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Abstract

This article presents error bounds for a velocity-pressure segregated POD reduced
order model discretization of the Navier-Stokes equations. The stability is proven
in L∞(L2) and energy norms for velocity, with bounds that do not depend on the
viscosity, while for pressure it is proven in a semi-norm of the same asymptotic order
as the L2 norm with respect to the mesh size. The proposed estimates are calculated
for the two flow problems, the flow past a cylinder and the lid-driven cavity flow. Their
quality is then assessed in terms of the predicted logarithmic slope with respect to the
velocity POD contribution ratio. We show that the proposed error estimates allow a
good approximation of the real errors slopes and thus a good prediction of their rate
of convergence.

Keywords: Navier-Stokes Equations, Residual-based Stabilization, Proper Orthogonal
Decomposition, Reduced Order Models, Incompressible Flows, Numerical Analysis.

1 Introduction

Since the beginning of the XXI Century, there is an increasing number of applications of
Reduced Order Models (ROMs) addressed to the approximation of incompressible Navier-
Stokes flow solutions. By using carefully chosen basis functions forming the projection
subspace, ROMs collaborating with high fidelity solutions, offer a computationally effi-
cient tool to reduce the cost of heavy numerical simulations. A very famous method
that is extensively used to construct projection subspaces is the POD (Proper Orthogonal
Decomposition) method [40, 8]. Starting from a set of ”snapshots” computed from the
high-fidelity model (or full-order model, FOM) in the off-line phase, the POD allows trough
solving an eigenvalue problem to obtain a truncated basis formed by modes corresponding
to the first larger eigenvalues. Once the POD basis is built, the temporal dynamics of the
targeted system (in our case, the Navier-Stokes equations) is determined by solving a low
dimension system obtained from the Galerkin projection of the model equations onto this
reduced subspace [37]. The resulting model provides very fast solutions of the targeted
equations, with computational cost frequently several order of magnitude lower than that
of the FOM. The POD Galerkin approach has been applied in many fields such as aeroe-
lasticity [44, 33], structural dynamics [35, 2, 12], modal analysis [24], flow prediction and
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control [4, 14, 22, 26, 41], particles dispersion [3, 5, 13], etc. Other approaches to construct
projection subspaces relying on greedy algorithms can be found in [6, 36]. For a thorough
review, the interested reader can refer to [25].
In practice, the velocity snapshots are weakly divergence free up to the computer accu-
racy. This allows to drop the pressure from projected equations and form a reduced order
model that only contains the velocity amplitudes as unknown variables. However for many
applications, the pressure is needed to be recovered. Namely, to calculate lift and drag
forces exerted on walls or immersed boundaries. One option to recover the pressure is
to build a ROM that also accounts for its time trajectory in a reduced coupled velocity-
pressure setting. Specific techniques to ensure the discretisation of the pressure are thus
needed, for instance using velocity sumpremizers of the velocity-pressure duality [7, 38]
or stabilization techniques [39]. An alternative way is to recover the pressure once the
velocity is computed from the velocity ROM. The governing reduced order model in this
case is a pressure Poisson equation derived by taking the divergence of the momentum
conservation equation. Although this sets the reduced problem for the pressure, the def-
inition of adequate boundary conditions remains an issue. Another way to construct the
pressure reduced model is by duality of the momentum conservation equation with velocity
supremizer test functions [29].
In this paper we afford the solution of the pressure equation by duality of the momentum
conservation equation with gradients of the reduced pressure basis functions. This turns
out to solving a Poisson equation for the pressure, but with the advantage of setting the
right boundary conditions and thus ensuring an improved accuracy in its recovery. We
shall call this method SM (Stabilisation-Motivated) ROM, as it has been proposed in a
framework of stabilised solution of incompressible flows [15], see also [42, 32] where the
method is introduced from a minimum residual projection approach. We carry on the
numerical analysis of the SM-ROM and prove the stability in specific norms. For velocity,
in L∞(L2) and energy norms, with bounds that do not depend on the viscosity, and for
pressure, in a semi-norm of the same asymptotic order as the L2 norm with respect to the
mesh size. The error estimates between the exact and the ROM-POD solutions are also
obtained in the same norms. These estimates are optimal with respect to the projection
error on the POD reduced spaces. To check the theoretical estimates, a numerical study
is performed on two flow examples, the flow past a cylinder at Re = 200 and the lid-
driven cavity flow at Re = 9500. The quality of the estimate is assessed by comparing the
logarithmic slopes of the calculated versus the predicted errors with with respect to the
velocity POD contribution ratio. It is shown on these examples that the error estimates
allow a good approximation of the real errors slopes and thus a good prediction of the
their rate of convergence.
The paper is organised as follows. In Section 2 we introduce the discretization of the
incompressible Navier-Stokes equations (NSE) that we will consider, while in Section 3 we
describe its full order discretization by stable velocity-pressure finite elements. Section 4
deals with the POD-ROM including the pressure recovery strategy that we are consider-
ing. Section 5 is devoted to the numerical analysis, stability and error bounds. Numerical
experiments on the flow past a cylinder and the lid-driven cavity flow are presented in
Section 6. Finally conclusions are drawn in Section 7
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2 Time-dependent NSE: model problem and variational for-
mulation

We introduce an Initial-Boundary Value Problem (IBVP) for the incompressible evolution
NSE. For the sake of simplicity, we just impose the homogeneous Dirichlet BC on the
whole boundary.

Let [0, T ] be the time interval and Ω a bounded polyhedral domain in Rd, d = 2 or 3, with
a Lipschitz-continuous boundary Γ = ∂Ω. The transient NSE for an incompressible fluid
are given by:

Find u : Ω× (0, T ) −→ Rd and p : Ω× (0, T ) −→ R such that:
∂tu+ (u · ∇)u− ν∆u+∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),
u = 0 on Γ× (0, T ),

u(x, 0) = u0(x) in Ω.

(2.1)

The unknowns are the velocity u(x, t) and the pressure p(x, t) of the incompressible fluid.
The data are the source term f(x, t), which represents a body force per mass unit (typically
the gravity), the kinematic viscosity ν of the fluid, which is a positive constant, and the
initial velocity u0(x).

To define the weak formulation of problem (2.1), we need to introduce some useful no-
tations for functional spaces [10]. We consider the Sobolev spaces Hs(Ω), s ∈ R, Lp(Ω)
and Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞. We shall use the following notation for vector-
valued Sobolev spaces: Hs, Lp and Wm,p respectively shall denote [Hs(Ω)]d, [Lp(Ω)]d and
[Wm,p(Ω)]d (similarly for tensor spaces of dimension d× d). Also, the parabolic Bochner
function spaces Lp(0, T ;X) and Lp(0, T ;X), where X (X) stands for a scalar (vector-
valued) Sobolev space, shall be denoted by Lp(X) and Lp(X), respectively. In order to
give a variational formulation of problem (2.1), let us consider the velocity space:

X = H1
0 = [H1

0 (Ω)]d =
{
v ∈ [H1(Ω)]d : v = 0 on Γ

}
.

This is a closed linear subspace of H1 and thus a Hilbert space endowed with the H1-
norm. Thanks to Poincaré inequality, the H1-norm is equivalent on H1

0 to the norm
‖v‖H1

0
= ‖∇v‖L2 . Also, let us consider the pressure space:

Q = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
.

We shall thus consider the following variational formulation of (2.1):

Given f ∈ L2(L2), find u : (0, T ) −→X, p : (0, T ) −→ Q such that
d

dt
(u,v) + b(u,u,v) + ν(∇u,∇v)− (p,∇ · v) = (f ,v) ∀v ∈X, in D′(0, T ),

(∇ · u, q) = 0 ∀q ∈ Q, a.e. in (0, T ),
u(0) = u0,

(2.2)
where (·, ·) stands for the L2-inner product in Ω, and D′(0, T ) is the space of distributions
in (0, T ). The trilinear form b is given by: for u, v, w ∈X

b(u,v,w) =
1

2
[(u · ∇v,w)− (u · ∇w,v)] . (2.3)
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3 Finite element full order model

In order to give a FE approximation of (2.2), let {Th}h>0 be a family of affine-equivalent,
conforming (i.e., without hanging nodes) and regular triangulations of Ω, formed by trian-
gles or quadrilaterals (d = 2), tetrahedra or hexahedra (d = 3). For any mesh cell K ∈ Th,
its diameter will be denoted by hK and h = maxK∈Th hK . We consider Xh ⊂X, Qh ⊂ Q
being suitable FE spaces for velocity and pressure, respectively. The FE approximation
of (2.2) can be written as follows:

Find (uh, ph) : (0, T ) −→Xh ×Qh such that
d

dt
(uh,vh) + b(uh,uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) = (f ,vh) in D′(0, T ),

(∇ · uh, qh) = 0 a.e. in (0, T ),
uh(0) = u0h,

(3.1)
for any (vh, qh) ∈Xh ×Qh, and the initial condition u0h is some stable approximation to
u0 in L2-norm belonging to Xh.

