
 

 

                                              

 

        Depósito de investigación de la Universidad de Sevilla  

 

                                  https://idus.us.es/ 

 

Esta es la versión aceptada del artículo publicado en:  

This is an accepted manuscript of a paper published in: 

               Computer Methods in Applied Mechanics and Engineering (2014): 

13/11/2014  

DOI:  

Copyright:  

El acceso a la versión publicada del artículo puede requerir la suscripción de la 

revista.  

Access to the published version may require subscription. 

 

 “This is an Accepted Manuscript of an article published by Elsevier in Computer 
Methods in Applied Mechanics and Engineering on 13 November 2014, available 
at: http://dx.doi.org/10.1016/j.cma.2014.11.023” 

https://idus.us.es/


Accepted Manuscript

Numerical analysis of a finite element projection-based VMS
turbulence model with wall laws

Tomás Chacón Rebollo, Macarena Gómez Mármol, Samuele Rubino
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• We develop a stabilized projection-based FE-VMS turbulence model including 
wall laws. 

• We perform the numerical analysis of the model (stability, convergence, error 
estimates). 

• We prove the asymptotic energy balance of the system for slightly smooth 
flows. 

• Smooth flows are solved with optimal accuracy. 
• Good accuracy is obtained with benchmark turbulent flow problems on coarse 

grids.  
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Numerical analysis of a finite element projection-based

VMS turbulence model with wall laws

Tomás Chacón Rebollo ∗, Macarena Gómez Mármol †, Samuele Rubino ‡

November 9, 2014

Abstract

This paper deals with the numerical analysis of a finite element projection-based
VMS turbulence model that includes general non-linear wall laws. Only a single mesh
and interpolation operators on a virtual coarser mesh are needed to implement the
model. We include a projection-stabilization of pressure to use the same interpolation
for velocity and pressure. Good accuracy is obtained with benchmark turbulent flow
problems on coarse grids, that justify the interest of this approach. Also, the model
solves smooth flows with optimal accuracy.

Keywords: Variational Multi-Scale Methods, Interpolation Operators, Wall Laws,
Turbulence Modeling, Stabilized Methods, Numerical Analysis.

2010 Mathematics Subject Classification: 76D05, 76F06, 76N20, 65M60, 65M12.

1 Introduction

This paper deals with the numerical analysis of the approximation of incompressible flows
in turbulent regime by means of the Variational Multi-Scale (VMS) models. The VMS
models are increasingly used as a valid alternative to Large Eddy Simulation (LES) models,
as they provide a similar accuracy and avoid some drawbacks. Indeed, no commutation
error between the variational projection and differential operators occurs, that arises for
LES models because the averaged/filtered equations do not satisfy the boundary con-
ditions (Cf. [38, 39]). On the contrary, VMS are intrinsically discrete models, and no
approximation of an intermediate averaged model is needed.

We focus here on the projection-based VMS-LES turbulence models (Cf. [33, 34, 35, 36]).
These are three-level methods with large, sub-filter (resolved) scales and small un-resolved
scales. The multi-scale setting clarifies the use of sub-grid eddy viscosity to model the
viscosity interaction between the sub-filter scales and the small un-resolved scales. In
particular, we will address a multi-scale Smagorinsky modeling of the eddy viscosity, which
contains the restriction to the sub-filter scales through a projection/interpolation operator.

The simulation of wall-bounded flows with VMS models, however, may become very ex-
pensive in terms of computational resources due to the computation of boundary layers, as
this requires very fine meshes in the normal direction to the wall (see, for instance, John
∗Dpto. EDAN & IMUS, Universidad de Sevilla, C/Tarfia, s/n. 41012 Sevilla, Spain chacon@us.es
†Dpto. EDAN, Universidad de Sevilla, C/Tarfia, s/n. 41012 Sevilla, Spain macarena@us.es
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and Kindl [41], Bazilevs et al. [2]). A way to overcome this difficulty, recently applied to
VMS models, is to weakly impose no-slip boundary conditions (Cf. [3, 4]). An alternative
is the use of wall laws, which in their turn replace the usual no-slip boundary conditions
by modeled conditions that set the stress of the flow at some distance from the wall. Wall
laws are widely used in engineering simulation of turbulence, usually in RANS models.
In this paper, we focus on the combined use of VMS-LES models with general non-linear
wall-law boundary conditions, in the context of the Finite Element Method (FEM).

The most common wall law is the logarithmic law, introduced by Prandtl in 1925 (Cf.
[49]), and derived by similarity laws by Von Karmán in 1930 (Cf. [58]). The mathematical
and numerical analysis of wall laws, as boundary conditions for the Smagorkinsky LES
turbulence model, was introduced by Parés (Cf. [47]). A serious difficulty linked to the
approximation of wall laws is the discretization of slip boundary conditions. A strong
imposition of these laws only applies to polyhedric domains. The more general treatment,
introduced by Verfürth (Cf. [56, 57]), is by duality. This kind of discretization is quite
involved, as it requires a specific boundary finite element space for the multipliers. In [48],
Parés introduces a weak formulation of the slip condition. However, the analysis of these
techniques has not been extended to mixed boundary conditions, in which other kinds of
boundary conditions are imposed, in combination with wall laws, in different parts of the
boundary. This is due to a lack of density results by smooth functions for the functional
spaces involved. Here, we will analyze the case of mixed boundary conditions including
wall laws, replacing the lacking density result by smooth functions by a similar one with
finite element functions, for polyhedric domains.

In this paper, we perform the numerical analysis of a finite element projection-based VMS
model that only needs a (fine) grid and interpolation operators on a virtual coarser grid.
The large scales are represented in the coarse grid, while the sub-filter scales are their
complement into the fine grid. The eddy diffusion term has a projection structure to filter
out the large scales and let the eddy diffusion act only on the sub-filter resolved scales.
We use high-order term-by-term stabilization to stabilize each single term that could lead
to unstable discretizations (e.g. convection, pressure gradient), with high accuracy (Cf.
[16, 17, 20]). This allows in particular to use polynomials of the same degree to interpo-
late velocity and pressure. The used stabilization procedure perfectly fits into the VMS
framework. The model includes mixed Dirichlet - wall-law boundary conditions to take
into account inflow and solid wall boundaries at the same time.

We perform a numerical analysis of this approximation in steady regime. We prove sta-
bility and weak convergence for solutions with the natural minimal regularity (u, p) ∈
[H1(Ω)]3 × L2(Ω). Moreover, we perform an error analysis, which strengthen the fact
that the proposed model is suitable both for laminar and turbulent flows. In particular,
for diffusion-dominated flows, we recover optimal convergence rates. The error analysis
permits to prove the strong convergence of the proposed model for slightly smooth flows,
and a subsequent asymptotic energy balance of the system. Finally, we perform numerical
tests. On one hand, we show the good numerical performances of the proposed model
confirming the theoretical convergence expectations for a 2D smooth steady flow (Test
1). On another hand, we present simulations of an equilibrium 3D channel flow at a
friction-velocity Reynolds number Reτ = 180 on coarse grids, to analyze the basic numeri-
cal performances of the proposed model applied to the computation of turbulent flows,
with and without wall-law boundary conditions (Test 2). Similar error levels are obtained
for first and second-order statistics with respect to a residual-based VMS model on an
equivalent coarse grid. The use of wall laws permits to maintain a similar good accuracy
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(at least for the leading stream-wise velocity, as expected), with a significant reduction
of the computational cost in comparison to the standard application of no-slip boundary
conditions at the walls.

The structure of the paper is as follows: In Section 2, we present the variational formulation
of the continuous and discrete problems we work with, and we state their main properties.
Section 3 is devoted to the numerical analysis of the proposed discrete model (stability,
convergence, error estimates), and to the study of the asymptotic energy balance of the
system. The numerical tests are presented in Section 4. Finally, Section 5 states the main
conclusions of the paper.

2 The continuous and discrete problems

We introduce a mixed boundary value problem for the steady incompressible Navier-Stokes
equations, that includes a wall-law boundary condition in combination with an inflow
boundary condition. Let Ω be a bounded polyhedric connected domain in Rd, d = 2 or 3,
with a Lipschitz boundary split into Γ = ΓD ∪ Γn. We suppose Γ split as the union of the
sides Σ1, . . . ,Σr, that we assume to be closed (d− 1)−dimensional sets (straight segments
when d = 2 or polygons when d = 3), in such a way that ΓD =

⋃k−1
i=1 Σi, Γn =

⋃r
i=k Σi,

for some integer k ∈ {2, . . . , r}.
We impose a Dirichlet inflow boundary condition on ΓD and a wall-law boundary condition
on Γn. The problem reads:

Find u : Ω −→ Rd and p : Ω −→ R such that:

(2.1)





∇ · (u⊗ u)− 2ν∇ ·D(u) +∇p = f in Ω,
∇ · u = 0 in Ω,

− [n · 2νD(u)]τ = g(u)τ on Γn,
u · n = 0 on Γn,

u = uD on ΓD,

where u⊗u is the tensor function of components uiuj , D(u) is the symmetric deformation
tensor given by D(u) = (1/2)(∇u + (∇u)t), n is the outer normal to Γ, the notation τ

represents the tangential component with respect to Γ defined as uτ = u − (u · n)n, and
g : Rd → Rd is a given function, that determines the wall law (see below). The unknowns
are the velocity u and the pressure p of the incompressible fluid. The data are the source
term f , that represents a body force per mass unit (typically the gravity), the kinematic
viscosity ν of the fluid, that is a positive constant, and the Dirichlet data uD.

Remark 2.1. The extension of the analysis performed in this paper to free-normal-tension
(also called “do-nothing”) boundary conditions on outflow boundaries is similar to the case
of Navier-Stokes equations, with the essential difficulty of defining the proper projection
operator to compute error estimates.

Remark 2.2. The analysis performed in the paper strongly uses the assumption that Ω is
a polyhedric domain, to approximate the slip boundary condition u · n = 0 on Γn. There
exist well-established techniques to solve this difficulty for domain with curved boundaries,
introduced by Verfürth. For instance, the slip condition may be considered as a restriction,
and implemented through a saddle-point problem approach (Cf. [57]). Another possible
remedy is to use isoparametric finite elements to fit the curved parts of the boundary (Cf.
[56]). We do not consider here this situation, to avoid nonessential complexities that have
been treated elsewhere.
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2.1 Variational formulation of the continuous problem

We consider the Sobolev spaces Hs(Ω), s ∈ R, and Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞, equipped
with the standard norms. We denote by || · ||m,p,Ω the standard norm in Wm,p(Ω). In order
to give a variational formulation of problem (2.1), let us consider the velocity space:

W(Ω) =
{

w ∈ [H1(Ω)]d : w = 0 on ΓD,w · n = 0 on Γn
}
.

