Topological minors in bipartite graphs

Camino BALBUENA
Departament de Matemàtica Aplicada III, UPC, Barcelona, Spain
E-mail: m.camino.balbuena@upc.edu
Martín CERA, P. GARCIA-VAZQUEZ
Departamento de Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain E-mail: mcera@us.es, pgvazquez@us.es
Juan Carlos VALENZUELA
Departamento de Matemáticas, Universidad de Cádiz, Algeciras, Spain
E-mail: jcarlos.valenzuela@uca.es

Abstract

For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s and t such that $2 \leq s \leq t, 0 \leq m-s \leq n-t$, and $m+n \leq 2 s+t-1$, we prove that if G has at least $m n-(2(m-s)+n-t)$ edges then it contains a subdivision of the complete bipartite $K_{(s, t)}$ with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with $m n-(2(m-s)+n-t+1)$ edges for this topological Turan type problem.

Key words. bipartite graphs, extremal graph theory, topological minor
MR(2000) Subject Classification 05C35, 05C40

1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are considered. Unless otherwise stated, we follow the book by Diestel (cf. [18]) for terminology and definitions.

Two well-known extensions of the Turán problem (cf. [1]) are the Turán topological problem and the Zarankiewicz problem. The former one consists of estimating the extremal function ex $\left(n, T K_{p}\right)$ which represents the maximum number of edges of a graph on n vertices free of a topological minor $T K_{p}$ of a complete graph on p vertices (see Bollobás' excellent monograph (cf. [4]) devoted to this subject and the contributions on this topic (cf. [5, 9, 14, 19, 20, 22])). The second was stated by Zarankiewicz (cf. [2]) who studied the maximum size of a bipartite graph on (m, n) vertices, denoted by $z(m, n ; s, t)$ that contains no bipartite complete $K_{(s, t)}$ subgraph with s vertices in the m-class and t vertices in the n-class. For a survey of this problem we also refer the reader to Section VI. 2 of the book by Bollobás (cf. [4]). Most of the contributions are bounds for the function $z(m, n ; s, t)$ when s, t are fixed and m, n are much larger than s, t (cf. [6, 7, 12]). Other contributions provide exact values of the extremal function (cf. [10, 13, 23]).

Recent results on some problems involving the existence of a complete bipartite graph or a subdivision of a complete bipartite graph as a subgraph can be found in the literature (cf. [15, 16, 17, $21,24,26,27]$). Böhme et al. (cf. [16]) studied the size of a k-connected graph free of either an induced path of a given length or a subdivision of a complete bipartite graph. Kühn and Osthus (cf. [17]) proved that for any graph H and for every integer s there exists a function $f=f(H, s)$ such that every graph of size at least f contains either a $K_{s, s}$ as a subgraph or an induced subdivision of H. Meyer (cf. [15]) also relates the size of a graph with the property of containing a minor of $K_{s, t}$. Other problems involving the existence of maximum matching in graphs are considered (cf. [26]). And involving the existence of 2 -factors in bipartite graphs and k-factors in regular graphs can be found (cf. [21, 24, 28]).

Combining the topological version of the Turán problem for complete graphs with the Zarankiewicz problem, we introduce the extremal function $t z(m, n ; s, t)$ as a natural extension. The function $t z(m, n ; s, t)$ is defined as the maximum size of $a(m, n)$-bipartite graph free of a topological minor $T K_{(s, t)}$ of a complete bipartite $K_{(s, t)}$ with s vertices in the m-class and t vertices in the n-class. In 1998 Bollobás and Thomason (cf. [8]) proved that the function $e x\left(n ; T K_{p}\right)$ is upper bounded by $c p^{2} n$. From this contribution together with the fact that the example, due to Jung (cf. [3]) and improved by Luczak (cf. [11]), giving a lower bound is a bipartite graph, it follows that the extremal function $t z(m, m ; t, t)$ is asymptotically upper bounded by $c t^{2} n$. The objective of this paper is to obtain exact values for this extremal function $t z(m, n ; s, t)$ and to characterize the corresponding extremal bipartite graphs for infinitely many related values of m, n, s, t. Namely, we determine the exact value of $t z(m, n ; s, t)$ and we characterize the family $T Z(m, n ; s, t)$ of extremal graphs for any values of m, n, s, t
satisfying $2 \leq m-s \leq n-t$ and $m+n \leq 2 s+t-1$.

1.1 Terminology and notations

A subdivision of a graph H is a graph $T H$ obtained from H by replacing the edges of H with internally disjoint paths. The branch vertices of $T H$ are all those vertices that correspond to vertices of H. The complete bipartite graph $K_{(s, t)}$ is said to be a topological minor of a bipartite graph G if $T K_{(s, t)} \subseteq G$.

Given two positive integers, m, n, a bipartite graph G with vertex classes X and Y of cardinalities $|X|=m$ and $|Y|=n$, is denoted by $G=(X, Y)$. The sets of vertices and edges of G are denoted by $V(G)=X \cup Y$ and $E(G)$, respectively, whereas $v(G)$ and $e(G)$ stand for the corresponding cardinalities.

For a bipartite graph $H=(X, Y)$, the degree of a vertex v in the graph H is denoted by $d_{H}(v)$ whereas $\Delta_{X}(H)$ (resp. $\left.\Delta_{Y}(H)\right)$ stand for the maximum degree among vertices in the first class (resp. second class). Thus, $\Delta(H)=\max \left\{\Delta_{X}(H), \Delta_{Y}(H)\right\}$ is the maximum degree of H. Let us consider two subsets of vertices $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\} \subseteq X$ and $\left\{y_{1}, y_{2}, \ldots, y_{p}\right\} \subseteq Y$. Let us denote by $H_{0,0}=H$, $H_{1,0}=H-\left\{x_{1}\right\}, H_{1,1}=H_{1,0}-\left\{y_{1}\right\}$, and for all $i=2, \ldots, p$, let us denoted by $H_{i, i-1}=H_{i-1, i-1}-\left\{x_{i}\right\}$ and $H_{i, i}=H_{i, i-1}-\left\{y_{i}\right\}$. Next we introduce the notion of decreasing sequence of vertices in a bipartite graph $H=(X, Y)$.

Definition 1.1 Given an integer $p \geq 1$ and a bipartite graph $H=(X, Y)$, a subset of vertices of H, $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$, with $\left\{x_{1}, \ldots, x_{p}\right\} \subseteq X$ and $\left\{y_{1}, \ldots, y_{p}\right\} \subseteq Y$, is called a decreasing sequence of H if the following assertions hold:
(i) $d_{H_{i-1, i-1}}\left(x_{i}\right)=\Delta_{X}\left(H_{i-1, i-1}\right)$, for $i=1, \ldots, p$.
(ii) $d_{H_{i, i-1}}\left(y_{i}\right)=\Delta_{Y}\left(H_{i, i-1}\right)$, for $i=1, \ldots, p$.
(iii) For each $i=1, \ldots, p$, either $x_{i} y_{i} \notin E(H)$ or every vertex $y \in V\left(H_{i, i-1}\right) \cap Y$ with degree $d_{H_{i, i-1}}(y)=\Delta_{Y}\left(H_{i, i-1}\right)$ is adjacent to vertex x_{i} in H.

Note that

$$
d_{H_{0,0}}\left(x_{1}\right) \geq d_{H_{1,1}}\left(x_{2}\right) \geq \ldots \geq d_{H_{p-1, p-1}}\left(x_{p}\right) \geq \Delta_{X}\left(H_{p, p}\right)
$$

and

$$
d_{H_{1,0}}\left(y_{1}\right) \geq d_{H_{2,1}}\left(y_{2}\right) \geq \ldots \geq d_{H_{p, p-1}}\left(y_{p}\right) \geq \Delta_{Y}\left(H_{p, p}\right)
$$

and furthermore,

$$
e(H)=\sum_{i=1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) .
$$

2 Exact values

Let G be a bipartite graph $G=(X, Y)$ on m and n vertices in X and Y respectively. We will henceforth use H to denote the bipartite complement of G, i.e., the bipartite graph $H=(X, Y)=K_{(m, n)}-E(G)$.