Actually, as a direct method we consider a Galerkin method with grad-div stabilization,
since our aim is to get error bounds with constants independent on inverse powers of ν. To
describe this approach, we define hereafter the specific choice of FE spaces done both for
the numerical analysis and practical computations in the present work. Given an integer
l ≥ 2 and a mesh cell K ∈ Th, denote by Rl(K) either Pl(K) (i.e., the space of Lagrange
polynomials of degree ≤ l, defined on K), if the grids are formed by triangles (d = 2) or
tetrahedra (d = 3), or Ql(K) (i.e., the space of Lagrange polynomials of degree ≤ l on
each variable, defined on K), if the family of triangulations is formed by quadrilaterals
(d = 2) or hexahedra (d = 3). We consider the mixed FE pair known as Taylor–Hood
elements (X l

h, Q
l−1
h ) [11, 43] for the velocity-pressure:
Y l
h = V l

h(Ω) = {vh ∈ C0(Ω) : vh|K ∈ Rl(K), ∀K ∈ Th},

Yl
h = [Y l

h]d = {vh ∈ [C0(Ω)]d : vh|K ∈ [Rl(K)]d, ∀K ∈ Th},

Xl
h = Yl

h ∩H1
0, Ql−1

h = Y l−1
h ∩ L2

0.

(3.2)

Let us also consider the discrete space of divergence-free functions:

V l
h =

{
vh ∈ Xl

h : (∇ · vh, qh) = 0 ∀qh ∈ Ql−1
h

}
.

The considered grad-div FOM is given by:

Find (uh, ph) : (0, T ) −→ Xl
h ×Q

l−1
h such that

d

dt
(uh,vh) + b(uh,uh,vh) + ν(∇uh,∇vh) − (ph,∇ · vh)

+µ(∇ · uh,∇ · vh) = (f ,vh) in D′(0, T ),

(∇ · uh, qh) = 0 a.e. in (0, T ),
uh(0) = u0h,

(3.3)

for any (vh, qh) ∈ Xl
h × Q

l−1
h , where µ(∇ · uh,∇ · vh) denotes the grad-div stabilization

term and µ is the positive grad-div stabilization parameter.
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To state the full space-time discretization of the unsteady grad-div FOM (3.3), consider a
positive integer number N and define ∆t = T/N , tn = n∆t, n = 0, 1, . . . , N . We compute
the approximations unh, pnh to un = u(·, tn) and pn = p(·, tn) by using, for simplicity of the
analysis, a backward Euler scheme:

• Initialization. Set: u0
h = u0h.

• Iteration. For n = 0, 1, . . . , N − 1: Given unh ∈ Xl
h, find (un+1

h , pn+1
h ) ∈ Xl

h ×Q
l−1
h

such that:

(
un+1
h − unh

∆t
,vh

)
+ b(un+1

h ,un+1
h ,vh) + ν(∇un+1

h ,∇vh)

−(pn+1
h ,∇ · vh) + µ(∇ · un+1

h ,∇ · vh) = (fn+1,vh),

(∇ · un+1
h , qh) = 0,

(3.4)
for any (vh, qh) ∈ Xl

h ×Q
l−1
h .

It is well-known that considering the discrete divergence-free space V l
h we can remove the

pressure from (3.4) since un+1
h ∈ V l

h satisfies(
un+1
h − unh

∆t
,vh

)
+ b(un+1

h ,un+1
h ,vh) + ν(∇un+1

h ,∇vh)

+µ(∇ · un+1
h ,∇ · vh) = (fn+1,vh), ∀vh ∈ V l

h . (3.5)

For this method the following bounds hold (see [19, 20, 21]):

‖un − unh‖L2 +

ν n∑
j=1

∆t‖∇(uj − ujh)‖2L2

1/2

≤ C(u, p, l + 1)(hl + ∆t), 1 ≤ n ≤ N,(3.6)

and  n∑
j=1

∆t‖pj − pjh‖
2
L2

1/2

≤ C(u, p, l + 1)h−1/2(hl + ∆t), 1 ≤ n ≤ N, (3.7)

where the constant C(u, p, l + 1) does not depend on inverse powers of ν.

4 Proper orthogonal decomposition reduced order model

We briefly describe the POD method, following [30], and apply it to the projection-based
stabilized FOM (3.4).

Let us consider the ensembles of velocity snapshots χv = span
{
u1
h, . . . ,u

N
h

}
and pressure

snapshots χp = span
{
p1
h, . . . , p

N
h

}
, given by the FE solutions to (3.4) at time tn, n =

1, . . . , N . The POD method seeks low-dimensional bases {ϕ1, . . . ,ϕrv} and
{
ψ1, . . . , ψrp

}
in real Hilbert spaces Hv, Hp that optimally approximate the velocity and pressure snap-
shots with respect to the discrete L2(Hv), L2(Hp) norms, respectively (cf. [30]). It can be
shown that the following POD projection error formulas hold [27, 30]:

∆t
N∑
n=1

∥∥∥∥∥unh −
rv∑
i=1

(unh,ϕi)Hv
ϕi

∥∥∥∥∥
2

Hv

=

Mv∑
i=rv+1

λi, (4.1)
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and

∆t

N∑
n=1

∥∥∥∥∥pnh −
rp∑
i=1

(pnh, ψi)Hp
ψi

∥∥∥∥∥
2

Hp

=

Mp∑
i=rp+1

γi, (4.2)

where Mv,Mp are the rank of χv and χp, respectively, and λi, γi are the associated eigenval-
ues. Although Hv,Hp can be any real Hilbert spaces, in what follows we consider Hv = L2

and Hp = L2. Also, we are going to take the same number of velocity and pressure POD
bases functions, i.e. rv = rp = r in what follows.

We respectively consider the following velocity and pressure spaces for the POD setting:

Xr = span {ϕ1, . . . ,ϕr} ⊂ Xl
h,

and
Qr = span {ψ1, . . . , ψr} ⊂ Ql−1

h .

Remark 4.1. Since the POD velocity modes are linear combinations of the snapshots,
they satisfy the boundary conditions in (2.1) and are solenoidal. Thus, the POD velocity
modes belong to V l

h , which yields Xr ⊂ V l
h .

The standard Galerkin projection-based POD-ROM uses both Galerkin truncation and
Galerkin projection. The former yields an approximation of the velocity and pressure
fields by a linear combination of the corresponding truncated POD basis:

u(x, t) ≈ ur(x, t) =
r∑
i=1

ai(t)ϕi(x), (4.3)

and

p(x, t) ≈ pr(x, t) =
r∑
i=1

bi(t)ψi(x), (4.4)

where {ai(t)}ri=1 and {bi(t)}ri=1 are the sought time-varying coefficients representing the
POD-Galerkin velocity and pressure trajectories. Note that r << N , where N de-
notes the number of degrees of freedom (d.o.f.) in a full order simulation. Replacing
the velocity-pressure FE pair (uh, ph) with (ur, pr) in the FE approximation (3.4) and
projecting the resulted equations onto the POD product space (Xr, Qr) using the POD
basis ({ϕi}ri=1 , {ψi}

r
i=1), the full space-time discretization of the grad-div ROM reads as:

• Initialization. Set: u0
r =

r∑
i=1

(u0,ϕi)ϕi.

