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Experimental observation of quantum contextuality beyond Bell nonlocality
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Bell nonlocality and quantum contextuality are two important resources which, however, behave very
differently in many tasks where the quantum correlation has an edge over its classical counterpart. In this work,
we directly compare these two behaviors, which via the Cabello-Severini-Winter graph-theoretical approach,
can be associated with a same exclusivity graph. In particular, we consider the exclusivity graph that leads to
I3322-type inequalities in the Bell and the contextual scenarios, respectively. We find that maximal violation of
Bell inequality is around 6.251, and maximal violation of the noncontextuality inequality is around 6.588 for a
five-dimensional system and 6.571 for a four-dimensional system, respectively. The results predict a gap of � ≈
0.32 between quantum contextuality and Bell nonlocality. We then present an experimental observation of the
gap by employing both the maximally entangled photon pairs from the spontaneous parametric down-conversion
process and the single photons encoded into qudits from an intrinsic defect in gallium nitride. Our results will
further deepen the understanding of different types of quantum correlations.
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I. INTRODUCTION

Bell nonlocality (BN) and quantum contextuality (QC)
have been proved to be intrinsic properties of nature. A phys-
ical system exhibits Bell nonlocality if the outcomes of ideal
measurements (i.e., those that yield the same outcome when
repeated and do not disturb compatible measurements) cannot
be reproduced by local-hidden-variable (LHV) models, in
which measurement outcomes are independent of spacelike
separated measurements performed on each distant subsystem
[1]. In a similar sense, a physical system exhibits quantum
contextuality if the outcomes of ideal measurements cannot
be reproduced by noncontextual-hidden variable (NCHV)
models in which measurement outcomes are independent of
the measurement contexts (i.e., the set of jointly measurable
observables that are actually measured) [2]. Both LHV and
NCHV models are referred to as classical models in many
situations, as they, as well as their breakdowns in quantum
mechanics (QM), share several similarities indeed [3]. For
instance, (i) both BN and QC reflect the confliction between
quantum mechanics and some deterministic theories in which
measurement outcomes are well defined even before measure-
ments are performed; and (ii) every Bell inequality becomes
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a noncontextuality inequality if the constraint of spacelike
separation between measurements on subsystems is removed
[3,4].

As two important correlations, BN and QC have been stud-
ied widely, and in most cases separately, in the literature. They
have also found significant applications in quantum informa-
tion processing, such as speeding-up quantum algorithms [5],
quantum key distribution [6], communication complexity [7],
and randomness certification [8]. Very recently, several funda-
mental relations between these two quantum correlations were
found. First, e.g., a fundamental monogamy relation exists
between QC and BN. The theoretical result was presented in
[9] and then observed in experiments [10,11]. Second, via the
Cabello-Severini-Winter (CSW) graph-theoretical approach
[12], the different behaviors between BN and QC can be
compared in a same exclusivity graph [13] with which BN is
proved to be tightly bounded by QC [14].

Considering an arbitrary Bell inequality written in the
probability form, one easily has an exclusivity graph due to
the exclusive relations among the probability events. Then,
based on the same graph, one can also construct a noncontex-
tuality inequality. Let � = IQC − IBN denote the gap between
QC and BN, where IQC and IBN denote the maximal viola-
tions of the noncontextuality inequality and Bell inequality,
respectively. In general, one has � � 0. For � = 0, it means
Bell nonlocality saturates quantum contextuality, and � > 0
means quantum contextuality beyond Bell nonlocality. The
purpose of this work is to perform an experiment to observe
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the gap �, thus demonstrating the phenomenon of quantum
contextuality beyond Bell nonlocality. The point is to choose
an appropriate exclusivity graph for which � is sufficiently
large such that QC beyond BN can be observed in the ex-
periment. The paper is organized as follows. In Sec. II, we
shall study the exclusivity graph associated with the I3322-type
inequality, which theoretically gives � ≈ 0.3 [4]. In Sec. III,
we shall then demonstrate the phenomenon of QC beyond
BN by experiment. Within the experimental deviation, the
experimental results coincide with the theoretical predictions.
Conclusions will be drawn in the last section.

II. THEORY: QC BEYOND BN

Let us start from the symmetric Bell inequality I3322 � 0
[15], a natural generalization of the Clauser-Horne-Shimony-
Holt (CHSH) inequality [16] from two measurement settings
to three measurement settings. The Bell inequality can be
written in the following form [4] (see Appendix A):

I = P(0, 0|0, 1) + P(0, 0|0, 2) + P(0, 0|1, 0)

+ P(0, 0|1, 2) + P(0, 0|2, 0) + P(0, 0|2, 1)

+ P(0, 1|1, 1) + P(1, 0|1, 1) + P(1, 1|1, 1)

+ P(0, 1|2, 2) + P(1, 0|2, 2) + P(1, 1|2, 2)

+ P(1, _|0, _) + P(1, _|1, _)