This is a closed linear subspace of [H1(Ω)]d, and thus a Hilbert space endowed with the
[H1(Ω)]d-norm. Indeed, it is well known that the trace is a continuous mapping from
H1(Ω) into L2(Γ). Also, the normal component of w exists a.e. on Γ, as n ∈ [L∞(Γ)]d,
and since w ∈ [H1(Ω)]d, by trace theorem and Sobolev injection (Cf. [9]), its trace on Γ
belongs to [L4(Γ)]d. Then, the mapping w ∈W(Ω) 7→ w · n ∈ L4(Γn) is continuous, as:

‖w · n‖0,4,Γn ≤ ‖w‖0,4,Γn ≤ C ‖w‖1,2,Ω.

Thanks to Korn’s inequalities (Cf. [32]), the [H1(Ω)]d-norm is equivalent on W(Ω) to the
norm:

‖w‖W(Ω) = ‖D(w)‖0,2,Ω.
We assume the Dirichlet boundary data admissible, in the sense that there exists a
divergence-free lifting UD ∈ [H1(Ω)]d such that UD|ΓD

= uD and UD = 0 on Γn. Such

a lifting exists if uD ∈ [H1/2
00 (ΓD)]d, as we assume hereafter. In this way, we search for a

continuous solution u = u0 + UD, with u0 ∈W(Ω) divergence-free. We shall consider the
following variational formulation of (2.1):

Find (u, p) ∈ [UD + W(Ω)]× L2
0(Ω) such that:

(2.2)
{
b(u; u,v) + a(u,v)− (p,∇ · v)Ω + 〈G(u),v〉 = 〈f ,v〉,

(∇ · u, q)Ω = 0,

for any (v, q) ∈W(Ω)× L2
0(Ω), where 〈·, ·〉 stands for the duality pairing between W(Ω)

and its dual [W(Ω)]′. The forms b, a and G are given by:

b(w; u,v) =
1
2

[(w · ∇u,v)Ω − (w · ∇v,u)Ω] ,(2.3)

a(u,v) = 2ν (D(u), D(v))Ω,(2.4)
〈G(u),v〉 = (g(u),v)Γn ,(2.5)

for u, v, w ∈ [H1(Ω)]d. Semicolons (; ) are used for forms that are non-linear with respect
to its first argument. The function g is given in implicit form as:

g(u) =





u
|u|(uτ )2 if |u| > 0,

0 if |u| = 0,

where uτ = uτ (|u|) is the wall-friction velocity, computed as unique solution of the alge-
braic equation:

(2.6) u+ = L(y+), with u+ =
|u|
uτ

and y+ =
uτy

ν
.

Here, u+ is a friction non-dimensional velocity, L is the wall-law function, obtained from an
asymptotic analysis in the boundary layer, y+ denotes a friction non-dimensional normal

4
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distance to the solid wall, and y denotes the normal distance to the solid wall. We suppose
that the boundary layer is divided into two sub-layers (Cf. [21]):

T+
1 = Γn × [0, y+

0 ], T+
2 = Γn × [y+

0 , A
+],

where y+
0 denotes a fixed friction non-dimensional normal distance to the solid wall. The

most common wall-law function is the logarithmic law of Prandtl [49] and Von Kármán
[58]:

(2.7) L(y+) =





y+ if y+ ∈ [0, y+
0 ],

1
C1

log(y+) + C2 if y+ ∈ [y+
0 , A

+],

where C1 ' 0.41 and C2 ' 5.5 are constants, calculated from experimental measurements,
and y+

0 is chosen by preserving the continuity of L (y+
0 ' 11.5). The law (2.7) does not take

into account the transition zone between the viscous and logarithmic sub-layer, called the
buffer layer. Actually, there exist other several possible settings of L (e.g., the Spalding’s
wall law [54]) which model the three boundary sub-layers by a single formula. In all cases,
the wall-law function L is non-negative, strictly increasing and continuous, L′ admits a
finite number of discontinuities, and there exist two positive constants K1 and K2 such
that:

(2.8) lim
z+→0+

L(z+)
z+

= K1, lim
z+→∞

L(z+)
log z+

= K2.

This ensures that the associated mapping G is well defined from W(Ω) into its dual (Cf.
Parés [47]).

2.2 Finite element spaces

This section focuses on the construction of finite element (FE) spaces that approximate
the slip condition u · n = 0 on Γn.

Let {Th}h>0 be a family of affine-equivalent and conforming (i.e., without hanging nodes)
triangulations of Ω, formed by triangles or quadrilaterals (d = 2), tetrahedra or hexaedra
(d = 3). We shall assume that the family of triangulations {Th}h>0 is also admissible in
the following sense:

Definition 2.3. The family of triangulations {Th}h>0 is admissible if ΓD and Γn are the
union of whole sides of elements of Th.

Given an integer l ≥ 0, and an element K ∈ Th, denote by Rl(K) either Pl(K) (i.e., the
space of Lagrange polynomials of degree ≤ l, defined on K), if the grids are formed by
triangles (d = 2) or tetrahedra (d = 3), or Ql(K) (i.e., the space of Lagrange polynomials
of degree ≤ l on each variable, defined on K), if the family of triangulations is formed by
quadrilaterals (d = 2) or hexaedra (d = 3). We consider the following FE spaces for the
velocity:

(2.9)





Y l
h = V l

h(Ω) = {vh ∈ C0(Ω) : vh|K ∈ Rl(K), ∀K ∈ Th},

Yl
h = [Y l

h]d = {vh ∈ [C0(Ω)]d : vh|K ∈ [Rl(K)]d, ∀K ∈ Th},

Xh = {vh ∈ Yl
h : vh = 0 on ΓD,vh · ni = 0 on Σi, i = k, . . . , r} ⊂ Yl

h,

5
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where ni is the outer normal to Σi for i = k, . . . , r, and we recall that Γn =
⋃r
i=k Σi.

Hereafter, Yl
h (resp., Y l

h) will constitute the discrete foreground vectorial (resp., scalar)
spaces in which we will work on.

We prove that the family of spaces {Xh}h>0 is effectively an internal approximation of
W(Ω), i.e. a family of finite-dimensional sub-spaces of W(Ω) such that for any v ∈W(Ω):

lim
h→0

d1,2,Ω(v,Xh) = 0,

where:
d1,2,Ω(v,Xh) = inf

vh∈Xh

‖v − vh‖1,2,Ω.

To do it, let us consider the uniformly stable and convergent Bernardi-Maday-Rapetti
(BMR, [6]) interpolation operator IPh from [H1(Ω)]d on Yl

h as follows. Let us denote by
Ah the set of Lagrange interpolation nodes for space Yl

h. Then:

(2.10) IPhv =
∑

α∈Ah
vα λα(x) for x ∈ Ω,

where λα are the canonic basis functions of the Lagrange interpolation, given by:

λα ∈ Y l
h, λα(β) = δα,β for all α, β ∈ Ah,

with δα,β the Kronecker delta and vα an averaged value of v in a neighborhood of node α.
Following Chacón and Lewandowski [22], Sect. A.3, it may be proved that if the family of
triangulations is admissible, then the values vα may be chosen to preserve both the no-slip
and slip boundary conditions: If v ∈W(Ω), then

{
vα · n|F = 0 for any F ∈ ∂Th(α) if α ∈ Ah ∩ Γn,

vα = 0 if α ∈ Ah ∩ ΓD,

where:

∂Th(α) = {F ⊂ Γ : F is a side of some element of Th such that α ∈ F },

and n|F denotes the outer normal to Ω on F . This permits to prove the following:

Lemma 2.4. Assume that the family of triangulations {Th}h>0 is admissible. Then,
IPhv ∈ Xh if v ∈W(Ω).

The proof of this Lemma can be found in [22], so that we omit it for brevity. Lemma
2.4 and the convergence in H1(Ω) of the BMR interpolation operator IPh permits easily
to conclude that the family {Xh}h>0 is an internal approximation of W(Ω) for regular
triangulations.

2.3 A projection-based VMS turbulence model

We approximate the weak formulation (2.2) of the boundary value problem (2.1) for the
steady incompressible Navier-Stokes equations by a projection-based eddy viscosity multi-
scale model. To state it, let us introduce the space:

(2.11) Xh = {vh ∈ Yl−1
h : vh = 0 on ΓD,vh · ni = 0 on Σi, i = k, . . . , r},

6
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and consider a uniformly stable (in H1(Ω)-norm) interpolation operator Πh on Yh, where:

(2.12) Yh = [V l−1
h (Ω)]d,

or:

(2.13) Yh = [V l
H(Ω)]d,

and V l
H(Ω) in (2.13) is a sub-space of V l

h(Ω) with larger grid size H > h (typically, H = 2h
or H = 3h). The considered interpolation operator Πh must satisfy optimal error estimates
(Cf. [6]), and preserve both the no-slip and slip boundary conditions when restricted to
Xh. Thus, we define:

X′h = (Id−Πh)Xh,

where Id is the identity operator. In accordance to (2.12), we identify Xh = ΠhXh ⊂ Yh =
[V l−1
h (Ω)]d as the large scales velocity space, and X′h as the sub-filter scales velocity space.

Space X′h does not need to be explicitly constructed, only the operator Πh is needed. In
accordance to (2.13), another possible definition of Xh is:

(2.14) Xh = {vh ∈ [V l
H(Ω)]d : vh = 0 on ΓD,vh · ni = 0 on Σi, i = k, . . . , r}.

In practical implementations, we consider a standard nodal Lagrange interpolation opera-
tor Πh for its simplicity and its efficiency with respect to other choices. This provides quite
stable and accurate results. However, there exist other possibilities: we may mention the
Scott-Zhang interpolation operator (Cf. [52]), or the already cited BMR (Cf. [6]). Also,
the L2-projection is used by John in [40] to define the large scales.

We state the projection-VMS discretization as:

Find (uh, ph) ∈ (UDh + Xh)×Mh such that:

(2.15)





b(uh; uh,vh) + a(uh,vh) + c′(uh; uh,vh)− (ph,∇ · vh)Ω + 〈G(uh),vh〉
+sconv(uh; uh,vh) = 〈f ,vh〉,

(∇ · uh, qh)Ω + spres(ph, qh) = 0,

for any (vh, qh) ∈ Xh × Mh, where Xh is given by (2.9), and Mh = Y l
h ∩ L2

0(Ω), with
Y l
h = V l

h(Ω) the foreground scalar space already given in (2.9). We search for a solution
uh = u0h + UDh, with u0h ∈ Xh, and UDh the Stokes projection of UD on Yl+1

h .