• Iteration. For n = 0, 1, . . . , N − 1: Given unr ∈Xr, find un+1
r ∈Xr such that:(

un+1
r − unr

∆t
,ϕ

)
+ b(un+1

r ,un+1
r ,ϕ) + ν(∇un+1

r ,∇ϕ) + µ(∇ · un+1
r ,∇ · vr)

= (fn+1,ϕ), ∀ϕ ∈Xr. (4.5)

In (4.5), the pressure term vanishes due to the fact that unr belongs to the discrete
divergence-free space V l

h . In order to recover the reduced order pressure, we propose
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to solve in a post-process phase the residual-based equation, as follows: Find pn+1
r ∈ Qr

such that ∑
K∈Th

τK(∇pn+1
r ,∇ψ)K (4.6)

= −
∑
K∈Th

τK(
un+1
r − unr

∆t
+ ũn+1

r · ∇un+1
r − ν∆un+1

r − fn+1,∇ψ)K ,

for all ψ ∈ Qr. Here, the τK are positive coefficients of order h2
K , that is, there exist two

constants C1 > 0, C2 > 0, such that

C1 h
2
K ≤ τK ≤ C2 h

2
K , ∀K ∈ Th, ∀h > 0. (4.7)

Also, the symbol ũr stands for ur when d = 2, and for some truncation of ur such that

‖ũr‖L∞(K) ≤ CT h−1
K , ∀K ∈ Th, ∀h > 0 (4.8)

when d = 3, for some constant CT > 0. We shall denote in this way all generic constants
that will appear along the paper, unless needed to specify them by some index. Such a ũr
may be, for instance, defined as follows:

ũr = Πh(Tα(ur)), with α = h−1
K

where Πh denotes the standard Lagrange interpolation operator on space V l
h , Tα is the

truncation at height α > 0, and α is the function defined on Ω̄ that assigns to any x ∈ Ω̄
the inverse of the average of the grid elements that contain x. It holds

Tα(u)(xi) =

{
u(xi) if |u(xi)| ≤ α(xi),

α(xi) sign(u(xi)) if |u(xi)| ≥ α(xi).

for any Lagrange interpolation node xi. Then, as the grids are regular, |Tα(u)(x)| ≤ Ch−1
K

for any x ∈ Ω̄, where K ∈ Th is the element containing x, for some constant C > 0.
Due to inverse finite element error estimates and the local L2 stability of the Lagrange
interpolation (see [17], Appendix),

‖ũr‖L∞(K) ≤ C h
−3/2
K ‖ũr‖L2(K) ≤ C h

−3/2
K ‖Tα(ur)‖L2(K) ≤ C h

−3/2
K |K|1/2 α ≤ C h−1

K .

Note that the use of inverse finite element estimates combined with the L∞(L2) bound for
the ur yields

‖ur‖L∞(K) ≤ C h
−3/2
K ‖ur‖L2(K) ≤ C h

−3/2
K .

Then, the truncation at height h−1
K , although somewhat restrictive, is rather mild, in

particular it allows the blow-up of the L∞(Ω) norm of ũr as h → 0 . Anyhow, this
technical hypothesis may be overcome when d = 2 or a weaker norm of the pressure
gradient is bounded when d = 3.
The structure of method (4.6) is inspired in that of stabilized methods for fluid flows.
Usually a weighted residual (the difference between the l.h.s. and the r.h.s. of (4.6)) is
added to the Galerkin formulation to stabilize both convection dominance and pressure
gradient [1]. The scaling of the stabilizing coefficients τK as h2

K comes from dimensional
analysis. Here, we isolate this stabilizing term to recover the pressure, once the velocity
is known.
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The presence of the factors τK in (4.6) only is needed whenever the grids Th are not
uniformly regular. Otherwise all the τK may be taken equal to h2 and (4.6) may be
replaced by

(∇pn+1
r ,∇ψ)Ω = −(

un+1
r − unr

∆t
+ ũn+1

r · ∇un+1
r − ν∆un+1

r − fn+1,∇ψ)Ω. (4.9)

Note that equations (4.6) and (4.9) contain a discretization of the natural b. c. for
pressure, that is (assuming ũn+1

r = un+1
r )

∇pn+1
r · n =

(
un+1
r − unr

∆t
+ un+1

r · ∇un+1
r − ν∆un+1

r − fn+1

)
· n on ∂Ω.

Thus, no artificial boundary conditions on the pressure are being imposed.
Hereafter, the grad-div ROM (4.5) together with (4.6) will be referred to as Stabilization
Motivated-ROM (SM-ROM). The SM-ROM (4.5)-(4.6), without grad-div term, has been
introduced and numerically investigated in [15].
Let us remark that an alternative time discretization could be given by the semi-implicit
Euler method, where the trilinear form in (3.4) is discretized by b(un+1

h ,unh,vh). This
semi-implicit time discretization is less costly from the computational point of view with
respect to a fully implicit one, which yields a nonlinear algebraic system of equations to
be solved. However, the numerical analysis will be performed in Section for the more
technical case of the fully implicit time discretization given by (3.4). We shall present in
Section 6 numerical results obtained with the semi-implicit discretization.

5 Analysis of the residual-based SM-ROM

In this section, we perform the numerical analysis of the proposed unsteady SM-ROM
(4.5)-(4.6), dealing with stability and error estimates.

5.1 Technical background

This section provides some technical results that are required for the numerical analysis.
Throughout the paper, we shall denote by C a positive constant that may vary from a line
to another, but which is always independent of the viscosity ν, the FE mesh size h, the
FE velocity interpolation order l, the time step ∆t, and the velocity, pressure eigenvalues
λi, γi.
We shall denote by ‖ · ‖m,p the norm in Wm,p(Ω) and by ‖ · ‖m,p,K the norm in Wm,p(K)
for some K ∈ Th. Also, we shall denote by ‖ · ‖m the norm in Hm(Ω) and by ‖ · ‖m,K the
norm in Hm(K) for some K ∈ Th.
We shall use some inverse estimates for finite element functions (cf. [18], Theorem 3.2.6):
there exists two constants CI,1 > 0 and CI,2 > 0 such that

‖vh‖0,∞,K ≤ CI,1 h
− d

2
K ‖vh‖0,K , ‖∆vh‖0,K ≤ CI,2 h−1

K ‖∇vh‖0,K , for all vh ∈ V l
h. (5.1)

We define the scalar product:

(·, ·)τ : L2(Ω)× L2(Ω)→ R, (v,w)τ =
∑
K∈Th

τK(v,w)K ,

and its associated norm:
‖v‖τ = (v,v)1/2

τ .

We shall also use the following discrete Gronwall lemma:
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Lemma 5.1. Let αn, βn, γn, n = 1, 2, ... be non-negative real numbers satisfying

(1− σ∆t)αn+1 + βn+1 ≤ (1 + τ ∆t)αn + γn+1 (5.2)

for some σ ≥ 0, τ ≥ 0. Assume that σ∆t ≤ 1− δ for some δ > 0. Then it holds

αn ≤ eρ tn α0 +
1

δ

n∑
l=1

eρ (tn−tl) γl; (5.3)

n∑
l=1

βl ≤
(

1 +
τ

σ
+ (σ + τ) eρ tn−1 tn−1

)
α0 +

1

δ

(
1 + (σ + τ) eρ tn−1 tn−1

) n∑
l=1

γl, (5.4)

with ρ =
σ + τ

δ
.

Proof. Dividing by 1− σ∆t in (5.2),

αn+1 + βn+1 ≤ αn+1 +
1

1− σ∆t
βn+1 ≤ (1 +

(σ + τ)∆t

1− σ∆t
)αn +

1

1− σ∆t
γn+1

≤ (1 + ρ∆t)αn +
1

δ
γn+1. (5.5)

Recursively using this inequality,

αn+1 + βn+1 ≤ (1 + ρ∆t)2 αn−1 + (1 + ρ∆t)
1

δ
γn +

1

δ
γn+1 ≤ · · ·

≤ (1 + ρ∆t)n+1 α0 +
1

δ

n+1∑
l=1

(1 + ρ∆t)n+1−l γl

≤ eρtn+1 α0 +
1

δ

n+1∑
l=1

eρ(tn+1−tl) γl, (5.6)

hence (5.3). Summing now the inequalities (5.2) yields

(1− σ∆t)
n+1∑
l=1

αi +
n+1∑
l=1

βl ≤ (1 + τ ∆t)
n∑
l=0

αi +
1

δ

n+1∑
l=1

γl.

Then,

n+1∑
l=1

βl ≤ (1 + τ ∆t)α0 + (σ + τ)∆t
n∑
l=1

αl +
1

δ

n+1∑
l=1

γl

≤ (1 + τ ∆t)α0 + (σ + τ) ∆t
n∑
l=1

[
eρtl α0 +

1

δ

l∑
r=1

eρ(tl−tr) γl

]
+

1

δ

n+1∑
l=1

γl

≤
(

1 +
τ

σ
+ (σ + τ) eρtn tn

)
α0 +

1

δ

(
(σ + τ) eρ tn tn + 1

) n+1∑
l=1

γl, (5.7)

hence (5.4). �

Note that the constant ρ plays the role of an amplification factor for the exponential
dependence on the length of the time interval of the bounds appearing in (5.3) and (5.4).
It tends to 1 as ∆t tends to zero.
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5.2 Existence and stability results for SM-ROM

We have the following existence and unconditional stability result for the SM-ROM,(4.5)-
(4.6):

Theorem 5.2. Assume that ∆t ≤ 1 − δ for some δ > 0, and that f ∈ L2(0, T ;L2(Ω)).
Assume also that the data fn in problems (4.5) and (4.6) satisfy

‖u0
r‖0 ≤ ‖u0‖0, ∆t

n∑
i=1

‖fn‖20 ≤ ‖f‖2L2(0,tn;L2(Ω)), for n = 1, · · · , N.

