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Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are
constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory
and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are
experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs
of entangled qutrits. In addition, we prove that, for any n, quantum n-ary correlations are not fundamentally
(n − 1)-ary. For that, we introduce a family of inequalities that hold for fundamentally (n − 1)-ary theories but
are violated by quantum n-ary correlations.
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I. INTRODUCTION

Quantum theory (QT) is the most successful theory
physicists have ever devised. Still, there is no agreement on
which physical reasons force its formalism [1]. It is therefore
important to test “close-to-quantum” alternatives, defined as
those that are similar to QT in the sense that they have
entangled states, incompatible measurements, violation of Bell
inequalities, and no experiment has falsified them, and sensible
in the sense that they are in some aspects simpler than QT.
Examples of these alternatives are theories allowing for almost
quantum correlations [2], theories in which measurements are
fundamentally binary [3], and theories allowing for a higher
degree of incompatibility between binary measurements [4].

Each of these alternatives identifies a particular feature of
QT that we do not fully understand and, as a matter of fact,
may or may not be satisfied by nature. For example, we still do
not know which principle singles out the set of correlations in
QT [5]. In contrast, the set of almost quantum correlations
satisfies a list of reasonable principles and is simple to
characterize [2]. Similarly, we do not know why in QT there
are measurements that cannot be constructed by selecting from
binary measurements [3]. However, constructing the set of
measurements of the theory would be simpler if this would
not be the case. Finally, we do not know why the degree of
incompatibility of binary measurements in QT is bounded as
it is, while there are theories that are not submitted to such a
limitation [4].

Unfortunately, we do not yet have satisfactory answers to
these questions. Therefore, it is important to test whether
nature behaves as predicted by QT also in these particular
aspects. However, this is not an easy task. Testing almost
quantum theories is difficult because we still do not have a
well-defined theory; thus, there is not a clear indication on
how we should aim our experiments. Another reason, shared
by theories with larger binary incompatibility, is that the only
way to test them is by proving that QT is wrong, which is,
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arguably, very unlikely. The case of fundamentally binary
theories is different. We have explicit theories [3] and we know
that fundamentally binary theories predict supraquantum cor-
relations for some experiments but subquantum correlations
for others. That is, if QT is correct, there are experiments that
can falsify fundamentally binary theories [3]. The problem
is that all known cases of subquantum correlations require
visibilities that escape the scope of current experiments.

This is particularly unfortunate now that, after years of
efforts, we have loophole-free Bell inequality tests [6–10],
tests touching the limits of QT [11,12], and increasingly
sophisticated experiments using high-dimensional two-photon
entanglement [13–15]. Therefore, a fundamental challenge is
to identify a feasible experiment questioning QT beyond the
local realistic theories [16].

The main aim of this work is to present a feasible ex-
periment capable of excluding fundamentally binary theories.
In addition, the techniques employed to identify that singular
experiment will allow us to answer a question raised in Ref. [3],
namely, whether or not, for some n, quantum n-ary correlations
are fundamentally (n − 1)-ary.

A. Device-independent scenario

Consider a bipartite scenario where two observers, Alice
and Bob, perform independent measurements on a joint
physical system. For a fixed choice of measurements x

for Alice and y for Bob, P (a,b|x,y) denotes the joint
probability of Alice obtaining outcome a and Bob obtaining
outcome b. We assume that both parties act independently
in the sense that the marginal probability for Alice to obtain
outcome a does not depend on the choice of Bob’s measure-
ment y, i.e.,

∑
b P (a,b|x,y) ≡ P (a, |x, ), and analogously∑

a P (a,b|x,y) ≡ P ( ,b| ,y). These are the nonsignaling
conditions, which are obeyed by QT whenever both observers
act independently, in particular, if the operations of the ob-
servers are spacelike separated. However, QT does not exhaust
all possible correlations subject to these constraints [17].

The strength of this scenario lies in the fact that the
correlations can be obtained without taking into account
the details of the experimental implementation and hence
it is possible to make statements that are independent of
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the devices used. This device-independence allows us to test
nature without assuming a particular theory—such as QT—for
describing any of the properties of the measurement setup. This
way, it is also possible to make theory-independent statements
and, in particular, to analyze the structure of any probabilistic
theory that obeys the nonsignaling conditions.

