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Abstract The dynamical richness of 4D memristor os-

cillators has been recently studied in several works,

showing different regimes, from stable oscillations to

chaos. Typically, only numerical simulations have been

reported and so there is a lack of mathematical results.

We focus our analysis in the existence of multiple sta-

ble oscillations in the 4D piecewise linear version of the

canonical circuit proposed by M. Itoh and L. O. Chua in

their paper Memristor oscillators, International Jour-

nal of Bifurcation and Chaos, vol. 18 (11), pp. 3183–

3206, (2008). This oscillator is modeled by a discontin-

uous piecewise linear dynamical system.

By adding one parameter that stratifies the 4D dy-

namics, it is shown that the dynamics in each stratum

is topologically equivalent to a 3D continuous piecewise

linear dynamical system. Some previous results on bi-
furcations in such reduced system, allow to detect rigor-

ously for the first time a multiple focus-center-cycle bi-

furcation in a three-parameter space, leading to the ap-

pearance of a topological sphere in the original model,

completely foliated by stable periodic orbits.
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1 Introduction

Stan Williams and co-workers announced in the jour-

nal Nature [28] that the missing circuit element, the

memristor postulated 37 years before by Leon O. Chua

in [14] had been found. The memristor was defined by

Chua as an electronic device characterized by a rela-

tion between the flux ϕ and the charge q in the form

f(ϕ, q) = 0. Memristor is so known as the fourth basic

two-terminal circuit element, where the others three are

the resistance, the inductance and the capacitance.

In the paper Memristor Oscillators by Itoh and

Chua [23] authors derive several nonlinear oscillators

starting from the so-called Chua’s oscillators, by replac-

ing the Chua’s diode with a memristor. They assume

that the memristor is characterized by a monotone in-

creasing and piecewise linear nonlinearity of the form

q(ϕ) = b · ϕ+
a− b

2
(|ϕ+ 1| − |ϕ− 1|) ,

or

ϕ(q) = d · q +
c− d

2
(|q + 1| − |q − 1|) ,

where a, b, c, d > 0. Thus, these oscillators give rise to

piecewise linear dynamical systems.

Continuous piecewise linear (CPWL, for short) sys-

tems are used in diverse areas to accurately model many

physical phenomena, sometimes, involving abrupt events

or fast transitions. The dynamics of a CPWL system in

R3 with two or three zones can be rather complex. In
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these systems phenomena as bistability, hysteresis, in-

stantaneous transitions of a stable equilibrium to chaotic

attractor, and the existence of the invariant cones have

been shown [7,11,19,21,22,27].

When memristors oscillators with CPWL charac-

teristics are modeled in the usual current-voltage set-

ting, the lack of smoothness, leads to discontinuous

piecewise linear dynamical systems. Such discontinu-

ities make difficult to get mathematical proofs about

their dynamics. Thus, many authors have described nu-

merically the presence of periodic orbits and chaotic be-

havior (see for instance [3,4,12,16,24,31,34]). In partic-

ular, for memristor oscillators with a dimension greater

than or equal to four, cases of extreme multistability

leading to coexistence of an infinite number of attrac-

tors are reported [5,13,30,32,33]. However, a rigorous

mathematical proof of these phenomena is lacking.

In [2,25] authors provide for the first time rigor-

ous mathematical results regarding the rich dynamics

of 3D piecewise linear memristor oscillators. In this

paper we consider the so called canonical 4D piecewise

linear memristor oscillators given in [23] and report for

the first time some mathematical results regarding the

dynamics of such devices.

We present in section 2 the mathematical model of

the 4D memristor oscillator under study, showing first

that the involved discontinuities do not require the re-

sort to Filippov’s theory. In fact, the system possesses a

family of continuous piecewise linear manifolds that are

invariant under its dynamics, see Theorem 1. Further-

more, it is shown that all the parameters in the model

are not essential, see Proposition 1.

In section 3, we present the main results of this work.

It turns out that on any invariant set the dynamics can

be described by a 3D continuous piecewise linear sys-

tem, so that, coming back to the original 4D memristor

oscillator, it can be said that the dynamics is essen-

tially three-dimensional and falsely discontinuous. See

Theorem 2 and Proposition 2. It is also shown how to

pass from solutions of the reduced 3D systems to the

solutions of the original 4D model, see Proposition 3.

This result becomes out very useful in avoiding numer-

ical difficulties when one tries to simulate the dynamics

of the model by using the original vector field.

Once obtained the 3D system that reproduces the

dynamics on any invariant manifold, we study the num-

ber of equilibria and their geometrical location, see Propo-

sition 4. For these system is by no means trivial to jus-

tify the existence of periodic orbits. However, by resort-

ing to some previous results regarding the focus-center-

limit cycle bifurcation [8,20–22], it is possible to guar-

antee the existence of limit cycles in certain regions of

the basic three-parameter space. See Theorems 3, 4 and

5. The main contribution of the work is summarized in

Theorem 6. For the first time it is reported a multi-

ple focus-center-cycle bifurcation (MFCC bifurcation)

leading to the sudden appearance of a bounded hyper-

surface foliated by stable periodic orbits in the original

4D memristor oscillator. Finally, section 4 is dedicated

to illustrate numerically the dynamical richness of the

3D reduced system, by considering cases that require

further investigation.

2 Modeling of the oscillator

We consider the canonical fourth-order memristor oscil-

lator given in [23], see Figure 1, where a flux-controlled

memristor is the only nonlinear element. Applying Kirch-

hoff’s laws to the upper nodes and the central loop we

obtain the equations

i1 = i3 − i, v3 = v2 − v1, i2 = −i3 + i4,

where v1, v2 are the voltage across the capacitors C1, C2

respectively, and v3 is the voltage across the inductance.

Similarly, the current i1, i2, i3 and i are as shown in

Figure 1. Taking into account the different dipoles, and

in particular that the current through the memristor

satisfies

i =
dq

dt
=
dq

dϕ

dϕ

dt
,

it is then possible to arrive at the equations

C1
dv1
dτ

= i3 −W (ϕ)v1,

L
di3
dτ

= v2 − v1,

C2
dv2
dτ

= −i3 +Gv2,

dϕ

dτ
= v1,

(1)

where C1, C2 denote the capacitance of the capacitors,

L is the inductance of the inductor, the conductance

has a negative value −G, W (ϕ) = dq
dϕ and ϕ denote

the flux across the memristor, see section 3.1 of [23]

for more details. Taking L = 1 as in the quoted paper,

system (1) can be written as

dx

dτ
= αy − αW (w)x,

dy

dτ
= z − x,

dz

dτ
= −βy + γz,

dw

dτ
= x,

(2)
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where α = 1/C1 > 0, β = 1/C2 > 0, γ = G/C2 > 0

and

W (w) =
dq(w)

dw
, (3)

being q the characteristics of the flux-controlled mem-

ristor. The new state variables are x = v1 (voltage

across the first capacitor); y = i3 (current across the

inductor L); z = v2 (voltage across the second capaci-

tor) and w = ϕ, the flux of the memristor.

−G

i4

C2

i2

L
i3

C1

i1
i

Fig. 1 A fourth-order canonical memristor oscillator.

Remark 1 The continuous function of the flux-charge

characteristics q (w) is sometimes assumed to be in the

set PC1(R) of continuous piecewise-smooth functions.