The problem of finding a $T K_{(s, t)}$ in a bipartite graph G can be formulated in terms of its bipartite complement H. Indeed, if $G=(X, Y)$ contains a $T K_{(s, t)}$ with set of branch vertices $S \cup T, S \subset X$, $T \subset Y$, then the edges of the graph $H[S \cup T]$ are missing in G and thus they must be replaced in G with internally disjoint paths passing through vertices of $X \backslash S$ and vertices of $Y \backslash T$. Since each of these paths must have odd length at least 3, it follows that $e(H[S \cup T]) \leq \min \{|X \backslash S|,|Y \backslash T|\}$. Hence, the following necessary but not sufficient condition on the induced subgraph $H[S \cup T]$ in order to determine whether $K_{(s, t)}$ is a topological minor of G is immediate.

Remark 2.1 Let $G=(X, Y)$ be with $|X|=m$ and $|Y|=n$ and let H be the bipartite complement of G. If G contains a $T K_{(s, t)}$, then there exist $S \subseteq X$ and $T \subseteq Y$ with $|S|=s,|T|=t$, such that the number of edges of the subgraph induced by $S \cup T$ in the bipartite complement of G satisfies

$$
e(H[S \cup T]) \leq \min \{m-s, n-t\}
$$

Next, we obtain a lower bound on the maximum size of a (m, n)-bipartite graph free of a topological minor $T K_{(s, t)}$ of $K_{(s, t)}$.

Proposition 2.1 Let m, n, s, t be integers such that $2 \leq s \leq t, 0 \leq m-s \leq n-t$, and $m+n \leq 2 s+t-1$. Then the bipartite graph $G=K_{(m, n)}-M$, where M is any matching of cardinality $2(m-s)+n-t+1$, does not contain $T K_{(s, t)}$ and therefore,

$$
t z(m, n ; s, t) \geq m n-(2(m-s)+n-t+1) .
$$

Proof First, let us see that $K_{(m, n)}$ has a matching of cardinality $2(m-s)+n-t+1$. This is clear because from $2 \leq s \leq t$ and $0 \leq m-s \leq n-t$, it follows that $m \leq n$, and from the hypothesis
$m+n \leq 2 s+t-1$ it follows that $2(m-s)+n-t+1=(m+n)+m-2 s-t+1 \leq m \leq n$. Therefore, we may consider the bipartite graph $G=(X, Y)=K_{(m, n)}-M$ where M is a matching of cardinality $2(m-s)+n-t+1$ in $K_{(m, n)}$. Next let us see that $K_{(s, t)}$ is not a topological minor of G. For that, from Remark 2.1 it is enough to prove that $e(H[S \cup T])>m-s$ for any subsets $S \subseteq X$ and $T \subseteq Y$ of cardinalities s and t, respectively, with $s \leq t$. Observe that the number of isolated vertices in the class Y of H is exactly $n-(2(m-s)+n-t+1)$. It follows that the number of edges of $H[X \cup T]$ is

$$
e(H[X \cup T]) \geq t-(n-(2(m-s)+n-t+1))=2 m-2 s+1
$$

But since $e(H[(X \backslash S) \cup T]) \leq m-s$, then we have

$$
\begin{aligned}
e(H[S \cup T]) & =e(H[X \cup T])-e(H[(X \backslash S) \cup T]) \\
& \geq 2 m-2 s+1-(m-s) \\
& =m-s+1>m-s
\end{aligned}
$$

Thus the result holds.

Lemma 2.1 Let $p \geq 1$ be an integer and let $G=(X, Y)$ be a bipartite graph, with $|X| \geq p$ and $|Y| \geq p$, and denote by $H=(X, Y)$ the bipartite complement of G. Let $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ be any decreasing sequence of H and denote by $r=e\left(H_{p, p}\right)$. If $r \geq 1$ and $e(H) \leq 3 p$, then:
(i) $r \leq p$.
(ii) $\Delta\left(H_{p, p}\right)=1$.
(iii) $\left\{x_{p-(r-1)} y_{p-(r-1)}, \ldots, x_{p} y_{p}\right\} \cap E(H)=\emptyset$.
(iv) $\left\{a y_{p-(r-1)}, \ldots, a y_{p}\right\} \cap E(H)=\emptyset$, for each $a \in X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ of degree $d_{H_{p, p}}(a)=1$.
(v) If $r \geq 2$, then $\left\{x_{p-(r-2)} b, \ldots, x_{p} b\right\} \cap E(H)=\emptyset$, for each $b \in Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$ of degree $d_{H_{p, p}}(b)=$ 1.

Proof Since $e\left(H_{p, p}\right)=r \geq 1$ we deduce $\Delta_{X}\left(H_{p, p}\right) \geq 1, \Delta_{Y}\left(H_{p, p}\right) \geq 1$, following that $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq$ 1 and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$, and therefore

$$
e\left(H_{p, p}\right)=e(H)-\sum_{i=1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right) \leq 3 p-2 p=p
$$

thus item (i) is proved.

If $\Delta_{X}\left(H_{p, p}\right) \geq 2$, then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 2$ for each $i=1, \ldots, p$, hence,

$$
e(H)=\sum_{i=1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \geq 3 p+r>3 p
$$

which is a contradiction. Analogously, we arrive at a contradiction if $\Delta_{Y}\left(H_{p, p}\right) \geq 2$. Thus, $\Delta_{X}\left(H_{p, p}\right)=$ $\Delta_{Y}\left(H_{p, p}\right)=1$, which implies $\Delta\left(H_{p, p}\right)=1$, hence item (ii) is shown.
(iii) Let us denote the edges of $H_{p, p}$ by $e_{1}=a_{1} b_{1}, \ldots, e_{r}=a_{r} b_{r}, a_{i} \in X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ and $b_{i} \in$ $Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$, for $i=1, \ldots, r$. By item (i) we know that $r \leq p$. We reason by way of contradiction supposing that there exists $j \in\{0, \ldots, r-1\}$ such that $x_{p-j} y_{p-j} \in E(H)$. First we claim that $d_{H_{p-j, p-j-1}}\left(y_{p-j}\right)=1$. Otherwise, if $d_{H_{p-j, p-j-1}}\left(y_{p-j}\right) \geq 2$ then $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$, for $i=1, \ldots, p-j$ and therefore, by (ii) we have

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-j}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\sum_{i=p-j+1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 3(p-j)+2 j+r \\
& =3 p+(r-j) \\
& >3 p
\end{aligned}
$$

the last inequality due to the fact that $j \leq r-1$. Since this is a contradiction with the hypothesis, then $\Delta_{Y}\left(H_{p-j, p-j-1}\right)=d_{H_{p-j, p-j-1}}\left(y_{p-j}\right)=1$, yielding to $d_{H_{i, i-1}}\left(y_{i}\right)=1$, for $i=p-j, \ldots, p$ and $d_{H_{p, p}}\left(b_{i}\right)=1$, for $i=1, \ldots, r$. As $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ is a decreasing sequence of H, it follows that x_{p-j} is adjacent in H to each one of the vertices of the set $\left\{y_{p-j}, \ldots, y_{p}, b_{1}, \ldots, b_{r}\right\}$ because of point (iii) of Definition 1.1. That is, $d_{H_{p-j-1, p-j-1}}\left(x_{p-j}\right) \geq j+1+r$, which means that $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq j+1+r \geq 2$, for $i=1, \ldots, p-j$ and therefore,

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-j}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\sum_{i=p-j+1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 3(p-j)+2 j+r=3 p+(r-j)>3 p
\end{aligned}
$$

again a contradiction. Thus $x_{p-j} y_{p-j} \notin E(H)$ for all $j \in\{0, \ldots, r-1\}$, hence item (iii) is valid.
(iv) Note that $r \geq 1$ implies $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. We reason by way of contradiction supposing that there exists $j \in\{0, \ldots, r-1\}$ such that $a y_{p-j} \in E(H)$ for a vertex $a \in X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ of degree $d_{H_{p, p}}(a)=1$. Then $d_{H_{p-j-1, p-j-1}}(a) \geq 2$ and hence, $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 2$,
for $i=1, \ldots, p-j$. Thus,

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-j}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\sum_{i=p-(j-1)}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 3(p-j)+2 j+r=3 p+(r-j)>3 p
\end{aligned}
$$

because $j \leq r-1$, against the hypothesis.
(v) Since $r \geq 2$ then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. We reason by way of contradiction supposing that there exists $j \in\{0, \ldots, r-2\}$ such that $x_{p-j} b \in E(H)$ for a vertex $b \in Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$ of degree $d_{H_{p, p}}(b)=1$. Then $d_{H_{p-j-1, p-j-2}}(b) \geq 2$ and hence, $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$, for $i=1, \ldots, p-j-1$. Thus,

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-j-1}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\sum_{i=p-j}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 3(p-j-1)+2(j+1)+r=3 p+(r-j-1)>3 p,
\end{aligned}
$$

because $j \leq r-2$, again a contradiction.