+P(_, 1|_, 0) + P(_, 1|_, 1)
LHV
� 6, (1)

where I is a substitute for ICSW
3322 , P(m, n|i, j) ≡ P(ai =

m, bj = n) = |〈vAB|�AB〉|2 denotes the probability that Al-
ice’s ith measurement outcome is m and Bob’s jth mea-
surement outcome is n, |�AB〉 is the quantum state, |vAB〉 =
|ai = m〉 ⊗ |b j = n〉 is the factorizable joint-measurement
vector for Alice and Bob, P(m, _|i, _) ≡ P(ai = m) denotes
the marginal probability of Alice’s ith measurement result
being m, and similarly for P(_, n|_, j). For simplicity, we
use R1, R2, . . . , R16 to denote the 16 terms in inequality (1)
later. Inequality (1) holds for any two d-dimensional systems
(i.e., two qudits). For two qubits, it is a tight inequality with
the maximal quantum violation IBN = 25/4 = 6.25, and we
give the optimal observables and quantum state in Appendix
A. When the dimension d increases, the maximal quantum
violation slowly increases. It has been shown that the maximal
violation tends to IBN ≈ 6.250 875 38 when d → ∞ [17]. In
other words, for the I3322-type inequality, the value of Bell
nonlocality is less than 6.251.

Based on the exclusive relations among the 16 probability
events in the inequality (1), one can immediately plot an
exclusivity graph G as shown in Fig. 1 (see also Ref. [4]).
The vertices of graph G represent probability events, and two
connected vertices imply that two events are exclusive with
one another, i.e., the two corresponding projectors or joint-
measurement vectors are mutually orthogonal. Accordingly,
from graph G one can have the noncontextuality inequality as
follows:

I =
∑
i∈V

Pi

NCHV
� β

QM
� ϑ (G), (2)
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FIG. 1. Exclusivity graph associated with I . For Bell nonlocality,
the 16 events in inequality (1) correspond to 1: 1, 1|2, 2, 2: 0, 0|2, 0,
3: 1, 0|2, 2, 4: 0, 0|2, 1, 5: 0, 1|2, 2, 6: _, 1|_, 0, 7: _, 1|_, 1, 8:
0, 0|1, 0, 9: 1, 0|1, 1, 10: 0, 1|1, 1, 11: 1, _|1, _, 12: 0, 0|1, 2, 13:
1, 1|1, 1, 14: 0, 0|0, 1, 15: 1, _|0, _, and 16: 0, 0|0, 2, and the space-
like measurements between Alice and Bob guarantee the mutual
orthogonality. For quantum contextuality, 16 vertices correspond to
16 vectors |Ai〉’s, and |Ai〉⊥|Aj〉 when vertex i and vertex j are
connected.

where V denotes the vertex of graph G, and Pi ≡ P|ψ〉(Ai =
1) denotes the probability of obtaining result 1 when the
observable |Ai〉〈Ai| is measured on the state |ψ〉, namely,
P|ψ〉(Ai = 1) = |〈Ai|ψ〉|2. Here β = 6 is the classical bound
of the NCHV models, and ϑ (G) is the maximal violation of
the noncontextuality inequality and is equal to the Lovász
number [18] describing the Shannon capacity of G.

The Lovász number is computed by ϑ (G) =
max{|ψ〉,|Ai〉}

∑
i∈V |〈Ai|ψ〉|2. In Ref. [4], the authors computed

ϑ (G) = IQC ≈ 6.588 412 87 without giving |Ai〉 and |ψ〉
that yield the Lovász number. Here we show that the above
ϑ (G) can be achieved in a five-dimensional system, and we
also list the corresponding optimal measurement settings
and optimal state (see Table I in Appendix A). For the
I3322-type inequalities, the gap between QC and BN is given
by � = IQC − IBN ≈ 0.337, which is sufficiently large,
hence the I3322-type inequality is a very good candidate to
experimentally demonstrate QC beyond BN.

Remark 1. The difference between QC and BN can be un-
derstood in this way: For QC, in order to evaluate the quantity
Q = ∑

i∈V |〈Ai|ψ〉|2, one has to numerate all possible |Ai〉’s
and |ψ〉 in the Hilbert space of arbitrary dimensions d , with
all orthogonal relations of |Ai〉’s being satisfied, such that the
maximal value Qmax equals the Lovász number ϑ (G). For
the graph in Fig. 1, the minimum dimension of obtaining
the Lovász number is 5. Nevertheless, for testing the Bell
inequality, it is additionally required that |Ai〉’s have to be
factorizable, i.e., |Ai〉 = |vi〉d1 ⊗ |ui〉d2 , and so the dimension
ought to be factorized to d = d1 × d2 accordingly. For in-
stance, let us take d1 = d2 = 2. By running over all possible
|Ai〉’s and |ψ〉 under the factorizability requirement, one can
obtain the maximal value Qmax = 6.25, which exactly is the
maximal violation of inequality (1) for two qubits in the Bell
scenario.

Remark 2. For the vector |Ai〉’s, the minimal dimension
to fulfill the exclusive relations shown in Fig. 1 is 4.
In a four-dimensional system, the maximal violation of
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FIG. 2. Experimental setup. (a) The two-particle setup to check BN. Two maximally polarization-entangled photons were separately sent
to Alice and Bob, going through their polarization discrimination system and recorded by single-photon avalanche detectors (SPADs). (b) The
single-photon source, prepared by exciting an intrinsic defect in a bulk GaN sample. The second-order photon correlation function at zero
delay without background correction was 0.225, clearly exhibiting the signature of photon antibunching and confirming the character of
single-photon emission. Single photons were further filtered by a bandpass filter with a central wavelength of 780 nm and a bandwidth of
25 nm, and sent to the contextuality test setup. (c) The single-body contextuality test setup. The single photons from (b), after passing through
the beam expanding system with two lenses and a pinhole between them, were sent to a spatial light modulator (SLM) controlled by a computer
to prepare the high-dimensional states, which is denoted by a violet box. The measurement setup consists of another SLM and a single-mode
fiber (SMF), and the counting apparatus here was a superconducting nanowire single-photon detector (SNSPD).

noncontextuality inequality (2) is IQC ≈ 6.571 52, which is
slightly smaller than the Lovász number ϑ (G). The opti-
mal settings (i.e., |Ai〉, i = 1, 2, . . . , 16) and the state (|ψ〉)
are given in Table IV of Appendix A. The gap is around
� ≈ 0.320. Therefore, in this work we shall choose a four-
dimensional system instead of a five-dimensional system to
demonstrate QC beyond BN.