Then, the vector field (2) becomes a discontinuous vec-

tor field at certain hyperplanes w = wi for a finite set

of values wi where q(w) is not differentiable. In fact,

assuming that we could compute the two lateral limits

W+
i = lim

w→w+
i

W (w), W−i = lim
w→w−

i

W (w),

at the manifold w = wi, we should have the interac-

tion of two different vector fields. However, this is not

a real problem regarding the existence and uniqueness

of solutions as long as such two vector fields share the

normal component ẇ = x. Effectively, we can concate-

nate solutions in the natural way and so they become

functions in PC1(R), which exist for any t ∈ R and are

uniquely defined. Therefore, here is not needed at all to

invoke Filippov’s theory [18].

Following a similar procedure to the one done in [2]

and [25], it is easy to conclude the following result.

Theorem 1 Consider system (2) where q ∈ PC1(R)

is given and the (possibly discontinuous) function W is

defined as in (3). If we introduce the continuous func-

tion

H(x, y, z, w) := β (x+ αq(w))− αγ (y + w) + αz, (4)

then for any h ∈ R the set

Sh = {(x, y, z, w) ∈ R4 : H(x, y, z, w) = h}, (5)

is an invariant manifold for the system. Therefore, sys-

tem (2) has an infinite family of invariant manifolds

foliating the whole R4, and so the dynamics is essen-

tially three-dimensional.

The existence of the conserved quantity H has a

precise physical meaning for the original system (1). In

fact, we get from (4)

C1C2
dH

dτ
= C1

dv1
dτ
−G

(
di3
dτ

+
dϕ

dτ

)
+C2

dv2
dτ

+
dq

dτ
= 0,

that is, iC1
+ iG + iC2

+ iM = 0 which is by no means

different of the current Kirchhoff law applied to the

ground node of the circuit, see section 3.1 of [23]. Thus,

we deduce in this case that the conserved quantity is

directly related to the conservation law for the total

charge.

In the next result, we show that the parameter α is

not essential and can be eliminated in system (2), alle-

viating the notation. Its proof is a direct computation

which is omitted.

Proposition 1 The change of time, variables and pa-

rameters

τ̃ = α1/2τ, x̃ = α−1/2x, ỹ = y, z̃ = α−1/2z,

β̃ = α−1/2β, γ̃ = α−1/2γ, ã = α1/2a, b̃ = α1/2b,
(6)

transforms system (2) into the form

dx

dτ
= y −W (w)x,

dy

dτ
= z − x,

dz

dτ
= −βy + γz,

dw

dτ
= x,

(7)

where the tildes for the time, new variables and param-

eters have been removed for the sake of simplicity.

For convenience, we will rewrite system (7) as

ẏ1 = y4,

ẏ2 = y3 − y4,
ẏ3 = −βy2 + γy3,

ẏ4 = y2 −W (y1)y4,

(8)

where (y1, y2, y3, y4) = (w, y, z, x). Note that the func-

tion H given in (4) can be rewritten now as

H(y1, y2, y3, y4) = β (y4 + q(y1))− γ (y1 + y2) + y3, (9)

and so in the new variables we have the invariant man-

ifolds

Sh = {(y1, y2, y3, y4) ∈ R4 : H(y1, y2, y3, y4) = h}. (10)
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The equilibrium points of system (8) are given by the

unbounded set formed by all points in the y1-axis, namely

E = {(y1, y2, y3, y4) ∈ R4 : y2 = y3 = y4 = 0, y1 ∈ R}.

It should be noticed that all these equilibria have an

eigenvalue λ = 0, since their linearization matrix has a

null first column.

3 Main results

The following result exploits the fact that the dynam-

ics is always confined to a certain invariant manifold

Sh. We show that, by a suitable change of variables,

a topologically equivalent system with a dimensional

reduction and without discontinuities is achieved. The

price to be payed is the introduction of an additional

parameter associated to the chosen level set Sh defined

in (5). For all the proofs of the results of this section

see section 5.

Theorem 2 Consider system (8) with β 6= 0 and q ∈
PC1(R). On any invariant set Sh the dynamics of the

system is topologically equivalent to the dynamics of the

continuous system

ẋ1 =
γ

β
(x1 + x2)− q(x1)− 1

β
x3 +

h

β
,

ẋ2 = x3 −
γ

β
(x1 + x2) + q(x1) +

1

β
x3 −

h

β
,

ẋ3 = −βx2 + γx3.

(11)

Note that ẋ1 + ẋ2 = x3, so that, equilibria of system

(11) satisfy x2 = x3 = 0, and the equation

βq(x1)− γx1 = h, (12)

so that generically, we will have a finite number of equi-

libria for each h ∈ R. In what follows, we consider the

function q as the continuous piecewise linear function

defined by

q(x) =


b(x− 1) + a, if x > 1,

ax, if |x| 6 1,

b(x+ 1)− a, if x < −1,

(13)

so that

W (x) =
dq(x)

dx
=

{
b, if |x| > 1,

a, if |x| < 1.
(14)

As a consequence, the invariant manifolds Sh given in

(10) are continuous and piecewise linear (CPWL, for

short).

Remark 2 According to Remark 1, for the particular

case of piecewise linear function (13) leading to (14), the

discontinuous system (8) has two discontinuity mani-

folds, namely y1 = ±1. Since they are parallel, we can-

not have boundary intersection bifurcations. Moreover,

in each of these discontinuity hyperplanes the two con-

tiguous vector fields share the orthogonal component

to such hyperplane. Therefore, there are no sliding sets

at all, and so we can discard all the discontinuity in-

duced bifurcations involving sliding motions. In par-

ticular, adding-sliding, crossing-sliding, grazing-sliding

and switching-sliding bifurcations are not possible. In

fact, from Theorem 2 we see that the dynamics can be

described by a continuous system, so that system (8)

could be termed as false discontinuous.

For the subsequent analysis of system (11), it turns

out very useful to resort to the so called generalized

canonical Liénard’s canonical form, as follows.

Proposition 2 Consider the fourth-order discontinu-

ous system (8) with β 6= 0 and the function q defined as

in (13). On any invariant CPWL manifold Sh given in

(10), the system is topologically equivalent to the third-

order continuous canonical system

ẋ =

 tE −1 0

mE 0 −1

dE 0 0

x+

 tC − tE
mC −mE

dC − dE

 sat
(
eT1 x

)
+
h

β

1

γ

β


(15)

where tC,E , dC,E and mC,E are given by

tC = γ − a, mC = 1 + β − γa, dC = γ − βa,
tE = γ − b, mE = 1 + β − γb, dE = γ − βb.

(16)

The numerical simulation of system (8) is prone to

numerical errors, associated with the presence of infi-

nite number of piecewise linear invariant manifold Sh.

Thus, we need to implement a safeguard that force the

solutions of system (8) to stay at the corresponding

invariant manifold Sh. The next result avoids the nu-

merical difficulties because we give for any solution of

the continuous canonical system (15)-(16) with a given

value of h the corresponding solution of the discontin-

uous system (8).

Proposition 3 Given h ∈ R and β 6= 0, if the vec-

tor (x1(τ), x2(τ), x3(τ)) ∈ R3 is a solution of canonical

system (15)-(16), then

y (τ) =


x1(τ)

(γ2 − β − 1)x1(τ)− γx2(τ) + x3(τ)

(γ3 − 2βγ)x1(τ) + (β − γ2)x2(τ) + γx3(τ)

γx1(τ)− x2(τ)− q(x1(τ)) + h/β


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(17)

is a solution of discontinuous system (8) on Sh, where

the function q is defined as in (13).