B. Fundamentally binary theories

One key element of the structure of any probabilistic
theory was identified in Ref. [3] and concerns how the set
of measurements is constructed, depending on the number
of outcomes. According to Ref. [3], it is plausible to as-
sume that a theory describing nature has, on a fundamental
level, only measurements with two outcomes while situations
where a measurement has more outcomes are achieved
by classical postprocessing of one or several two-outcome
measurements. To make this a consistent construction, it is
also admissible that the classical postprocessing depends on
additional classical information and, in the bipartite scenario,
this classical information might be correlated between both
parties. The total correlation attainable in such a scenario are
the binary nonsignaling correlations, which are characterized
by the convex hull of all nonsignaling correlations obeying
P (a, |x, ) = 0 for all measurements x and all but two
outcomes a, and P ( ,b| ,y) = 0 for all measurements y

and all but two outcomes b. The generalization to n-ary
nonsignaling correlations is straightforward.

In Ref. [3], it was shown that for no n the set of
n-ary nonlocal correlations covers all the set of quantum
correlations. Albeit this being a general result, the proof in
Ref. [3] has two drawbacks: (i) It does not provide a test
which is experimentally feasible. (ii) It does not allow us to
answer whether or not quantum n-ary correlations are still
fundamentally (n − 1)-ary. For example, the proof in Ref. [3]
requires 10-outcome quantum measurements for excluding
the binary case. In this work, we address both problems and
provide (i′) an inequality that holds for all binary nonsignaling
correlations but can be violated using three-level quantum
systems (qutrits) with current technology, and (ii′) a family of
inequalities obeyed by (n − 1)-ary nonsignaling correlations
but violated by quantum measurements with n outcomes.

II. RESULTS

A. Feasible experiment to test fundamentally binary theories

We first consider the case where Alice and Bob both can
choose between two measurements, x = 0,1 and y = 0,1, and
each measurement has three outcomes a,b = 0,1,2. For a set
of correlations P (a,b|x,y), we define

Ia =
∑

k,x,y=0,1

(−1)k+x+yP (k,k|x,y), (1)

where the outcomes with k = 2 do not explicitly appear.
With the methods explained in Sec. III A, we find that, up
to relabeling of the outcomes,

Ia � 1 (2)

holds for nonsignaling correlations if and only if the correla-
tions are fundamentally binary. However, according to QT, the

inequality in Eq. (2) is violated, and a value of

Ia = 2(2/3)3/2 ≈ 1.0887 (3)

can be achieved by preparing a two-qutrit system in the pure
state

|ψ〉 = 1
2 (

√
2 |00〉 + |11〉 − |22〉), (4)

and choosing the measurements x,y = 0 as Mk|0 = V |k〉〈k|V †,
and the measurements x,y = 1 as Mk|1 = U |k〉〈k|U †, where,
in canonical matrix representation,

V = 1√
12

⎛
⎝ 2 2 2

−√
3 − 1

√
3 − 1 2√

3 − 1 −√
3 − 1 2

⎞
⎠, (5)

and U = diag(−1,1,1)V .
Using the second level of the Navascués–Pironio–Acín

(NPA) hierarchy [18], we verify that the value in Eq. (3) is
optimal within our numerical precision of 10−6. The visibility
required to observe a violation of the inequality in Eq. (2)
is 91.7%, since the value for the maximally mixed state is
Ia = 0. The visibility is defined as the minimal p required
to obtain a violation assuming that the prepared state is a
mixture of the target state and a completely mixed state,
ρprepared = p|ψ〉〈ψ | + (1 − p)ρmixed.

We show in Sec. III A that the inequality in Eq. (2) holds
already if only one of the measurements of either Alice or
Bob is fundamentally binary. Therefore, the violation of the
inequality in Eq. (2) allows us to make an even stronger
statement, namely, that none of the measurements used is
fundamentally binary, thus providing a device-independent
certificate of the genuinely ternary character of all measure-
ments in the experimental setup.