The form c′ in (2.15) provides a multi-scale Smagorinsky modeling of the eddy viscosity
(Cf. [53, 18]), given by:

(2.16) c′(uh; uh,vh) = 2(νT (u′h)D(u′h), D(v′h))Ω,

where:
u′h = Π∗huh, v′h = Π∗hvh, Π∗h = Id−Πh,

and the eddy viscosity νT is defined as:

(2.17) νT (v)(x) = (CShK)2|D(v|K )(x)| for x ∈ K,

where | · | denoties the Frobenius norm on Rd×d and CS is a (theoretically) universal
constant. However, in practical applications, depending on the flow, the value of CS may

7
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vary between 0.065 (Cf. [45]) and 0.25 (Cf. [42]). Here, we shall use an intermediate value
CS = 0.1.

The forms sconv and spres in (2.15) correspond to a high-order term-by-term stabilized
method (Cf. [16, 17, 20]), and are given by:

sconv(uh; uh,vh) =
∑

K∈Th
τν,K(σ∗h(uh · ∇uh), σ∗h(uh · ∇vh))K ,

spres(ph, qh) =
∑

K∈Th
τp,K(σ∗h(∇ph), σ∗h(∇qh))K .

Here, τν,K and τp,K are stabilization coefficients for convection and pressure gradient, re-
spectively, and σ∗h = Id−σh, where σh is some locally stable (in L2(Ω)-norm) projection or
interpolation operator on the foreground vectorial space Yl−1

h (also called “buffer space” in
this context), satisfying optimal error estimates. In practical implementations, we choose
σh as a Scott-Zhang-like interpolation operator on space Yl−1

h (Cf. [52]). This gives
rise to a discretization with a reduced computational cost, but that maintains the same
high-order accuracy with respect to standard projection-stabilized methods. For the sub-
sequent numerical analysis, we need the following technical hypothesis on the stabilization
coefficients:

Hypothesis 2.5. The stabilization coefficients τp,K and τν,K satisfy the following condi-
tion:

(2.18) α1h
2
K ≤ τp,K , τν,K ≤ α2h

2
K , ∀K ∈ Th,

for some positive constants α1 and α2, independent of h.

We work with the following expression for the stabilization coefficients:

(2.19) τp,K = τν,K =
{[
c1

ν + νT |K
(hK/l)2

]
+
[
c2

UK
(hK/l)

]}−1

,

by adapting the form of Codina (Cf. [24]). In (2.19), c1 and c2 are experimental positive
constants, νT |K is some local eddy viscosity on element K, and UK is some local speed on
element K. We assume UK uniformly bounded from below and from above for technical
reasons. This ensures (2.18).

The term 〈G(uh),vh〉 in (2.15) corresponds to the imposition of wall-law boundary con-
ditions. Note that we have neglected the small un-resolved scales in the modeling of wall
laws. This is justified since wall laws apply to the mean flow, and we can identify it
with the resolved flow. The rest of terms in (2.15) corresponds to a standard Galerkin
discretization.

Formulation (2.15) is a projection-based VMS model for the steady incompressible Navier-
Stokes equations (see [50] for its derivation). Following the standard VMS approach (Cf.
[36]), the proposed model includes three grid levels: large resolved scales (those of Xh),
small resolved (or sub-filter) scales (those of X′h), and small un-resolved scales. It is
assumed that the interaction large-small un-resolved scales is weak whenever these are
inside the inertial spectrum, so that it is neglected, while the action of small un-resolved
scales on small resolved scales is modeled by a standard eddy viscosity plus a stabilization
ad-hoc procedure. In particular, the form c′ is referred to a sub-grid eddy viscosity term

8
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that models the viscosity interaction between the sub-filter scales and small un-resolved
scales.

The forms sconv and spres are referred to the high-order term-by-term stabilization. This
stabilization technique, that may be viewed somewhere between projection (Cf. [8, 25, 27])
and penalty (Cf. [13, 14]) stabilized methods, is usually applied to stabilize separately each
single term (e.g., convection, pressure gradient) that could lead to unstable discretization
with high accuracy, and permits to use equal interpolation for velocity and pressure. In
this context, we propose to use the corresponding terms (as indeed are diffusive terms)
with the aim to help to counter-balance the accumulation of sub-grid energy together with
the sub-grid eddy viscosity term.

The proposed projection-based VMS turbulence model has thus a dual nature, as it results
in a combination of (high-order term-by-term) stabilization and (projection) VMS-LES
modeling. In this way, we almost recover one of the main feature of residual-based VMS
methods (Cf. [2, 3, 25, 27]), since on the one hand they are bona-fide LES-like turbulence
models, and on the other hand they may be thought of as stabilized methods extended
to the nonlinear realm (from [3]). However, no eddy viscosity modeling is required by
the residual-based VMS models, which are strongly consistent. Nevertheless, they result
to be more complex with respect to the proposed model, which presents a simpler and
less expensive structure for practical implementations such as to perform the numerical
analysis.

3 Analysis of the discrete model

In this section, we perform the numerical analysis of model (2.15), that we will call in
the sequel VMS-S model. For technical reasons, we assume throughout the work that the
family of triangulations {Th}h>0 is uniformly regular. Actually, this technical hypothesis
may be relaxed to the more general case of regular grids, but we keep it to focus the
analysis on the new aspects of the method, and to not unnecessarily lengthen it.

3.1 Technical background

We state in this subsection some technical results that are required for the numerical
analysis. We shall denote throughout the paper by C1, C2, . . . constants that may vary
from a line to another, but which are always independent of h. We define the scalar
products:

(·, ·)τp : L2(Ω)× L2(Ω) −→ R,
(f, g)τp −→

∑

K∈Th
τp,K(f, g)K ,

(·, ·)τν : L2(Ω)× L2(Ω) −→ R,
(f, g)τν −→

∑

K∈Th
τν,K(f, g)K ,

and their associated norms:

||f ||τp = (f, f)1/2
τp , ||f ||τν = (f, f)1/2

τν .

Lemma 3.1. Assume that Hypothesis 2.5 holds. Then, the following conditions are satis-
fied:

(3.1) ∀z ∈ L2(Ω), C1

∑

K∈Th
h2
K ||z||20,2,K ≤ ||z||2τ ≤ C2

∑

K∈Th
h2
K ||z||20,2,K ,

9
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where τ denotes either τν or τp, and:

(3.2) ∀g ∈ L2(Ω), ||σ∗h(g)||τ ≤ Ch||g||0,2,Ω.

Proof. Estimates (3.1) immediately follow from (2.18).
Let g ∈ L2(Ω). By applying the second part of (3.1) to σ∗h(g), we obtain:

||σ∗h(g)||2τ ≤ C2

∑

K∈Th
h2
K ||σ∗h(g)||20,2,K ≤ C2h

2||σ∗h(g)||20,2,Ω ≤ Ch2||g||20,2,Ω,

where we have used the global stability property of σh, due to the regularity of the mesh.
Thus, we conclude ||σ∗h(g)||τ ≤ Ch||g||0,2,Ω.

�
We next state a specific discrete inf-sup condition for the stabilized approximation, that
is essential for the stability of method (2.15). The main difficulty in its proof stems from
the fact that the interpolation operator σh takes value in Yl−1

h , thus reducing the effective
number of degrees of freedom (d.o.f.) of the foreground velocity space Yl

h.

Lemma 3.2. Assume that Hypothesis 2.5 holds. Then, we have the following inf-sup
condition:

(3.3) ∀qh ∈Mh, ||qh||0,2,Ω ≤ C
(

sup
vh∈Xh

|(∇ · vh, qh)Ω|
||D(vh)||0,2,Ω

+ ||σ∗h(∇qh)||τp

)
,

for some positive constant C independent of h.

The proof of this Lemma can be derived from [16]. Note that the discrete inf-sup condition
(3.3) can be extended to a more complex condition that holds for a regular family of
triangulations.

Our analysis also needs some properties of the eddy viscosity νT and the form c′, that we
state next.

Lemma 3.3. There exists a constant C > 0 only depending on d, Ω and the aspect ratio
of the family of triangulations such that:

‖νT (v′h)‖0,∞,Ω ≤ C h2−d/2 ‖D(vh)‖0,2,Ω,(3.4)

|c′(vh; vh,wh)| ≤ C h2−d/2 ‖D(vh)‖20,2,Ω‖D(wh)‖0,2,Ω.(3.5)

Proof. As ∇vh′ is piecewise discontinuous, then there exists K ∈ Th such that:

‖νT (v′h)‖0,∞,Ω = ‖νT (v′h)‖0,∞,K ≤ C2
S h

2
K ‖D(v′h)‖0,∞,K .

By a local inverse estimate (Cf. [6]):

‖∇v′h‖0,∞,K ≤ C h
−d/2
K ‖∇v′h‖0,2,K ,

for some constant C > 0 only depending on the aspect ratio of the family of triangulations.
Then:

‖νT (v′h)‖0,∞,Ω ≤ CC2
S h

2−d/2
K ‖D(v′h)‖0,2,K ≤ C h2−d/2 ‖D(v′h)‖0,2,Ω

≤ C h2−d/2 ‖D((Id−Πh)vh)‖0,2,Ω ≤ C h2−d/2 ‖D(vh)‖0,2,Ω,(3.6)

10
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where the last inequality follows from the (H1-)uniform stability property of the interpo-
lation operator Πh. By estimate (3.4) and the (H1-)uniform stability of Πh:

|c′(vh; vh,wh)| ≤ 2‖νT (v′h)‖0,∞,Ω ‖D(v′h)‖0,2,Ω‖D(w′h)‖0,2,Ω
≤ C h2−d/2 ‖D(vh)‖20,2,Ω‖D(wh)‖0,2,Ω.

�
Also, the convection stabilizing term sconv satisfies the following estimate:

Lemma 3.4. Assume that Hypothesis 2.5 holds. Then:

(3.7) |sconv(uh; uh,vh)| ≤ Ch2−d/2‖D(uh)‖30,2,Ω‖D(vh)‖0,2,Ω,

for some constant C > 0 only depending on d, Ω and the aspect ratio of the family of
triangulations.