Remark 3. To experimentally test quantum contextuality,
we need to recast inequality (2) to the following noncontextu-
ality inequality (by adding the second term) based on theorem
1 of Ref. [19], i.e.,

I =
∑
i∈V

P|ψ〉(Ai = 1) −
∑

(i, j)∈E

P|ψ〉(Ai = 1, Aj = 1)

NCHV
� β

QM
� ϑ (G), (3)

where E denotes the vertex and edge sets of the graph
G, and P|ψ〉(Ai = 1, Aj = 1) ≡ P|ψ〉(Ai = 1)P|Ai〉(Aj = 1)
represents the experimental imprecision of |Ai〉⊥|Aj〉
when they are measured successively. Introducing the
second term in (3) is crucial and necessary, as it is
used to evaluate the compatibility requirement in any
contextuality test in a practical experiment [19]. Certainly,
the second term becomes zero in the ideal case and can
thus be neglected. Crucially, the graph G needs to be

extended with extra projectors that complete the full sets
of compatible observables in order that every projector is
measured as part of a complete basis [20]. In the work, we
make measurements in the following six complete bases:
{|A1〉, |A2〉, |A3〉, |A17〉}, {|A1〉, |A4〉, |A7〉, |A18〉}, {|A1〉, |A5〉,
|A16〉, |A19〉}, {|A1〉, |A9〉, |A12〉, |A20〉}, {|A1〉, |A6〉, |A8〉,
|A21〉}, and {|A1〉, |A14〉, |A15〉, |A22〉}. Here, |A17〉,
|A18〉, . . . , |A22〉 are uniquely determined by the other three
vectors in a complete basis.

Thus, the detection probability of each observable, say,
|A2〉〈A2|, can be obtained as P|ψ〉(A2 = 1) = N|ψ〉(A2)/[N|ψ〉
(A1) + N|ψ〉(A2) + N|ψ〉(A3) + N|ψ〉(A17)], where N|ψ〉(Ai ) is
the number of counts of obtaining result 1 when |Ai〉〈Ai| is
measured on the state |ψ〉, and similarly for the measurements
of the other observables.

III. EXPERIMENTAL SETUP AND RESULTS

We are now ready to experimentally test the two dis-
tinct quantum values of I separately, namely, IBN � 6.25 and
IQC � 6.57, to explicitly demonstrate QC beyond BN. The
experimental setup is illustrated in Fig. 2. We start from
IBN. Based on the maximally entangled state |�+〉 = (|00〉 +
|11〉)/

√
2 of two photonic polarization qubits, we checked

the maximal violation of inequality (1). A type-II β-barium
borate (β-BBO) crystal was pumped by a frequency-doubled
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FIG. 3. Experimental results of detection probabilities for computing IBN (a) and IQC (b and c). (a) Coincidence counting probabilities of
Alice and Bob. The settings are chosen to produce the 16 terms, namely, R1 ∼ R16 in (1). (b) Detection probabilities of the 16 optimal projectors,
representing the 16 vertices of the corresponding exclusivity graph, with the input state |ψ〉. The probability is equivalent to P1 ∼ P16 in (2).
(c) Detection probabilities of nonzero P|Ai〉(Aj = 1), where |Ai〉 and |Aj〉 are connected by 32 edges in the exclusivity graph.

femtosecond laser to generate a polarization-entangled bipho-
ton, which was further sent to Alice and Bob, where a po-
larization beam splitter (PBS), proceeded by a quarter-wave
plate (QWP) and a half-wave plate (HWP), was utilized to
construct a polarization discrimination system. Two single-
photon avalanche detectors (SPADs) recorded photon count-
ing rate after the polarization discrimination system, and their
coincidence counts were proportional to the probability of
detecting two photons with a certain setting.

For each set of measurements, the total photon count was
about 8000, and results are shown in Fig. 3(a). Substituting the
measurement results into inequality (1) gives a result of IBN =
6.165 ± 0.012. Here, the standard deviation was deduced
from the Poisson distribution. The result surpasses prediction
of any possible LHV model but, due to imperfections in the
experiment, falls sightly below the Tsirelson bound, 6.25.

We now turn to investigate IQC. In a four-dimensional
space, the single-body quantum violation of inequality (3)
was checked. To construct this synthetic space, we exploit the
orbital angular momentum (OAM) of light. The manipulation
of states was accomplished by modulating the phase of the
photon’s wave function.