Then the following statements hold.

1. Equations (4.5) admits at least a solution uk+1
r , and (4.6) admits a unique solution

pn+1
r .

2. Any solution uk+1
r of equation (4.5) satisfies the following estimates

‖ukr‖20 ≤ eρ tk ‖u0‖20 +
1

δ
eρ tk ‖f‖2L2(0,tk;L2(Ω)2), k = 1, · · · , N ; (5.8)

∆t
k∑

n=1

(
ν ‖∇unr ‖20 + µ ‖∇ · unr ‖20

)
≤ 1

2

(
1 + tk e

ρ tk
)
‖u0‖20 (5.9)

+
1

2δ

(
1 + tk e

ρ tk
)
‖f‖2L2(0,tk;L2(Ω)), k = 1, · · · , N

with ρ =
1

δ
.

3. Assume in addition that h ≤ CS ∆t for some constant CS > 0, ∆t ≤ 1− δ
s+ 1/5

with

s = 5C2C
2
S for some 0 < ρ < 1, and that in problem (4.6) ,

3a) When d = 2, it holds

C2 ≤
√

ν

10

1

ACI,1
, with A = eρ T ‖u0‖20 +

1

δ
eρ T ‖f‖2L2(0,T ;L2(Ω)2), (5.10)

or

3b) When d = 3, it holds ‖ũnr ‖0,∞,K ≤ CT h−1
K with

CT ≤ ν
√
CI,2, C2 ≤

1

10

1

ν CI,2
. (5.11)

Then the solution p1
r , · · · , pNr of equation (4.6) satisfies the following estimates:

∆t

N∑
n=1

‖∇pnr ‖2τ ≤
[
2 + (2s+ 1/5) eρt T

]
‖u0‖20 (5.12)

+
5

δ

[
1 + (2s+ 1/5) eρt T

]
(1 + C2 h

2) ‖f‖L2(0,T ;L2(Ω)).
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Proof. 1.- Once unr and un+1
r are known, problem (4.6) is a standard elliptic problem with

a form apres(p, q) = (∇p,∇q)Ω which is coercive on sub-spaces of H1(Ω) with vanishing
mean in Ω. Then, problem (4.6) admits a unique solution.
The existence of solution of equation (4.5) follows from a standard finite-dimensional
compactness argument, that we omit for brevity.

2.- Estimate (5.9) follows from a standard argument for finite element approximation of
incompressible flow problems using the discrete Gronwall Lemma 5.1 that can be found,
for instance, in [17], Chapter 10. We omit it for brevity

3.- Let us take vr = un+1
r in problem (4.5). Using the identities

(un+1
r − unr ,un+1

r )Ω =
1

2
‖un+1

r ‖20 −
1

2
‖unr ‖20 +

1

2
‖un+1

r − unr ‖20,

and
b(unr ;un+1

r ,un+1
r ) = 0

it holds

1

2
‖un+1

r ‖20 −
1

2
‖unr ‖20 +

1

2
‖un+1

r − unr ‖20 + ν∆t ‖∇un+1
r ‖20 + 2µ∆t ‖∇ · un+1

r ‖20

= ∆t (fn+1,un+1
r )Ω ≤

∆t

2
‖fn+1‖20 +

∆t

2
‖un+1

r ‖20. (5.13)

Taking ψ = pn+1
r and multiplying by ∆t in problem (4.6), and summing up the first

identity in (5.13) yields

1

2
‖un+1

r ‖20 −
1

2
‖unr ‖20 + ν∆t ‖∇un+1

r ‖20 + ∆t ‖∇pn+1
r ‖2τ (5.14)

≤ −
∑
K∈Th

τK (un+1
r − unr + ∆t (ũn+1

r · ∇un+1
r − ν∆un+1

r − fn+1),∇pn+1
r )K

+∆t (fn+1,un+1
r )Ω

We bound each term on the r.h.s. of this expression. Observe that∑
K∈Th

τK (a, b)K ≤ ‖a‖τ ‖b‖τ ≤
1

2
β−1 ‖a‖2τ +

1

2
β ‖b‖2τ

for any functions a, b ∈ L2(Ω) or a, b ∈ L2(Ω) and any β > 0. Using τK ≤ C2 h
2
K ,

hK ≤ CS ∆t and estimate (5.8) it follows∑
K∈Th

τK (un+1
r ,∇pn+1

r )K ≤
1

2ε∆t
‖un+1

r ‖2τ +
ε

2
∆t ‖∇pn+1

r ‖2τ

≤ 1

2ε
∆t C2C

2
S ‖un+1

r ‖20 +
ε

2
∆t ‖∇pn+1

r ‖2τ ; (5.15)

where ε > 0 is a constant to be determined later. Similarly,

N−1∑
n=0

∑
K∈Th

τK (unr ,∇pn+1
r )K ≤

1

2ε
C2C

2
S ‖unr ‖20 +

ε

2
∆t

N∑
n=1

‖∇pnr ‖2τ ; (5.16)
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Further,

−∆t
∑
K∈Th

τK (ν∆un+1
r ,∇pn+1

r )K ≤
ν2

2ε
∆t ‖∆un+1

r ‖2τ +
ε

2
∆t ‖∇pn+1

r ‖2τ

≤ ν2

2ε
CI,2 max

K∈Th
τK h

−2
K ∆t ‖∇un+1

r ‖20 +
ε

2
∆t ‖∇pn+1

r ‖2τ

≤ ν2

2ε
CI,2C2 ∆t ‖∇un+1

r ‖20 +
ε

2
∆t ‖∇pn+1

r ‖2τ . (5.17)

The convection-pressure gradient interaction term will be specifically bounded in each of
the situations 3a) and 3b), as follows.

3a) In this case d = 2 and ũn+1
r = un+1

r . It holds

∆t
∑
K∈Th

τK (ũn+1
r · ∇un+1

r ,∇pn+1
r )K ≤ ∆t

∑
K∈Th

τK ‖un+1
r ‖0,∞,K ‖∇un+1

r ‖0,K ‖∇pn+1
r ‖0,K

≤ CI,1 ∆t
∑
K∈Th

τK h
−d/2
K ‖un+1

r ‖0,K ‖∇un+1
r ‖0,K ‖∇pn+1

r ‖0,K

≤ ACI,1 ∆t
∑
K∈Th

τK h
−d/2
K ‖∇un+1

r ‖0,K ‖∇pn+1
r ‖0,K ,

≤ 1

2ε
A2C2

I,1 ∆t
∑
K∈Th

τK h
−d
K ‖∇u

n+1
r ‖20,K +

ε

2
∆t ‖∇pn+1

r ‖2τ

≤ 1

2ε
A2C2

I,1C2 ∆t ‖∇un+1
r ‖20,K +

ε

2
∆t ‖∇pn+1

r ‖2τ . (5.18)

where A is defined in (5.10).

3b) In this case d = 3 and ‖ũn+1
r ‖0,∞,K ≤ CT h−1

K . It holds

∆t
∑
K∈Th

τK (ũn+1
r · ∇un+1

r ,∇pn+1
r )K ≤ ∆t

∑
K∈Th

τK ‖ũn+1
r ‖0,∞,K ‖∇un+1

r ‖0,K ‖∇pn+1
r ‖0,K

≤ CT ∆t
∑
K∈Th

τK h
−1
K ‖∇u

n+1
r ‖0,K ‖∇pn+1

r ‖0,K

≤ 1

2ε
C2
T ∆t

∑
K∈Th

τK h
−2
K ‖∇u

n+1
r ‖20,K +

ε

2
∆t ‖∇pn+1

r ‖2τ

≤ 1

2ε
C2
T C2 ‖∇un+1

r ‖20 +
ε

2
∆t ‖∇pn+1

r ‖2τ . (5.19)

Further,

∆t
∑
K∈Th

τK (fn+1,∇pn+1
r )K ≤

1

2ε
∆t ‖fn+1‖2τ +

ε

2
∆t ‖∇pn+1

r ‖2τ ; (5.20)

and

∆t (fn+1,un+1
r ) ≤ 1

2ε
∆t ‖fn+1‖20 +

ε

2
∆t ‖∇un+1

r ‖20; (5.21)

Taking now ε = 1/5 and summing up (5.15), (5.16), (5.17), (5.20) and (5.21) with (5.18)
(case 3a)), or (5.19) (case 3b)) yields

(1− (s+ 1/5)∆t) ‖un+1
r ‖20 + µ∆t ‖∇un+1

r ‖20 + ∆t ‖∇pn+1
r ‖2τ

≤ (1 + s∆t) ‖unr ‖20 + 5 ∆t
(
‖fn+1‖20 + ‖fn+1‖2τ

)
,

≤ (1 + s∆t) ‖unr ‖20 + 5 ∆t (1 + C2 h
2) ‖fn+1‖20 (5.22)
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where

µ = 2

(
ν − 1

2ε
A2C2

I,1C2 −
ν2

2ε
C2CI,2

)
when d = 2,

or

µ = 2

(
ν − 1

2ε
C2C

2
T −

ν2

2ε
C2CI,2

)
when d = 3.