Proof. By the definition of the form sconv, we have:

|sconv(uh; uh,vh)| =

∣∣∣∣∣∣
∑

K∈Th
τν,K(σ∗h(uh · ∇uh), σ∗h(uh · ∇vh))K

∣∣∣∣∣∣

≤ C
∑

K∈Th
h2
K‖σ∗h(uh · ∇uh)‖0,2,K‖σ∗h(uh · ∇vh)‖0,2,K ,

where we have applied Hypothesis 2.5 and Cauchy-Schwarz inequality.
By using the (L2-)local stability property of the interpolation operator σh, we obtain:

|sconv(uh; uh,vh)| ≤ C
∑

K∈Th
h2
K‖uh · ∇uh‖0,2,ωK‖uh · ∇vh‖0,2,ωK

≤ C‖uh‖20,4,Ω
∑

K∈Th
h2
K‖D(uh)‖0,4,ωK‖D(vh)‖0,4,ωK ,

where we have applied Hölder’s inequality, and ωK denotes the union of all elements of Th
that intersect K. By Sobolev embedding theorem, we can write:

|sconv(uh; uh,vh)| ≤ C‖D(uh)‖20,2,Ω
∑

K∈Th
h2
K‖D(uh)‖0,4,ωK‖D(vh)‖0,4,ωK

≤ C‖D(uh)‖20,2,Ω
∑

K∈Th
h

2−d/2
K ‖D(uh)‖0,2,ωK‖D(vh)‖0,2,ωK ,

where in the last inequality we have applied a local inverse estimate (Cf. [6]), and the
local uniform regularity of the grid, which is implied by the regularity. Using again the
regularity of the grid, which implies that card(ωK) ≤ N bounded for any K, we finally
obtain:

|sconv(uh; uh,vh)|

≤ Ch2−d/2‖D(uh)‖20,2,Ω


∑

K∈Th
‖D(uh)‖0,2,ωK




1/2
∑

K∈Th
‖D(vh)‖0,2,ωK




1/2

≤ Ch2−d/2‖D(uh)‖30,2,Ω‖D(vh)‖0,2,Ω.

�
We report now the properties of the mapping G, defined by (2.5), that sets the wall-law
boundary condition in the steady incompressible Navier-Stokes equations (2.2) (Cf. [47]).
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Lemma 3.5. The functional G given by (2.5) is well defined from W(Ω) into its dual, is
monotone, compact, and satisfies the estimates: ∀v, w ∈W(Ω),

‖G(v)‖[W(Ω)]′ ≤ C (1 + ‖v‖21,2,Ω),(3.8)
‖G(v)−G(w)‖[W(Ω)]′ ≤ C (1 + ‖v‖1,2,Ω + ‖w‖1,2,Ω) ‖v −w‖1,2,Ω,(3.9)

where C is a positive constant only depending on d, Ω and Γn.

3.2 Existence and stability results

Problem (2.15) is equivalent to a system of algebraic non-linear equations in finite dimen-
sion. The non-linearity is due to several effects: the convection operator, the VMS-eddy
viscosity, the convection stabilizing term, and the wall-law boundary condition. We use
the Brouwer fixed point theorem to prove that it admits a solution (Cf. [9]). In particular,
we have the following stability result:

Theorem 3.6. Assume that Hypothesis 2.5 holds. Let f ∈ [W(Ω)]′. Then, if ‖D(UD)‖0,2,Ω
is small enough, problem (2.15) admits at least a solution, that satisfies the estimates:

‖D(u0h)‖0,2,Ω ≤ C
(
‖f‖[W(Ω)]′ ; ‖D(UD)‖0,2,Ω

)
,(3.10)

‖σ∗h(u0h · ∇u0h)‖τν + ‖σ∗h(∇ph)‖τp ≤ C
(
‖f‖[W(Ω)]′ ; ‖D(UD)‖0,2,Ω

)
,(3.11)

‖ph‖0,2,Ω ≤ C
(
‖f‖[W(Ω)]′ ; ‖D(UD)‖0,2,Ω

)
,(3.12)

where C > 0 is an increasing function of the data norms ‖f‖[W(Ω)]′, ‖D(UD)‖0,2,Ω, inde-
pendent of h.

Proof. We prove the existence and stability of solutions in 4 steps.

Step 1: Linearization of (2.15).
Let wh = w0h + UDh, with w0h ∈ Xh such that ‖D(w0h)‖0,2,Ω ≤ R (where R is a positive
constant independent of h to be determined later), and consider the following linearized
problem:

Given f ∈ [W(Ω)]′, find (u0h, ph) ∈ Xh ×Mh such that:

(3.13) BT (wh, (u0h, ph), (vh, qh)) = 〈f̃ ,vh〉,

for all (vh, qh) ∈ Xh ×Mh, where:

BT (wh, (u0h, ph), (vh, qh)) = b(wh,u0h,vh) + a(u0h,vh) + c′(wh,u0h,vh)
−(ph,∇ · vh)Ω + ŝconv(u0h,vh) + 〈Ĝ(u0h),vh〉+ (∇ · u0h, qh)Ω + spres(ph, qh),

and:

〈f̃ ,vh〉 = 〈f ,vh〉 − b(wh,UDh,vh)− a(UDh,vh)− c′(wh,UDh,vh)− ŝconv(UDh,vh).

The symbol ̂ denotes the linearization of the corresponding terms with respect to wh,
i.e.:

ŝconv(u0h,vh) =
∑

K∈Th
τν,K(σ∗h(wh · ∇u0h), σ∗h(wh · ∇vh))K ,

〈Ĝ(u0h),vh〉 =
∫

Γn

u0h · vh e(|wh|) ds,

12
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where the function e : R+ → R+ is defined by:

(3.14) e(|u|) =





[uτ (|u|)]2
|u| if |u| > 0,

1
(y/ν)K1

if |u| = 0,

and K1 is given by (2.8). We recall that uτ is the unique solution of the implicit equation
(2.6). We prove that e is continuous. Indeed, let us re-write equation (2.6) as:

|u| = uτL(uτy/ν) = F (uτ ).

The wall-law function L is strictly increasing and continuous, then F is strictly increasing
and continuous. Due to (2.8), lim

uτ→0+
F (uτ ) = 0 and lim

uτ→∞
F (uτ ) = +∞. It implies that

uτ = F−1(|u|) is continuous, and so e is continuous at any |u| 6= 0. To prove the continuity
at |u| = 0, we set t = uτ (|u|). Then, |u| = tL(λt), with λ = y/ν, and:

lim
|u|→0

e(|u|) = lim
t→0

t2

tL(λt)
= lim

t→0

t

L(λt)
=

1
λK1

,

where the last identity follows from (2.8). We deduce that e(|wh|) is bounded on Ω:

max
x∈Ω

e(|wh(x)|) ≤M(‖wh‖0,∞,Ω), where M(r) = max
x∈[0,r]

e(x).

The estimate for the form Ĝ becomes:

〈Ĝ(u0h),vh〉 ≤ M(‖wh‖0,∞,Ω)‖u0h‖0,2,Γn‖vh‖0,2,Γn
≤ CM(‖wh‖0,∞,Ω)‖D(u0h)‖0,2,Ω‖D(vh)‖0,2,Ω.(3.15)

Step 2: Existence of solution of problem (3.13).
Problem (3.13) is equivalent to a linear system with dim(Xh) + dim(Mh) unknowns and
equations. Then, the existence of solutions is equivalent to its uniqueness. To prove
uniqueness, let us assume that problem (3.13) admits a solution (u0h, ph) ∈ Xh×Mh, that
we next estimate in terms of the data.

• Velocity estimate.

Take vh = u0h and qh = ph in (3.13) as test functions. This yields:

2ν‖D(u0h)‖20,2,Ω+c′(wh,u0h,u0h)+ŝconv(u0h,u0h)+〈Ĝ(u0h),u0h〉+spres(ph, ph) = 〈f̃ ,u0h〉,

as the form b is antisymmetric. Since the forms c′ and Ĝ are non-negative, we have:

(3.16) 2ν‖D(u0h)‖20,2,Ω + ŝconv(u0h,u0h) + spres(ph, ph) ≤ 〈f̃ ,u0h〉.

From the boundedness of the forms b and a in [H1(Ω)]d, and (3.5), it follows:

〈f̃ ,u0h〉 ≤ (‖f‖[W(Ω)]′ + δ)‖D(u0h)‖0,2,Ω + C0R‖D(UD)‖0,2,Ω‖D(u0h)‖0,2,Ω

+ C1[diam(Ω)]2−d/2(R+ ‖D(UD)‖0,2,Ω)‖D(UD)‖0,2,Ω + |ŝconv(UDh,u0h)|,
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where δ = (C0‖D(UD)‖0,2,Ω + 2ν)‖D(UD)‖0,2,Ω, and we have used ‖D(UDh)‖0,2,Ω ≤
C‖D(UD)‖0,2,Ω. By applying Hypothesis 2.5 and Young’s inequality, we have:

|ŝconv(UDh,u0h)| ≤ C2


∑

K∈Th

h2
K

2
‖σ∗h(wh · ∇UDh)‖20,2,K


+

1
2
ŝconv(u0h,u0h) = I + II.

The second summand II passes to the left hand side of inequality (3.16). Using the
(L2-)local stability property of the interpolation operator σh on the first summand I, we
obtain:

I ≤ C3

∑

K∈Th
h2
K(‖w0h · ∇UDh‖20,2,ωK + ‖UDh · ∇UDh‖20,2,ωK )

≤ C3

∑

K∈Th
h2
K(‖w0h‖20,∞,ωK + ‖UDh‖20,∞,ωK )‖D(UDh)‖20,2,ωK ,

where we have used Hölder’s inequality in the last line. By a local inverse estimate (Cf.
[6]), the regularity of the grid, and the Sobolev embedding theorem, we can write:

I ≤ C4

∑

K∈Th
h

2(1−d/4)
K (‖w0h‖20,4,ωK + ‖UDh‖20,4,ωK )‖D(UDh)‖20,2,ωK

≤ C5 h
2(1−d/4)(R2 + ‖D(UD)‖20,2,Ω)‖D(UD)‖20,2,Ω ≤M(R),

with M(R) = C5 [diam(Ω)]2(1−d/4)(R2 +‖D(UD)‖20,2,Ω)‖D(UD)‖20,2,Ω. Collecting all these
estimates, from (3.16) we obtain:

2ν‖D(u0h)‖20,2,Ω +
1
2
ŝconv(u0h,u0h) + spres(ph, ph)

≤
[
‖f‖[W(Ω)]′ + δ̃(R)

]
‖D(u0h)‖0,2,Ω +M(R),

where we have denoted:

δ̃(R) = δ + {C0R+ C1[diam(Ω)]2−d/2(R+ ‖D(UD)‖0,2,Ω)}‖D(UD)‖0,2,Ω.

Using Young’s inequality:

ν‖D(u0h)‖20,2,Ω +
1
2
ŝconv(u0h,u0h) + spres(ph, ph) ≤

[
‖f‖[W(Ω)]′ + δ̃(R)

]2

4ν
+M(R).