By exciting an intrinsic defect in a bulk GaN sample,
we obtained an ultrabright, photostable single-photon source
at room temperature [21]. A bandpass filter with a central
wavelength of 780 nm and a width of 25 nm was used to
filter the fluorescence of the defects and match the operation
wavelength of the contextuality test setup. The total photon
counting rate past the filter was about 0.94 Mcps.

The single photon was directed to the setup by a single-
mode fiber (SMF) and spatial filtered into fundamental
Gaussian mode. Using a spatial light modulator (SLM), a
coordinate-related wave function, originating from displayed
holograms on the SLM, was bestowed to photons [22]. The
photons would then carry a wave function resembling su-
perpositions of Laguerre-Gaussian modes LGl

p with OAM
number of l [23] and be prepared to desired initial four-
dimensional states |ψ〉 after being diffracted by the first
SLM. The four eigenvectors are set to be |i1〉 = |1〉 , |i2〉 =

|3〉 , |i3〉 = |−1〉, and |i4〉 = |−3〉. A 4 f system mapped the
first and the second SLM at its input and output plane, with an
aperture inserted at the focal plane to filter off the unwanted
zero- and higher-order diffraction terms. The second SLM
converted specific OAM states |α〉 back to the Gaussian
mode |0〉, which was subsequently postselected by a SMF, as
photons carrying nonzero OAM cannot be focused to a spot
and collected by a SMF. In addition, two telescope lenses
were inserted between the second SLM and SMF to adjust
beam size and optimize fiber coupling efficiency. Photons
were then sent to a superconducting nanowire single-photon
detector (SNSPD), and the counting rate was proportional to
the probability of successful postselection, i.e., |〈α|ψ〉|2.

The input state was prepared to be |ψ〉 = (|i1〉 +
|i2〉)/

√
2, and the 16 corresponding projectors |Aj〉〈Aj | ( j =

1, 2, . . . , 16) were then measured on six sets of complete
bases. To test the inequality (3), we also need to check the
no-signaling condition, which requires the local marginal
probabilities of successive measurements to be irrelevant to
the other settings being chosen, either forward or backward in
time, as suggested in [19]. Our experimental results confirm
the no-signaling condition in which the detailed information
is shown in Appendix B.

The first term of IQC inequality was evaluated by directly
referring to detect probabilities of the 16 corresponding pro-
jectors on six full sets of compatible observables. In order
to obtain all probabilities needed for the exclusivity graph,
there were in total 19 independent projectors to be measured.
The measurement settings of these projectors were shown
in Appendix B. The counting rate of each projector was
then recorded and the detection probability was calculated.
The integration time for each projection measurement was
10 s. Shown in Fig. 3(b), the results were fairly close to
prediction. The experimental result of the first term of IQC

was 6.548 ± 0.020, an error estimated by assuming Poisson
distribution.

The second term of IQC inequality represents experimental
imperfections of orthogonality between states denoted by con-
nected vertices in the exclusivity graph. Similar to the way the

042118-4



EXPERIMENTAL OBSERVATION OF QUANTUM … PHYSICAL REVIEW A 100, 042118 (2019)

first term was calculated, the second term was also evaluated
by adding up mutual projection probabilities of the states
mentioned above, and their fluctuation was also estimated
by Poisson distribution. The measurement result is displayed
in Fig. 3(c), yielding a value of −0.060 ± 0.005 without
correcting background noise from SNSPD and stray light.

By adding the two terms together, the final result of
quantum contextuality is IQC = 6.488 ± 0.025, exceeding the
classical bound by about 19 standard deviations and the
Tsirelson’s bound derived from Bell nonlocality by over 9
standard deviations. We thus successfully observed quantum
contextuality beyond Bell nonlocality.

IV. CONCLUSION

We have studied the different behaviors between Bell non-
locality and quantum contextuality associated with the same
exclusivity graph by comparing quantum violations of the
I3322-type Bell inequality and the noncontextuality inequality.
Quantum contextuality has been investigated in the five- and
four-dimensional systems, and we have found that the gap
between QC and BN is � ≈ 0.3, which is experimentally
observable. We have performed an experimental observation
of the gap in a four-dimensional system to demonstrate the
phenomenon of QC beyond BN. Within experimental devi-
ation, the results are in good agreement with the theoretical
predictions. Our results indicate a deep-rooted connection
between graph theory and quantum correlations, and will fur-
ther deepen the understanding of different types of quantum
correlations.
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APPENDIX A: THE THEORETICAL PART

1. The Bell inequality and noncontextuality inequality
associated with ICSW

3322

The symmetric version of the inequality I3322 � 0 proposed
in Ref. [15] is

I3322

LHV
� 0, (A1)

with

I3322 = P(0, 0|0, 1) + P(0, 0|0, 2) + P(0, 0|1, 0)

+ P(0, 0|1, 2) + P(0, 0|2, 0) + P(0, 0|2, 1)

− P(0, 0|1, 1) − P(0, 0|2, 2) − P(0, _|0, _)

− P(0, _|1, _) − P(_, 0|_, 0) − P(_, 0|_, 1). (A2)

Using the equation

−P(Ax = a, Bx = b) = −1 +
∑

(a′,b′ )�=(a,b)

P(Ax = a′, By = b′)

(A3)
to replace probabilities with minus signs by the corresponding
positive probabilities, we obtain

I3322 = I − 6, (A4)

where

I ≡ ICSW
3322 = P(0, 0|0, 1) + P(0, 0|0, 2) + P(0, 0|1, 0)