The conclusion at this point is that the violation of the
inequality in Eq. (2) predicted by QT could be experimentally
observable even achieving visibilities that have been already
attained in previous Bell-inequality experiments on qutrit–
qutrit systems [13–15]. It is important to point out that,
in addition, a compelling experiment requires that the local
measurements are implemented as measurements with three
outcomes rather than measurements that are effectively two-
outcome measurements. That is, there should be a detector in
each of the three possible outcomes of each party. The beauty
of the inequality in Eq. (2) and the simplicity of the required
state and measurements suggest that this experiment could be
carried out in the near future.

B. Quantum n-ary correlations are not fundamentally
(n − 1)-ary

If our purpose is to test whether or not one particular
measurement is fundamentally binary (rather than all of
them), then it is enough to consider a simpler scenario
where Alice has a two-outcome measurement x = 0 and
a three-outcome measurement x = 1, while Bob has three
two-outcome measurements y = 0,1,2. We show in Sec. III A
that for the combination of correlations,

Ib = −P (0, |0, ) +
∑

k=0,1,2

[P (0,0|0,k) − P (k,0|1,k)], (6)
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up to relabeling of the outcomes and Bob’s measurement
settings,

Ib � 1 (7)

holds for nonsignaling correlations if and only if the correla-
tions are fundamentally binary. According to QT, this bound
can be violated with a value of

Ib =
√

16/15 ≈ 1.0328, (8)

by preparing the state

|ψ〉 = 1√
(3ζ + 1)2 + 2

(|00〉 + |11〉 + |22〉 + ζ |φ〉|φ〉), (9)

where ζ = − 1
3 + 1

6

√
10

√
15 − 38 ≈ −0.19095, |φ〉 = |0〉 +

|1〉 + |2〉, and choosing Alice’s measurement x = 0 as A0|0 =
11 − A1|0, A1|0 = |φ〉〈φ|/3, and measurement x = 1 as Ak|1 =
|k〉〈k|, for k = 0,1,2, and Bob’s measurements y = 0,1,2 as
B0|y = 11 − B1|y and B1|k = |ηk〉〈ηk|/ 〈ηk|ηk〉, where |ηk〉 =
|k〉 + ξ |φ〉, for k = 0,1,2, and ξ = − 1

3 + 1
6

√
6
√

15 + 22 ≈
0.78765. [Another optimal solution is obtained by flipping the
sign before the ( 1

6
√ )-terms in ξ and ζ , yielding ξ ≈ −1.4543

and ζ ≈ −0.47572.]
We use the third level of the NPA hierarchy to confirm that,

within our numerical precision of 10−6, the value in Eq. (8) is
optimal. Notice, however, that the visibility required to observe
a violation of the inequality in Eq. (7) is 96.9%. This contrasts
with the 91.7% required for the inequality in Eq. (2) and shows
how a larger number of outcomes allows us to certify more
properties with a smaller visibility.

Nevertheless, what is interesting about the inequality in
Eq. (7) is that it is a member of a family of inequalities and
this family allows us to prove that, for any n, quantum n-ary
correlations are not fundamentally (n − 1)-ary, a problem left
open in Ref. [3]. For that, we modify the scenario used for
the inequality in Eq. (7), so that now Alice’s measurement
x = 1 has n outcomes, while Bob has n measurements with
two outcomes. We let I

(n)
b be as Ib defined in Eq. (6), with

the only modification that in the sum, k takes values from 0 to
n − 1. Then,

I
(n)
b � n − 2 (10)

is satisfied for all fundamentally (n − 1)-ary correlations.
The proof is given in Sec. III B. Clearly, the value I

(n)
b =

n − 2 can already be reached by choosing the fixed local
assignments where all measurements of Alice and Bob always
have outcome a,b = 0. According to QT, it is possible to
reach values of I

(n)
b > (n − 2) + 1/(4n3), as can be found

by generalizing the quantum construction from above to n-
dimensional quantum systems with ξ = √

2 and ζ = −1/n +
1/(

√
2n2). Thus, the (n − 1)-ary bound is violated already by

n-ary quantum correlations. Note, that the maximal quantum
violation is already very small for n = 4 as the bound from the
third level of the NPA hierarchy is I

(4)
b < 2.00959.