Finally, we conclude:

‖D(u0h)‖0,2,Ω ≤

[
‖f‖[W(Ω)]′ + δ̃(R)

]

2ν
+

√
M(R)
ν

;(3.17)

‖σ∗h(wh · ∇u0h)‖τν ≤

[
‖f‖[W(Ω)]′ + δ̃(R)

]

√
2 ν

+
√

2M(R);(3.18)

‖σ∗h(∇ph)‖τp ≤

[
‖f‖[W(Ω)]′ + δ̃(R)

]

2
√
ν

+
√
M(R).(3.19)

Observe that the bound (3.17) may be written as:

(3.20) ‖D(u0h)‖0,2,Ω ≤ K +
A
2
‖D(UD)‖0,2,ΩR,

14
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with:

(3.21) K =

[
‖f‖W(Ω)′ + δ

]

2ν
+

(
C1 + 2

√
C5ν

)
[diam(Ω)]2−d/2

2ν
‖D(UD)‖20,2,Ω,

and:

(3.22) A =
C0 +

(
C1 + 2

√
C5ν

)
[diam(Ω)]2−d/2

ν
.

As we want w0h in the same ball of u0h, we impose R = 2K, so that it must be:

(3.23) ‖D(u0h)‖0,2,Ω ≤ K +A‖D(UD)‖0,2,ΩK ≤ 2K,

that is satisfied if:
‖D(UD)‖0,2,Ω ≤ A−1.

• Pressure estimate.

Take qh = 0 in (3.13). Using the previous estimates, this yields:

|(ph,∇ · vh)Ω| ≤ | − 〈f̃ ,vh〉+ b(wh,u0h,vh) + a(u0h,vh) + c′(wh,u0h,vh)
+ ŝconv(u0h,vh) + 〈Ĝ(u0h),vh〉|

≤ C
{
‖f̃‖[W(Ω)]′ +

[
1 + h2−d/2 + 2ν +M(‖wh‖0,∞,Ω)

]
‖D(u0h)‖0,2,Ω

}
‖D(vh)‖0,2,Ω

≤ C
{
‖f̃‖[W(Ω)]′ + [1 + ν +M(‖wh‖0,∞,Ω)]K

}
‖D(vh)‖0,2,Ω,

where the second inequality follows from the boundedness of the forms b and a in [H1(Ω)]d,
and we have used properties (3.5), (3.7) and (3.15) to estimate respectively the forms c′,
ŝconv and Ĝ, while the last inequality follows from (3.23). By the discrete inf-sup condition
(3.3) and (3.19), we obtain:

‖ph‖0,2,Ω ≤ C

(
sup

vh∈Xh

|(∇ · vh, ph)Ω|
‖D(vh)‖0,2,Ω

+ ‖σ∗h(∇ph)‖τp

)

≤ C
{
‖f̃‖[W(Ω)]′ +

[
1 + ν +

√
ν +M(‖wh‖0,∞,Ω)

]
K
}
.

Step 3: Existence of solution of problem (2.15).
We use Brouwer fixed point theorem to prove existence of solution of problem (2.15).
Let us define the mapping F : Xh 7→ Xh, that transforms w0h ∈ Xh into u0h, the unique
solution of problem (3.13). The previous estimates and the uniqueness of solution of (3.13)
allow to prove the continuity of F . Indeed, let {wn}n∈N ⊂ Xh be a sequence convergent
to w ∈ [H1(Ω)]d. Let us consider the sequence of images {F(wn)}n∈N = {un}n∈N ⊂ Xh.
The previous estimates allow to extract a sub-sequence, that we denote in the same way,
strongly convergent (as Xh is of finite dimension) to t ∈ Xh. Also, there exists a sub-
sequence {pn}n∈N ⊂ Mh strongly convergent to p ∈ Mh. We take the limit n → +∞
in:

BT (wn, (un, pn), (vh, qh)) = 〈f̃ ,vh〉, ∀(vh, qh) ∈ Xh ×Mh.

15
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Note that, as we are working in finite dimension, BT is a continuous function, as all terms
appearing in the definition of BT are continuous functions of the d.o.f. of their arguments.
We can conclude that:

BT (w, (t, p), (vh, qh)) = 〈f̃ ,vh〉, ∀(vh, qh) ∈ Xh ×Mh.

Thus, F(w) = t. As the limit problem satisfied by t admits a unique solution, then
the whole sequence {F(wn)}n∈N converges to it, by reductio ad absurdum. The previous
estimates (3.23) also prove that F transforms the closed ball BXh

(0, 2K) into itself. Then,
by Brouwer fixed point theorem, the mapping F admits a fixed point. This fixed point is
a solution of (2.15), satisfying the estimates (3.10), (3.11).

Step 4: Estimate (3.12).
It remains just to prove that the estimate for ‖ph‖0,2,Ω does not depend on h for the non-
linear problem (2.15). Note that the dependence on h in the linear case is due to estimate
(3.15) of the form Ĝ, where M depends on ‖wh‖0,∞,Ω, and thus on h. Instead, in the
non-linear case, we can directly apply (3.8) to estimate the form G, and thus the pressure
estimate does not depend on h.

�

Remark 3.7. The estimate (3.11) for the convective and pressure stabilizing terms gua-
rantees an extra-control on the high frequencies of the convective derivative and pressure
gradient, which is not obtained by standard projection-based VMS methods (Cf. [41]), for
which only the sub-grid eddy viscosity term of Smagorinsky type is added to the standard
Galerkin discretization.

3.3 Convergence analysis

The convergence analysis is based upon the theory developed in [15], that enables to
extend to stabilized methods the standard techniques for the numerical analysis of mixed
methods.

We shall need a technical result that allows to represent formulation (2.2) as an internal
approximation of an “augmented” variational formulation.

Definition 3.8. A FE space Zh, constructed on a triangulation Th, is called a bubble
FE space if, for all bh ∈ Zh, for all K ∈ Th, bh ∈ H1

0 (K).

A similar definition applies for vectorial bubble FE spaces.

Lemma 3.9. There exists a family {Zh}h>0 of bubble FE sub-spaces of [H1
0 (Ω)]d and a

family {Sh}h>0 of bilinear uniformly continuous and uniformly coercive forms on [H1
0 (Ω)]d

such that:

(3.24) spres(ph, qh) = Sh(Rh(σ∗h(∇ph)),Rh(σ∗h(∇qh))), ∀ph, qh ∈Mh,

where Rh : [H−1(Ω)]d −→ Zh is the “static condensation” operator on Zh defined as
follows:

Given ϕ ∈ [H−1(Ω)]d, Rh(ϕ) is the only element of Zh that satisfies:

Sh(Rh(ϕ), zh) = 〈ϕ, zh〉, ∀zh ∈ Zh.

This result is proved in [15]. We shall also need the following property of bubble FE spaces
(Cf. [15]):

16
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Lemma 3.10. If a sequence {Zh}h>0 of bubble FE sub-spaces of [H1
0 (Ω)]d is uniformly

bounded in [H1
0 (Ω)]d, then it weakly converges to zero in [H1

0 (Ω)]d.

We now state the weak convergence of solutions provided by method (2.15) to a weak
solution of the Navier-Stokes boundary value problem (2.2).

Theorem 3.11. Assume that Hypothesis 2.5 holds. Then, the sequence {(uh, ph)}h>0

of solutions of the VMS-S approximation (2.15) contains a sub-sequence which is weakly
convergent in [H1(Ω)]d × L2(Ω) to a solution of the steady Navier-Stokes equations (2.2).
If this solution is unique, then the whole sequence converges to it.

Proof. The proof is divided into various steps.

Step 1: Extracting sub-sequences.
Due to estimates (3.10)-(3.12), the sequence {(u0h, ph)}h>0 is uniformly bounded in the
space W(Ω) × L2

0(Ω), which is a Hilbert space. Then, it contains a sub-sequence, that
we still denote in the same way, weakly convergent in that space to some pair (u0, p).
As the injection of H1(Ω) in Lq(Ω) is compact for 1 ≤ q < q∗ = 2d/(d − 2), by the
Rellich-Kondrachov compactness theorem (Cf. [9]) we may assume that the sub-sequence
{u0h}h>0 is strongly convergent in [Lq(Ω)]d, and so, in particular, in [L4(Ω)]d. Also, the
operator G is compact from W(Ω) to its dual [W(Ω)]′, by Lemma 3.5. Then, we may
assume that the sub-sequence {G(u0h)}h>0 is strongly convergent in [W(Ω)]′. We recall
that UDh is the Stokes projection of UD on Yl+1

h , thus it strongly converges to UD in
[H1(Ω)]d. Let us prove that (u, p) is a solution of problem (2.2).

Step 2: Limit of convection terms.
Let us consider a pair of test functions (v, q) such that v ∈ W(Ω), q ∈ D(Ω) ∩ L2

0(Ω),
where D(Ω) is the space of C∞0 (Ω)−functions (i.e., smooth functions with compact support
in Ω), that is dense in L2(Ω) (Cf. [44]). As Xh is an internal approximation of W(Ω)
(see Subsection 2.2), then there exists a sequence {vh}h>0 ∈ Xh strongly convergent to
v in W(Ω). Moreover, as Mh is an internal approximation of H1(Ω) ∩ L2

0(Ω), then there
exists a sequence {qh}h>0 ∈ Mh strongly convergent to q in particular in L2

0(Ω). Then, it
is standard to prove that:

lim
h→0

b(uh; uh,vh) = b(u; u,v).

Moreover, by (3.7), for the convection stabilizing term we have:

|sconv(uh; uh,vh)| ≤ Ch2−d/2‖D(uh)‖30,2,Ω‖D(vh)‖0,2,Ω.

Since the sequences {uh}h>0 and {vh}h>0 are bounded in [H1(Ω)]d, we deduce:

lim
h→0

sconv(uh; uh,vh) = 0.

Step 3: Limit of diffusion terms.
As a is bilinear and continuous:

lim
h→0

a(uh,vh) = a(u,v).

Next, since the sequences {uh}h>0 and {vh}h>0 are bounded in [H1(Ω)]d, we deduce from
Lemma 3.3:

lim
h→0

c′(uh; uh,vh) = 0.

17
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Step 4: Limit of pressure terms.
Since {∇·uh}h>0 is weakly convergent in L2(Ω) to ∇·u and {qh}h>0 is strongly convergent
in L2(Ω) to q:

lim
h→0

(∇ · uh, qh)Ω = (∇ · u, q)Ω.

Also, we obviously have:
lim
h→0

(ph,∇ · vh)Ω = (p,∇ · v)Ω.