In any case, in view of conditions (5.10) and (5.11), it holds µ ≥ ν. Applying Lemma
5.1 to (5.22) with σ = s + 1/5, τ = s, αn = µ∆t ‖un+1

r ‖20, βn = ∆t ‖∇pn+1
r ‖2τ and

γn = 5 ∆t (1 + h2) ‖fn+1‖20 yields estimate (5.12) . �

Remark 5.3. Estimates for velocity (5.8), (5.9) and for pressure (5.12) do not degenerate
as ν → 0. This is obtained using the enhanced regularity f ∈ L2(0, T ;L2(Ω)). Also, due
to the conditions satisfied by constant C2 in either (5.10) or (5.11), (5.12) provides either
an estimate for the norm

ν∆t

N−1∑
i=1

‖pn+1
r ‖2h when d = 2, or ∆t

N−1∑
i=1

‖pn+1
r ‖2h, when d = 3, with

‖p‖h =

(
N−1∑
i=1

h2
K ‖∇p‖20,K

)1/2

.

The ‖ · ‖h norm plays a role in the discrete inf-sup condition for non-stable pairs of finite
element velocity-pressure spaces (such as Xl

h and Qlh, for instance, with equal interpolation
in velocity and pressure, cf. [16]):

‖ph‖0 ≤ sup
vh∈Xl

h

(∇ · vh, ph)

‖vh‖1,Ω
+ C ‖ph‖h for any ph ∈ Qlh.

Also, a straightforward argument using inverse inequalities proves that

‖ph‖h ≤ C ‖ph‖0 for any ph ∈ Ql−1
h .

5.3 Error estimates for SM-ROM

We are now in position to state the following error estimate results for the SM-ROM
defined by (4.5)-(4.6):

Theorem 5.1 (Velocity error estimate). Let u be the velocity in the NSE (2.1), let ur be
the grad-div ROM velocity defined in (4.5), and assume that the solution (u, p) of (2.1) is
regular enough. Then, the following bound holds:

∆t
N−1∑
n=0

‖un+1
r − un+1‖20 ≤ C

(
Mv∑

i=r+1

λi
(
1 + ‖∇ϕi‖20

)
+ h2l + ∆t2

)
. (5.23)

The proof of this result follows along the same lines as the proof of Theorem 5.3 in [34],
we omit it for brevity.
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Theorem 5.2 (Pressure error estimate). Let p be the pressure in the NSE (2.1), let pr
be the SM-ROM pressure defined in (4.6), and assume that the solution (u, p) of (2.1) is
regular enough. Then, the following bound holds:

∆t
N−1∑
n=0

‖∇(pn+1
r − pn+1)‖2τ ≤ CE∗, (5.24)

where:

E∗ = h2 + (h2l + ∆t2)(1 + ν−1 + ‖Svr ‖2 + h−1)

+

Mv∑
i=r+1

λi
[
1 + (1 + ‖Svr ‖2) ‖∇ϕi‖20

]
+ h2

Mp∑
i=r+1

γi‖∇ψi‖20, (5.25)

and the penalty term h2 in (5.25) actually vanishes when d = 2.

Proof. We start deriving the pressure error bound by splitting the error for the velocity
and the pressure into two terms:

un+1 − un+1
r = (un+1 − P vr un+1)− (un+1

r − P vr un+1) = ηn+1 − φn+1
r , (5.26)

pn+1 − pn+1
r = (pn+1 − P pr pn+1)− (pn+1

r − P pr pn+1) = ρn+1 − sn+1
r . (5.27)

In (5.26), the first term, ηn+1 = un+1 − P vr un+1, represents the difference between un+1

and its L2-orthogonal projection on Xr. The second term, φn+1
r = un+1

r − P vr un+1, is
the remainder. Similarly, in (5.27), the first term, ρn+1 = pn+1 − P pr pn+1, represents
the difference between pn+1 and its L2-orthogonal projection on Qr. The second term,
sn+1
r = pn+1

r − P pr pn+1, is the remainder.

Next, we construct the error equation. We first consider the solution (u, p) of (2.1) at
t = tn+1 and:∑

K∈Th

τK(∂tu
n+1 + un+1 · ∇un+1 − ν∆un+1 +∇pn+1 − fn+1,∇sn+1

r )K = 0, (5.28)

then subtract (4.6) with ψ = sn+1
r from it. By adding and subtracting the difference

quotient term
1

∆t
(un+1 − un), and applying the decompositions (5.26)-(5.27), we get:

∑
K∈Th

τK

(
∂tu

n+1 − u
n+1 − un

∆t
+

1

∆t
(ηn+1 − φn+1

r )− 1

∆t
(ηn − φnr ),∇sn+1

r

)
K

+
∑
K∈Th

τK
(
(un+1 · ∇un+1 − ũn+1

r · ∇un+1
r )− ν∆(ηn+1 − φn+1

r ),∇sn+1
r

)
K

+
∑
K∈Th

τK
(
∇(ρn+1 − sn+1

r ),∇sn+1
r

)
K

= 0.

(5.29)
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Letting cn = ∂tu
n+1 − u

n+1 − un

∆t
, from (5.29) we obtain:

∆t
∑
K∈Th

τK‖∇sn+1
r ‖20,K =

∑
K∈Th

τK
(
∆tcn + (ηn+1 − ηn)− (φn+1

r − φnr ),∇sn+1
r

)
K

+ ∆t
∑
K∈Th

τK
(
(un+1 · ∇un+1 − ũn+1

r · ∇un+1
r )− ν∆(ηn+1 − φn+1

r ),∇sn+1
r

)
K

+ ∆t
∑
K∈Th

τK
(
∇ρn+1,∇sn+1

r

)
K

= I + II + III + IV + V + V I.

(5.30)
We estimate the terms on the r.h.s. of (5.30) one by one. By Cauchy-Schwarz and Young’
s inequalities, we bound the first term on the r.h.s. of (5.30):

I = ∆t
∑
K∈Th

τK(cn,∇sn+1
r )K ≤ ∆t

∑
K∈Th

τK
2ε
‖cn‖20,K + ∆t

∑
K∈Th

τK
ε

2
‖∇sn+1

r ‖20,K , (5.31)

for some small positive constant ε (to be determined later).

For the second term on the r.h.s. of (5.30), assuming h ∼ ∆t, we have:

II = −
∑
K∈Th

τK(ηn+1 − ηn,∇sn+1
r )K

≤
∑
K∈Th

τK
2ε∆t

‖ηn+1 − ηn‖20,K + ∆t
∑
K∈Th

τK
ε

2
‖∇sn+1

r ‖20,K

≤ ∆t
∑
K∈Th

C

ε
‖ηn+1 − ηn‖20,K + ∆t

∑
K∈Th

τK
ε

2
‖∇sn+1

r ‖20,K . (5.32)

Note that this term actually vanishes for uniformly regular grids (take τK = h2 and
integrate by parts).