+ P(0, 0|1, 2) + P(0, 0|2, 0) + P(0, 0|2, 1)

+ P(0, 1|1, 1) + P(1, 0|1, 1) + P(1, 1|1, 1)

+ P(0, 1|2, 2) + P(1, 0|2, 2) + P(1, 1|2, 2)

+ P(1, _|0, _) + P(1, _|1, _) + P(_, 1|_, 0)

+ P(_, 1|_, 1). (A5)

TABLE I. Numerically optimal settings and optimal state in a
five-dimensional system for IQC ≈ 6.588 412 87.

|Ai〉 i1 i2 i3 i4 i5

|A1〉 0 0 0 0 1
|A2〉 0.538648 −0.458664 0.0322917 −0.706005 0
|A3〉 0.672155 −0.188775 −0.359722 0.619009 0
|A4〉 0 0.95651 0 0.2917 0
|A5〉 0.188775 −0.672155 −0.359722 −0.619009 0
|A6〉 0.192831 −0.671551 −0.44115 0.563224 0
|A7〉 0.912455 0 −0.409176 0 0
|A8〉 −0.946087 0 0 0.323911 0
|A9〉 0 1 0 0 0
|A10〉 1 0 0 0 0
|A11〉 0 0.912455 0.409176 0 0
|A12〉 0.95651 0 0 0.2917 0
|A13〉 0 0 1 0 0
|A14〉 0 −0.946087 0 0.323911 0
|A15〉 −0.671551 0.192831 0.44115 0.563224 0
|A16〉 −0.458664 0.538648 −0.0322917 −0.706005 0
|ψ〉 −0.674033 0.674033 0.302255 0 0
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Therefore, the inequality I3322 � 0 can be written as

I
LHV
� 6. (A6)

The maximal Bell nonlocality (BN) of inequality (A6) for two qubits is exactly IBN = 6.25, which can be obtained in the
following case:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0 = B0 =
⎛⎝

√
2−√

3
2

√
2+√

3
2√

2+√
3

2

√
2−√

6
4

⎞⎠, A1 = B2 =
⎛⎝

√
2+√

3
2

√
2−√

3
2√

2−√
3

2 −
√

2+√
3

2

⎞⎠, A2 = B1 =
(− 1√

2
1√
2

1√
2

1√
2

)
,

ρ = 1
2

⎛⎜⎝1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎠ = |�+〉〈�+|, |�+〉 = 1√
2
(|00〉 + |11〉), I2 =

(
1 0
0 1

)
,

P(a, b|i, j) = Tr
[ I2+(−1)aAi

2 ⊗ I2+(−1)bB j

2 ρ
]
.

(A7)

For the exclusivity graph G (see Fig. 1) associated with I , a noncontextuality (NC) inequality is constructed with the form

I =
∑
i∈V

P|ψ〉(Ai = 1) −
∑

(i, j)∈E

P|ψ〉(Ai = 1, Aj = 1)
NCHV
� 6, (A8)

where V and E respectively denote the vertex and edge sets of graph G, P|ψ〉(Ai = 1) denotes the probability of obtaining
result 1 when the observable |Ai〉〈Ai| is measured on the state |ψ〉, i.e., P|ψ〉(Ai = 1) = |〈Ai|ψ〉|2, P|ψ〉(Ai = 1, Aj = 1), i.e.,
P|ψ〉(Ai = 1)P|Ai〉(Aj = 1), represents the experimental imprecision of |Ai〉⊥|Aj〉 when vertex i and vertex j are connected in the
graph.

The optimal quantum contextuality (QC) of inequality (3) is just the Lovász number of G, i.e., IQC = ϑ (G) ≈ 6.588 412 87,
which is obtained in the five-dimensional quantum system. In Table I, we list the optimal settings and the optimal state
numerically.

Remark 4. If we take the following analytical settings and state in Table II , then the maximal QC is

I =
16∑

i=1

|〈i|ψ〉|2 − 0 = [355 + 209 cos(2τ ) + 112 sin(2τ )]/90, (A9)

whose maximal point is τ = arctan[(−209 + 5
√

2249)/112] with the maximum (71 + √
2249)/18 ≈ 6.579 09. And if we

choose τ = 2π/25, then
∑16

i=1 |〈i|ψ〉|2 ≈ 6.578 94. It is easy to see that this numerical contextuality is close to the optimal
one with an error of 0.0014.

2. QC of I in a four-dimensional system

In the four-dimensional quantum system, we take{
|ψ〉 = (cos [θ ], sin [θ ] cos [φ], sin [θ ] sin [φ] cos [τ ], sin [θ ] sin [φ] sin [τ ])

|Ai〉 = (cos [θi], sin [θi] cos [φi], sin [θi] sin [φi] cos [τi], sin [θi] sin [φi] sin [τi]),
(A10)

with i = 1, 2, . . . , 16, then we have

P|ψ〉(Ai = 1) = |〈Ai|ψ〉|2
= (cos [θi] cos [θ ] + sin [θi] sin [θ ](cos [φi] cos [φ] + sin [φi] sin [φ](cos [τi] cos [τ ] + sin [τi] sin [τ ])))2 (A11)

and

max{I : θ, φ, τ, θi, φi, τi} ≈ 6.571 52. (A12)

To obtain Eq. (A12), it is sufficient to assume the settings and state have the form in Table III, and the angles are as follows:{
φ2 ≈ 1.015 602 970 716 640 5, φ4 ≈ 1.180 253 821 474 319 2,

φ3 = arctan 2 cos φ4

sin2 φ4
, φ1 = − arctan cos φ2 cos φ3−sin φ2 sin φ3 sin φ4

cos φ4 sin φ3
, φ5 = − arctan cos φ1 cos φ2+φ4

sin φ1
.

