density, displays fundamental dif-

ferences with respect to the (more usual) one-particle distribution. Maybe one of the most

remarkable distinctions regards the intrinsic uncertainty, higher in the two-particle case than

in the monoelectronic one. When considering a probabilistic description based on electron

pairs, instead of single particles, the result is a rise of spread. Let us remind that Shannon

entropy is an appropriate uncertainty quantifier; hence, it will be used in this section to get

insight about the way in which spreading is present at both one- and two-electron levels.

Let us consider the one- and two-particle densities in position space, ρ(~r) and Γ(~r1, ~r2)

respectively. In Figure 1(a), the Shannon entropies S(ρ) and S(Γ) of both densities are

displayed. This is done for neutral atoms with nuclear charge Z = 2 − 103. It is clearly

observed how the curve of the electron-pair Shannon entropy S(Γ) remains above the one-

electron partner S(ρ) systematically. As expected, a higher uncertainty for the two-electron

density as compared to the monoelectronic one is confirmed and becomes apparent. The

reason beyond that is the relationship among the joint entropy of a two-variable distribution

and the entropy of the corresponding marginals for each variable.

A more detailed analysis of both curves reveals a global decreasing tendency, but not

systematic. Despite such a global tendency, there appear a number of local extrema per-

ceived as departures from the monotonic trend, being more apparent in the case of S(Γ).
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Nevertheless, the presence of many local extrema is manifest in both curves.

It is worth mentioning that the general monotonous tendencies along the respective curves

of each density (ρ and Γ) as the charge increases, entail a straight interpretation attending to

(i) the physical implications of such an increase of charge, and (ii) the meaning of Shannon

entropy in an information-theoretical context. The just mentioned meaning was clarified in

Section II, particularly by considering how this measure constitutes a quantifier of spreading

or delocalization. Increasing the nuclear charge provokes a stronger attraction over the charge

cloud towards the nucleus, what induces a higher concentration of the electron densities, both

the one- and two-particle distributions, around their respective origins. Such effect causes

a higher localization of these distributions, or equivalently, a lower delocalization, what

translates into a lower value of the Shannon entropy.

Focusing on curves’ structure in Figure 1(a), items to be discussed arise immediately:

(i) the specific systems, as characterized by the values of Z, for which the respective local

extrema appear, and (ii) a comparison between both curves attending to the number and

location along them of the just mentioned extrema. Additionally, knowing the physical

reasons behind those features would be particularly interesting. In order to get a deeper

insight in this regard, Table 1 is shown, in which those extrema are provided, separately as

maxima and minima.

From the analysis of Table 1, some global trends are worthy of being pointed out, also

emphasizing some specific exceptions:

• For the entropy of the electron-pair density, S(Γ), the set of maxima encloses the group

IIA of the Periodic Table (namely alkaline earth elements). The only exception is the

presence of Z = 13, instead of Z = 12 (Magnesium).

• The rest of systems that complete the above set of maxima are: Z = 25, 43 with a

half-filled valence subshell, and Z = 32, 50, 84 with a p-type valence subshell.

• The minima of S(Γ) correspond mainly to noble gases, enclosing all them with the

only exception Z = 2 (as justified by the fact that this system is the first one within

the whole set).
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Notice that one should expect a null exchange density for a factorization Γ(~r1, ~r2) =

ρ(~r1)ρ(~r2), corresponding to a complete absence of mutual information between both

variables, as quantified by the non-negative difference 2S(ρ)−S(Γ) ≥ 0, and similarly

for Π(~p1, ~p2). However, this is not true in general (due to the definition of Γ and Π as

squares of determinants defined from one-electron orbitals).

• Additional minima of S(Γ) are Z = 24, 29, 42, 46, 79, with similar anomalies in the

shell filling pattern: a d valence subshell half-filled or completely filled, together with

an inner half-filled or empty s subshell.

• A comparative analysis between the entropy of both one- and two-particle densities is in

order. Despite being both of them very similar, there are some remarkable differences:

– Some maxima of S(Γ) do not match those of S(ρ), in such a way that a given

local maximum of the latter falls in a system with a neighbor which is a local

maximum for the former. This happens with maxima Z = 4, 32, 56, 88 of S(Γ),

which respective ones for S(ρ) are Z = 3, 31, 57, 89. Those disengagements are

emphasized in Table 2, and they correspond to systems either with one or two

electrons in the valence subshell (Z = 3 − 4, 31 − 32), or with an electron in an

inner s subshell (Z = 56− 57, 88− 89).