Similarly, for the third term on the r.h.s. of (5.30), we have:

III =
∑
K∈Th

τK(φn+1
r − φnr ,∇sn+1

r )K

≤
∑
K∈Th

τK
2ε∆t

‖φn+1
r − φnr ‖20,K + ∆t

∑
K∈Th

τK
ε

2
‖∇sn+1

r ‖20,K

≤ ∆t
∑
K∈Th

C

ε
‖φn+1

r − φnr ‖20,K + ∆t
∑
K∈Th

τK
ε

2
‖∇sn+1

r ‖20,K . (5.33)
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The fourth term on the r.h.s. of (5.30) can be bounded as follows:

IV = ∆t
∑
K∈Th

τK(un+1 · ∇un+1 − ũn+1
r · ∇un+1

r ,∇sn+1
r )K

= ∆t
∑
K∈Th

τK(ηn+1 · ∇un+1 − φn+1
r · ∇un+1,∇sn+1

r )K

+∆t
∑
K∈Th

τK(ũn+1
r · ∇ηn+1 − ũn+1

r · ∇φr,∇sn+1
r )K

+∆t
∑
K∈Th

τK
(
(un+1

r − ũn+1
r ) · ∇un+1,∇sn+1

r

)
K

≤ ∆t
∑
K∈Th

τK‖ηn+1‖0,K‖∇un+1‖0,∞,K‖∇sn+1
r ‖0,K

+∆t
∑
K∈Th

τK‖φn+1
r ‖0,K‖∇un+1‖0,∞,K‖∇sn+1

r ‖0,K

+∆t
∑
K∈Th

τK‖ũn+1
r ‖0,∞,K‖∇ηn+1‖0,K‖∇sn+1

r ‖0,K

+∆t
∑
K∈Th

τK‖ũn+1
r ‖0,∞,K‖∇φn+1

r ‖0,K‖∇sn+1
r ‖0,K

+∆t
∑
K∈Th

τK‖un+1
r − ũn+1

r ‖0,K‖∇un+1‖0,∞,K‖∇sn+1
r ‖0,K

≤ ∆t
∑
K∈Th

C

ε
τK(‖ηn+1‖20,K + ‖φn+1

r ‖20,K) + 5∆t
∑
K∈Th

ε

2
τK‖∇sn+1

r ‖20,K

+∆t
∑
K∈Th

C

ε

τK
h2
K

(
‖∇ηn+1‖20,K + ‖∇φn+1

r ‖20,K
)

+∆t
∑
K∈Th

C

ε
τK(‖un+1

r ‖20,K + ‖ũn+1
r ‖20,K)

≤ ∆t
∑
K∈Th

C

ε
τK(‖ηn+1‖20,K + ‖φn+1

r ‖20,K) + 5∆t
∑
K∈Th

ε

2
τK‖∇sn+1

r ‖20,K

+∆t
∑
K∈Th

C

ε

τK
h2
K

(
‖∇ηn+1‖20,K + ‖∇φn+1

r ‖20,K
)

+ ∆t
C

ε
h2, (5.34)

where we used Hölder’s, Young’s and triangle inequalities, the velocity stability estimate
(5.8), and (4.8) to bound ũn+1

r when d = 3. Note that the last penalty term in (5.34)
vanishes when d = 2, since ũn+1

r = un+1
r .

Using local inverse estimates [9], we can bound the fifth term on the r.h.s. of (5.30) as:

V = −ν∆t
∑
K∈Th

τK
(
∆(ηn+1 − φn+1

r ),∇sn+1
r

)
K

≤ ν2∆t
∑
K∈Th

τK
2ε

(
‖∆ηn+1‖20,K + ‖∆φn+1

r ‖20,K
)

+ 2∆t
∑
K∈Th

ε

2
τK‖∇sn+1

r ‖20,K

≤ C

ε
ν2 ∆t(‖∆ηn+1‖2τ + ‖∇φn+1

r ‖20) + 2∆t
∑
K∈Th

ε

2
τK‖∇sn+1

r ‖20,K , (5.35)

Finally, by Cauchy-Schwarz and Young’s inequalities, we bound the sixth term on the
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r.h.s. of (5.30):

V I = ∆t
∑
K∈Th

τK(∇ρn+1,∇sn+1
r )K ≤ ∆t

∑
K∈Th

τK
2ε
‖∇ρn+1‖20,K

+∆t
∑
K∈Th

τK
ε

2
‖∇sn+1

r ‖20,K . (5.36)

Summarizing (5.31)-(5.36) and taking ε = 1/11 from (5.30), we get:

∆t
∑
K∈Th

τK‖∇sn+1
r ‖20,K ≤ C∆t

(
h2‖cn‖20 + ‖ηn+1 − ηn‖20 + ‖φn+1

r − φnr ‖20
)

+C∆th2(‖ηn+1‖20 + ‖φn+1
r ‖20 + 1)

+C∆t(‖∇ηn+1‖20 + ‖∇φn+1
r ‖20)

+Cν2∆t‖∆ηn+1‖2τ + C∆t‖∇ρn+1‖2τ . (5.37)

Summing (5.37) from n = 0 to N − 1, we have:

∆t
N−1∑
n=0

‖∇sn+1
r ‖2τ ≤ C∆t

N−1∑
n=0

(
h2‖cn‖20 + ‖ηn+1 − ηn‖20 + ‖φn+1

r − φnr ‖20
)

+C∆t
N−1∑
n=0

h2(‖ηn+1‖20 + ‖φn+1
r ‖20) + Ch2

+C∆t
N−1∑
n=0

(‖∇ηn+1‖20 + ‖∇φn+1
r ‖20)

+C∆t
N−1∑
n=0

(
ν2‖∆ηn+1‖2τ + ‖∇ρn+1‖2τ

)
. (5.38)

Next, we estimate each term on the r.h.s. of (5.38).

By Taylor’s theorem, the first term on the r.h.s. of (5.38) can be estimated as follows:

∆t

N−1∑
n=0

h2‖cn‖2L2 ≤ C∆t2h2‖∂ttu‖2L2(L2) ≤ C∆t2h2. (5.39)

To estimate the second term on the r.h.s. of (5.38), we use triangle inequality and the L2

error estimate for P vr u (see [28], Lemma 3.3):

∆t

N−1∑
n=0

‖ηn+1 − ηn‖20 ≤ C

(
h2l + ∆t2 +

Mv∑
i=r+1

λi

)
. (5.40)

By using triangle and Cauchy-Schwarz inequalities, the bound (3.6), and estimate (73) in
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[34], the third term on the r.h.s. of (5.38) can be estimated as follows:

∆t

N−1∑
n=0

‖φn+1
r − φnr ‖20 ≤ 2∆t

N−1∑
n=0

(
‖(un+1

r − P vr un+1
h )− (unr − P vr unh)‖20

)
+2∆t

N−1∑
n=0

(
‖P vr

[
(un+1

h − un+1)− (unh − un)
]
‖20
)

≤ C

Mv∑
i=r+1

λi‖∇ϕi‖20

+C∆t

N−1∑
n=0

(
‖(un+1

h − un+1)− (unh − un)‖20
)

≤ C

(
Mv∑

i=r+1

λi‖∇ϕi‖20 + h2l + ∆t2

)
. (5.41)

Similarly, for the fourth and fifth term on the r.h.s. of (5.38) we have:

∆t
N−1∑
n=0

h2‖ηn+1‖20 ≤ C h2

(
h2l + ∆t2 +

Mv∑
i=r+1

λi

)
, (5.42)

and

∆t
N−1∑
n=0

h2‖φn+1
r ‖20 ≤ 2∆t

N−1∑
n=0

h2
(
‖un+1

r − P vr un+1
h ‖20 + ‖P vr (un+1

h − un+1)‖20
)

≤ C h2

(
Mv∑

i=r+1

λi‖∇ϕi‖20 + h2l + ∆t2

)
. (5.43)

For the sixth term on the r.h.s. of (5.38), we have:

∆t
N−1∑
n=0

‖∇ηn+1‖20 ≤ C

[
(h2l + ∆t2)(ν−1 + ‖Svr ‖2) +

Mv∑
i=r+1

λi‖∇ϕi‖20

]
, (5.44)

where we used the H1
0 error estimate for P vr u (see [28], Lemma 3.3), and ‖Svr ‖2 denotes

the 2-norm of the stiffness velocity matrix with entries [Svr ]ij = (∇ϕi,∇ϕj), i, j = 1, . . . , r
that comes from the use of POD inverse estimates (see [30], Lemma 2).

For the seventh term on the r.h.s. of (5.38), we have:

∆t
N−1∑
n=0

‖∇φn+1
r ‖20 ≤ 2∆t

N−1∑
n=0

(
‖∇(un+1

r − P vr un+1
h )‖20 + ‖∇

[
P vr (un+1

h − un+1)
]
‖20
)

≤ C‖Svr ‖2

(
Mv∑

i=r+1

λi‖∇ϕi‖20 + h2l + ∆t2

)
, (5.45)

where we used the triangle inequality, POD inverse estimates (see [30], Lemma 2), estimate
(73) in [34], and bound (3.6).
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The eight term on the r.h.s. of (5.38) can be bounded as follows:

∆t

N−1∑
n=0

ν2‖∆ηn+1‖2τ ≤ Cν2∆t
N−1∑
n=0

[
‖∆(un+1 − un+1

h )‖2τ + ‖∆(un+1
h − P vr un+1

h )‖2τ
]

+Cν2∆t
N−1∑
n=0

‖∆[P vr (un+1
h − un+1)]‖2τ

≤ Cν2∆t
N−1∑
n=0

(
h2l + ‖∇(un+1 − un+1

h )‖20 + ‖∇(un+1
h − P vr un+1

h )‖20
)

+Cν2‖Svr ‖2 ∆t
N−1∑
n=0

‖un+1 − un+1
h ‖20

≤ C

[
ν2 h2l + ν(1 + ν‖Svr ‖2)(h2l + ∆t2) + ν2

Mv∑
i=r+1

λi‖∇ϕi‖20

]
,(5.46)

where we used the triangle inequality, optimal and local inverse estimates [9], POD inverse
estimates (see [30], Lemma 2), bound (3.6), and the POD projection error in H1-seminorm
for uh (see [23], Lemma 3.2).