III. METHODS

A. Restricted nonsignaling polytopes

We now detail the systematic method that allows us to
obtain the inequalities in Eqs. (2), (7), and (10). We write

S = [a1,a2, . . . ,an:b1,b2, . . . ,bm] for the case where Alice
has n measurements and the first measurement has a1

outcomes, the second a2 outcomes, etc., and similarly for
Bob and his m measurements with b1, b2, . . . , outcomes.
The nonsignaling correlations for such a scenario form a
polytope C(S). For another bipartite scenario S ′, we consider
all correlations P ′ ∈ C(S ′) that can be obtained by local
classical postprocessing from any P ∈ C(S). The convex hull
of these correlations is again a polytope and is denoted by
C(S → S ′).

The simplest nontrivial polytope of fundamentally binary
correlations is then C([2,2:2,2] → [3,3:3,3]). We construct
the vertices of this polytope and compute the 468 facet
inequalities (i.e., tight inequalities for fundamentally binary
correlations) with the help of the Fourier-Motzkin elimination
implemented in the software porta [19]. We confirm the
results by using the independent software ppl [20]. Up to
relabeling of the outcomes, only the facet Ia � 1 is not a face
of the set the nonsignaling correlations C([3,3:3,3]), which
concludes our construction of Ia . In addition, we find that

C([2,3:3,3]) = C([2,2:2,2] → [2,3:3,3]), (11)

and therefore the inequality in Eq. (2) holds for all nonsignaling
correlations where at least one of the measurements is
fundamentally binary.

As a complementary question, we consider the case where
only a single measurement has three outcomes. According
to Eq. (11), the smallest scenarios where such a verification
is possible are [2,3:2,2,2] and [2,2:2,2,3]. We first find that
C([2,2:3,3,3]) = C([2,2:2,2,2] → [2,2:3,3,3]), i.e., even if
all of Bob’s measurements would be fundamentally ternary,
the correlations are always within the set of fundamen-
tally binary correlations. Hence, we investigate the polytope
C([2,2:2,2,2] → [2,3:2,2,2]) and its 126 facets. Up to sym-
metries, only the facet Ib � 1 is not a face of C([2,3:2,2,2]).

Our method also covers other scenarios. As an example
we study the polytope C([2,4:2,4] → [2,2,2:2,2,2]) with its
14 052 facets. In this case, the four-outcome measurements
have to be distributed to two-outcome measurements (or
the two-outcome measurement is used twice). Hence, this
scenario is equivalent to the requirement that for each party
at least two of the three measurements are compatible. The
polytope has, up to relabeling, 10 facets that are not a face
of C([2,2,2:2,2,2]). According to the fourth level of the
NPA hierarchy, two of the facets may intersect with the
quantum correlations. While for one of them the required
visibility (with respect to correlations where all outcomes
are equally probable) is at least 99.94%, the other requires
a visibility of at least 97.88%. This latter facet is Ic � 0,
where

Ic = −P (10|00) − P (00|01) − P (00|10) − P (00|11)

−P (10|12) − P (01|20) − P (01|21) + P (00|22).

(12)

For arbitrary nonsignaling correlations, Ic � 1/2 is tight,
while within QT, Ic < 0.0324 must hold. We can construct
a numeric solution for two qutrits, which matches the bound
from the third level of the NPA hierarchy up to our numerical
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precision of 10−6. The required quantum visibility then
computes to 97.2%. The quantum optimum is reached for
measurements A0|k = |αk〉〈αk|, A1|k = 11 − A0|k , and B0|k =
|βk〉〈βk|, B1|k = 11 − B0|k , where all |αk〉 and |βk〉 are normal-
ized and 〈α0|α1〉 ≈ 0.098, 〈α0|α2〉 ≈ 0.630, 〈α1|α2〉 ≈ 0.572,
and 〈βk|β
〉 ≈ 0.771 for k 
= 
. A state achieving the maxi-
mal quantum value is |ψ〉 ≈ 0.67931 |00〉 + 0.67605 |11〉 +
0.28548 |22〉. Note, that Ic ≈ 0.0318 can still be reached
according to QT, when Alice has only two incompatible
measurements by choosing 〈α0|α1〉 = 0. Curiously, the facet
Ic � 0 is equal to the inequality M3322 in Ref. [21] and a
violation of it has been observed recently by using photonic
qubits [12]. However, while M3322 is the only nontrivial facet
of the polytope investigated in Ref. [21], it is just one of several
nontrivial facets in our case.