Following the terminology introduced in section 5.1.1

of [6], in the next result we study, by taking h as a bi-

furcation parameter, the boundary-equilibrium bifurca-

tion (BEB, for short) of system (15)-(16). Such bifur-

cation can be of two different types, namely persistence

(the number of equilibria does not change) and non-

smooth fold, when the number of equilibria changes by

two. The non-generic cases dC = 0 or dE = 0 are ex-

cluded for brevity

Proposition 4 The following statements hold for canon-

ical system (15)-(16) with β 6= 0.

(a) If dC · dE > 0 the system has for any h ∈ R only

one real equilibrium point so that for h = ±dC we

have a persistence BEB, see figure 2 (a).

(b) If dC · dE < 0 the system has for |h| > |dC | only

one real equilibrium point and for |h| < |dC | three

real equilibrium points. Therefore, for h = ±dC the

system has two equilibrium points and a non-smooth

fold BEB, see figure 2 (b).

-1

1

-1

1

|dC |

x1

−|dC | |dC |
h

−|dC |
h

x1

(b)(a)

Fig. 2 Real equilibrium points of canonical system (15)-(16)
with respect to the parameter h for the case dC < 0. (a) Tak-
ing dE < 0, statement (a) of Proposition 4 shows persistence
BEB’s at h = ±dC . (b) Taking dE > 0, statement (b) of
Proposition 4 shows non-smooth fold BEB’s at h = ±dC .

The equilibria of system (15)-(16) are of the form

(x1, 0, 0) where x1 is a solution of (12). When |x1| < 1

the stability of such equilibrium is determined by the

roots of the polynomial λ3 − tCλ2 +mCλ− dC . These

equilibria can undergo the so-called focus-center-limit

cycle (FCLC, for short) bifurcation [20,21,8,22] under

the conditions

mC > 0, mCtC = dC . (18)

Such conditions assure that the matrix AC has a pair of

pure imaginary eigenvalues. Effectively, under the hy-

pothesis of the existence of a complex eigenvalue pair,

if we introduce the parameter ε = mCtC − dC , then

we conclude that it is associated to the sign of the real

part of such complex eigenvalues. Effectively, if λ, and

σ± iω are the three eigenvalues a straightforward com-

putation gives

ε = mCtC − dC = 2σ
[
(σ + λ)2 + ω2

]
.

Therefore, for ε = 0 we have a linear center in the

central zone on the corresponding focal plane. Since

dC = λ(σ2 + ω2), we observe that when dC < 0, such

focal plane is attractive because we have a dynamics

approaching the plane along the transversal direction

associated to the λ-eigenvector.

Assuming β fixed, we start by analyzing the auxiliary

expression ε(a, γ) = mCtC − dC that leads to the bi-

furcation when it vanishes, where mC , tC and dC are

given in (16). We have

ε (a, γ) = a2γ − aγ2 + βγ − a. (19)

For β = 1 we get ε(a, γ) = (1 − aγ)(γ − a). If γ = a

then we have tC = dC = 0, so that we do not have any

equilibrium point for h 6= 0; anyway, mC = 2− a2, and

so for |a| <
√

2 we get a Hopf-zero bifurcation if h = 0,

see [26]. The other possibility given by γ = 1/a is not

so problematic but we will not consider anymore the

case β = 1, as it is a non-generic situation, to be inves-

tigated elsewhere. For β 6= 1, the condition ε (a, γ) = 0

is equivalent to the equality aγ (a− γ) = a−βγ, which

is only possible for aγ > 0. Effectively, if aγ < 0, then

sgn (a− γ) = sgn(a− βγ)

and the previous equality can not be fulfilled. There-

fore, the points where (19) vanishes are in the first or

third quadrant of the parameter plane (a, γ) . In Figure

3, we show for the first quadrant of parameter plane the

locus ε(a, γ) = 0, which is formed by two disconnected

branches. As will be later detailed, not all the points in

such branches are FCLC bifurcation points. See Theo-

rems 4 and 5, below.

We observe that system (15)-(16) is invariant under

the symmetry

(x, y, x, h)→ (−x,−y,−z,−h), (20)

so that for the analysis of the FCLC bifurcation, we

only need to consider the dynamics of the system for

h ≥ 0. When h = 0 the vector field of the system is

indeed symmetric, and then for the equilibrium at the

origin Theorem 1.1 of [20] on the FCLC bifurcation

applies. This result assures under certain hypotheses,
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to be detailed later, the bifurcation of a limit cycle from

a linear center configuration that exists at the critical

bifurcation value in the central zone.

When 0 < h < |dC | the only equilibrium of system

(15)-(16) in the central zone is not at the origin any

longer, but is nearer to one of the two planes x = ±1,

see Figure 2. Then a similar FCLC Theorem applies

(see Theorem 1 of [8]) that involves two linear zones.

We note that the FCLC bifurcation condition (18) does

not depend on the concrete value of h, so that the FCLC

bifurcation takes place simultaneously for all values of

|h| < |dC |. Therefore, we can state as a consequence

the following result, where a new criticality parameter

ρ is introduced to characterize the bifurcation.

Theorem 3 Consider the canonical system (15)-(16)

with |h| < |dC | 6= 0, mC > 0, ε = mCtC − dC , and the

non-degeneracy parameter

ρ = dCmC − dCmE + dEmC −m2
CtE . (21)

Then, for ρ 6= 0 and ε = 0 the system undergoes a focus-

center-limit cycle bifurcation; that is, from the lineal

center configuration in the central zone, which exists

for ε = 0, one limit cycle appears for ερ > 0 and ε

sufficiently small. In particular, if ρ > 0 and dC < 0,

then the limit cycle bifurcates for ε > 0 and is orbitally

asymptotically stable. Otherwise, if ρ < 0 or dC > 0

the bifurcating limit cycle is unstable, being completely

unstable when both inequalities hold.

In all the cases, the bifurcating limit cycle comes

from the most external periodic orbit of the linear cen-

ter that exist for ε = 0, which is tangent to one of the

planes eT1 x = ±1 or to both of them if h = 0.

Now, given the value of h, the FCLC bifurcation is char-

acterized in the parameter plane (a, γ), see Figure 3.

The golden ratio φ = (1+
√

5)/2 appears in some state-

ments.We start by defining the auxiliary well-defined

functions

a± (γ) =
γ2 + 1

2γ
±

√(
γ2 + 1

2γ

)2

− β, (22)

for 0 < β < 1, and

γ± (a) =
β + a2

2a
±

√(
β + a2

2a

)2

− 1, (23)

for β > 1, see Figure 3.

In the next theorem we give a complete characteri-

zation of the FCLC bifurcation for 0 < a < b.

Theorem 4 Consider the reduced system (15)-(16) with

|h| < |dC | 6= 0, 0 < a < b, β 6= 1, and γ > 0. Addition-

ally, consider the functions a± (γ) and γ± (a) defined in

(22)-(23) respectively. The following statements hold.

(a) If 0 < β < 1 then at the points (a, γ) = (a−(γ), γ)

the system undergoes a FCLC bifurcation, so that

an unstable limit cycle bifurcates for a < a−(γ).