(A13)
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TABLE II. Analytical settings and state in a five-dimensional
system for I .

|Ai〉 i1 i2 i3 i4 i5

|A1〉 0 0 0 0 1
|A2〉 1

2
1
2 0 − 1√

2
0

|A3〉 3
2
√

5
1

2
√

5
1√
10

√
2
5 0

|A4〉 0 2
√

2
3 0 − 1

3 0

|A5〉 1
2
√

5
3

2
√

5
1√
10

−
√

2
5 0

|A6〉 1
2
√

5
3

2
√

5
1√
10

√
2
5 0

|A7〉 2
√

2
3 0 1

3 0 0

|A8〉 2
√

2
3 0 0 − 1

3 0
|A9〉 0 1 0 0 0
|A10〉 1 0 0 0 0

|A11〉 0 2
√

2
3

1
3 0 0

|A12〉 2
√

2
3 0 0 1

3 0
|A13〉 0 0 1 0 0

|A14〉 0 2
√

2
3 0 1

3 0

|A15〉 3
2
√

5
1

2
√

5
1√
10

−
√

2
5 0

|A16〉 1
2

1
2 0 1√

2
0

|ψ〉 cos τ√
2

cos τ√
2

sin τ 0 0

In this case, Table III becomes the following Table IV.
In experiment, one can choose φ2 = 1.015, φ4 = 1.180,

and then the orthogonal relationship can be satisfied with
errors 10−32, i.e.,∑

(i, j)∈E

P|ψ〉(Ai = 1, Aj = 1) ≈ 9.629 65 × 10−33 < 10−32,

(A14)

and max I ≈ 6.571 52.

TABLE III. Settings and state in a four-dimensional system for I .

|Ai〉 i1 i2 i3 i4

|A1〉 0 0 1 0
|A2〉 cos φ1 cos φ2 sin φ1 0 − cos φ1 sin φ2

|A3〉 cos φ3 cos φ4 sin φ3 0 sin φ3 sin φ4

|A4〉 0 sin φ4 0 − cos φ4

|A5〉 cos φ4 sin φ3 cos φ3 0 − sin φ3 sin φ4

|A6〉 cos φ4 cos φ5 sin φ5 0 cos φ5 sin φ4

|A7〉 1 0 0 0
|A8〉 sin φ4 0 0 − cos φ4

|A9〉 0 1 0 0
|A10〉 1 0 0 0
|A11〉 0 1 0 0
|A12〉 sin φ4 0 0 cos φ4

|A13〉 0 0 1 0
|A14〉 0 sin φ4 0 cos φ4

|A15〉 sin φ5 cos φ4 cos φ5 0 − cos φ5 sin φ4

|A16〉 sin φ1 cos φ1 cos φ2 0 cos φ1 sin φ2

|ψ〉 1√
2

1√
2

0 0

TABLE IV. Numerically optimal measurement settings and state
in a four-dimensional system for IQC ≈ 6.571 52.

|Ai〉 i1 i2 i3 i4

|A1〉 0 0 1 0
|A2〉 0.469723 0.453743 0 0.757283
|A3〉 0.746839 0.253161 0 0.614931
|A4〉 0 0.924703 0 −0.38069
|A5〉 0.253161 0.746839 0 −0.614931
|A6〉 0.249899 0.754381 0 0.607009
|A7〉 1 0 0 0
|A8〉 0.924703 0 0 −0.38069
|A9〉 0 1 0 0
|A10〉 1 0 0 0
|A11〉 0 1 0 0
|A12〉 0.924703 0 0 0.38069
|A13〉 0 0 1 0
|A14〉 0 0.924703 0 0.38069
|A15〉 0.754381 0.249899 0 −0.607009
|A16〉 0.453743 0.469723 0 0.757283
|ψ〉 1√

2
1√
2

0 0

Remark 5. In fact, for φ2 = π/3, φ4 = 7π/18, we can
obtain that the orthogonal relationship is strictly satisfied
[
∑

(i, j)∈E P|ψ〉(Ai = 1, Aj = 1) = 0] and max I ≈ 6.562 33.

APPENDIX B: THE EXPERIMENTAL PART

1. Testing experimental reliability of orbital
angular momentum qudit

The two experimental tests rely on a photonic polarization
qubit and an OAM qudit, and for the latter one it is vital
to confirm that the measurements performed in experiment
ideally represent the terms in (3). Due to the complexity of
a four-dimensional system, we opted out of a complete state
tomography and, instead, chose to test the orthonormality of
the six sets of complete bases used in our experiment.