The pressure stabilizing term also vanishes in the limit. To prove this, we use the repre-
sentation formula (3.24). This yields:

‖σ∗h(∇ph)‖2τp = spres,h(ph, ph) = Sh(Rh(σ∗h(∇ph)),Rh(σ∗h(∇ph)))

≥ µS‖Rh(σ∗h(∇ph))‖2H1
0 (Ω),

using the uniform coercivity of the forms Sh. Then, using the fact that ‖σ∗h(∇ph)‖τp ≤
2
√
νK, we deduce that the sequence {Rh(σ∗h(∇ph))}h>0 is uniformly bounded in [H1

0 (Ω)]d

and, by Lemma 3.10, as:

spres(ph, qh) = Sh(Rh(σ∗h(∇ph)),Rh(σ∗h(∇qh))) = 〈σ∗h(∇qh),Rh(σ∗h(∇ph))〉,

we conclude:
lim
h→0

spres(ph, qh) = 0.

Consequently, the pair (u, p) is a weak solution of the Navier-Stokes equations (2.2).

Step 7: Uniqueness.
As this weak convergence follows from a compactness argument, it is standard to prove,
by reductio ad absurdum, that if the limit is unique, then the whole sequence converges to
it, in the same weak sense.

�

Remark 3.12. Following a standard strategy to prove the strong convergence of the ve-
locities for the stabilized VMS-S method (2.15), one can only conclude:

lim
h→0

2ν‖D(u0h)‖20,2,Ω + ‖σ∗h(∇ph)‖2τp = 2ν‖D(u0)‖20,2,Ω,

so that we cannot achieve a strong convergence result for solutions with natural minimal
regularity, neither the corresponding asymptotic energy balance of the system (which is the
case, instead, for mixed methods).

Remark 3.13. Assuming a slightly increased regularity of the solution for the steady
Navier-Stokes equations (2.1) leads to a strong convergence result also in the context of
the stabilized VMS-S method (2.15) through an error estimates analysis (See Appendix).
This will guarantee the corresponding asymptotic energy balance of the system, as we will
state in the next subsection. Also, the error analysis performed in the Appendix proves that
the convergence order of the VMS-S method (2.15) is optimal with respect to the polynomial
interpolation for laminar smooth flows.

18
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3.4 Asymptotic energy balance

The error estimates result stated in Theorem 5.3 in Appendix, that implies the strong
convergence in particular of the velocities (See Remark 5.4), contains as a sub-product the
asymptotic energy balance of VMS-S model (2.15). Indeed, let us define the deformation
energy ED, the boundary friction energy EF , the sub-grid eddy dissipation energy ES , and
the energy ESC and ESP respectively corresponding to the convection and the pressure
stabilizing terms by:

ED(u) = a(u,u) = 2ν‖D(u)‖20,2,Ω,
EF (u) = 〈G(u),u〉 =

∫

Γn

g(u) · u ds,

ES(uh) = c(uh; uh,uh) = 2
∑

K∈Th
(CShK)2

∫

K
|D(uh′)|3 dx,

ESC(uh) = sconv,h(uh; uh,uh) = ‖σ∗h(uh · ∇uh)‖2τν ,

ESP (ph) = spres,h(ph, ph) = ‖σ∗h(∇ph)‖2τp .

Then, it holds:

Corollary 3.14. Let {(uh, ph)}h>0 be a sequence of solutions of the VMS-S model (2.15)
strongly convergent in [H1(Ω)]d×L2(Ω) to a solution (u, p) of the Navier-Stokes equations
(2.2) with regularity [H2(Ω)]d ×H1(Ω) (at least). Then:

lim
h→0

[ED(uh) + EF (uh) + ES(uh) + ESC(uh) + ESP (ph)] = ED(u) + EF (u),

as:
lim
h→0

ED(uh) = ED(u), lim
h→0

EF (uh) = EF (u),

and:
lim
h→0

ES(uh) = lim
h→0

ESC(uh) = lim
h→0

ESP (ph) = 0.

Thus, the total energy balance is asymptotically maintained in such a way that the de-
formation energy and the energy dissipated at the wall pass to the limit. In addition, the
dissipated eddy energy so as the sub-grid energy due to stabilizing terms asymptotically
vanish.

4 Numerical examples

We have performed numerical experiments by using the projection-based VMS model
(2.15), on one hand to test the theoretical convergence order predicted by the numerical
analysis, and stated in Appendix (Theorem 5.3). This is performed in Test 1, where we
have considered a 2D smooth steady flow with analytical solution to check the expected op-
timal convergence order with respect to the polynomial interpolation. On another hand, to
analyze the basic numerical performances of the proposed model applied to the computa-
tion of turbulent flows, with and without wall-law boundary conditions. This is performed
in Test 2, where we address simulations of a fully developed 3D turbulent channel flow
at Reτ = 180, for which there exists an extensive literature providing reliable numerical
results.
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4.1 Test 1: Convergence order

This test is aimed to confirm the optimal convergence order of model (2.15) for laminar
smooth flows. We have considered a 2D steady flow in the domain Ω = (0, π)2, whose
analytical solution is given by:

• Horizontal velocity: u1 = 2(sinx1)2 sinx2 cosx2;

• Vertical velocity: u2 = −2 sinx1(sinx2)2 cosx1;

• Pressure: p = cosx1 cosx2.

The velocity field vanishes on ∂Ω. As physical property, we have taken ν = 10−2. The
force term f is computed to match the exact solution. We have used regular meshes with
grid size h ranging from 0.9 to 0.06, and triangular finite elements of degree 2, 3, and 4 for
velocity and pressure (l = 2, 3, 4 = degree of the polynomial interpolation). We have used
setting (2.17) for the multi-scale eddy viscosity term, with nodal interpolation operator
Πh taking values in Yh defined by (2.12). In this way, only a single mesh is needed for
implementation. The stabilization coefficients are given by the adapted Codina’s form
(2.19), with constants c1 = 4, c2 =

√
c1 = 2 (Cf. [26]).

In Figure 1, we have plotted the slopes of the estimated error curves for the velocity (in
H1−norm) and the pressure (in L2−norm), related to the grid size h. We observe that
the convergence rate is optimal, so that we obtain an excellent agreement with respect to
the theoretical predictions.

4.2 Test 2: Turbulent channel flow

The 3D channel flow is one of the most popular test problems for the investigation of
wall bounded turbulent flows. It was pioneered as a LES test problem by Moin and Kim
(Cf. [45]), and more recently has been extensively used to test several versions of LES
models. Let us mention, for instance, the simulation carried out by Iliescu and Fischer
[37] using a Rational LES (RLES) model, in the context of a spectral element code. A
number of numerical studies on turbulent channel flow has also been performed applying
VMS methods. Among others, Bazilevs et al. [2] tested a Residual-based VMS (RB-VMS)
turbulence model on a channel flow, employing linear, quadratic and cubic NURBS (Non-
Uniform Rational B-Splines), while John and Kindl [41] compared the performances of two
types of VMS methods, where one uses bubble functions to model resolved small scales
(Residual Free Bubble-based method), whereas the other one contains the definition of
the resolved small scales by an explicit projection in its set of equations (Projection-based
method). For the setup of our numerical simulations, we choose to follow the guidelines
given by Gravemeier in [30], where different scale-separating operators for a VMS-LES of
a turbulent channel flow in the context of a Finite Volume Method (FVM) are tested.

As a benchmark, we will use the fine Direct Numerical Simulation (DNS) of Moser, Kim
and Mansour [46].

• Setup for numerical simulations.

We test model (2.15) with the following different settings of the eddy viscosity term:

• SMA model: The Smagorinsky setting, given by

c′(uh; uh,vh) = 2(νT (uh)D(uh), D(vh))Ω;

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h

Estimated convergence order P2

 

 

h
2

u H1−norm

p L2−norm

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h

Estimated convergence order P3

 

 

h
3

u H1−norm

p L2−norm

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

h

Estimated convergence order P4

 

 

h
4

u H1−norm

p L2−norm

Figure 1:
Estimated convergence orders using P2, P3, and P4 FE for velocity and pressure.
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• VMS-S model: The Small-Small VMS-Smagorinsky setting, given by

c′(uh; uh,vh) = 2(νT (u′h)D(u′h), D(v′h))Ω;

• VMS-B model: The Berselli-Iliescu-Layton setting of Ref. [7], in which:

c′(uh; uh,vh) = 2(νT (Π̃∗hD(uh))Π̃∗hD(uh), Π̃∗hD(vh))Ω,

where Π̃∗h = Id− Π̃h, and we have denoted by Π̃h the [L2(Ω)]d×d-orthogonal projec-
tion on the space:

Lh = D(Yh) = {dh ∈ [L2(Ω)]d×d : dh = D(wh), for some wh ∈ Yh}.

In the numerical experiments, we perform simulations with a slight modification of
this method, where we replace the [L2(Ω)]d×d-orthogonal projection Π̃h on space
Lh by an interpolation operator on a coarser (e.g., P0) FE space, much faster to
compute.

We use a setup similar to the one of Gravemeier [30]. The computational domain is
Ω = (0, L1)× (−δ, δ)× (0, L3), with δ = 1 (wall-normal direction), L1 = 2π (stream-wise
direction), and L3 = (4/3)π (span-wise direction). The boundary conditions are periodic
in both the stream-wise and span-wise directions, commonly referred to as homogeneous
directions. We perform a comparison between the application of no-slip and wall-law
boundary conditions at the walls. The viscosity is ν = 1/180 = 5.5× 10−3. The turbulent
wall-shear velocity uτ =

√
τ , where τ denotes the wall-shear stress, and the channel half-

width δ define the Reynolds number:

Reτ =
uτ δ

ν
,

besides the kinematic viscosity ν. The Reynolds number based on a unit friction velocity
reachable at a steady state is Reτ = 180.

Our strategy is as follows: to reach a statistically steady state, we use an evolution ap-
proach starting by an initial parabolic velocity profile perturbed by a random velocity
fluctuation. We first run a simulation with no-slip boundary conditions at the walls, in
order to stabilize uτ near a unitary value. Random velocity fluctuations of 10%-amplitude
of the bulk mean stream-wise velocity perturbs the initial condition for the velocity field:





u1(y, t = 0) = u1,c(1− y2) + 0.1u1,mψran,
u2(y, t = 0) = 0.1u1,mψran,
u3(y, t = 0) = 0.1u1,mψran,

where u1,c denotes the stream-wise velocity at the centerline of the channel, u1,m the bulk
mean stream-wise velocity, and ψran ∈ [−1, 1] a random number. We choose u1,c = 25, and

hence u1,m =
∫ δ

0
u1,c(1− y2)dy = 2u1,c/3 = 16.7. So, the corresponding Reynolds number

based on the bulk mean stream-wise velocity (Rem = u1,m2δ/ν, see [43]) is Rem = 6 012.
The flow is driven by a constant forcing f = (fp, 0, 0) = (1, 0, 0), that models an imposed
pressure gradient in the stream-wise direction. The specific choice of a unit value for
fp aims at obtaining a unit value for uτ in the statistically steady state, subject to the
relation uτ =

√
fpδ (Cf. [29]). We choose to work with Van Driest Damping [55], so

that the Smagorinsky constant is changed to the expression CS(1− exp(−y+/A+)), where
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CS = 0.1 according to the original choice in [28], y+ = (δ−|y|)uτ/ν is the non-dimensional
distance from the wall, and A+ = 26 is the Van Driest constant.