(b) If 0 < β < 1 then at the points (a, γ) = (a+(γ), γ)

with γ <
√
β(1 + β) the system undergoes a FCLC

bifurcation, so that an unstable limit cycle bifurcates

for a < a+(γ).

(c) If β > 1 then at the points (a, γ) = (a, γ−(a)) with

a <
√
β (a >

√
β) the system undergoes a FCLC

bifurcation, so that a stable (unstable) limit cycle

bifurcates for γ > γ−(a) (γ < γ−(a)).

(d) If 1 < β < φ then at the points (a, γ) = (a, γ+(a))

with a <
√
β (
√
β < a <

√
(1 + β)/β) the system

undergoes a FCLC bifurcation, so that an unstable

(completely unstable) limit cycle bifurcates for γ <

γ+(a) (γ > γ+(a)).

(e) If β ≥ φ then at the points (a, γ) = (a, γ+(a)) with

a <
√

(1 + β)/β the system undergoes a FCLC bi-

furcation, so that an unstable limit cycle bifurcates

for γ < γ+(a).

In all the above cases, the system has for the critical

values of parameters indicated a linear center in the

region |eT1 x| ≤ 1 and the limit cycle bifurcates from

the most external periodic orbit of the center.

A similar result can be stated for 0 < b < a.

Theorem 5 Consider the reduced system (15)-(16) with

|h| < |dC | 6= 0, 0 < b < a, β 6= 1, and γ > 0. Addition-

ally, consider the functions a± (γ) and γ± (a) defined in

(22)-(23) respectively. The following statements hold.

(a) If 0 < β < 1 then at the points (a, γ) = (a−(γ), γ)

the system undergoes a FCLC bifurcation, so that

a completely unstable limit cycle bifurcates for a >

a−(γ).

(b) If 0 < β < 1 then at the points (a, γ) = (a+(γ), γ)

with γ <
√
β(1 + β) the system undergoes a FCLC

bifurcation, so that a stable limit cycle bifurcates for

a > a+(γ).

(c) If β > 1 then at the points (a, γ) = (a, γ−(a)) with

a <
√
β (a >

√
β) the system undergoes a FCLC

bifurcation, so that an unstable (stable) limit cycle

bifurcates for γ < γ−(a) (γ > γ−(a)).

(d) If 1 < β < φ then at the points (a, γ) = (a, γ+(a))

with a <
√
β (
√
β < a <

√
(1 + β)/β) the sys-

tem undergoes a FCLC bifurcation, so that an com-

pletely unstable (unstable) limit cycle bifurcates for

γ < γ+(a) (γ > γ+(a)).

(e) If β ≥ φ then at the points (a, γ) = (a, γ+(a)) with

a <
√

(1 + β)/β the system undergoes a FCLC bi-

furcation, so that an unstable limit cycle bifurcates

for γ < γ+(a).
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0 2
0

2
0 < β < 1

0 2
0

2
1 < β < φ

γ

(b)(a)
γ+(a)

γ
−
(a)

DZ

DZ

γ

dC = 0

dC = 0

tC = 0

tC = 0

mC = 0

a+(γ)

a
−
(γ)

mC = 0

p+

p
−

√

β
√

(1 + β)/β

√

β(1 + β)

a a

Fig. 3 The thin dashed lines represents the locus tC = 0 (red), dC = 0 (blue) and mC = 0 (green). The thick black curves
corresponds to FCLC bifurcation points, excepting the dashed points where mC < 0. The panel (a) it is shown the case
0 < β < 1 (β = 0.8), while in (b) there appears the case β < 1 (β = 1.2).

In all the above cases, the system has for the critical

values of parameters indicated a linear center in the

region |eT1 x| ≤ 1 and the limit cycle bifurcates from

the most external periodic orbit of the center.

In Figure 3, we give a schematic view of the different

FCLC bifurcations predicted by Theorems 4 and 5. We

denote by s,u, cu the stable, unstable and completely

unstable character of the bifurcating limit cycle. The

arrows across the branches of the curve ε(a, γ) = 0

denote the reported bifurcations.

Next, we give our last main result for the 4D dis-

continuous system (8), which emphasizes three cases of

simultaneous appearance of an infinite number of sta-

ble periodic orbits in what can be called a multiple

focus-center-cycle (for short, MFCC) bifurcation. This

bifurcation, to be reported for the first time up to the

best of our knowledge, is a consequence of the stan-

dard focus-center-limit cycle bifurcations that occur in

such invariant CPWL manifold Sh for the values of h

with |h| < |dC |. Note that the multiple stable oscilla-

tions that are predicted cannot be called limit cycles as

long as they are non isolated when one thinks of the 4D

system (8).

Theorem 6 Consider the discontinuous system (8) with

β 6= 1. Additionally, consider the functions a+ and γ−
defined in (22)-(23) respectively. The following state-

ments hold.

(a) If β > 1, a <
√
β and 0 < a < b then for γ = γ−(a)

the system undergoes a MFCC bifurcation, so that

when γ ≤ γ−(a) all the equilibria in central seg-

ment are stable, becoming unstable for γ > γ−(a).

When γ = γ−(a) there appears a bounded, simply

connected set, symmetric with respect to the origin

and completely full of periodic orbits that surrounds

such set of central equilibria. For γ − γ−(a) > 0

and sufficiently small, the above set of periodic or-

bits disappears giving rise to a bounded hypersurface

Ω ⊂ R4 foliated by stable periodic orbits.

(b) If 0 < β < 1, γ <
√
β(1 + β) and 0 < b < a

then for a = a+(γ) the system undergoes a MFCC

bifurcation, so that when a ≤ a+(γ) all the equilib-

ria in central segment are stable, becoming unstable

for a > a+(γ). When a = a+(γ) there appears a

bounded, simply connected set, symmetric with re-

spect to the origin and completely full of periodic or-

bits that surrounds such set of central equilibria. For

a − a+(γ) > 0 and sufficiently small, the above set

of periodic orbits disappears giving rise to a bounded

hypersurface Ω ⊂ R4 foliated by stable periodic or-

bits.

(c) If 0 < β < 1, a >
√
β and 0 < b < a then

for γ = γ−(a) the system undergoes a MFCC bi-

furcation, so that when γ ≤ γ−(a) all the equilib-

ria in central segment are stable, becoming unstable

for γ > γ−(a). When γ = γ−(a) there appears a

bounded, simply connected set, symmetric with re-

spect to the origin and completely full of periodic or-

bits that surrounds such set of central equilibria. For

γ − γ−(a) > 0 and sufficiently small, the above set

of periodic orbits disappears giving rise to a bounded

hypersurface Ω ⊂ R4 foliated by stable periodic or-

bits.

In Figure 5, we show the effect of the reported MFCC

bifurcation on system (8). Before the bifurcation we

have stable equilibria (Figure 5(a)) in the central seg-
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γ

0 < β < 1, 0 < a < b

γ

1 < β < φ, 0 < a < b

a
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−
(γ)
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(c)

u u
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a
−
(γ)

a+(γ)

a+(γ)

s

u
√

β(1 + β)

cu
√

β(1 + β)

γ

γ+(a)

u

γ+(a)cu
(b)

(d)

γ
−
(a)

γ
−
(a)

u

s

u

√

(1 + β)/β

u

s

u

cu

s

√

β

Fig. 4 Scheme of the bifurcations reported in Theorems 4 and 5. Panels (a) and (b) correspond to Theorem 4, while panels
(c) and (d) to Theorem 5.

ment. After Figure 5(b), these equilibria are unstable

with a sudden appearance of a hypersurface of stable

periodic orbits.