The Born rule declares that for an observable correspond-
ing to a self-adjoint operator A, the probability of obtaining
result λi on state |ψ〉 is 〈ψ |�i|ψ〉, where �i is the projection
operator onto the eigenspace of A corresponding to the eigen-
value of λi. It follows immediately from the Born rule that
when we prepare an eigenstate of �i, the probability of getting
λi in the measurement A is 1, while the probabilities of getting
other λ j �=i’s are 0. For an ideal measurement, the complete
set of bases should then be orthonormal, regardless of the
exact bases settings we choose. Figure 4 shows the result of
testing orthonormality of the six sets of complete bases. When
we prepared the state corresponding to one specific outcome
and then measured the corresponding projector, we (almost)
always obtained that certain outcome. Since the projectors to
orthogonal bases commute with each other, the null counting
rates between orthogonal states and projectors can also serve
as proof of nondisturbance of compatible measurements. We
thus infer that the measurements performed in the experiment
are overall approximately ideal, and the data is suitable to be
analyzed in the CSW framework using (3).
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FIG. 4. Testing the orthonormality of the six sets of complete measurements used in the experiment by enumerating the detection
probability between bases within each set. For example, the (#2, #3) slot in the darkest blue histogram shows the measured detection probability
for | 〈A7|A4〉 |2.

2. Details about the single-photon source

The sample used in this experiment was a 2-μm-thick mag-
nesium (Mg)-doped gallium nitride (GaN) film on a 2-mm
undoped GaN layer grown on sapphire substrate. This kind of
sample was reported in [21], and we followed their practice
to pretreat the sample with acetone and isopropanol (1:1)
solution and clean in ultrasound bath. The defects distributed
over the sample surface, and a confocal microscopy system
was exploited to excite the sample and collect emitted single
photons.

In our experiment, a 532-nm continuous-wave laser was
used to excite the GaN sample. The laser was reflected by
a dichroic mirror focused onto the sample by an objective
lens with high numeric aperture of 1.25. The fluorescence was

collected by the same objective and filtered by the dichroic
mirror and the bandpass filter.

To examine attributes of the photoluminescence (PL) sig-
nal, it was coupled to a single-mode fiber and either guided
to a SPAD for photon counting and spectrum measurement
(the bandpass filter was removed for this measurement) or a
Hanbury Brown-Twiss (HBT) interferometer setup for single-
photon verification.

(1) The second-order autocorrelation was measured to
confirm the single-photon attribute. The experimental value of
g2(τ ) at τ = 0 was 0.225. As the dip fell below the threshold
of 0.5, we confirmed that the PL emitter was a genuine single-
photon source.

760 770 780 790 800

0

1500

3000

4500

6000

PL
In
te
ns
ity

Wavelength (nm)

(a) (b)

0 50 100 150 200
0.0

0.4

0.8

1.2

1.6

In
te
ns
ity
(1
06
co
un
ts
/s
)

Time (s)

1 mW
0.5 mW

FIG. 5. The properties of the single-photon source used in the contextuality experiment. (a) The spectrum. The central wavelength of
the emitter was 779.61 nm and the FWHM was 4.97 nm. (b) Photostability stats with respect to two different excitation powers, 0.5 mW
and 1 mW.
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FIG. 6. Eliminating the possibility of signaling between sequential measurements. By exhibiting null results for the four signaling factors
ε(0, _|vi, _), ε(1, _|vi, _), ε(_, 0|_, v j ), and ε(_, 1|_, v j ), the nonsignaling condition required in [19] is preserved. In each plot, the horizontal
coordinate corresponds to experimental settings, i.e., different choices of states and projectors represented by edges of the exclusivity graph.
The settings with primed notation swapped eigenstates and projectors. The four signaling factors are shown in four different colors.

(2) Spectrum. Figure 5(a) shows the spectrum of the emit-
ter we used in the contextuality experiment with the back-
ground subtracted. It had a central wavelength of 779.61 nm
and a FWHM of about 4.97 nm.

(3) Photostability. The PL intensity versus time under
continuous-wave laser excitation was recorded and plotted in
Fig. 5(b). The standard deviation of photon counting during a
span of 200 s was below 1.5%. As a result, the photon source
was narrow linewidth, bright, and stable. The photon source
was then connected to the contextuality experiment setup by
SMF.

3. Testing nonsignaling condition of sequential measurements

The nonsignaling condition, indicating that local marginal
probabilities of Alice are independent of Bob’s measurement

setting, and vice versa [24], was also checked for testing
contextuality in the CSW approach, as suggested in [19,20].
From [19], the statistics of the second measurements v j af-
fected by the first measurements vi can be calculated as

ε(_, 0|_, v j ) = |P|ψ〉(v j = 0) − P|ψ〉(vi = 0, v j = 0)

− P|ψ〉(vi = 1, v j = 0)|, (B1a)

ε(_, 1|_, v j ) = |P|ψ〉(v j = 1) − P|ψ〉(vi = 0, v j = 1)

− P|ψ〉(vi = 1, v j = 1)|, (B1b)

ε(0, _|vi, _) = |P|ψ〉(vi = 0) − P|ψ〉(vi = 0, v j = 0)

− P|ψ〉(vi = 0, v j = 1)|, (B1c)

ε(1, _|vi, _) = |P|ψ〉(vi = 1) − P|ψ〉(vi = 1, v j = 0)

− P|ψ〉(vi = 1, v j = 1)|. (B1d)
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FIG. 7. Confirming the system’s stability during the experiment. (a, b) The density matrices deduced from tomography of the biphoton
state at the beginning and the end of the experiment. The imaginary part of density matrices are negligible. The two deduced density matrices
have a mutual fidelity of over 99.1% and fidelity with |�+〉 of at least 97.5%. (c) Counting rates and probability recorded at integer minutes in
multiples of 10. Integration time 10 s. Cerulean: projecting on |ψ〉 = (|i1〉 + |i2〉)/

√
2, corresponding to unit probability. Shamrock: projecting

on |A3〉. Marigold: projecting on |A16〉.