Finally, for the last term on the r.h.s. of (5.38), similarly to (5.44) we obtain:

∆t

N−1∑
n=0

‖∇ρn+1‖2τ ≤ C∆t
N−1∑
n=0

[
‖∇(pn+1 − pn+1

h )‖2τ + ‖∇(pn+1
h − P pr pn+1

h )‖2τ
]

+C∆t
N−1∑
n=0

‖∇[P pr (pn+1
h − pn+1)]‖2τ

≤ C∆t
N−1∑
n=0

(
h2l + ‖pn+1 − pn+1

h ‖20 + h2‖∇(pn+1
h − P pr pn+1

h )‖20
)

≤ C

h2l + h−1(h2l + ∆t2) + h2

Mp∑
i=r+1

γi‖∇ψi‖20

 , (5.47)

where we used the triangle inequality, optimal and local inverse estimates [9], bound (3.7),
and the POD projection error in H1-seminorm for ph (see [23], Lemma 3.2).

Collecting (5.39)-(5.47), estimate (5.38) becomes:

∆t

N−1∑
n=0

‖∇sn+1
r ‖2τ ≤ C

[
h2 + (h2l + ∆t2)(1 + ν−1 + ‖Svr ‖2 + h−1)

]
+C

Mv∑
i=r+1

λi
[
1 + (1 + ‖Svr ‖2) ‖∇ϕi‖20

]
+C h2

Mp∑
i=r+1

γi‖∇ψi‖20. (5.48)
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Finally, using the triangle inequality and estimate (5.47), we conclude:

∆t

N−1∑
n=0

‖∇(pn+1
r − pn+1)‖2τ ≤ 2∆t

N−1∑
n=0

(
‖∇ρn+1‖2τ + ‖∇sn+1

r ‖2τ
)

≤ C
[
h2 + (h2l + ∆t2)(1 + ν−1 + ‖Svr ‖2 + h−1)

]
+C

Mv∑
i=r+1

λi
[
1 + (1 + ‖Svr ‖2) ‖∇ϕi‖20

]
+C h2

Mp∑
i=r+1

γi‖∇ψi‖20, (5.49)

where we recall that the penalty term h2 in (5.49) vanishes when d = 2. This concludes
the proof. �

Remark 5.4. An alternative pressure error estimate can be obtained by using a different
bound for the term IV in (5.34) when d = 3, taking advantage of the fact that ũn+1

r = un+1
r

when ‖un+1
r ‖0,∞,K ≤ Ch−1

K . Indeed, we can replace in (5.34) the last term by:

∆t
∑
K∈T ∗h

C

ε
τK(‖un+1

r ‖20,K + ‖ũn+1
r ‖20,K) ≤ ∆t

∑
K∈T ∗h

C

ε
τK |K|(‖un+1

r ‖20,∞,K + ‖ũn+1
r ‖20,∞,K)

≤ ∆t
∑
K∈T ∗h

C

ε
h2
K |K|

(
h−3
K ‖u

n+1
r ‖20,K + h−2

K

)
≤ ∆t

C

ε
h−1|Ω∗|, (5.50)

where T ∗h = {K ∈ Th : ‖un+1
r ‖0,∞,K ≥ Ch−1

K }, |Ω∗| is the measure of T ∗h (i.e., |Ω∗| =∑
K∈T ∗h

|K|), and we used local inverse estimates [9], the velocity stability estimate (5.8),

and (4.8) to bound ũn+1
r , assuming also uniformly regular grids.

Now, we have:

|Ω∗| =
∑
K∈T ∗h

∫
K

hK
hK

dx ≤ C
∑
K∈T ∗h

∫
K
hK‖un+1

r ‖0,∞,Kdx

≤ C
∑
K∈T ∗h

∫
K
h

1/2
K ‖u

n+1
r ‖0,6,Kdx ≤ C

∑
K∈T ∗h

‖∇un+1
r ‖0,K |K|h1/2

K

≤ C

 ∑
K∈T ∗h

‖∇un+1
r ‖20,K

1/2 ∑
K∈T ∗h

|K|2hK

1/2

≤ C‖∇un+1
r ‖0,Ω

 ∑
K∈T ∗h

|K|h4
K

1/2

≤ C‖∇un+1
r ‖0,Ωh2|Ω∗|1/2. (5.51)

where we used the definition of T ∗h , local inverse estimates [9], Hölder’s inequality, the
Sobolev embedding H1 ↪→ L6, and Cauchy-Schwarz inequality. Thus, from (5.51) we get:

|Ω∗| ≤ C‖∇un+1
r ‖20,Ω h4, (5.52)
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and substituting (5.52) in (5.50) we obtain:

∆t
∑
K∈T ∗h

C

ε
τK(‖un+1

r ‖20,K + ‖ũn+1
r ‖20,K) ≤ ∆t

C

ε
h3‖∇un+1

r ‖20,Ω. (5.53)

Thus, by applying the velocity stability estimate (5.9), in this case we can replace the
penalty term h2 in (5.25) by h3ν−1.

6 Numerical tests

The data used for the construction of the POD subspaces are obtained by using Fenics
[31] with Taylor-Hood element P2/P1. To quantify the error estimates derived in the
previous section, we consider two classical benchmark numerical examples, the flow past
a cylinder and the lid-driven cavity flow. Since the errors depend strongly on the velocity
POD truncation order, the error analyses are presented in terms of the velocity POD
contribution ratio given as

Ru = 1−
r∑
i=1

λi/
N∑
i=1

λi, (6.1)

where r and N are respectively the truncation order and the total number of snapshots.
This contribution ratio can be seen as a refinement parameter of the error. It can be used
along with the predicted error-slope to determine a priori the accuracy of the SM-ROM.

6.1 Flow past a cylinder Re = 200

Consider the two dimensional flow past a cylinder of diameter D, placed in a rectangular
domain of length H = 30D and width = 45D. The center of the cylinder is situated at
L1 = 10D from the inlet and H/2 from horizontal walls. The flow is driven by an inlet
velocity U and is allowed to flow through the outlet. Free slip boundary conditions are
applied at the horizontal edges while no slip boundary condition are considered on the
cylinder’s wall. Illustration of boundary condition is given in Figure 1.
For the numerical simulation, the semi-implicit Euler method is used with time step
∆t = 10−2, while a non-uniform triangular mesh made of 21174 cells is used for the
spatial discretization. At Re = 200, the flow creates alternating low-high pressure vortices
downstream the cylinder, triggering the generation of the Von Karman vortex pattern in
the wake of the flow past the cylinder. These structures are illustrated in Figure 2.
In order to construct the velocity and pressure POD bases, 400 uniformly distributed snap-
shots covering 8 periods of the periodic regime of the flow are considered. The evolution
of the contribution ratio of POD modes is given as a function of the modes numbers in
Figure 3. A first inspection of the contribution ratio reveals that the first three modes
carry the biggest share of the flow energy. After that, the contribution evolves by couple of
modes. This behavior is essentially due the double multiplicity of POD eigenvalues reveal-
ing the presence of eigenspaces of dimension two. In that case, it’s worth noting that the
SM-ROM error is most likely to oscillate if the POD basis is truncated at a mode forming
the first vector of a two dimensional POD eigenspace. To prevent that from happening, it
is preferred to construct the SM-ROM gradually with respect to eigenspaces rather than
to eigenvectors.
The POD contribution ratio in Figure 3 tends rapidly to the numerical zero meaning by
that the few first modes are sufficiently enough to catch the quasi-totality of the flow
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energy. The prediction quality of the SM-ROM improves with decreasing values of Ru.
This can be seen from the hydrodynamics coefficients CD and CL given by