Lemma 2.2 Let $p \geq 2$ be an integer. Let $G=(X, Y)$ be a bipartite graph with $|X| \geq p$ and $|Y| \geq p$, and denote by $H=(X, Y)$ the bipartite complement of G. Suppose that there exists a decreasing sequence of vertices $U=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ of H such that $E\left(H_{p, p}\right)=\{a b\}$ with $a \in X$ and $b \in Y$. If $e(H) \leq 3 p$ then there exists an (a, b)-path in G with its internal vertices belonging to U.

Proof Since $E\left(H_{p, p}\right)=\{a b\}$, then $\Delta_{X}\left(H_{p, p}\right)=\Delta_{Y}\left(H_{p, p}\right)=1$, which implies that $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. If G contains the path a, y_{p}, x_{p}, b, then we are done. So assume that some of the edges $a y_{p}, x_{p} y_{p}, x_{p} b$ is an edge of H. We know by Lemma 2.1 (iii) that $x_{p} y_{p} \notin E(H)$. If $a y_{p} \in E(H)$, then $d_{H_{p-1, p-1}}(a) \geq 2$, because $\left\{a y_{p}, a b\right\} \subset E\left(H_{p-1, p-1}\right)$. Then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 2$ and we get

$$
e(H)=\sum_{i=1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \geq 3 p+1
$$

which is a contradiction. Therefore we can suppose that $x_{p} b \in E(H)$ and $a y_{p} \notin E(H)$. Then $\left\{x_{p} b, a b\right\} \subset E\left(H_{p-1, p-2}\right)$, following that $d_{H_{p-1, p-2}}(b) \geq 2$, which implies that $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$, for $i=1, \ldots, p-1$. Since $d_{H_{p, p-1}}\left(y_{p}\right) \geq 1$ and $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ for $i=1, \ldots, p$, it follows that

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-1}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\left(d_{H_{p-1, p-1}}\left(x_{p}\right)+d_{H_{p, p-1}}\left(y_{p}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 3(p-1)+2+1=3 p
\end{aligned}
$$

This means that all the above inequalities become equalities, that is,

$$
\left\{\begin{array}{l}
d_{H_{i, i-1}}\left(y_{i}\right)=2, \text { for } i=1, \ldots, p-1, \text { and } d_{H_{p, p-1}}\left(y_{p}\right)=1 \tag{1}\\
d_{H_{i-1, i-1}}\left(x_{i}\right)=1, \text { for } i=1, \ldots, p
\end{array}\right.
$$

Therefore we obtain that:

- $x_{p} y_{p-1} \notin E(H)$, because otherwise, $\left\{x_{p} b, x_{p} y_{p-1}\right\} \subset E\left(H_{p-2, p-2}\right)$ and thus, $d_{H_{p-2, p-2}}\left(x_{p-1}\right)=$ $\Delta_{X}\left(H_{p-1, p-1}\right) \geq 2$, contradicting (1).
- $x_{p-1} b \notin E(H)$, for if not, $\left\{x_{p-1} b, x_{p} b, a b\right\} \subset E\left(H_{p-2, p-3}\right)$ and hence, $d_{H_{p-2, p-3}}\left(y_{p-2}\right)=$ $\Delta_{Y}\left(H_{p-2, p-3}\right) \geq 3$, against (1).
- $x_{p-1} y_{p-1} \notin E(H)$, because otherwise, $d_{H_{p-2, p-3}}\left(y_{p-1}\right) \geq 3$ and therefore, $d_{H_{p-2, p-3}}\left(y_{p-2}\right) \geq 3$, contradicting (1).

Thus, it follows that $\left\{a y_{p}, x_{p} y_{p}, x_{p} y_{p-1}, x_{p-1} y_{p-1}, x_{p-1} b\right\} \cap E(H)=\emptyset$. Consequently, there exists in G the path $a, y_{p}, x_{p}, y_{p-1}, x_{p-1}, b$, hence the result holds.

Lemma 2.3 Let m, n, p be integers such that $p \geq 2, m>p$ and $n>p$. Let $G=(X, Y)$ be a bipartite graph with $|X|=m$ and $|Y|=n$, and denote by $H=(X, Y)$ the bipartite complement of G. If $e(H) \leq 3 p$, then $K_{(m-p, n-p)}$ is a topological minor of G.

Proof Let $U=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ be a decreasing sequence of H. The graph $H_{p, p}$ is a bipartite graph with vertex classes $X^{*}=X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ and $Y^{*}=Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$, so $\left|X^{*}\right|=m-p$ and $\left|Y^{*}\right|=n-p$. If $e\left(H_{p, p}\right)=0$ then the bipartite complement of $H_{p, p}$ is $K_{(m-p, n-p)}$ and the result follows. We may henceforth assume that $e\left(H_{p, p}\right)>0$, or in other words $\Delta_{X}\left(H_{p, p}\right) \geq 1$ and $\Delta_{Y}\left(H_{p, p}\right) \geq 1$, thus $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. Then by Lemma 2.1 we have $e\left(H_{p, p}\right)=r \leq p$ and $\Delta\left(H_{p, p}\right)=1$. Let us denote the edges of $H_{p, p}$ by $e_{1}=a_{1} b_{1}, \ldots, e_{r}=a_{r} b_{r}, a_{i} \in X^{*}$ and $b_{i} \in Y^{*}$, for $i=1, \ldots, r$. In order to prove that G contains $T K_{(m-p, n-p)}$ with set of branch vertices $X^{*} \cup Y^{*}$, we will show the existence of vertex disjoint $\left(a_{i}, b_{i}\right)$-paths in $G, i=1, \ldots, r$, with internal vertices from U. As $e(H) \leq 3 p$, if $r=1$ then the bipartite complement of $H_{p, p}$ is $K_{m-p, n-p}-e_{1}$. Thus, by Lemma 2.2, the bipartite graph G contains $T K_{m-p, n-p}$ and we are done. Hence assume that $2 \leq r \leq p$, then by Lemma $2.1(i i i),(i v),(v)$, for each $i=1, \ldots, r$ and $j=0, \ldots, r-2$, there exists in G the path $a_{i}, y_{p-j}, x_{p-j}, b_{i}$. Thus, we only must show that there exists $i \in\{1, \ldots, r\}$ such that
the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ is contained in G. Otherwise, since $x_{p-(r-1)} y_{p-(r-1)} \in E(G)$ and $a_{i} y_{p-(r-1)} \in E(G)$ for all $i=1, \ldots, r$, because of Lemma 2.1, we deduce that $x_{p-(r-1)} b_{i} \in E(H)$ for all $i=1, \ldots, r$, that is, $d_{H_{p-r, p-r}}\left(x_{p-(r-1)}\right) \geq r$ and therefore, $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq r$ for $i=1, \ldots, p-(r-1)$. Then since $2 \leq r \leq p$ it follows that

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-(r-1)}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\sum_{i=p-(r-2)}^{p}\left(d_{H_{i-1, i-1}}\left(i_{k}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq(r+1)(p-(r-1))+2(r-1)+r \\
& =3 p+1+(r-2)(p-r+1) \\
& >3 p
\end{aligned}
$$

which is a contradiction. Hence there exists $i \in\{1, \ldots, r\}$ such that the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ is contained in G. Without loss of generality we may assume that $i=r$. Then there exist in G the vertex-disjoint paths $a_{j}, y_{p-(j-1)}, x_{p-(j-1)}, b_{j}$ for $j=1, \ldots, r$. Thus, G contains $T K_{(m-p, n-p)}$ and this finishes the proof.