– These differences regarding maxima occur for some minima as well. Such is the

case of systems Z = 30, 78 for S(Γ), the corresponding minima of S(ρ) being

Z = 29, 79. For each pair of consecutive systems, the lightest one has a half-

or completely-filled s subshell (with anomalous filling on the internal subshells),

while the heavy one has an empty or full valence subshell (with anomalous filling

on the internal subshells as well).

The resemblance between S(ρ) and S(Γ) is clearly appreciated in Figure 1(a), attending

not only to the location of its extrema but to the range of both magnitudes as well. In

Figure 1(b) we can observe the respective curves again, allowing a more accurate insight. It

is apparent the extreme similarity between both curves, looking almost identical copies, just

vertically shifted. Certainly, from the analysis of Figure 1 we should conclude that the only
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discrepancy is a multiplicative factor, what in logarithmic scale translates into a vertical

displacement of length log 2. The shifted curves clearly overlap, so that we could affirm

that S(Γ) ≈ 2S(ρ) for any system with Z = 2 − 103. It is worthy to mention that such an

approximate connection between S(Γ) and S(ρ) becomes an exact equality, as a limiting case

of the rigorous inequality 2S(ρ) ≥ S(Γ), if the variables (~r1, ~r2) are independent. Accordingly

to the previous comment, we could say that the electron spatial locations are ’roughly’

independent, at least in atomic systems. In terms of mutual information, the previous

comment translates into negligible values of the atomic mutual information. Nevertheless,

efficient comparative functionals between Γ and ρ will be suggested in the concluding section,

in order to study more in detail and to explain the above fact.

In Figure 2, Shannon entropy of one-electron and electron pair densities in momentum

space is displayed, for neutral atoms with nuclear charge Z = 2−103. As previously observed

in position space: (i) the Shannon entropy values of the two-electron density are much higher

than those of the one-electron density; and (ii) an almost perfect overlap between one- and

two-electron entropies occurs when comparing the momentum space values 2S(γ) and S(Π).

In momentum space, no complex structure is observed, but just a monotonic increase, more

apparent in the low-Z region, and even more for the pair density. For higher values of Z the

increase becomes softer. This fact deserves to be interpreted in depth by means of ’mutual

information’, by comparing the global behaviors and structures along both conjugated spaces.

The authors will provide a detailed analysis in a near future.

It is well known that Shannon entropy fulfils the entropic uncertainty relation56

S(ρ) + S(Γ) ≥ 3 (1 + ln π) , (18)

while for the two-electron densities, this uncertainty-type entropic relation becomes26:

S(γ) + S(Π) ≥ 6 (1 + ln π) . (19)

In Figure 3, the Shannon entropy sums for one- and two-electron densities have been depicted.

The respective curves display similar paths, roughly shifted by a constant factor (an exact

shift would occur in case of dealing with pairs of independent variables).

Let us now pay attention to the disequilibrium of one-electron and electron pair densities,

particularly in position space, as depicted in Figure 4 for atomic systems with nuclear charge
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Z = 2−103. It is observed in the figure that, for both densities, the disequilibrium increases

with increasing nuclear charge, as expected. This is due to the higher nuclear attraction

over the electron cloud: a higher localization around the origin occurs in position space

(revealed by a decrease of Shannon entropy and an increase of disequilibrium), and a higher

delocalization in momentum space (with an overall increase of the momentum range). In

the low-Z region, a remarkable growth can be appreciated for the one-electron density, even

more than for the two-electron density. The most remarkable trait is how the curves intersect

around Z = 10. For very light systems, with low nuclear charge, the disequilibrium for the

electron pair density is below that of the one-electron density. This is due to the low amount

of electron pairs for systems with such a low number of electrons, what reduces the effect

of contraction provoked by the nucleus. This occurrence, along with the knowledge that

disequilibrium quantifies the relative strength of the nuclear attraction towards the electron

cloud, is a measure of the exact point where the electron interaction significantly reduces the

effect of the nuclear contraction. For higher values of Z the opposite occurs, what results in

a higher disequilibrium value.

Regarding the conjugate space, we can see in Figure 5 the disequilibrium of the above

densities in momentum space, and how they display identical structure of extrema, and

roughly the same monotonic tendencies as the Shannon entropy in position space (see Figure

1). In this space, both curves do not intersect, being the value of disequilibrium of one-

electron density higher than the two-electron ones for all nuclear charge Z.

3.2 LMC shape complexity

After analysing the Shannon entropy and the disequilibrium, we are in position to obtain

the LMC complexity measures, given by Eqs. (10) and (11) for the one- and two-electron

densities, respectively. In Figure 6, the LMC complexity measure of the aforementioned

densities is depicted for atomic systems with nuclear charge Z = 2 − 103, in position and

momentum spaces. A detailed discussion on the one-electron case can be found in Ref.17.