2

-1

1

2
-2-2-2

2

-2
2

-1

1

(b)(a)

Ω

y4
y4

y1y1

y3 y3

Fig. 5 The MFCC bifurcation predicted by Theorem 6(a)
in the discontinuous system (8). In panel (a) points in the
blue line correspond to the stable equilibria in the central
zone. In panel (b) for γ > γ−(a), we show the 3D projection
of some slices of the hypersurface Ω that bifurcate from the
multiple center when γ = γ−(a). Parameters are β = 1.2,
a = 0.8, γ = γ−(a) + 0.02, b = 2. The equilibrium points of
the system are unstable in all zones, the red line shows the
unstable equilibria in the central zone.

To finish this section, we want to emphasize the use-

fulness of the 3D reduced models in order to justify the

complex dynamics to be found in the 4D original mod-

els. In fact, we show in the next section other dynamics

which are still needed of further analysis.

4 Numerical examples

Just to demonstrate the dynamical richness of these

memristor oscillators, we select two numerical exam-

ples. In the first example, we show another case of the

existence of hypersurfaces of periodic orbits, this time

related to boundary equilibrium bifurcations (BEB).

Furthermore, we also show a case where have detected

a h-route to chaos in the reduced model.

4.1 Non-smooth fold BEB with unstable zones and

stable periodic orbits.

Consider system (15)-(16) with parameters

β = 0.5, γ = 0.325, a = 0.2, b = 3.5. (24)

In this case, the system has the linear invariants tC =

0.125, dC = 0.225, tE = −3.175, dE = −1.425 and

the eigenvalues of matrices AC,E are λC,E ∈ R and

σC,E ± iωC,E given by

λC = 0.1562624, σC = −0.0156312,

ωC = 1.1998503298,

λE = −3.2008358, σE = 0.0129179,

ωE = 0.6671051.

From Propositions 4 and 7 the system has for |h| >
dC only one unstable real equilibrium point and for

|h| < dC three unstable real equilibrium points and at

h = ±dC we have a non-smooth fold BEB of unstable
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equilibrium points. In Figure 6, we have in dashed red

line the real equilibrium points. When h = ±dC a stable

periodic orbit is created and for |h| < |dC | two stable

periodic orbits coexist.

-11 11

-9

-1
1

9

0

-1

1

−|dC | |dC |

xx

h

(a) (b)

Fig. 6 (a) Bifurcation diagram of system (15)-(16) respect to
parameter h. The dashed red line represents the coordinate
x of the real unstable equilibrium points. For stable periodic
orbits, some schematic projection joining its minimum and
maximum x-values are plotted. The remaining parameters are
as in (24). (b) The zoomed central region of the bifurcation
diagram in (a).

From Proposition 3 this set of periodic orbits can

be translated to the 4D original model leading to cer-

tain hypersurface foliated by periodic orbits. Although

the lack of theoretical results for these BEB precludes

at this moment any non-numerical justification, we can

advance that it is possible to show the sudden appear-

ance of these hypersurfaces in a MFCC bifurcation sim-

ilar to the one included in this paper. This will be the

subject of future work.

4.2 Route to chaos without parameters

In section 3.1 of [23], authors consider the discontinuous

system (2) with the function q defined as in (13). They

detect numerically a chaotic attractor for the set of pa-

rameters α = 4, β = 1, γ = 0.65, a = 0.2 and b = 10.

The change of variables given in (6) transforms the sys-

tem into the form (15)-(16) where the new parameters

are given by

β = 0.5, γ = 0.325, a = 0.4, b = 20. (25)

For these parameters we obtain the linear invariants

tC = −0.075, dC = 0.125, tE = −19.675, dE = −9.675

and the eigenvalues of matrices AC,E are λC,E ∈ R and

σC,E ± iωC,E given by

λC = 0.09025818, σC = −0.0826290,

ωC = 1.17392007,

λE = −19.949936, σE = 0.13746820,

ωE = 0.68269059.

From Propositions 4 and 7 the system has for |h| >
dC only one unstable real equilibrium point and for

|h| < dC three unstable real equilibrium points. As in

the previous example, and at h = ±dC we have a non-

smooth fold BEB of unstable equilibrium points.

Following [29], by computing the Poincaré map on

the plane x = 1, and taking h as the bifurcation pa-

rameter of system (15)-(16), we obtain the numerical

bifurcation diagram given in Figure 7(a).

We observe that the system undergoes several period-

doubling bifurcations, see the corresponding periodic

orbits of Figure 7 (b),(c),(d). Finally, for h0 = 0 the

system has a symmetric pair strange attractors of two

zones, see Figure 7(e).

Since the parameter h is not present in the original

model, but it is associated to the initial conditions, we

can speak of a route to chaos without parameters or a

phase-space route to chaos. In fact, more than multi-

stability in the 4D model, we should better speak of the

existence of a non-denumerable set of attractors.

For instance, in Figure 8, using the initial conditions

in each invariant set S0.9, S0 and Proposition 3, we

show in the discontinuous system (8), two symmetric

stable periodic orbits that coexist with two symmetric

strange attractors.

5 Proofs of the main results

5.1 Proof of Theorems 1 and 2

We start by giving the proof of Theorem 1.

Proof (Proof of Theorem 1) Using remark 1, we can as-

sume the existence of solutions (x(τ), y(τ), z(τ), w(τ))

for which the evaluation of

h(τ) := H(x(τ), y(τ), z(τ), w (τ))

is feasible. Excepting the finite number of points where

solutions are not differentiable, after a direct computa-

tion, we get that h′(τ) = 0, so that h is at least piece-

wise constant along the solutions of (2). Since h(τ) is

a continuous function, we obtain that the function is

indeed constant everywhere.

Next, we give the proof of Theorem 2
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-1 1 -1 1
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h = |dC |

(a) (b)

(c)(d)

(e)

h1 = 0.9

h3 = 0.7

h3 h2

h0 = 0

h2 = 0.8

Fig. 7 Simulation results for system (15)-(16) with parameter values as in (25). (a) Plot of the y-coordinate intersection for
long term orbits on the Poincaré section x = 1 with respect to the parameter h. (b) For h1 = 0.9 we show a stable periodic
orbit of three zones. (c) For h2 = 0.8 we have a stable 2-periodic orbit of three zones. (d) For h3 = 0.7 we have a stable
4-periodic orbit of three zones. (e) When h0 = 0 the system has two symmetric strange attractors of two zones.

-1

-2

1

2
y4

y3

y1

Fig. 8 Simulation results for the discontinuous system (8)
obtained by an adequate application of Proposition 3, with
parameters values as in (25). The coexistence of two strange
attractors along with two stable periodic orbits is shown. The
dashed red line represents the unstable equilibrium points.

Proof (Proof of Theorem 2) Solving for y4 in the equa-

tion H(y1, y2, y3, y4) = h given in (9), we obtain

y4 =
γ

β
(y1 + y2)− q(y1)− 1

β
y3 +

h

β
,

and substituting this expression in the first three equa-

tions of (8), we get

ẏ1 =
γ

β
(y1 + y2)− q(y1)− 1

β
y3 +

h

β
,

ẏ2 = y3 −
γ

β
(y1 + y2) + q(y1) +

1

β
y3 −

h

β
,

ẏ3 = −βy2 + γy3.