The following lemma gives a sufficient condition on the size of a bipartite graph in order to contain a complete bipartite graph as a topological minor.

Lemma 2.4 Let m, n, s, t be integers such that $2 \leq m-s \leq n-t$. Let $G=(X, Y)$ be a bipartite graph with $|X|=m,|Y|=n$. If the bipartite complement H of G has size $e(H) \leq 2(m-s)+n-t$, then $K_{(s, t)}$ is a topological minor of G.

Proof Set $p=m-s$ and $q=n-t$, then $2 \leq p \leq q$ and $e(H) \leq 2 p+q$. First, suppose that $p=q$. Thus the bipartite graph H has size at most $3 p$, and by Lemma 2.3, we obtain that $K_{(m-p, n-p)}=K_{(s, t)}$ is a topological minor of G. Hence, assume that $p<q$. Without loss of generality, we may assume that the vertices of the partite set Y are ordered in such a way that $d_{H}\left(y_{1}\right) \geq d_{H}\left(y_{2}\right) \geq \cdots \geq d_{H}\left(y_{n}\right)$. Set $Y^{\prime}=\left\{y_{1}, \ldots, y_{q-p}\right\} \subseteq Y$ and let us consider the bipartite graph $H^{\prime}=\left(X, Y \backslash Y^{\prime}\right)$. Observe that $|X|=m$ and $\left|Y \backslash Y^{\prime}\right|=n-(q-p)=t+p$. If $e\left(H^{\prime}\right)=0$ then the bipartite complement G^{\prime} of H^{\prime} is the complete bipartite graph $K_{(m, t+p)}$. Since G^{\prime} is a subgraph of G and $K_{(s, t)} \subseteq K_{(m, t+p)}$, then G contains a $K_{(s, t)}$ and we are done. So, we may assume that $e\left(H^{\prime}\right)>0$, which implies that $d_{H}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, q-p$. Hence, $e\left(H^{\prime}\right)=e(H)-\sum_{i=1}^{q-p} d_{H}\left(y_{i}\right) \leq 2 p+q-(q-p) \leq 3 p$, and therefore, from Lemma 2.3, it follows that $K_{(m-p, t+p-p)}=K_{(s, t)}$ is a topological minor of G.

Combining Proposition 2.1 and Lemma 2.4 the following theorem is immediate.

Theorem 2.1 Let m, n, s, t be integers such that $2 \leq s \leq t, 2 \leq m-s \leq n-t$, and $m+n \leq 2 s+t-1$. Then

$$
t z(m, n ; s, t)=m n-(2(m-s)+n-t+1) .
$$

3 Family of extremal graphs

Lemma 3.1 Let $p \geq 2$ be an integer and let $G=(X, Y)$ be a bipartite graph with $|X| \geq p$ and $|Y| \geq p$, and denote by $H=(X, Y)$ the bipartite complement of G. Let $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ be any decreasing sequence of H and denote by $r=e\left(H_{p, p}\right)$. If $e(H) \leq 3 p+1$ and $\Delta_{X}(H) \geq 2$ then
(i) $r \leq p$.
(ii) $\Delta\left(H_{p, p}\right) \leq 1$.
(iii) If $r=1$ then $\left\{x_{p-(r-1)} y_{p-(r-1)}, \ldots, x_{p} y_{p}\right\} \cap E(H)=\emptyset$.
(iv) If $r \geq 2$ then $\left\{a y_{p-(r-2)}, \ldots, a y_{p}\right\} \cap E(H)=\emptyset$, for each $a \in X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ of degree $d_{H_{p, p}}(a)=$ 1, if any.
(v) If $r \geq 2$ then $\left\{x_{p-(r-2)} b, \ldots, x_{p} b\right\} \cap E(H)=\emptyset$, for each $b \in Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$ of degree $d_{H_{p, p}}(b)=1$, if any.

Proof If $e\left(H_{p, p}\right)=r=0$, then both items (i) and (ii) hold. Hence we may assume that $0<r=$ $e\left(H_{p, p}\right) \leq 3 p+1$, which implies $\Delta_{X}\left(H_{p, p}\right) \geq 1, \Delta_{Y}\left(H_{p, p}\right) \geq 1$, following that $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ for $i=2, \ldots, p$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. Moreover, $d_{H_{0,0}}\left(x_{1}\right) \geq 2$, because $\Delta_{X}(H) \geq 2$. Therefore
$e\left(H_{p, p}\right)=e(H)-\left(d_{H_{0,0}}\left(x_{1}\right)+d_{H_{1,0}}\left(y_{1}\right)\right)-\sum_{i=2}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right) \leq 3 p+1-3-2(p-1)=p$, thus item (i) is proved.

If $\Delta_{X}\left(H_{p, p}\right) \geq 2$, then $e\left(H_{p, p}\right) \geq 2$ and $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 2$ for each $i=1, \ldots, p$, hence,

$$
e(H)=\sum_{i=1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \geq 3 p+e\left(H_{p, p}\right) \geq 3 p+2>3 p+1
$$

which is a contradiction. Analogously, we arrive at a contradiction if $\Delta_{Y}\left(H_{p, p}\right) \geq 2$. Thus, $\Delta_{X}\left(H_{p, p}\right)=$ $\Delta_{Y}\left(H_{p, p}\right)=1$, which implies $\Delta\left(H_{p, p}\right)=1$, hence item (ii) is shown.
(iii) From item (i) it follows that $r \leq p$. Let us denote the edges of $H_{p, p}$ by $e_{1}=a_{1} b_{1}, \ldots, e_{r}=$ $a_{r} b_{r}, a_{i} \in X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ and $b_{i} \in Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$, for $i=1, \ldots, r$. Since $e\left(H_{p, p}\right)=r \geq 1$, then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. We reason by way of contradiction supposing that there exists $j \in\{0, \ldots, r-1\}$ such that $x_{p-j} y_{p-j} \in E(H)$. Then $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$ for $i=1, \ldots, p-j-1$, because $d_{H_{p-j, p-j-1}}\left(y_{p-j}\right) \geq 1$ and $x_{p-j} y_{p-j} \in E(H)$. We have two cases:

Case 1. Assume that $d_{H_{p-j, p-j-1}}\left(y_{p-j}\right) \geq 2$, then $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$ for $i=1, \ldots, p-j$. Since $d_{H_{0,0}}\left(x_{1}\right)=\Delta_{X}(H) \geq 2$ and $j \leq r-1$ it follows that

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-j}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\sum_{i=p-(j-1)}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 4+3(p-j-1)+2 j+r \\
& =3 p+1+(r-j) \\
& >3 p+1
\end{aligned}
$$

which is a contradiction.
Case 2. Assume that $d_{H_{p-j, p-j-1}}\left(y_{p-j}\right)=1$, then $d_{H_{i, i-1}}\left(y_{i}\right)=1$, for $i=p-j, \ldots, p$. Moreover, $d_{H_{p, p}}\left(b_{i}\right)=1$, for $i=1, \ldots, r$, because $\Delta\left(H_{p, p}\right)=1$. As $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ is a decreasing sequence of H and $x_{p-j} y_{p-j} \in E(H)$, it follows that x_{p-j} is adjacent in H to each one of the vertices of the set $\left\{y_{p-j}, \ldots, y_{p}, b_{1}, \ldots, b_{r}\right\}$ because of point (iii) of Definition 1.1. That is, $d_{H_{p-j-1, p-j-1}}\left(x_{p-j}\right) \geq$ $j+1+r$, which means that $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq j+1+r$ for $i=1, \ldots, p-j$. If $j=0$ then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1+r$ for $i=1, \ldots, p$, and therefore