The difficulty we face in the numerical simulations is to obtain a good accuracy with a
relatively coarse spatial resolution. Our grid consists of a 163 partition of the channel,
uniform in the homogeneous directions. The distribution of nodes in the wall-normal
direction is non-uniform, and obeys the cosine function of Gauss-Lobatto:

yi = − cos
(
iπ

Ny

)
, i = 0, . . . , Ny = 16.

We use three-dimensional P2 FE for velocity and pressure. These choices give rise to 4 096
mesh cells (i.e., 24 576 tetrahedra), 33 792 d.o.f. for each scalar variable, and a distance of
the d.o.f. next to the walls y+

min = 1.7293. In Gravemeier [30], a VMS-Smagorinsky model,
based on projection/averaging operators and the use of two nested meshes, is used in a
FVM with 32 control volumes in all coordinate directions for Reynolds number Reτ = 180.
A simulation equivalent in number of d.o.f. to our discretization for a turbulent channel
flow at Reτ = 180 has been carried out by Akkerman in his PhD thesis [1], by using a RB-
VMS turbulence model. Indeed, his coarsest computation consists on Q1 FE applied on a
323 partition of the computational domain, that results in a number of d.o.f. equivalent
to our value, obtained by using P2 FE on a 163 partition of the channel. Note that the
data from the fine DNS of Moser, Kim and Mansour [46] are obtained by a subdivision of
the channel of 1283.

We use the Crank-Nicolson scheme for the temporal discretization, combined with li-
nearization of convective and sub-grid eddy viscosity terms. The choice of this modified
Crank-Nicolson scheme is due to the fact that it provides a good compromise between
accuracy and computational complexity, while keeping the numerical diffusion levels below
the sub-grid terms (Cf. [41]). To run the first part of simulation, we solve in practice the
following linearized system in each time step:

(4.1)





(
un+1
h − unh

∆t
,vh

)

Ω

+ b(unh,u
n+θ
h ,vh) + a(un+θ

h ,vh) + c′(unh,u
n+θ
h ,vh)

−(pn+θ
h ,∇ · vh)Ω + ŝconv(un+θ

h ,vh) = 〈f ,vh〉,

(∇ · un+θ
h , qh)Ω + s̃pres(pn+θ

h , qh) + ε(pn+1
h , qh)Ω = 0,

where:
un+θ
h = θun+1

h + (1− θ)unh, pn+θ
h = θpn+1

h + (1− θ)pnh, θ = 1/2.

In (4.1), the form c′ denotes the linearized (with respect to the convection velocity at
a previous time step unh) eddy diffusion term defined by either VMS-S, VMS-B or SMA
models, and the term with factor ε denotes a penalty term, that permits to fix the constant
the pressure is determined up through the formulation, for a small positive value of ε (e.g.,
ε = 10−10 in the numerical simulations). The stabilizing terms are defined by:

(4.2) ŝconv(un+θ
h ,vh) =

∑

K∈Th
(τnν,K σ

∗
h(unh · ∇un+θ

h ), σ∗h(unh · ∇vh)),

(4.3) s̃pres(pn+θ
h , qh) =

∑

K∈Th
(τnp,K σ̃

∗
h(∇pn+θ

h ), σ̃∗h(∇qh)),
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where σ̃∗h = Id. Due to the low regularity of the pressure and the use of coarse meshes, the
choice σ̃∗h = σ∗h gives rise to small numerical instabilities during the computation for this
test, that lead in practice to oscillating numerical results, even if with small amplitude (we
have stability in L2-norm, but not in L∞). The oscillations shall decrease by reducing the
grid size. Therefore, a way to avoid them is to take local averages in space of the pressure.
Here, we prefer to not consider the projection-based pressure stabilization (overall method
of first order), which provides no oscillations, maintaining similar error levels for turbulent
flows. The stabilization coefficients are given by the adapted Codina’s form (2.19):

τnp,K = τnν,K =

{[
c1

ν + νnT |K
(hK/2)2

]
+
[
c2

UnK
(hK/2)

]}−1

,

where UnK = ‖unh‖0,2,K/|K|1/2, and νnT |K = (CShK)2U∗,nK , with:

• U∗,nK = ‖D(Π∗hu
n
h)‖0,2,K/|K|1/2 for the VMS-S model;

• U∗,nK = ‖Π̃∗hD(unh)‖0,2,K/|K|1/2 for the VMS-B model;

• U∗,nK = ‖D(unh)‖0,2,K/|K|1/2 for the SMA model.

The value for the constants c1 and c2 are c1 = 4, c2 =
√
c1 = 2 (Cf. [26]). For simplicity

of implementation, we define the element size hK = 3
√
|K|, for all K ∈ Th. Problem

(4.1) is implemented on a FreeFem++ (Cf. [31]) numerical code (published in [22]), and
the corresponding system is solved by a GMRES (Generalized Minimal Residual) method
(Cf. [51]). The same numerical code [19] has been already used in [5] to perform the same
experiment with a similar discretization but involving boundary conditions on the pressure
to model the pressure jump that drives the flow between inflow and outflow boundaries,
instead of the forcing term imposed in this work. The simulation results are very similar,
thus stressing the robustness of the code.

The discretized scheme (4.1) is first integrated for 1250 time steps, with ∆t = 0.004. This
time step is smaller than the Kolmogorov time scale, and it fits into the range proposed
in [23] to ensure numerical stability (Cf. [41]). Within this time period, the flow is
expected to develop to full extent, including a subsequent relaxation time. Note that,
on one hand, without adding the stabilizing terms (4.2) and (4.3), method (4.1) results
to be clearly unstable for the numerical simulation considered (in particular, it is not
possible to stabilize the wall-shear velocity uτ near a unitary value, since we experience
a blow-up in finite time). On another hand, in the computations, we have also analyzed
the performance of method (4.1) without the multi-scale Smagorinsky term c′, that results
in a pure projection-stabilized FEM. In this case, the parameter νnT |K does not appear in
the definition of the stabilization coefficients. In the sequel, we call STAB this variant of
method (4.1).

Afterwards, we further integrate in parallel the numerical schemes either with no-slip
boundary conditions and wall-law boundary conditions, within another 1250 time steps,
in order to collect statistics and perform a comparison. We choose to apply wall-law
boundary conditions only to STAB and VMS-S method (the latter is the model that gives
the most promising results when the multi-scale Smagorinsky term c′ is taken into account).
We consider the logarithmic wall-law of Prandtl and Von Kármán (2.7), where we fix the
computational boundary at y+ = 11.5, and we use a uniform mesh with 12 grid-lines in
wall-normal direction, neglecting the use of Van Driest damping too. This permits to avoid
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the quite costly calculation of the flow near the walls, reducing the number of d.o.f. to
25 600 for each scalar variable, with a saving in computing time of about 34% compared
with the use of no-slip boundary conditions. Note that before the flow becomes quasi-
stationary, the value of uτ changes a lot in time, and this implies a dynamic development
of the boundary layer thickness, due to the definition of y+. This requires a dynamic
adaptation in the use of wall laws. Here, we choose a simpler procedure, letting the flow
develop until reaching a stable configuration before applying wall laws in a static way.

• Numerical results.

We consider the temporal evolution of the normalized mean wall-shear stress:

〈τ∗〉(t) =
〈τ〉(t)
ν

=
∂〈u1〉
∂y

(±1; t),

where 〈·〉 indicates in this case averaging over the homogeneous directions. We have that,
when a (quasi-)steady state is reached (at half of simulation), this mean quantity oscil-
lates (in modulus) around 180 for all models, as indicated by the corresponding temporal
averaged (from t = 5 to t = 10) values. These values have been used to compute for all
methods the actual value of uτ , subject to:

uτ =


ν

2
1

N/2

N−1∑

n=N/2

(
∂〈u1〉
∂y

(−1; tn)− ∂〈u1〉
∂y

(+1; tn)
)


1/2

, N = # time steps = 1 250.

The simulated friction velocity uτ (computed as the average of the computed friction
velocities at both walls) is reported in Table 1, together with the corresponding computed
Reτ for all methods. We note that the friction velocity uτ is within 0.2%-4.1% of the
nominal value uτ = 1, and, as a result, so is the actual Reτ .

Nominal Reτ = 180
Methods Computed uτ Computed Reτ

VMS-S 0.9887 177.966
VMS-B 0.9594 172.692
SMA 0.9977 179.586
STAB 1.0024 180.432

Table 1:
Computed uτ and Reτ .

Hereafter, we denote by 〈·〉 the mean values and by ·̃ the respective fluctuations, where
mean values are obtained averaging over all time steps of the statistical period as well
as over the homogeneous directions. In Figure 2, we show the mean stream-wise velocity
profile 〈u1〉 (first-order statistic), normalized by the computed uτ , in wall coordinates y+.
As usual, only half of the channel width is illustrated (i.e., the upper half-width here,
ranging from y = 0 to y = 1). According to the definition of the wall coordinate y+, the
upper wall is located at y+ = 0 and the channel center at y+ = uτ/ν ≈ 180.

In particular, the displayed mean stream-wise velocity profiles are obtained by using both
no-slip boundary conditions (for all methods) and wall-law boundary conditions (for VMS-
S and STAB methods), and a comparison is performed with DNS data [46] and the nu-
merical results of Akkerman [1]. Note that the DNS data so as the RB-VMS results of
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Akkerman are obtained by the standard approach that uses no-slip boundary conditions
at the walls. Actually, the grid resolution seems to be too coarse to reproduce exactly
the DNS profile, so that in any case we have an over-estimation of the DNS data. Any-
way, the results show an acceptable agreement with the fine DNS, even with the very
coarse basic discretization at hand (4 times coarser than the DNS one, since we are using
a quadratic discretization). The profiles obtained with the wall-law boundary conditions
starting from y+ = 11.5 are simply extended linearly up to the wall located at y+ = 0.
We are entitled to do so, because in this case the leading component of the velocity is
the stream-wise velocity, so that we can “identify” the friction non-dimensional velocity
u+, defined in (2.6), by 〈u1〉/uτ . We display in Table 2 (first column) the deviation e

〈u1〉
0

for the mean stream-wise velocity profile from the respective DNS data in a normalized
discrete L2-norm subject to:

(4.4) e
〈u1〉
0 =




∫ y+=180

y+=0
|〈u1〉+h − 〈u1〉+DNS |2 dy+

∫ y+=180

y+=0
|〈u1〉+DNS |2 dy+




1/2

.