Following the approach of [20], the four terms of ε were
calculated by experimentally observable probabilities:

P|ψ〉(vi = 0) = 1 − P|ψ〉(vi = 1), (B2a)

P|ψ〉(vi = 1, v j = 1) = P|ψ〉(vi = 1) P|vi〉(v j = 1), (B2b)

P|ψ〉(vi = 0, v j = 1) = P|ψ〉(vi = 0) P|v⊥
i 〉(v j = 1), (B2c)

P|ψ〉(vi = 1, v j = 0) = P|ψ〉(vi = 1) − P|ψ〉(vi = 1, v j = 1),

(B2d)

P|ψ〉(vi = 0, v j = 0) = P|ψ〉(vi = 0) − P|ψ〉(vi = 0, v j = 1),

(B2e)

and we need to check that

ε(_, 0|_, v j ) ≈ ε(0, _|vi, _) = 0, (B3a)

ε(_, 1|_, v j ) ≈ ε(1, _|vi, _) = 0. (B3b)

The key point to evaluate (B2a)–(B2e) is to obtain
P|ψ〉(vi = 0, v j = 1), which requires preparation of |v⊥

i 〉,
namely, the state obtained after a projective measurement of
vi with outcome 0 on a system initially prepared in state
|ψ〉. For a path-encoded photonic qudit, |v⊥

i 〉 can be prepared
by the blocking method, see [20], for example. This method
would not work for an OAM qudit. On the contrary, the task
of preparing a known state is not harder than scripting a
hologram for SLM, so in our experiment we prepare ab initio
the states needed in (B2c).

The Gram-Schmidt orthonormalization gives

|v⊥
i 〉 = |ṽ⊥

i 〉
|||ṽ⊥

i 〉||
= |ψ〉 − 〈vi|ψ〉|vi〉

|||ψ〉 − 〈vi|ψ〉|vi〉|| = |ψ〉−〈vi|ψ〉|vi〉√
1 − |〈vi|ψ〉|2

,

(B4)

and here we use the notation |ṽ⊥
i 〉 = |ψ〉 − 〈vi|ψ〉|vi〉.

Essentially,

P|ψ〉(vi = 0, v j = 1) = P|ψ〉(vi = 0) P|v⊥
i 〉(v j = 1)

= (1−|〈vi|ψ〉|2)

∣∣∣∣∣〈v j | |ψ〉−〈vi|ψ〉|vi〉√
1−|〈vi|ψ〉|2

∣∣∣∣∣
2

= |〈v j |ṽ⊥
i |2 = P|̃v⊥

i 〉(v j = 1). (B5)

Notice that the values of 〈vi|ψ〉 were already measured,
as they had once occurred in the first term of IQC. We can

thereby script the holograms to prepare |ṽ⊥
i 〉 by virtue of

these experiment data instead of deducing 〈vi|ψ〉 from the raw
settings. Measurement of other expectation values in (B2a)–
(B2e) are straightforward.

From (B2d), (B2e), ε(0, _|vi, _) and ε(1, _|vi, _) auto-
matically vanish and only the ε(_, 0|_, v j ) and ε(_, 1|_, v j )
terms survive. Nonetheless, the four statistical indices are
unanimously calculated. The result of nonsignaling condition
verification is shown in Fig. 6. Not all ε(_, 0|_, v j ) and
(_, 1|_, v j ) perfectly vanish, and a few error bars, which
were calculated from Poisson distribution, were not guaran-
teed to hit zero. Still, the overall small absolute value of εs
suggested that the error was due to imperfections in state
preparation and measurement and the no-signaling condition
held.

4. Testing system stability

The stability of the setup plays an important role in the
experiment discussed in this work. As the system may be
subject to drifts, one is obliged to confirm the manifesting
nonlocality and contextuality origin from the same system
rather than being the result of an average over time. For
the nonlocality experiment, we check the biphoton density
matrices at the beginning and the end of the experiment,
to check for the consistency of the prepared biphoton state,
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and for the contextuality we sample over some detecting
probabilities to see if they stay the same during the whole
period of the experiment.

Stability of entanglement source. Figures 7(a) and 7(b)
show the real part of the density matrices, measured at the be-
ginning and the end of the Bell nonlocality experiment. They
are deduced from 16-settings state tomography, and in both
results the reconstructed imaginary parts are negligible. The
density matrices reasonably resemble |�+〉, with a fidelity of
0.980 and 0.984, respectively. The fidelity between the two
density matrices is as high as 0.991, suggesting two almost
identical input states.

Stability of contextuality setup. Figure 7(c) provides the
counting rates and detection probabilities of three charac-
teristic measurements, namely, onto the original state |ψ〉
and the projecting bases |A3〉 and |A13〉. The counting rates
are recorded every 10 min for 7 times in total to cover the
time span of the whole experiment and reflect the stability
of the setup. The counting rates vary in a small range of
�3%, without exhibiting a noticeable trend of drifting. In
conclusion, the measured system stays the same during the
experiment period and the observed phenomena cannot be
considered a time-averaging effect but instead are compelling
evidence of nonlocality and contextuality.
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