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-1}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\left(d_{H_{p-1, p-1}}\left(x_{p}\right)+d_{H_{p, p-1}}\left(y_{p}\right)\right)+e\left(H_{p, p}\right) \\
& \geq(3+r)(p-1)+(r+2)+r \\
& =3 p+1+r(p+1)-2>3 p+1
\end{aligned}
$$

because $r \geq 1$ and $p \geq 2$, which is a contradiction. If $j=r-1$ then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq j+1+r=2 r$ for
$i=1, \ldots, p-(r-1)$, and therefore

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-r}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\left(d_{H_{p-r, p-r}}\left(x_{p-(r-1)}\right)+d_{H_{p-(r-1), p-r}}\left(y_{p-(r-1)}\right)\right) \\
& +\sum_{i=p-(r-2)}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq(2 r+2)(p-r)+(2 r+1)+2(r-1)+r \\
& =3 p+1+\left(2 r p-2 r^{2}-p+3 r-2\right) \\
& \geq 3 p+1+(p-1) \\
& >3 p+1
\end{aligned}
$$

because $p \geq 2$, which also contradicts the hypothesis. Finally, if $1 \leq j \leq r-2$ then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq$ $j+1+r \geq 3$ for $i=1, \ldots, p-j$, and therefore

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-j-1}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\left(d_{H_{p-j-1, p-j-1}}\left(x_{p-j}\right)+d_{H_{p-j, p-j-1}}\left(y_{p-j}\right)\right) \\
& +\sum_{i=p-(j-1)}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 5(p-j-1)+4+2 j+r \\
& =3 p+1+(2 p-3 j-2+r) \\
& \geq 3 p+1+(3 r-3 j-2)>3 p+1
\end{aligned}
$$

because $p \geq r$ and $j \leq r-2$, again a contradiction.

Thus $x_{p-j} y_{p-j} \notin E(H)$ for all $j \in\{0, \ldots, r-1\}$, hence item (iii) is valid.
(iv) Assume $e\left(H_{p, p}\right)=r \geq 2$. Then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. We reason by way of contradiction supposing that there exists $j \in\{0, \ldots, r-2\}$ such that $a y_{p-j} \in E(H)$ for a vertex $a \in X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ of degree $d_{H_{p, p}}(a)=1$. Then $d_{H_{p-j-1, p-j-1}}(a) \geq 2$ and hence, $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 2$, for $i=1, \ldots, p-j$. Thus,

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{p-j}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+\sum_{i=p-(j-1)}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 3(p-j)+2 j+r=3 p+(r-j)>3 p+1
\end{aligned}
$$

because $j \leq r-2$, against the hypothesis.
(v) Assume $e\left(H_{p, p}\right)=r \geq 2$. Then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. Moreover, $d_{H_{0,0}}\left(x_{1}\right) \geq 2$, due to the fact that $\Delta_{X}(H) \geq 2$. We reason by way of contradiction supposing that
there exists $j \in\{0, \ldots, r-2\}$ such that $x_{p-j} b \in E(H)$ for a vertex $b \in Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$ of degree $d_{H_{p, p}}(b)=1$. Then $d_{H_{p-j-1, p-j-2}}(b) \geq 2$ and hence, $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$, for $i=1, \ldots, p-j-1$. Thus,

$$
\begin{aligned}
e(H) & =\left(d_{H_{0,0}}\left(x_{1}\right)+d_{H_{1,0}}\left(y_{1}\right)\right)+\sum_{i=2}^{p-j-1}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right) \\
& +\sum_{i=p-j}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 4+3(p-j-2)+2(j+1)+r=3 p+(r-j)>3 p+1
\end{aligned}
$$

because $j \leq r-2$, again a contradiction.

Lemma 3.2 Let $p \geq 4$ be an integer. Let $G=(X, Y)$ be a bipartite graph with $|X| \geq p$ and $|Y| \geq p$, and denote by $H=(X, Y)$ the bipartite complement of G. Suppose that $\Delta_{X}(H) \geq 2$ and there exists a decreasing sequence of vertices $U=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ of H such that $E\left(H_{p, p}\right)=\{a b\}$ with $a \in X$ and $b \in Y$. If $e(H) \leq 3 p+1$ then there exists an (a, b)-path in G with its internal vertices belonging to U.

Proof Assume that $e(H) \leq 3 p+1$. Note that $d_{H_{0,0}}\left(x_{1}\right)=\Delta_{X}(H) \geq 2$. Since $E\left(H_{p, p}\right)=\{a b\}$, then $\Delta_{X}\left(H_{p, p}\right)=\Delta_{Y}\left(H_{p, p}\right)=1$, which implies that $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. If G contains the path a, y_{p}, x_{p}, b, then we are done. So assume that some of the edges $a y_{p}, x_{p} y_{p}, x_{p} b$ is an edge of H. We know by Lemma 3.1 that $x_{p} y_{p} \notin E(H)$. So, let us distinguish two cases.

Case 1. Suppose that $a y_{p} \in E(H)$. Then $d_{H_{p-1, p-1}}(a) \geq 2$, because $a b \in E(H)$. Then $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 2$ and we get

$$
e(H)=\sum_{i=1}^{p}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right)+e\left(H_{p, p}\right) \geq 3 p+1 \geq e(H)
$$

Thus, all the inequalities become equalities, that is,

$$
\begin{equation*}
d_{H_{i-1, i-1}}\left(x_{i}\right)=2 \text { and } d_{H_{i, i-1}}\left(y_{i}\right)=1, \text { for } i=1, \ldots, p \tag{2}
\end{equation*}
$$

Hence, we obtain that:

- $x_{p-1} y_{p-1} \notin E(H)$. Otherwise, since $\Delta_{Y}\left(H_{p-1, p-2}\right)=d_{H_{p-1, p-2}}\left(y_{p-1}\right)=1$ and both y_{p} and b have also degree 1 in $H_{p-1, p-2}$, applying point (iii) of Definition 1.1, it follows that $\left\{x_{p-1} y_{p-1}, x_{p-1} y_{p}, x_{p-1} b\right\} \subset E(H)$ and therefore, $d_{H_{p-2, p-2}}\left(x_{p-1}\right) \geq 3$, which contradicts (2).
- $a y_{p-1} \notin E(H)$, because otherwise, $d_{H_{p-2, p-2}}\left(x_{p-1}\right)=\Delta_{X}\left(H_{p-2, p-2}\right) \geq d_{H_{p-2, p-2}}(a) \geq 3$, contradicting (2).
- $x_{p-1} b \notin E(H)$, for if not, $d_{H_{p-2, p-3}}\left(y_{p-2}\right)=\Delta_{Y}\left(H_{p-2, p-3}\right) \geq d_{H_{p-2, p-3}}(b) \geq 2$, against (2).