(26)

Finally, making the notational change (x1, x2, x3) =

(y1, y2, y3), system (26) goes into the form (11).

Remark 3 We note that following a similar procedure

to the one done in section 3.1 of [25], it is easy to show

how it is possible to get a system equivalent to the

continuous reduced system (11), by working from the

beginning in the flux-charge setting instead of starting

from the discontinuous 4D system (1). This approach

is known as Flux-Charge Analysis Method (FCAM, for
short) and was proposed in [15].

5.2 Proof of Proposition 2

Remark 4 Note that as a first consequence of theorem

2, when β 6= 0, a 6= b and the function q is defined as in

(13), the dynamics of system (8) on Sh defined in (10)

is ruled by a continuous piecewise system of the form

ẋ =


AEx + bC + b, if eT1 x > 1,

ACx + bC , if |eT
1 x| ≤ 1,

AEx + bC − b, if eT1 x < −1,

(27)
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where

AC =
1

β

γ − aβ γ −1

aβ − γ −γ 1 + β

0 −β2 γβ

 ,

AE =
1

β

γ − bβ γ −1

bβ − γ −γ 1 + β

0 −β2 γβ

 ,

b =

b− aa− b
0

 , bC =
h

β

 1

−1

0

 .

(28)

Note that in the external zones we have equal matri-

ces representing the linear part. Therefore, system (27)-

(28) belongs to the family of quasi-symmetric piecewise

linear differential systems, and can be written as (for

more details see [9])

ẋ =AEx + (AC −AE) e1sat
(
eT1 x

)
+ bC , (29)

where sat (x) is the normalized saturation function given

by

sat (x) =

{
x if |x| ≤ 1,

sgn(x) if |x| > 1.

The quasi-symmetric piecewise linear system given

in (29) can be written in the generalized Liénard’s form

as we will show in the next theorem. First, we give an

auxiliary result.

Proposition 5 Given any matrix of order 3 defined by

blocks

A =

(
a11 rT

w B

)
,

where

r =

(
a12
a13

)
, w =

(
a21
a31

)
, B =

(
a22 a23
a32 a33

)
,

the following statements hold.

(a) The linear invariants of the matrix A can be written

as

t = a11 + tr (B) ,

m = det (B) + a11tr (B)− rTw,

d = a11 det (B) + rTBw−tr (B) rTw,

where t,m and d are the trace, the sum of principal

minors and the determinant respectively.

(b) If we consider the matrix

G =

(
1 0

s Q

)
,

where 0 is a null row vector and

s =

(
tr (B)

det (B)

)
, Q =

(
−rT

rTB − tr (B) rT

)
,

we have t −1 0

m 0 −1

d 0 0

G = GA

Proof Statement (a) can be checked by direct compu-

tation. After a direct multiplication we obtain t −1 0

m 0 −1

d 0 0

G =

 t− tr (B) rT

m− det (B) tr (B) rT − rTB

d 0

 ,

and GA = (z, D) where the vector z and the matrix D

are given by

z=

 a11
a11tr (B)− rTw

a11 det (B) + rTBw−tr (B) rTw

 ,

D =

 rT

tr (B) rT − rTB

rT
[
B2 − tr (B)B + det (B) I

]
 .

By Cayley-Hamilton’s Theorem, we get B2−tr (B)B+

det (B) I = 0, and then statement (b) follows from

statement (a).

Theorem 7 Consider a three-dimensional quasi- sym-

metric continuous piecewise linear system given by

ẋ =AEx + (AC −AE) e1sat
(
eT1 x

)
+ bC , (30)

where the column vectors w, r ∈ R2 and the matrix B

are such that

AE =

(
a11 rT

w B

)
.

Assume that the matrix

C =

(
rT

rTB

)
(31)

has rank 2, that is, it is nonsingular. Then, the home-

omorphism x̃ = Gx where

G =

(
1 0

s Q

)
, s =

(
tr (B)

det (B)

)
, Q =

(
−rT

rTB − tr (B) rT

)
(32)
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transforms system (30) into the generalized Liénard’s

form

ẋ =

 tE −1 0

mE 0 −1

dE 0 0

 x+

 tC − tE
mC −mE

dC − dE

 sat
(
eT1 x

)
+GbC ,

(33)

where the tildes for the new variables have been re-

moved, and the parameters tE ,mE , dE and tC ,mC , dC
are the linear invariants (trace, sum of principal mi-

nors and determinant) of the matrices AE and AC ,

respectively.

Proof From hypothesis, the matrix C has rank 2, so

that the matrices Q and then G are nonsingular and

the change of variables is well defined. Now, we consider

the matrices

Lj =

 tj −1 0

mj 0 −1

dj 0 0

 with j ∈ {E,C} ,

where tj ,mj , dj are the linear invariants (trace, sum of

principal minors and determinant) of the matrices Aj
with j ∈ {E,C} . Since system (30) is continuous, the

matricesAE andAC satisfyAE−AC = (AE −AC) e1e
T
1 ,

where e1 is the first canonical vector, so that the ma-

trices share the last two columns. From Proposition (5)

we have LEG = GAE and LCG = GAC . Thus, we

obtain

dx̃

dτ
= GAEG

−1x̃+(LC − LE)Ge1sat
(
eT1G

−1x̃
)
+GbC .

Taking into account that (LC − LE)Ge1 = (LC − LE) e1

and eT1G
−1 = eT1 we obtain the generalized Liénard’s

form given in (33) and the theorem follows.

Remark 5 Note that the observability matrix of the sys-

tem (30) is given by

O =

 eT1
eT1 AE
eT1 A

2
E

 =

 1 0

a11 rT

a11 + rTw a11r
T + rTB

 ,

which has rank 3 if and only if the matrix C has rank

2, so that the assumption made on the matrix C is

by no means different from the classical observability

condition (see [1]).

Combining Remark 4 and Theorem 7, we obtain the

proof of Proposition 2.

Proof (Proof of Proposition 2) From Remark 4, on any

invariant manifold Sh the dynamics of system (8) is

ruled by a continuous piecewise linear system (27)-(28).

Computing the matrix C given in (31) we obtain

C =
1

β2

(
γβ −β

β2 − γ2 γ

)
,

so that det (C) = 1/β and C is nonsingular. From

Theorem 7, there exists a matrix G given by

G =
1

β

 β 0 0

γβ − γ −γ 1

β2 + β − γ2 β − γ2 γ

 , (34)

such that the change of variables x̃ = Gx transforms

system (27)-(28) into the Generalized Liénard’s form

(15) and the conclusion follows.

Remark 6 If y(τ) = (y1(τ), y2(τ), y3(τ), y4(τ)), is a so-

lution of system (8), from Theorem 1 we obtain the

constant value

h = H(y1(τ), y2(τ), y3(τ), y4(τ)), (35)

where H is given in (9), so that y (τ) ∈ Sh. From

Theorem 2, for h given in (35) we get that x(τ) =

G(y1(τ), y2(τ), y3(τ))T is a solution of the canonical

system (15)-(16) where the matrix G is given in (34).