Regarding the two-electron case in position space, numerous local extrema appear in

Figure 6(a), matching those of the Shannon entropy S previously discussed. This is due

to the fact that the exponential entropy is the dominant factor for the LMC complexity
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in the present case, what defines its structure of extrema. However, the LMC value is

much higher than the S one, due to (i) the exponentiation of the Shannon entropy, and (ii)

the presence of the disequilibrium which acts as a modulator, so increasing even more the

complexity value for higher Z. As compared to the one-electron case, the set of minima

exhibited by the electron pair density presents a similar structure, as both display local

minima at Z = 10, 18, 24, 36, 42, 46, (i.e. noble gases and anomalous shell-filling systems).

The structure of maxima, however, is slightly different.

In momentum space the discussion is roughly the same, but now the extrema along the

LMC curve in Figure 6(b) are those appearing in the disequilibrium, as the Shannon entropy

in momentum space has barely any structure, the extrema being modulated by the Shannon

entropy value, so causing a general increasing tendency.

Previous comments about the LMC complexity measure can be also induced from the

corresponding information plane in Figure 7, subtended by the constituent factors D and L.

In Figure 7(a), the information plane D − L in position space is shown for monoelectronic

and electron pair densities. The respective curves display similar structures regarding the

appearance of local extrema, and a global difference is perceived in the form of a shifting

constant factor. The analogous planeD2−L2, conformed by the square of those quantities for

the monoelectronic density, has been depicted in Figure 7(b). It displays a structure similar

to the previous one; however, one- and two-electron curves become closer. Notice that a

perfect overlap would occur in case of a factorization Γ(~r1, ~r2) = ρ(~r1)ρ(~r2), as obtained

for independent variables. So, deviations from the overlap quantify the mutual information

between the spatial variables ~r1 and ~r2 or, equivalently, the electron correlation. Let us

mention that the information plane D−L in momentum space provides similar information

as the position space one. This is due to the existence of an unstructured factor and a

structured one (D or L, depending on the space considered), but with similar paths along

the corresponding plane, and also similar values and structure of the products DL in both

spaces.
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4 CONCLUSIONS

In this work, a variety of informational measures has been employed in order to perform a

comparative study among atomic one- and two-particle densities. The aim of this analysis is

to better understand the differences between these densities. The information measures em-

ployed for this purpose comprise Shannon entropy, disequilibrium and the LMC complexity

measure.

The Shannon entropy has been calculated for the one-electron and electron-pair densities

in both position and momentum spaces. In position space we found a high resemblance

between both quantities, with a similar extrema structure but a higher value for the two-

particle densities. As expected, a higher uncertainty for the electron-pair density as compared

to the one-electron ones is confirmed. The analysis of their extrema structure has been carried

out in detail. Thus, the Shannon entropy has proved its success when quantifying electronic

configuration properties when applied to the electron-pair densities, providing even more

sensibility to these qualities due to its higher value when compared with its one-electron

alternative. It is worth mentioning that the resulting curves overlap, S(Γ) ∼ 2S(ρ), so

that the electron spatial locations are roughly independent, at least in the atomic case.

In momentum space, the resemblance was considerable as well, although in both one- and

two-electron levels there is bare structure, just a monotonous increase. In this space, the

overlap between both curves also occurs. We can say that the monoelectronic and electron

pair Shannon entropies behave very similarly in position and momentum spaces and that,

in terms of spreading and delocalization, both one- and two-electron densities behave in an

analogous manner in both position and momentum spaces.

The disequilibrium has been quantified in a comparable way for both kind of densities in

both conjugated spaces. In position space, it showed an structure-free monotonous type of

behaviour, much akin to Shannon entropy in momentum space. Even so, a relevant difference

could be observed: the curves for one-electron and electron-pair densities intersect around

Z = 10. For very light systems, the disequilibrium for the two-particle density is below that

of the one-electron density. This is due to the low amount of electron pairs which reduces the

effect of contraction provoked by the nucleus. This occurrence, along with the knowledge that
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disequilibrium quantifies the relative strength of the nuclear attraction towards the electron

cloud, is a measure of the exact point where the electron interaction significantly reduces the

effect of the nuclear contraction. In momentum space, the disequilibrium displays identical

structure of extrema, and roughly the same monotonic behavior as the Shannon entropy in

position space.