As a consequence, we get that the path a, y_{p-1}, x_{p-1}, b of G connects the vertices a and b.
Case 2. Suppose that $x_{p} b \in E(H)$ and $a y_{p} \notin E(H)$. Thus, $d_{H_{p-1, p-2}}\left(y_{p}\right) \geq 2$, which implies that $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$, for $i=1, \ldots, p-1$. Since $d_{H_{p, p-1}}\left(y_{p}\right) \geq 1, d_{H_{0,0}}\left(x_{1}\right) \geq 2$ and $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ for $i=2, \ldots, p$, it follows that

$$
\begin{aligned}
e(H) & =\left(d_{H_{0,0}}\left(x_{1}\right)+d_{H_{1,0}}\left(y_{1}\right)\right)+\sum_{i=2}^{p-1}\left(d_{H_{i-1, i-1}}\left(x_{i}\right)+d_{H_{i, i-1}}\left(y_{i}\right)\right) \\
& +\left(d_{H_{p-1, p-1}}\left(x_{p}\right)+d_{H_{p, p-1}}\left(y_{p}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 4+3(p-2)+2+1=3 p+1=e(H)
\end{aligned}
$$

which means that all the above inequalities become equalities, that is,

$$
\left\{\begin{array}{l}
d_{H_{0,0}}\left(x_{1}\right)=2 \text { and } d_{H_{i-1, i-1}}\left(x_{i}\right)=1 \text { for } i=2, \ldots, p \tag{3}\\
d_{H_{i, i-1}}\left(y_{i}\right)=2 \text { for } i=1, \ldots, p-1, \text { and } d_{H_{p, p-1}}\left(y_{p}\right)=1
\end{array}\right.
$$

Therefore, we have:

- $x_{p-1} b \notin E(H)$, because on the contrary, $d_{H_{p-2, p-3}}\left(y_{p-2}\right)=\Delta_{Y}\left(H_{p-2, p-3}\right) \geq d_{H_{p-2, p-3}}(b) \geq 3$ against (3).
- $x_{p} y_{p-1} \notin E(H)$, for if not, $d_{H_{p-3, p-3}}\left(x_{p-2}\right)=\Delta_{X}\left(H_{p-3, p-3}\right) \geq d_{p-3, p-3}\left(x_{p}\right) \geq 2$ and this contradicts (3), since $p \geq 4$.
- $x_{p-1} y_{p-1} \notin E(H)$, because otherwise, taking into account that $d_{H_{p-1, p-2}}\left(y_{p-1}\right)=2$, we have $d_{H_{p-2, p-3}}\left(y_{p-2}\right)=\Delta_{Y}\left(H_{p-2, p-3}\right) \geq d_{H_{p-2, p-3}}\left(y_{p-1}\right) \geq 3$, contradicting (3).

Thus, in this case, it follows that $\left\{a y_{p}, x_{p} y_{p}, x_{p} y_{p-1}, x_{p-1} y_{p-1}, x_{p-1} b\right\} \cap E(H)=\emptyset$. Consequently, there exists in G the path $a, y_{p}, x_{p}, y_{p-1}, x_{p-1}, b$, and the result also holds in this case.

Lemma 3.3 Let m, n, p be integers such that $p \geq 4, m>p$ and $n>p$. Let $G=(X, Y)$ be a bipartite graph with $|X|=m$ and $|Y|=n$, and denote by $H=(X, Y)$ the bipartite complement of G. If $\Delta(H) \geq 2$ and $e(H) \leq 3 p+1$, then $K_{(m-p, n-p)}$ is a topological minor of G.

Proof Without loss of generality we may assume that $\Delta(H)=\Delta_{X}(H)$ (otherwise it is enough to interchange the classes X with $Y)$. Let $U=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{p}, y_{p}\right\}$ be a decreasing sequence of H. The graph $H_{p, p}$ is a bipartite graph with vertex classes $X^{*}=X \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ and $Y^{*}=Y \backslash\left\{y_{1}, \ldots, y_{p}\right\}$, so $\left|X^{*}\right|=m-p$ and $\left|Y^{*}\right|=n-p$. If $e\left(H_{p, p}\right)=0$ then the bipartite complement of $H_{p, p}$ is $K_{(m-p, n-p)}$ and the result follows. So, we may henceforth assume that $e\left(H_{p, p}\right) \geq 1$ or in other words, $\Delta_{X}\left(H_{p, p}\right) \geq 1$ and $\Delta_{Y}\left(H_{p, p}\right) \geq 1$, thus $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 1$ and $d_{H_{i, i-1}}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, p$. Then by Lemma 3.1 we have $e\left(H_{p, p}\right)=r \leq p$ and $\Delta\left(H_{p, p}\right)=1$. Let us denote the edges of $H_{p, p}$ by $e_{1}=a_{1} b_{1}, \ldots, e_{r}=a_{r} b_{r}$, $a_{i} \in X^{*}$ and $b_{i} \in Y^{*}$, for $i=1, \ldots, r$. In order to prove that G contains a $T K_{(m-p, n-p)}$ with set of branch vertices $X^{*} \cup Y^{*}$, we will show the existence of vertex disjoint $\left(a_{i}, b_{i}\right)$-paths in $G, i=1, \ldots, r$, with internal vertices in U. As $e(H) \leq 3 p+1$, we are done if $r=1$ by applying Lemma 3.2 , hence assume that $2 \leq r \leq p$.

First, suppose that $2 \leq r \leq p-1$. Then, by Lemma $3.1(i i i),(i v),(v)$, for each $i=1, \ldots, r$ and $j=0, \ldots, r-2$, there exists in G the path $a_{i}, y_{p-j}, x_{p-j}, b_{i}$. Thus, we only must show that there exists $i \in\{1, \ldots, r\}$ such that the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ is contained in G. We reason by way of contradiction supposing that for all $i=1, \ldots, r$ the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ does not exist in G. From Lemma 3.1 it follows that $x_{p-(r-1)}, y_{p-(r-1)} \in E(G)$, thus $a_{i} y_{p-(r-1)} \in E(H)$ or $x_{p-(r-1)} b_{i} \in E(H)$ for each $i=1, \ldots, r$. We will distinguish three possible cases:

Case 1. Assume that $x_{p-(r-1)} b_{i} \in E(H)$ for all $i=1, \ldots, r$, then $d_{H_{p-r, p-r}}\left(x_{p-(r-1)}\right) \geq r$ and thus, $d_{H_{j-1, j-1}}\left(x_{j}\right) \geq r$ for $j=1, \ldots, p-(r-1)$. Moreover, $d_{H_{p-r, p-(r+1)}}\left(y_{p-r}\right)=\Delta_{Y}\left(H_{p-r, p-(r+1)}\right) \geq$ $d_{H_{p-r, p-(r+1)}}\left(b_{i}\right) \geq 2$, which means that $d_{H_{j, j-1}}\left(y_{j}\right) \geq 2$ for $j=1, \ldots, p-r$. Thus,

$$
\begin{aligned}
e(H) & =\sum_{j=1}^{p-r}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+\left(d_{H_{p-r, p-r}}\left(x_{p-(r-1)}\right)+d_{H_{p-(r-1), p-r}}\left(y_{p-(r-1)}\right)\right) \\
& +\sum_{j=p-(r-2)}^{p}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+e\left(H_{p, p}\right) \\
& \geq(r+2)(p-r)+(r+1)+2(r-1)+r \\
& =3 p+1+(r-2)(p-r)+p-2 \\
& >3 p+1
\end{aligned}
$$

since $2 \leq r<p$ and $p>2$, which is a contradiction.
Case 2. Assume that $a_{i} y_{p-(r-1)} \in E(H)$ for all $i=1, \ldots, r$, then, reasoning as in Case 1 , we have
$d_{H_{j, j-1}}\left(y_{j}\right) \geq r$ for $j=1, \ldots, p-(r-1)$, and $d_{H_{j-1, j-1}}\left(x_{j}\right) \geq 2$ for $j=1, \ldots, p-(r-1)$. Thus,

$$
\begin{aligned}
e(H) & =\sum_{j=1}^{p-(r-1)}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+\sum_{j=p-(r-2)}^{p}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+e\left(H_{p, p}\right) \\
& \geq(r+2)(p-(r-1))+2(r-1)+r \\
& =3 p+1+(r-2)(p-r)+p-1 \\
& >3 p+1
\end{aligned}
$$

