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In this paper, we study the stability of oceanic turbulent mixing layers by the finite element
method with respect to perturbations of the data. We prove that the equilibria states
depend continuously on the data, and that they are asymptotically stable in time, when
approximated by standard numerical schemes. We also perform some numerical tests
for realistic initial conditions, that also show that the mixing-layer configurations are sta-
ble under perturbations of the data, in addition to confirm the theoretical expectations of
our analysis.
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1. Introduction

The oceanic flow and the global climate is largely influenced by the dynamics of the oceanic mixing layers. Indeed, due to
the larger specific heat of the water, the top 2.5 m depth oceanic layer contains as much heat as the full atmosphere over it.
In addition, the heat stored within the oceanic mixing layer provides a source for heat that drives global variability such as El
Niño. We address in this paper the numerical modeling of the oceanic mixing layer, by means of algebraic turbulence models
based upon vertical turbulent diffusion. The formation of the mixing layer is due to the surface shear induced by the winds,
that generates a strong turbulent mixing dominated by vertical fluxes. In global oceanic circulation the mixed layer plays an
important role, because it determines how momentum, heat and eventually freshwater are entering or leaving the ocean.
The numerical models of global oceanic circulation include specific models of mixing layers, in particular the algebraic ones,
in order to better take into account the influence of these surface interactions (Cf. [1,2]).

We consider here the algebraic turbulent mixing-layer models, introduced in the 80’s by Pacanowski–Philander (Cf. [3]).
These models apply to stratified shear flow, that is assumed to have reached a vertical equilibrium, after the vertical mixing
generated by the wind stress has been re-stabilized by buoyancy forces. Thus, only vertical eddy diffusion effects are
included, and the vertical velocity is assumed to vanish. These simplifications lead to the following model:
@tu� @z m1@zuð Þ ¼ 0;
@tv � @z m1@zvð Þ ¼ 0; for t P 0 and � h 6 z 6 0;
@tq� @z m2@zqð Þ ¼ 0;

8><>: ð1Þ

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2014.04.050&domain=pdf
http://dx.doi.org/10.1016/j.apm.2014.04.050
mailto:chacon@us.es
mailto:macarena@us.es
mailto:samuele@us.es
http://dx.doi.org/10.1016/j.apm.2014.04.050
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


T. Chacón Rebollo et al. / Applied Mathematical Modelling 38 (2014) 5836–5857 5837
where ðu; vÞ is the horizontal velocity and q is the density, which is considered as a thermodynamic variable, as it depends
on temperature and salinity through a state law. Also, the symbols m1 and m2 respectively stand for the total viscosity and
diffusion, yield by m1 ¼ a1 þ mT1; m2 ¼ a2 þ mT2 where a1 and a2 respectively are the laminar viscosity and diffusion coeffi-
cients, and mT1 and mT2 respectively are the eddy viscosity and diffusion coefficients. These are assumed to be functions of
the gradient Richardson number R, defined as:
R ¼ � g
qr

@zq
@zuð Þ2 þ @zvð Þ2

; ð2Þ
where g is the gravity constant and qr is a reference density for the sea water. The Richardson number measures the ratio
between stabilizing buoyancy forces and de-stabilizing shear forces. The diffusion coefficients corresponding to the original
Pacanowski–Philander (PP) model (Cf. [3]) are given by:
m1 ¼ f1ðRÞ; m2 ¼ f2ðRÞ;
where:
f1ðRÞ ¼ a1 þ
b1

ð1þ 5RÞ2
; f 2ðRÞ ¼ a2 þ

f1ðRÞ
1þ 5R

; with a1 ¼ 10�4; b1 ¼ 10�2; a2 ¼ 10�5: ð3Þ
The Gent (Cf. [4]) model is just a variant of the PP model, designed to better fit experimental data, given by:
f1ðRÞ ¼ a1 þ
b1

ð1þ 10RÞ2
; f 2ðRÞ ¼ a2 þ

b1

ð1þ 10RÞ3
; with b1 ¼ 10�1: ð4Þ
The PP and Gent models become numerically unstable if the initial conditions are physically unstable configurations, corre-
sponding to R < 0. In [5] a modeling of the eddy diffusion that remains numerically stable for a certain range of negative
gradient Richardson numbers R was introduced:
f1ðRÞ ¼ a1 þ
b1

ð1þ 5RÞ2
; f 2ðRÞ ¼ a2 þ

f1ðRÞ
ð1þ 5RÞ2

; ð5Þ
with the same constants of the PP model. All these models generate mixing layer profiles in characteristic time scales of
the order of several days and linear velocity and density steady profiles in characteristic time scales of the order of one year
(Cf. [5]).

In practice, mixing-layer models are coupled with 3D models of global circulation, that yield the boundary values for
velocity and density at the bottom of the layer. This allows to use finer grids (in the vertical direction) to compute the heat
exchange through the ocean surface. This is the case for instance of the finite element FESOM model (Cf. [2]). More complex
parameterizations of the vertical turbulent mixing, like the k–e model, are also used, for instance in the finite-difference
GOTM model (Cf. [1]). However, the analysis of these models is technically much more difficult and, up to the knowledge
of the authors, there are no references addressing them at the present date.