We can observe as all methods give similar errors levels between 11% and 24%.

Methods e
〈u1〉
0 (y+ ∈ [0, 180]) e

√
〈ũ2

1〉
0 (y+ ∈ [30, 180], inertial layer)

VMS-S (NO-SLIP BC) 0.1141 0.2320
VMS-S (WALL-LAW BC) 0.1734 0.2094

VMS-B (NO-SLIP BC) 0.1786 0.3341
SMA (NO-SLIP BC) 0.1260 0.3123
STAB (NO-SLIP BC) 0.1791 0.3776

STAB (WALL-LAW BC) 0.2373 0.2187
RB-VMS (Akkerman) 0.2221 0.6104

Table 2:
L2-norm of the deviation from the DNS profiles for the stream-wise velocity.

To investigate more in detail statistical properties of this wall-bounded turbulence test, we
plot second-order statistics as measure of turbulence intensities, by using either no-slip (for
all methods) and wall-law (for VMS-S and STAB methods) boundary conditions. Figure
3 displays the normalized (by the computed uτ ) r.m.s. values of velocity fluctuations√
〈ũ2
i 〉 =

[
〈u2
i 〉 − 〈ui〉2

]1/2 (i = 1, 2, 3) in wall coordinates y+ at the upper half-width
of the channel. If we compare with DNS data the various methods tested with no-slip
boundary conditions, we can see slight differences for the curves associated to wall-normal
and span-wise velocities, while the curve related to stream-wise velocity shows a noticeable
over-prediction. We can also observe as for the r.m.s. values, the results obtained by the
application of wall laws are only meaningful for the stream-wise component of the velocity,
that is the leading one. Note that in this case the related curve starts at y+ = 11.5, since
the computational domain starts at y+ = 11.5, and no extension is possible, as for the
mean stream-wise velocity. However, a comparison with the other curves is possible star-
ting from the first interior node at y+ ≈ 30, i.e. in the so-called inertial layer, as we could
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Figure 2:
Normalized mean stream-wise velocity profiles in wall coordinates y+.

physically expect. Indeed, the inertial layer is where the logarithmic approximation of the
friction-velocity u+ is more accurate (see Figure 2). Actually, the best approximation of
the r.m.s. stream-wise velocity fluctuation in the inertial layer is effectively given by the
use VMS-S method with wall-laws, as shown quantitatively in Table 2 (second column),
where the normalized discrete L2-norm of the deviation from the DNS profile is computed,
analogously to formula (4.4). Nevertheless, the results for the other “minor” velocity
components are not acceptable compared with the DNS data at hand. In particular, this
is true for the wall-normal component of the velocity, as in this case the model itself
contemplates the imposition of a null wall-normal velocity at the fictitious boundary of
the resulting reduced computational domain [see the boundary condition u · n = 0 on Γn
in problem (2.1)], that is not expected by the use of standard no-slip boundary conditions.

This consideration obviously influences also the behavior of the Reynolds shear stress
Rx,y = 〈ũ1ũ2〉 = 〈u1u2〉−〈u1〉〈u2〉, where the wall-normal velocity trivially interferes. The
Reynolds shear stress is plotted in Figure 4 in global coordinates y, and normalized by
the computed friction velocity squared u2

τ . Anyway, qualitatively we can observe that for
all methods the Reynolds shear stress is antisymmetric, almost vanishes at the center of
the channel (y = 0), and presents a linear trend. This also indicates that a statistically
steady state is already reached (Cf. [43]). If we compare with the DNS results of Moser
et al. [46], the curves related to the use of no-slip boundary conditions at the walls are
quite close.

Table 3 provides a quantitative picture for errors levels related to second-order statistics
when the standard no-slip boundary conditions at the physical walls are incorporated in
the various methods. Again, the VMS-S method is in general more in agreement with the
DNS data.

Figure 5 shows the stream-wise velocity contours at different instants in time, computed
by the VMS-S method employing wall-law boundary conditions. Note the presence of tur-
bulent structures (velocity fluctuations) on the wall-normal boundary inside the boundary
layer (top surfaces), and as the flow becomes more homogenous as time increases.
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Figure 3:
Normalized r.m.s. velocity fluctuations profiles in wall coordinates y+.
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Figure 4:
Normalized Reynolds shear stress in global coordinates y.

Methods e

√
〈ũ2

1〉
0 e

√
〈ũ2

2〉
0 e

√
〈ũ2

3〉
0 e

〈ũ1ũ2〉
0

VMS-S (NO-SLIP BC) 0.2252 0.1652 0.1108 0.1162
VMS-B (NO-SLIP BC) 0.2881 0.2018 0.1246 0.1706
SMA (NO-SLIP BC) 0.3002 0.2236 0.1597 0.1249
STAB (NO-SLIP BC) 0.3781 0.2536 0.1955 0.1708
RB-VMS (Akkerman) 0.5694 0.1753 0.1331 -

Table 3:
L2-norm of the deviation from the DNS profiles for the second-order statistics.
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Figure 5:
Snapshot of stream-wise velocity contours at t = 5 (top) and t = 10 (bottom).

We highlight also some considerations on the computational cost corresponding to the va-
rious methods. The computing times related to the statistical period from t = 5 to t = 10
time units (1 250 time steps) for all methods are given in Table 4. These are referred to
the sequential execution of the numerical code on a same machine. It can be seen that
effectively the use of wall laws for VMS-S method provides a significant reduction of the
computing time, of about 34%, while the CPU time of both VMS approaches is comparable
with the one of the standard Smagorinsky approach, that saves at most a 4% of computing
time. Also, the CPU time for STAB method is comparable with the computing times of
the other methods in which the multi-scale Smagorinsky term is added, and again the use
of wall laws provides a reduction of the computing time, of about 35%.

5 Conclusions

We have developed stabilized projection-based FE-VMS formulations of the incompres-
sible Navier-Stokes equations incorporating wall-law boundary conditions in combination
with inflow boundary conditions. We have performed the numerical analysis of the model
introduced, proving stability and convergence for flows with minimal regularity. We have
replaced the lacking density results by smooth functions by an ad-hoc internal approxi-
mation result by finite elements. We also have proved the asymptotic energy balance that
holds for flows slightly smoother. Further, we have proved that the model is useful to
solve both smooth and turbulent flows. Smooth flows are solved with optimal accuracy,
as confirmed by numerical simulations too.

The numerical experiments on a turbulent channel flow confirm on one hand that the
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Methods CPU time
VMS-S (NO-SLIP BC) 398 207 (134)

VMS-S (WALL-LAW BC) 297 524 (100)
VMS-B (NO-SLIP BC) 401 128 (135)
SMA (NO-SLIP BC) 389 260 (131)

STAB (NO-SLIP BC) 369 872 (135)
STAB (WALL-LAW BC) 273 714 (100)

Table 4:
Computing times (in seconds); in parentheses: percentage to computing time with

VMS-S (WALL-LAW BC).

application of wall-law boundary conditions could provide (at least for the leading stream-
wise component of the velocity) similar results to those obtained by the standard approach
based on the use of no-slip boundary conditions, a refined mesh towards the walls and the
Van Driest damping improvement, with a noticeable reduced computational cost. On
another hand, they show that the VMS-S method gives quite good results for both first
and second-order statistics, in the worst condition of a very coarse basic discretization.
Note that when the multi-scale Smagorinsky term is neglected (STAB method), we obtain
worse results, even if they are quite close to the ones obtained by adding the sub-grid eddy
viscosity. Indeed, STAB method is not strongly consistent, and the addition of the multi-
scale Smagorinsky term helps to counter-balance the consistency error. The numerical
results clarify that the differences are due to the lower numerical diffusion of the STAB
method, and that VMS models are more accurate due to the turbulent diffusion term.

Summarizing, the proposed VMS-S method provides a good compromise between accuracy
and computational complexity, which is an important feature in the context of its practical
performances.

Appendix

Error estimates

We derive error estimates for the VMS-S discretization (2.15) for diffusion-dominated flows.
The interest of this analysis is to highlight the fact that the VMS-S method proposed may
be used to approximate both laminar and turbulent flows. About the former, if they are
regular enough, we obtain convergence of optimal order, and the order decreases with
the regularity. As a consequence, we also obtain an asymptotic energy balance of the
system for slightly smooth flows, as stated in Subsection 3.4 in the body of the paper.
Similar error estimates may be obtained in a more general framework, when the solution
of Navier-Stokes equations is located in a branch of non-singular Reynolds numbers, in
the sense that at these Reynolds numbers there are no bifurcations to more complex flows
(Cf. [10, 11, 12]).

We start by setting a condition that ensures the uniqueness of solutions of the steady
Navier-Stokes equations (2.15).

Theorem 5.1. Assume that:

(5.1) 2ν > β(2K + ‖D(UD)‖0,2,Ω),
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where K is the quantity defined by (3.21), and:

β := sup
z,v,w∈W(Ω)

b(z; v,w)
‖D(z)‖0,2,Ω ‖D(v)‖0,2,Ω ‖D(w)‖0,2,Ω

.

Then, the solution of the steady Navier-Stokes equations (2.2) is unique.

Remark 5.2. The condition (5.1) means that the flow is diffusion-dominated. The vis-
cosity ν is large enough to balance the convection effects relatively to the data f and UD.

A rather standard but quite lengthy and technical error analysis (that we skip for brevity)
proves that (Cf. [50]):

Theorem 5.3. Assume that Hypothesis 2.5 and estimate (5.1) hold, and that, for smooth
enough data, the (unique) solution (u, p) of the steady Navier-Stokes equations (2.15) has
augmented regularity, i.e. (u, p) ∈ [Hs+1(Ω)]d × Hs(Ω), 2 ≤ s ≤ l. Then, the following
error estimates for a solution (uh, ph) of the VMS-S method (2.15) hold:

(5.2) ‖D(u− uh)‖0,2,Ω + ‖p− ph‖0,2,Ω ≤ C
(
hs + h2−d/2+2η

)
,

for some constant C inversely proportional to ν and independent of h, and η ≤ (l − 1) if
Πh takes values in Yh defined by (2.12), while η ≤ l if Πh takes values in Yh defined by
(2.13), l denoting the degree of the polynomial interpolation.

Remark 5.4. We note that, in any case, the convergence order of the VMS-S method
(2.15) is optimal with respect to the polynomial interpolation for laminar smooth flows.

Decreasing the regularity of the solution (u, p) of the steady Navier-Stokes equations (at
most) to [H2(Ω)]d × H1(Ω) implies that the convergence order of the VMS-S method is
limited to one, due to the estimate of the pressure stabilizing term. However, this slightly
augmented regularity already guarantees the strong convergence of the VMS-S method.
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