since $2 \leq r<p$ and $p>1$, which is a contradiction.
Case 3. Assume that there exist $i_{0}, j_{0} \in\{1, \ldots, r\}$ such that $x_{p-(r-1)} b_{i_{0}} \notin E(H)$ and $a_{j_{0}} y_{p-(r-1)} \notin$ $E(H)$. Clearly $i_{0} \neq j_{0}$, because $x_{p-(r-1)} y_{p-(r-1)} \notin E(H)$ (by Lemma 3.1) and by hypothesis, the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ does not exist in G for all $i=1, \ldots, r$. Since $x_{p-(r-1)} y_{p-(r-1)} \notin E(H)$, it follows that $x_{p-(r-1)} b_{j_{0}} \in E(H)$, for if not, we find in G the path $a_{j_{0}}, y_{p-(r-1)}, x_{p-(r-1)}, b_{j_{0}}$ against our assumption. Analogously, $a_{i_{0}} x_{p-(r-1)} \in E(H)$. Observe that $\left\{a_{i_{0}} x_{p-(r-1)}, a_{i_{0}} b_{i_{0}}\right\} \subset$ $E\left(H_{p-r, p-r}\right)$ and therefore, $d_{H_{p-r, p-r}}\left(x_{p-(r-1)}\right)=\Delta_{X}\left(H_{p-r, p-r}\right) \geq d_{H_{p-r, p-r}}\left(a_{i_{0}}\right) \geq 2$, which implies that $d_{H_{i-1, i-1}}\left(x_{i}\right) \geq 2$ for $i=1, \ldots, p-(r-1)$. Moreover, observe also that $\left\{y_{p-(r-1)} b_{j_{0}}, a_{j_{0}} b_{j_{0}}\right\} \subset$ $E\left(H_{p-r, p-(r+1)}\right)$ and therefore, $d_{H_{p-r, p-(r+1)}}\left(y_{p-r}\right)=\Delta_{X}\left(H_{p-r, p-(r+1)}\right) \geq d_{H_{p-r, p-(r+1)}}\left(b_{j_{0}}\right) \geq 2$, which means that $d_{H_{i, i-1}}\left(y_{i}\right) \geq 2$ for $i=1, \ldots, p-r$. Hence,

$$
\begin{aligned}
e(H) & =\sum_{j=1}^{p-r}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+\left(d_{H_{p-r, p-r}}\left(x_{p-(r-1)}\right)+d_{H_{p-(r-1), p-r}}\left(y_{p-(r-1)}\right)\right) \\
& +\sum_{j=p-(r-2)}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 4(p-r)+3+2(r-1)+r \\
& =4 p+1-r \\
& =3 p+1+(p-r) \\
& >3 p+1
\end{aligned}
$$

since $r \leq p-1$. Then, if $2 \leq r \leq p-1$, in all the possible cases, we arrive at a contradiction with the assumption that the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ does not exist in G for all $i=1, \ldots, r$. Thus, if $2 \leq r \leq p-1$ there exists $i \in\{1, \ldots, r\}$ such that the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ is contained in G. Without loss of generality we may assume that $i=r$. Then there exist in G the vertex-disjoint paths $a_{j}, y_{p-(j-1)}, x_{p-(j-1)}, b_{j}$ for $j=1, \ldots, r$.

Second, assume that $r=p$. Then, from Lemma 3.1 it follows that

$$
\left\{\begin{align*}
\left\{x_{1} y_{1}, \ldots, x_{p} y_{p}\right\} \cap E(H) & =\emptyset \tag{4}\\
\left\{a_{i} y_{2}, \ldots, a_{i} y_{p}\right\} \cap E(H) & =\emptyset \text { for } i=1, \ldots, p \\
\left\{x_{2} b_{i}, \ldots, x_{p} b_{i}\right\} \cap E(H) & =\emptyset \text { for } i=1, \ldots, p
\end{align*}\right.
$$

This means that for each $i=1, \ldots, p$ and $j=0, \ldots, p-2$, there exists in G the path $a_{i}, y_{p-j}, x_{p-j}, b_{i}$. Thus, we only must show that there exists $i \in\{1, \ldots, p\}$ such that the path $a_{i}, y_{1}, x_{1}, b_{i}$ is contained in G. We reason by way of contradiction supposing that for all $i=1, \ldots, p$ the path $a_{i}, y_{1}, x_{1}, b_{i}$ does not exist in G. Since $x_{1} y_{1} \in E(G)$ we deduce that for each $i=1, \ldots, p, a_{i} y_{1} \in E(H)$ or $x_{1} b_{i} \in E(H)$. If $\left\{a_{i} y_{1}, a_{i^{*}} y_{1}\right\} \subset E(H)$ for two indices $i, i^{*} \in\{1, \ldots, p\}$, with $i \neq i^{*}$, then $d_{H_{1,0}}\left(y_{1}\right) \geq 2$. Since $d_{H_{0,0}}\left(x_{1}\right)=\Delta_{X}(H) \geq 2$ we have

$$
\begin{aligned}
e(H) & =\left(d_{H_{0}, 0}\left(x_{1}\right)+d_{H_{1,0}}\left(y_{1}\right)\right)+\sum_{j=2}^{p}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+e\left(H_{p, p}\right) \\
& \geq 4+2(p-1)+p \\
& =3 p+2 \\
& >3 p+1,
\end{aligned}
$$

a contradiction. Thus, in the set $\left\{a_{1}, \ldots, a_{p}\right\}$ there is at most one vertex adjacent to y_{1} in H, which means that x_{1} must be adjacent in H to at least $p-1$ vertices of the set $\left\{b_{1}, \ldots, b_{p}\right\}$, due to the fact that for each $i=1, \ldots, p, a_{i} y_{1} \in E(H)$ or $x_{1} b_{i} \in E(H)$. Then $d_{H_{0,0}}\left(x_{1}\right) \geq p-1$ and therefore,

$$
\begin{aligned}
e(H) & =\left(d_{H_{0,0}}\left(x_{1}\right)+d_{H_{1,0}}\left(y_{1}\right)\right)+\sum_{j=2}^{p}\left(d_{H_{j-1, j-1}}\left(x_{j}\right)+d_{H_{j, j-1}}\left(y_{j}\right)\right)+e\left(H_{p, p}\right) \\
& \geq p+2(p-1)+p \\
& =3 p+1+(p-3) \\
& >3 p+1
\end{aligned}
$$

since $p \geq 4$, again a contradiction with the hypothesis. Hence, there exists $i \in\{1, \ldots, r\}$ such that the path $a_{i}, y_{p-(r-1)}, x_{p-(r-1)}, b_{i}$ is contained in G. Without loss of generality we may assume that $i=r$. Then there exist in G the vertex-disjoint paths $a_{j}, y_{p-(j-1)}, x_{p-(j-1)}, b_{j}$ for $j=1, \ldots, r$, and the result holds.

Theorem 3.1 Let m, n, s, t be integers such that $2 \leq s \leq t, 4 \leq m-s \leq n-t$, and $m+n \leq 2 s+t-1$.

Then $G=(X, Y) \in T Z(m, n ; s, t)$ iff $G=K_{(m, n)}-M$ where M is any matching of cardinality $2(m-s)+n-t+1$.

Proof By Proposition 2.1 and Theorem 2.1, if $G=K_{(m, n)}-M$ where M is any matching of cardinality $2(m-s)+n-t+1$, then $G \in T Z(m, n ; s, t)$. Thus, we only must show that there are no more extremal bipartite graphs. For that, it is enough to prove that the bipartite complement $H=(X, Y)$ of every extremal bipartite graph $G=(X, Y) \in T Z(m, n ; s, t)$ has maximum degree $\Delta(H)=1$.