The LMC complexity in position space showed the same structure as the Shannon en-

tropy, i.e., the same extrema structure, which means that the exponential entropy is the

dominant factor for the LMC complexity. The spreading effect affects the electron-pair

densities in a more relevant way as the nuclear contraction. Considering the electronic in-

teraction mentioned above and how it affected the disequilibrium, the Shannon-dominated

LMC is another proof of the more predominant effect of the electron interaction in the

two-electron density when compared with the one-electron density. This change to the op-

posite situation in the momentum space, where the disequilibrium causes the appearance of

extrema and Shannon entropy just modulates the structure.

We can conclude that information theoretical measures have been proved successful when

employed to quantify electron-pair densities characteristics. It has been proved the well-

known existing dissimilarities between one-electron and two-electron densities. Some previ-

ous studies, performed by other authors21,23, have been extended to new systems, confirming

known tendencies and finding new ones.

Research lines for future work include the definition of information measures based on

the exchange densities, Eqs. (3) and (4), or the analysis of direct comparative functionals

between the monoelectronic and the electron pair densities. So, it is expected to go beyond

the actual results, based on the comparison of the results provided by each funtional at

both the one- and two-electron levels, namely F (ρ) and F (Γ). Instead, one could consider

quantifiers F (Γ, ρ) of dissimilarity or divergence which, in fact, would quantify electron

correlation or mutual information in case of being non-negative, and vanishing only for

independent variables.
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16. J. C. Angulo and J. Antoĺın, J. Chem. Phys. 128, 164109 (2008).
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Figure 1: Shannon entropy in position space of the monoelectronic and the electron pair

density, S(ρ) and S(Γ) respectively, for neutral atoms with Z = 2− 103; (a) S(ρ) and S(Γ)

vs. Z, (b) 2S(ρ) and S(Γ) vs. Z. Atomic units (a.u.) are used.

Figure 2: Shannon entropy in momentum space of the monoelectronic and the electron pair

density, S(γ) and S(Π) respectively, for neutral atoms with Z = 2− 103; (a) S(γ) and S(Π)

vs. Z, (b) 2S(γ) and S(Π) vs. Z. Atomic units (a.u.) are used.

Figure 3: Shannon entropy sum of the monoelectronic, S(ρ) + S(γ), and the electron pair

density S(Γ) + S(Π), for neutral atoms with Z = 2− 103. Atomic units (a.u.) are used.

Figure 4: Disequilibrium for monoelectronic and electron pair densities, D(ρ) and D(Γ)

respectively, in position space for atomic system with Z = 2− 103. Atomic units (a.u.) are

used.

Figure 5: Disequilibrium for monoelectronic and electron pair densities, D(γ) and D(Π)

respectively, in momentum space for atomic system with Z = 2 − 103. Atomic units (a.u.)

are used.

Figure 6: LMC complexity (CLMC) of the one-electron and the electron-pair densities, in

(a) position and (b) momentum spaces, for systems with nuclear charge Z = 2 − 103, in

logarithmic scale.

Figure 7: Disequilibrium-Shannon information plane, (a) D − L plane for monoelectronic

and electron pair densities, (b) D2 − L2 plane for monoelectronic densities and D − L for

electron pair densities. Atomic units (a.u.) are used.
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Antoĺın, J.C. Angulo
Int. J. Quant. Chem.

24



 1

 10

 100

 0  20  40  60  80  100

S
h
a
n
n
o
n
 
E
n
t
r
o
p
y

Z

One-electron density
Two-electron density

Figure 2a
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Maxima Minima

S(ρ) S(Γ) S(ρ) S(Γ)

3 4

13 13 10 10

20 20 18 18

25 25 24 24

31 32 30 29

38 38 36 36

43 42

50 50 46 46

57 56 54 54

84 84 78 79

89 88 86 86

Table 1: Local extrema of position-space one- and two-particle Shannon entropies, S(ρ) and

S(Γ) respectively, for neutral atoms with nuclear charge Z = 2 − 103. Atomic units (a.u.)

are used.
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Maxima

Valence

System subshell

3 Li 2s1

4 Be 2s2

13 Al 3p1

20 Ca 4s2

25 Mn 3d5

31 Ga 4p1

32 Ge 4p2

38 Sr 5s2

43 Tc 4d5

50 Sn 5p2

56 Ba 6s2

57 La 6s25d1

84 Po 6p4

88 Ra 7s2

89 Ac 7s26d1

Minima

Valence

System subshell

10 Ne 2p6

18 Ar 3p6

24 Cr 4s13d5

29 Cu 4s13d10

30 Zn 4s23d10

36 Kr 4p6

42 Mo 5s14d5

46 Pd 5s04d10

54 Xe 5p6

78 Pt 6s15d9

79 Au 6s15d10

86 Rn 6p6

Table 2: Valence subshell of systems corresponding to the local extrema of Shannon entropy

in position space.
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