The eigenvalues of the matrices AE and AC are the

roots of the polynomials pj (λ) = λ3 − tjλ2 +mjλ− dj
with j ∈ {E,C}.

Proof (Proof of Proposition 3) Assume that x(τ) =

(x1(τ), x2(τ), x3(τ)) ∈ R3 is a solution of the canoni-

cal system (15)-(16) for some h ∈ R. From Theorem 2

there exists a nonsingular matrix G such that G−1x (τ)

is a solution of the non-canonical system (11). Taking

into account thaty1(τ)

y2(τ)

y3(τ)

 = G−1x (τ) ,

we obtain the three first components given in (17), and

defining

y4 (τ) =
γ

β
(y1(τ) + y2(τ))− q(y1(τ))− 1

β
y3(τ) +

h

β
=

= γx1(τ)− x2(τ)− q(x1(τ)) +
h

β
,

we obtain trivially H (y1 (τ) , y2 (τ) , y3 (τ) , y4 (τ)) = h,

where H is given in (9), that is
(
G−1x (τ) , y4 (τ)

)
∈ Sh.

Now, after to direct computation we get ẏ1 = y4, ẏ2 =

y3−y4, ẏ3 = −βy2 +γy3 and taking into account that

ẏ1 + ẏ2 = y3 we obtain

ẏ4 =
γ

β
(ẏ1 + ẏ2)−W (y1(τ))ẏ1 −

1

β
ẏ3 =

= y2(τ)−W (y1(τ))y4(τ).

Thus y (τ) defined as in (17) is a solution of discontin-

uous system (8) and the conclusion follows.
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5.3 Proof of Proposition 4

In the following result we study the existence of real

equilibrium points and their transitions between the

central zone and the externals zones. The proof is a

direct computation and is omitted.

Proposition 6 Consider canonical system (15)-(16) with

a 6= b. The following statements hold.

(a) The system has for |h| ≤ |dC | one real equilibrium

point in the central zone
∣∣eT1 x

∣∣ ≤ 1, with coordi-

nates

x∗C = h

 − 1
dC

1
β −

tC
dC

γ
β −

mC

dC

 . (36)

(b) For h+dC
dE

< 0 the system has one real equilibrium

point in the right external zone eT1 x >1, with coor-

dinates

x∗R =


1− h+dC

dE

tC − tE
dE
dC +

(
1
β −

tE
dE

)
h

mC − mE

dE
dC +

(
γ
β −

mE

dE

)
h

 . (37)

(c) For h−dC
dE

> 0 the system has one real equilibrium

point in the left external zone eT1 x < −1, with coor-

dinates

x∗L =


−1− h−dC

dE

−tC + tE
dE
dC +

(
1
β −

tE
dE

)
h

−mC + mE

dE
dC +

(
γ
β −

mE

dE

)
h

 . (38)

Proof (Proof of Proposition 4) From Proposition 6 we
have

eT1 x∗C = − h

dC
, eT1 x∗L = −1 +

dC
dE
− h

dE
,

eT1 x∗R = 1− dC
dE
− h

dE
,

where e1 is the canonical vector. Assuming that dC > 0

and dE < 0 we obtain

|eT1 x∗C | ≤ 1, for − dC ≤ h ≤ dC ,
eT1 x∗R > 1, for − dC < h,

eT1 x∗L < −1, for h < dC .

Thus, for |h| < dC the system has three real equilibrium

points while for h = dC we get eT1 x∗C = eT1 x∗L, so

that the system has two equilibrium points and passing

through at h = dC we have a non-smooth fold boundary

equilibrium bifurcation. Analogously, for h = −dC we

have eT1 x∗C = eT1 x∗R. The case dC < 0 and dE > 0 is

analogous and statement (a) follows.

If dC > 0 and dE > 0 the system has only one real

equilibrium point for any h ∈ R so that there exists

a persistence of the equilibrium point at h = dC and

h = −dC . The case dC < 0 and dE < 0 is analogous

and the proof is completed.

Note that, the above BEB’s could be detected by

applying Theorem 5.1 of [6] or [17], but here is not

necessary thanks to the canonical form (15)-(16) which

facilitates the required computations.

When the equilibria are not at the boundaries |eT1 x| =
1, their stability can be obtained by standard criteria,

as follows.

Proposition 7 Consider system (15)-(16) with a 6= b,

|h| 6= |dC | and the equilibrium points given in (36)-(37)-

(38). The following statements hold.

(a) When equilibrium point x∗C is real, it will be asymp-

totically stable if tC < 0, dC < 0 and mCtC − dC <

0, that is

γ − a < 0, γ − aβ < 0, a2γ − aγ2 + βγ − a < 0.

(b) When a external equilibrium point (x∗R or x∗L) is

real, it will be asymptotically stable if tE < 0, dE < 0

and mEtE − dE < 0, that is

γ − b < 0, γ − bβ < 0, b2γ − bγ2 + βγ − b < 0.

Proof The matrices AC,E have the characteristic poly-

nomial

pj (λ) = λ3 − tjλ2 +mjλ− dj , with j ∈ {E,C} .

Thus, by a direct application of the Routh-Hurwitz
Theorem we obtain tj < 0, dj < 0, mjtj < dj and

both statements follows.

However, when the equilibria are at the boundaries

|eT1 x| = 1, their stability is a problem much more in-

volved. In particular, as shown in [11], it is possible

to have an unstable equilibrium point even when the

two matrices AC and AE are Hurwitzian. The difficul-

ties arise from the possible existence of invariant cones

where the dynamics is not easy to control, see for more

details [10].

5.4 Proof of Theorems 4 and 5

In order to show Theorems 4 and 5, we show first some

auxiliary results. Assuming β fixed, we start by analyz-

ing the auxiliary expression ε(a, γ) = mCtC − dC that

leads to the bifurcation when it vanishes, where mC , tC
and dC are given in (16).
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For β 6= 1, the condition ε(a, γ) = 0 is equivalent to

aγ (a− γ) = a− βγ, which is only possible for aγ > 0,

so that the points where (19) vanishes are in the first

or third quadrant of the parameter plane (a, γ). The

following Lemma is direct and so we omit its proof.

Lemma 1 Consider for the reduced system (15)-(16)

the auxiliary expression (19), where tC ,mC and dC are

given in (16) and a > 0, β 6= 1. The following state-

ments hold.

(a) The points of the parameter plane (a, γ) where ε

vanishes satisfy γ 6= a.

(b) If 0 < β < 1 then
(
γ2 + 1

)2
> 4βγ2 and we have

the factorization

ε(a, γ) = γ (a− a+ (γ)) (a− a−(γ)) , (39)

where

a± (γ) =
γ2 + 1

2γ
±

√(
γ2 + 1

2γ

)2

− β, (40)

so that a−(γ) < γ < a+(γ). Thus at the points

(a−(γ), γ) we have tC > 0 and dC > 0, while for

(a+(γ), γ) we have tC < 0. Furthermore, for γ <√
β(1 + β) we also have γ < a+(γ)β, that is, dC <

0 at such points (a+(γ), γ), see Figure 3 (a).