CD =
FD

1
2ρU

2D
, CL =

FL
1
2ρU

2D
,

where ρ and U are respectively the density of the fluid and the characteristic velocity, and
FD and FL are the drag and lift forces exerted by the fluid on the cylinder’s boundary(

FD
FL

)
=

∫
cylinder

(
µ(∇u+∇Tu)− pI

)
· n dσ,

Here µ refers to the dynamic viscosity. Figure 4 gives a confrontation of the hydrody-
namic coefficients for variable magnitudes of the ratio Ru. It shows that the predicted
coefficients by SM-ROM converge towards the reference coefficients as Ru drops down to
zero. Precisely, when the ratio attains an order of 10−4 or less, the solutions are well
recovered and the SM-ROM coefficients are in good agreement with the underlying high
fidelity model.
In the following, we investigate the errors evolution with respect to the POD contribution
ratio. In theory, the error by the SM-ROM and the POD contribution ratio must decrease
simultaneously. However, this is not always the case. It can be noticed from Figure 5
that while the SM-ROM velocity errors decrease as expected, the SM-ROM pressure error
experiences a stagnation for ratios smaller than 10−6, meaning that the SM-ROM has
attained its maximum precision at this stage. This can be explained as the high fidelity
weak formulation (3.4) is not exactly verified for gradients of pressure POD modes, because
these do not lie in the discrete velocity space Xh. This effect does not appear in the error
estimates (5.24), as these apply to the error between POD-ROM and exact pressures. This
limit accuracy for the reduced pressure computation should decrease as the discretization
parameters h and ∆t decrease.
Reduced order model errors with respect to the rate of convergence are reported in Figure
5. For the sake of clarity, and since we are interested only in the error slopes, the constant
in the error estimation is adjusted in such a way that the estimated and SM-ROM errors
start from the same point. Moreover, a power law regression with solid lines is overlayed
on the computed errors and a curve of logarithmic slope equal to one is plotted alongside
for comparison. Given the likely stagnation behavior of the errors at some values of the
contribution ratio, the regression is only applied to the first points where variations are
noticed.
It can be seen that the logarithmic slops for the SM-ROM errors are close to one meaning
that the rate of convergence of the errors with respect to Ru is close to 1. In other words,
a jump of one order of magnitude in the ratio Ru results in a jump of the same order in the
error. This observation is in good agreement with Figure 4 which shows that between POD
ratios 10−2 and 10−4, the SM-ROM jumps two orders of magnitudes and attains 4× 10−4

for velocity and 2 × 10−2 for pressure. These errors represent a sufficient accuracy to
reproduce the dynamics of the flow and thus meet the high fidelity model hydrodynamic
coefficients.
Now by inspecting the estimator, one can see that even though the slopes are slightly
smaller, it provides a good indicator of the convergence rate of the SM-ROM. If we look
at the regression of the estimated errors at ratio 10−4, it indicates a value of 3

2 × 10−3 for
velocity and 6× 10−2 for the pressure. These are sufficiently good approximations of the
actual SM-ROM error that confirm the robustness of the proposed estimator.
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Figure 1: Two-dimensional domain and boundary conditions for the problem of flow past
a circular cylinder.

Figure 2: Illustration of Von Karman vortices arising in the flow past a cylinder for
Re = 200 at three different time instants.

Figure 3: Evolution of the velocity and pressure POD contribution ratio with respect to
modes numbers for the flow past a cylinder at Re = 200.

6.2 Test case 2 : Lid driven cavity Re = 9500

In this test case we assess the error estimates on the two dimensional lid driven cavity flow
problem with Re = 9500. The problem domain consists of a square cavity ]0, D[×]0, D[
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Figure 4: Hydrodynamics coefficients

Figure 5: Log-Log scale representation of the estimator versus SM-ROM errors for the flow
past a cylinder at Re = 200. The dots refer to the calculated values while the solid lines
are their power regression. The green solid line corresponds to the curve of logarithmic
slope equal to 1. Only the errors corresponding to Ru larger than 10−6 have been taken
into account to calculate the regression lines.

where the fluid is driven by a tangential velocity U applied at the top wall. The remaining
walls are defined as no-slip conditions. The high fidelity problem is solved in a triangular
mesh composed of 32928 cells by using the semi-implicit Euler method with a fixed time
step ∆t = 10−3.
The dynamics of the flow solutions is shown in figure 6. We observe that in the lower
left corner, the secondary vortex separates into two small vortexes that reincorporate in
a periodic manner. In the same way the secondary vortex in the upper left corner has a
similar behavior. In order to construct the POD bases, 200 snapshots uniformly selected
from the periodic regime with 10 periods are used. In Figure 7, we show the evolution of
the contribution ratio of POD modes with respect to modes numbers. The effect of the
POD contribution ratio on the SM-ROM solution is illustrated in Figure 8. It shows the
phase portraits1 at points located at the bottom left (2/16, 2/16), top left (2/16, 13/16)
and top right (0.95, 0.95) of the cavity. Due to the periodic nature of the flow at these

1The evolution of the horizontal velocity in terms of the vertical velocity
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points, the curves of the phase portraits are closed and follow the same path over the
periods of the flow.
Starting from a POD contribution ratio of order 10−2, it can be seen that the SM-ROM
phase portraits are not periodic and do not match the high fidelity solution. By decreasing
the ratio to 10−4, the SM-ROM phase portraits tend to converge to the high fidelity
solution except for the the bottom left point of the cavity where small differences can still
be noticed. These differences disappear with ratios of order 10−5 or less. This shows that
the predictions by the SM-ROM converge to the groundtruth solution with decreasing
values of the POD contribution ratio.
In terms of error estimates, we observe from Figure 9, that the estimator succeeds to predict
the SM-ROM error slopes with a sufficiently good accuracy. The logarithmic slopes for
the SM-ROM errors are close to one which gives an approximate rate of convergence of
10−1. This is in good agreement with Figure 8 since between POD ratios 10−2 and 10−5,
the SM-ROM jumps three orders of magnitudes and attains 10−5 for velocity and 4×10−6

for pressure. These errors represent a sufficient accuracy to reproduce well the dynamics
of the flow and thus meet the high fidelity model hydrodynamics coefficients. As for the
flow past a cylinder, the slopes of the estimators are smaller than the SM-ROM slopes.
Nevertheless, they provide a good indicator of the convergence rate of the SM-ROM.
Typically, at ratio 10−5, the estimator indicates an error value of 3

2 × 10−6 for velocity
and 2×10−5 for the pressure. These are sufficiently good approximations of the SM-ROM
velocity and pressure errors of values 3

2 × 10−7 and 4× 10−6 respectively. Which confirms
once again the robustness of the proposed estimator.

Figure 6: Streamlines in three different instants of the periodic regime of the flow in a lid
driven cavity for Re = 9500.

7 Summary and conclusions

In this paper we have carried on the numerical analysis of the stabilized motivated reduced
order (SM-ROM) solution of the pressure in incompressible flows. We treat the pressure
equation by duality of the momentum conservation equation with gradients of the reduced
pressure space, as function tests. We have used the Proper Orthogonal decomposition
(POD) method with L2 norms to build the reduced spaces for both velocity and pressure,
and proven the stability of the velocity-pressure segregated SM-ROM discretization in
adapted norms. In particular for pressure, the stability is proven in a discrete norm that
has the same asymptotic order as the L2 norm with respect to the mesh size. Both
estimates for velocity and pressure are optimal with respect to the projection error on
the POD reduced spaces. To validate the theoretical results, we have performed two two-
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Figure 7: Evolution of the velocity and pressure POD contribution ratio with respect to
modes numbers for the Lid driven cavity problem at Re = 9500.

Figure 8: Velocity phase portrait at the corner of the cavity domain for Re = 9500. u and
v are respectively the horizontal and vertical components of the velocity vector u.

dimensional numerical tests (lid-driven cavity flow and for flow past a cylinder), for which
we nearly recover the optimality of the error estimates in both problems. We observe an
error stagnation effect for high ROM-POD dimensions, that possibly arises because the
weak high-fidelity model is not exact for gradients of discrete pressures. Besides previous
numerical investigation of the SM-ROM, the present analysis supports the use of this
method to recover the pressure from ROMs of incompressible fluids that only retain weakly
divergence-free velocities, with accuracy enough for practical applications of interest.
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Figure 9: Log-Log scale representation of the estimator versus SM-ROM errors for the
flow in a lid driven cavity at Re = 9500. The dots refer to the calculated values while
the solid lines are their power regression. The green solid line corresponds to the curve of
logarithmic slop equal to 1. Only the errors corresponding to Ru larger than 10−5 have
been taken into account to calculate the regression lines.
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