Let $G=(X, Y) \in T Z(m, n ; s, t)$ satisfy the hypothesis of the theorem and let us denote by $H=(X, Y)$ the bipartite complement of G. Set $p=m-s$ and $q=n-t$, then $4 \leq p \leq q$ and $e(H)=2 p+q+1$. If $p=q$ then $\Delta(H)=1$, follows from Lemma 3.3. Thus, assume that $p<q$. Without loss of generality, we may assume that the vertices of the partite set Y are ordered in such a way that $d_{H}\left(y_{1}\right) \geq d_{H}\left(y_{2}\right) \geq \cdots \geq d_{H}\left(y_{n}\right)$. Set $Y^{\prime}=\left\{y_{1}, \ldots, y_{q-p}\right\} \subseteq Y$ and let us consider the bipartite graph $H^{\prime}=\left(X, Y \backslash Y^{\prime}\right)$. Observe that $|X|=m$ and $\left|Y \backslash Y^{\prime}\right|=n-(q-p)=t+p$. If $e\left(H^{\prime}\right)=0$ then the bipartite complement G^{\prime} of H^{\prime} is the complete bipartite graph $K_{(m, t+p)}$. Since G^{\prime} is a subgraph of G and $K_{(s, t)} \subseteq K_{(m, t+p)}$, then G contains a $K_{(s, t)}$, against the assumption. So, we may assume that $e\left(H^{\prime}\right)>0$, which means that $d_{H}\left(y_{i}\right) \geq 1$ for $i=1, \ldots, q-p$. Hence,

$$
\begin{equation*}
e\left(H^{\prime}\right)=e(H)-\sum_{i=1}^{q-p} d_{H}\left(y_{i}\right) \leq 2 p+q+1-(q-p) \leq 3 p+1 \tag{5}
\end{equation*}
$$

Then the following facts can be concluded:

- $E\left(H^{\prime}\right)=3 p+1$. Otherwise if $E\left(H^{\prime}\right)<3 p+1$ then, from Lemma 2.3, it follows that G^{\prime} contains $T K_{(m-p, n-(q-p)+p)}=T K_{(m-p, n-q)}=T K_{(s, t)}$, but this contradicts the fact that $G \in$ $T Z(m, n ; s, t)$.
- $d_{H}\left(y_{i}\right)=1$, for $i=1, \ldots, q-p$, thus $\Delta_{Y}(H)=1$, because $\Delta_{Y}(H)=d_{H}\left(y_{1}\right)$. This is directly derived because all the inequalities (5) become equalities since $E\left(H^{\prime}\right)=3 p+1$.

Next let us see that $\Delta_{X}(H)=1$. Otherwise, there is a vertex $x \in X$ having two distinct neighbors $y, y^{*} \in N_{H}(x)$. Since $\Delta_{Y}(H)=1$, then $N_{H}(y)=N_{H}\left(y^{*}\right)=\{x\}$, and besides, there are exactly $e(H)=2 p+q+1>q-p+2$ vertices of degree 1 in the class Y. Let us consider the bipartite graph $G^{*}=\left(X^{*}, Y^{*}\right)$ whose bipartite complement $H^{*}=\left(X^{*}, Y^{*}\right)$ is obtained from H by removing any $q-p$ vertices of $Y \backslash\left\{y, y^{*}\right\}$ of degree 1 . The graph H^{*} satisfies that $\left|X^{*}\right|=|X|=m>p$, $\left|Y^{*}\right|=|Y|-(q-p)=t+p>p, e\left(H^{*}\right)=e(H)-(q-p)=3 p+1$. Further, observe that $d_{H^{*}}(x) \geq 2$, because $\left\{y, y^{*}\right\} \subset Y^{*}$ and $\left\{x y, x y^{*}\right\} \subset E\left(H^{*}\right)$, which means that $\Delta\left(H^{*}\right) \geq 2$. Then,
by applying Lemma 3.3 , the bipartite complement G^{*} of H^{*} contains a $T K_{(m-p, t+p-p)}=T K_{(s, t)}$. Since G^{*} is a subgraph of G, we deduce that G contains $T K_{(s, t)}$, and this contradicts the fact that $G \in T Z(m, n ; s, t)$. Hence, $\Delta(H)=\min \left\{\Delta_{X}(H), \Delta_{Y}(H)\right\}=1$ and this proves the result.

Acknowledgments

We would like to thank the anonymous referees for their suggestions and for their comments. This research was supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2008-06620-C03-02/MTM; also by Catalonian government 2009 SGR 1298; and under the Andalusian Government project P06-FQM-01649.

References

[1] Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok, 48, 436-452 (1941).
[2] Zarankiewicz, K.: Problem P 101. Colloq. Math., 2, 301 (1951).
[3] Jung, H.A.: Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen. Math. Ann., 187, 95-103 (1970).
[4] Bollobás, B.: Extremal Graph Theory, Academic Press, New York, 1978.
[5] M. Simonovits: Extremal graph theory, Selected topics in graph theory, 2, Academic Press, London, 1983, 161-200.
[6] Furëdi, Z.: New asymptotics for Bipartite Turán Numbers. J. Combin. Theory Ser. A, 75 141-144 (1996).
[7] Godbole, A.P., Lamorte, B., Sandquist, E.J.: Threshold functions for the bipartite Turán property. Electron. J. Combin., 4, R18 (1997).
[8] Bollobás, B., Thomason, A.: Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs. European J. Combin., 19, 883-887 (1998).
[9] Mader, W.: $3 n-5$ edges do force a subdivision of K_{5}, Combinatorica, 18(4), 569-595 (1998).
[10] Goddard, W., Henning, M.A., Oellermann, O.R.: Bipartite Ramsey numbers and Zarankiewicz numbers. Discrete Math., 219, 85-95 (2000).
[11] Luczak, T.: On triangle-free random graphs. Random Structures Algorithms, 16(3), 260-276 (2000).
[12] Godbole, A.P., Graziano, H.C.: Contributions to the problem of Zarankiewicz. J. Statist. Plann. Inference, 95, 197-208 (2001).
[13] Griggs, J., Chih-Chang, H.: On the half-half case of the Zarankiewicz problem. Discrete Math., 249, 95-104 (2002).
[14] Kühn, D., Osthus, D.: Topological minors in graphs of large girth. J. Combin. Theory Ser. B, 86(2), 364-380 (2002).
[15] Myers, J.S.: The extremal function for unbalanced bipartite minors. Discrete Math., 271, 209-222 (2003).
[16] Böhme, T., Mohar, B., Škrekovski, R., Stiebitz, M.: Subdivisions of large complete bipartite graphs and long induced paths in k-connected graphs. J. Graph Theory, 45, 270-274 (2004).
[17] Kühn, D., Osthus, D.: Induced subdivisions in $K_{s, s}$-free graphs of large average degree. Combinatorica, 24(2), 287-304 (2004).
[18] Diestel, R.: Graph Theory, Springer-Verlag Berlin Heildeberg, 2005.
[19] Mader, W.: Graphs with $3 n-6$ edges not containing a subdivision of K_{5}. Combinatorica, 25(4), 425-438 (2005).
[20] Kühn, D., Osthus, D.: Improved bounds for topological cliques in graphs of large girth. SIAM J. Discrete Math., 20(1), 62-78 (2006).
[21] Yan, J., Liu, G.Z.: On 2-factors with prescribed properties in a bipartite graph. Acta Math. Sin. (Engl. Ser.), 22(4), 1115--1120 (2006).
[22] Balbuena, C., Cera, M., Diánez, A., García-Vázquez, P.: New exact values of the maximum size of graphs free of topological complete subgraphs. Discrete Math., 307(9-10), 1038-1046 (2007).
[23] Balbuena, C., García-Vázquez, P., Marcote, X., Valenzuela, J.C.: New results on the Zarankiewicz problem. Discrete Math., 307(17-18), 2322-2327 (2007).
[24] Shiu, W.C., Liu, G.Z.: k-factors in regular graphs. Acta Math. Sin. (Engl. Ser.), 24(7), 1213-1220 (2008).
[25] Liu, Y., Yan, G.Y.: Graphs isomorphic to their maximum matching graphs. Acta Math. Sin. (Engl. Ser.), 29(9), 1507-1516 (2009).
[26] Liu, Y., Yan, G.Y.: Graphs isomorphic to their maximum matching graphs. Acta Math. Sin. (Engl. Ser.), 29(9), 1507-1516 (2009).
[27] Volkmann, L., Zingsem, A.: Smallest close to regular bipartite graphs without an almost perfect matching. Acta Math. Sin. (Engl. Ser.), 26(8), 1403-1412 (2010).
[28] Fan, H.B., Liu, G.Z., Liu, J.P., Long, H.P.: The existence of even regular factors of regular graphs on the number of cut edges. Acta Math. Sin. (Engl. Ser.), 26(12), 2305-2312 (2010).