(c) If β > 1 then β + a2 > 2a and we have the factor-

ization

ε(a, γ) = −a (γ − γ+ (a)) (γ − γ−(a)) , (41)

where

γ± (a) =
a2 + β

2a
±

√(
a2 + β

2a

)2

− 1, (42)

so that γ−(a) < a < γ+(a).Thus at the points (a, γ−(a))

we have tC < 0 and dC < 0, while for (a, γ+(a)) we

have tC > 0. Furthermore, for a <
√

(1 + β)/β we

also have aβ < γ+(a), that is dC > 0 at such points

(a, γ+(a)), see Figure 3 (b).

Remark 7 Regarding conditions (18), we need in the

bifurcation that sgn(tC) = sgn(dC). Therefore, we note

that for β > 1 the points on the curve ε(a, γ) = 0 with

a < γ < aβ do not represent FCLC bifurcation points.

Analogously, for β < 1 we must neglect the points with

aβ < γ < a.

The point (a, γ) at the curve ε(a, γ) = 0 with γ = aβ

namely

DZ =

(√
1 + β

β
,
√
β (1 + β)

)
, (43)

represents a higher codimension bifurcation point (a

double zero, since dC = mC = 0) from which the curve

of FCLC bifurcation emanates (see Figure 3).

In the next Lemma we study the sign of parameters

mC and ρ on the bifurcation curve ε(a, γ) = 0, in order

to apply Theorem 3.

Lemma 2 Consider the canonical system (15)-(16) with

|h| < |dC | 6= 0 and a 6= b, where we also assume

a, γ > 0, 0 < β 6= 1 and ε given in (19). The following

statements hold.

(a) For mC and ρ defined in (16) and (21) respectively,

we have

m0 := mC |f=0 =
γ − βa
γ − a

,

ρ0 := ρ|f=0 = m0
γ (b− a)

a

(
β − a2

)
.

(44)

(b) When m0 6= 0 and β < 1, we have ρ0 6= 0.

(c) When m0 6= 0 and β > 1 there exist two points at

the bifurcation curve given by

p± =
(√

β,
√
β ±

√
β − 1

)
, (45)

such that ρ0 (p±) = 0.

Proof To show statement (a), we note that ε(a, γ) = 0

is equivalent to dC = mCtC , so that the expression for

m0 is direct. Also, on the curve ε(a, γ) = 0, we have

γ2 + 1 =
γ

a

(
a2 + β

)
. (46)

Now, we obtain from (21)

ρ|f=0 = m0 (dC −mEtC + dE −m0tE) .

Using (46) and after some algebra we obtain

dC −mEtC + dE −mCtE =
γ (a2 + β)

a
(a+ b) − 2γ (ab+ β) =

=
γ

a
(b− a)

(
β − a2

)
,

and the statement (a) follows.

If m0 6= 0 and in (44) we assume a2 = β, from (19)

we get that ε(a, γ) = 0 is equivalent to the condition

γ2 + 1 = 2aγ, so that for all γ > 0 we have

a =
γ2 + 1

2γ
=

1

2

(
γ +

1

γ

)
> 1, (47)

which implies β > 1, getting a contradiction. Statement

(b) follows.

Finally, if m0 6= 0 the only posibility for ρ0 = 0 is a2 =

β > 1. From (42) we obtain γ±(
√
β) =

√
β ±
√
β − 1

and the lemma follows.
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Remark 8 According to Remark 7 the point p+ given in

(45) must be neglected when at such point a < γ < aβ√
β <

√
β +

√
β − 1 < β

√
β,

and this fails when
√
β +
√
β − 1 > β

√
β. Multiplying

by
√
β−
√
β − 1 > 0 and after some algebra, we obtain

the equivalent inequality

0 > β3 − 2β2 + 1 = (β − 1) (β − φ)

(
β +

1

φ

)
,

where φ = 1+
√
5

2 is the golden ratio. Thus, for β > φ,

the point p+ lies on the portion of the curve γ = γ+(a)

that does not represents FCLC bifurcation points.

Proof (Proof of Theorem 4) Under the hypothesis β <

1, the points in the branch (a, γ) = (a−(γ), γ) satisfy

a−(γ)β < a−(γ) < γ and m0 > 0 from (44). Further-

more, we know from statement (b) of Lemma 2 that

the sign of ρ0 does not change for all the points of the

branch. To discriminate this sign, from (44) we only

need to check the sign of β − a2. Taking γ = 1, we see

after some algebra that β > a−(1)2 =
(
1−
√

1− β
)2

and so ρ0 > 0. The conclusion follows from Theorem

3, since a < a+ (γ) and

ε(a, γ) = γ (a− a+ (γ)) (a− a−(γ)) > 0

for a−a−(γ) < 0 indicating that the limit cycle appears

for a < a−(γ) and is unstable since a−(γ)β < γ and so

dC > 0. Statement (a) follows.

Analogously, we know that only for γ <
√
β (1 + β)

the points in the branch (a, γ) = (a+(γ), γ) satisfy γ <

a+(γ)β < a+(γ) and so m0 > 0 from (44). The sign of

the ρ0 will also be determined by the sign of β − a2.
Taking γ = 1, we see that β− (1+

√
1− β)2 < 0 and so

ρ0 < 0. So that the bifurcation does not involve stable

limit cycles. In this branch we have a − a−(γ) > 0,

then the limit cycle bifurcates for a < a+(γ) and it is

unstable although dC = γ − a+(γ)β < 0, according to

Theorem 3.

To show statement (c) we start with the case a <
√
β,

that is, on the left of point p−, see Figure 3(b). Then,

we have that γ−(a) < a < aβ, so that from (44) we get

that m0 > 0. Then, under our hypothesis a <
√
β we

deduce that ρ0 > 0 and then the bifurcating limit cycle

predicted by Theorem 3 will appear for γ > γ−(a), since

ε(a, γ) = −a (γ − γ+ (a)) (γ − γ−(a)) and γ − γ+ (a) <

0. The stability comes from the inequalities ρ0 > 0 and

dC < 0. The case a >
√
β is the dual case where ρ0 < 0

and the bifurcation appears for γ < γ−(a) leading to

an unstable limit cycle.

To show statement (d) we consider first the case a <√
β. Now, from statement (c) of Lemma 1, we have

a < aβ < γ+(a) and so m0 > 0. Here ρ0 > 0, and as

γ − γ−(a) < 0, the limit cycle bifurcates for γ > γ+(a)

but it is unstable because dC = γ − aβ > 0. The case√
β < a <

√
(1 + β)/β, which is only possible when

β < φ, is the dual case with ρ0 < 0, also leading to an

completely unstable limit cycle.

Regarding statement (e), we see that

a2 <
1 + β

β
= 1 +

1

β
≤ 1 +

1

φ
= φ ≤ β,

so that ρ0 < 0 as before, along with dC > 0, and the

Theorem follows.

The proof of the Theorem 5 is analogous and so it

is omitted.

6 Conclusions

Taking advantage of the discovered conserved quantity

in the 4D canonical memristor oscillators proposed by

M. Itoh & L. Chua, we have been able to formulate

reduced 3D models that allow to reproduce the com-

plex dynamics of such devices. Furthermore, the sudden

generation of a hypersurface foliated by stable periodic

orbits has been completely characterized for the four-

parameter set of the system. This gives a remarkable

first occurrence of what can be called multiple center-

cycle bifurcation, a rich phenomenon non reported in

the literature. Several numerical simulations, also in-

cluded in the paper, not only confirm the theoretical

results achieved but also stimulate future research by

showing similar and even more complicated dynamics

in the studied 4D memristor oscillators.
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