B. Proof of the inequality in Eq. (10)

Here, we show that for (n − 1)-ary nonsignaling correla-
tions, the inequality in Eq. (10) holds. We start by letting for
some fixed index 0 � 
 < n,

F = −
∑

b

R0,b|0,
 +
∑

k

[R0,0|0,k − Rk,0|1,k], (13a)

X1;a|x,y =
∑

b

(Ra,b|x,y − Ra,b|x,
), (13b)

X2;b|x,y =
∑

a

(Ra,b|x,y − Ra,b|0,y), (13c)

where all Ra,b|x,y are linearly independent vectors from a real
vector space V . Clearly, for any set of correlations, we can find
a linear function φ : V → R with φ(Ra,b|x,y) = P (a,b|x,y).
For such a function, I

(n)
b = φ(F ) holds and φ(Xτ ) = 0 are all

the nonsignaling conditions. The maximal value of I
(n)
b for

(n − 1)-ary nonsignaling correlations is therefore given by

max
′ max

{
φ(F ) | φ : V → R, linear,

φ(Xτ ) = 0, for all τ,

φ(R
′,b|1,y) = 0, for all b,y,∑
υ

φ(Rυ) = 2n, and

φ(Rυ) � 0, for all υ

}
. (14)

Since the value of the inner maximization does not depend
on the choice of 
, we can choose 
 = 
′. Equation (14) is
a linear program, and the equivalent dual to this program

can be written as

max



min
t,ξ ,η

{ t | t � ζυ for all υ } , (15)

Where ζ is the solution of

2nF −
∑

τ

ξτXτ −
∑
b,y

ηb,yR
,b|1,y =
∑

υ

ζυRυ. (16)

To obtain an upper bound in Eq. (15), we choose η ≡ 2n and all
ξτ = 0, but ξ1;a|0,k = 4, ξ1;k|1,k = −2n, ξ2;b|1,
 = −3n + 2, and
ξ2;b|1,k = −(−1)bn + 2, for k 
= 
. This yields maxυ ζυ=n − 2
for all 
 and hence the (n − 1)-ary nonsignaling correlations
obey I

(n)
b � n − 2.

IV. CONCLUSIONS

There was little chance to learn new physics from the recent
loophole-free experiments of the Bell inequality [6–10]. Years
of convincing experiments [22–24] allowed us to anticipate
the conclusions: nature cannot be explained by local realistic
theories [16], there are measurements for which there is not a
joint probability distribution [25], and there are states that are
not a convex combination of local states [26].

Here we have shown how to use Bell-type experiments
to gain insights into QT. In Ref. [3], it was shown that QT
predicts correlations that cannot be explained by nonsignaling
correlations produced by fundamentally binary measurements
(including Popescu–Rohrlich boxes [17]). We proposed a
feasible experiment which will allow us to either exclude
all fundamentally binary probabilistic theories or to falsify
QT. If the results of the experiment violate the inequality in
Eq. (2), as predicted by QT, then we would learn that no
fundamentally binary theory can possibly describe nature.
In addition, it would prove that all involved measurements
are genuine three-outcome measurements. If the inequality
in Eq. (2) is not violated despite visibilities would a priori
lead to such a violation, then we would have evidence that
QT is wrong at a fundamental level (although being subtle to
detect in experiments). We have also gone beyond Ref. [3] by
showing that, for any n, already n-ary quantum correlations
are not fundamentally (n − 1)-ary.
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