We shall consider the following initial and boundary conditions for model (1):
m1@zu ¼ Q u; m1@zv ¼ Qv ; m2@zq ¼ Qq at the surface z ¼ 0;
u ¼ ub; v ¼ vb; q ¼ qb at the depth z ¼ �h;
u ¼ u0; v ¼ v0; q ¼ q0 at initial time t ¼ 0;

8><>: ð6Þ
where the plane z ¼ �h is located below the mixing layer. The Neumann boundary conditions at the surface represent the
fluxes at the sea–surface that model the forcing by the atmosphere. In particular: Qu; Qv are the surface momentum fluxes
and Qq represents thermodynamic fluxes. The momentum fluxes are given by Q u ¼ ðqa=qrÞVu; Qv ¼ ðqa=qrÞVv , where qa is
the air density, qr is a reference density, and Vu and Vv are respectively the stresses exerted by the zonal and the meridional
winds, given by:
ðVu;VvÞ ¼ CD Ua�� ��Ua;
where Ua ¼ ðua;vaÞ is the air velocity at the atmospheric boundary layer, and CD ð¼ 1:2 � 10�3Þ is a friction coefficient (Cf. [6]).
Note that, in practice, all the data depend on the horizontal variables ðx; yÞ, although for brevity we shall not explicit them.

A linear analysis of asymptotic stability of continuous equilibria of model (1)–(6) has been performed in Bennis et al. [5],
in addition to a numerical investigation of its approximation by standard finite element approximations.

In the present paper, we perform a non-linear stability analysis of algebraic turbulence models for oceanic mixing-layers.
We study on one side the asymptotic stability of perturbed models. We prove that the perturbed equilibria are unique and
are asymptotically reached by time iterates of standard finite element discretizations. This analysis applies to negative sur-
face thermodynamic fluxes, and is complemented with some numerical tests that show that the steady states for density are
rather insensitive to perturbations, while those for zonal and meridional velocities are largely sensitive.

We also perform a numerical investigation of the finite-time stability. By comparing with the solutions of a 2D model of
Primitive Equations of the ocean, we show that the 1D model provide mixing-layer profiles on time scales of the order of two
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days, which are accurate with respect to 2D perturbations of the initial conditions, and with respect to horizontal pressure
gradients.

As a conclusion, we obtain that algebraic turbulence models for oceanic mixing-layers bear excellent stability properties and
provide good predictions of the formation of mixing-layer profiles and of flow equilibria, even under perturbations of the data.

The paper is structured as follows: In Section 2, we analyze the equilibria of the perturbed model. Section 3 introduces the
numerical discretization of the mixing-layer model, which is analyzed in Section 4. This analysis deals with existence and
uniqueness of discrete steady states, and the analysis of asymptotic convergence of the discrete time iterates to the contin-
uous equilibria. Some numerical tests confirm the theoretical predictions. In Section 5 we perform the numerical investiga-
tion of the finite-time stability of the mixing-layer model with respect to 2D perturbations. Finally in Section 6 we
summarize the main conclusions of our study.

2. Equilibria states of perturbed model

We prove in this section that there exist steady solutions of model (1)–(6) for slightly perturbed data. These perturbations
may correspond to errors in the experimental measurements, roundoff computational errors, errors in the boundary data
coming from the approximate solution of the 3D global model, etc. The steady solutions correspond to an equilibrium
between de-stabilizing wind shear effects and stabilizing surface thermodynamic fluxes.

Let us consider the perturbed model:
@tu� @z m1@zuð Þ ¼ Du;

@tv � @z m1@zvð Þ ¼ Dv ; for t P 0 and � h 6 z 6 0;
@tq� @z m2@zqð Þ ¼ Dq;

8><>: ð7Þ
with the perturbed boundary and initial conditions:
m1@zu ¼ ru; m1@zv ¼ rv ; m2@zq ¼ rq at the surface z ¼ 0;
u ¼ Ub; v ¼ Vb; q ¼ Rb at the depth z ¼ �h;

u ¼ U0; v ¼ V0; q ¼ R0 at initial time t ¼ 0;

8><>: ð8Þ
where Du; Dv and Dq are functions of z and ru; rv ; rq; Ub; Vb and Rb are constants. Let us denote I ¼ ð�h;0Þ, and define the
functions:
duðzÞ ¼
Z 0

z
DuðsÞds; dvðzÞ ¼

Z 0

z
DvðsÞds; dqðzÞ ¼

Z 0

z
DqðsÞds:
The existence and uniqueness of equilibria for this problem are given by the following:

Theorem 2.1. Assume that for any z 2 I the implicit algebraic equation:
R ¼ GðzÞ ½f1ðRÞ�2

f2ðRÞ
; ð9Þ
where GðzÞ is the function defined by:
GðzÞ ¼ � g
qr

dqðzÞ þ rq

duðzÞ þ ruð Þ2 þ dvðzÞ þ rvð Þ2
; ð10Þ
admits at least a solution Re. Then, to each solution Re there exists a unique associated equilibrium solution of problem (7,8) in
½H1ðIÞ�3, given by:
ueðzÞ ¼ Ub þWuðzÞ;
veðzÞ ¼ Vb þWvðzÞ;
qeðzÞ ¼ Rb þWqðzÞ;

8><>: ð11Þ
where:
WuðzÞ ¼
Z z

�h

duðsÞ þ ru

f1ðReðsÞÞ
ds; WvðzÞ ¼

Z z

�h

dvðsÞ þ rv

f1ðReðsÞÞ
ds; WqðzÞ ¼

Z z

�h

dqðsÞ þ rq

f2ðReðsÞÞ
ds: ð12Þ
Proof. The equilibrium states of (7) are solutions of the system:
�@z f1 Rð Þ@zuð Þ ¼ Du;

�@z f1 Rð Þ@zvð Þ ¼ Dv ;

�@z f2 Rð Þ@zqð Þ ¼ Dq:

8><>: ð13Þ
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Integrating the three equations in (13) with respect to z, we obtain:
@zu ¼ duðzÞ þ ruð Þ=f1 Rð Þ;
@zv ¼ dvðzÞ þ rvð Þ=f1 Rð Þ;
@zq ¼ dqðzÞ þ rq

� �
=f2 Rð Þ:

8><>: ð14Þ
From (2), we deduce that the equilibrium profiles Re satisfy the implicit algebraic Eq. (9), and then are functions of z. By
integrating with respect to z the three equations in (14), we deduce that the equilibrium solutions of problem (7,8) are given
by (11).

To prove the uniqueness of these solutions in ½H1ðIÞ�3, assume that ðue
1;ve

1;q
e
1Þ is another equilibrium of problem (7, 8)

belonging to ½H1ðIÞ�3. Then, the difference in the first component of the velocity du ¼ ue � ue
1 weakly satisfies:
@z f1 Reð Þ@zduð Þ ¼ 0; m1@zdu ¼ 0 at z ¼ 0; and du ¼ 0 at z ¼ �h:
That is:
Z 0

�h
f1ðReÞ@zdu@zw ¼ 0; 8w 2 H1ðIÞ such that wð�hÞ ¼ 0:
As f1ðRÞP a1 > 0, then du ¼ 0. This implies ue ¼ ue
1. Similarly, we deduce ve ¼ ve

1; qe ¼ qe
1. h

The existence of solutions of the algebraic Eq. (9) is ensured under the following hypothesis:

Hypothesis 1. The fluxes satisfy Qu > 0; Qv > 0; Qq < 0 and for some k 2 ð0;1Þ it holds:
ru 2 ðkQ u; ð2� kÞQ uÞ; rv 2 ðkQv ; ð2� kÞQvÞ; rq 2 ðð2� kÞQq; kQqÞ; ð15Þ

kDukL1ðIÞ <
k
2

Q u; kDvkL1ðIÞ <
k
2

Qv ; kDqkL1ðIÞ <
k
2
jQqj: ð16Þ
The assumption Q u > 0; Qv > 0 means that the wind velocity acts as an un-stabilizing agent for the mixing layer flow,
while Qq < 0 means that the thermodynamic flux plays a stabilizing role. The conditions (15) and (16) mean that we are
considering small perturbations of those data and also of the r.h.s. of Eq. (1). We conclude that for all considered models,
there exist steady solutions of problem (1)–(6) that correspond to equilibria between these two effects, for slightly perturbed
data:
Corollary 2.1. Assume that Hypothesis 1 holds. Then the algebraic Eq. (9) admits at least a solution for the PP (3), Gent (4) and
Bennis et al. (5) models. As a consequence, to each solution of Eq. (9) there corresponds a unique equilibrium solution of (7,8) given
by (11).
Proof. The solutions of the implicit algebraic Eq. (9) may be interpreted as the intersection of the curves:
hzðRÞ ¼
1

GðzÞR; kðRÞ ¼ ½f1ðRÞ�2

f2ðRÞ
:

For the Bennis et al. model (5), there exists a unique gradient Richardson number Re whenever GðzÞ > 0, as this implies that
the slope of the straight hz is positive (see Fig. 1). For the PP (3) and Gent (4) models, if GðzÞ > 0 there exist two solutions of
Eq. (9) (see Figs. 2 and 3). Hypothesis 1 implies that GðzÞ > 0 for all z 2 ½�h;0�. h
Remark 2.1. The equilibria of the un-perturbed model (1) is studied in [5]. In that case, Re does not depend on z, and, as
consequence, the equilibrium profiles for velocity and density are linear. The equilibria for the perturbed model (7,8) pro-
vided by Theorem 2.1 converge to those of the un-perturbed model as the perturbations in the data vanish. This readily fol-
lows from identities (9)–(12).
3. Numerical discretization of the 1D model

In this section we discretize the initial-boundary value problem (7,8) by linear piecewise finite elements. To describe
these schemes, assume that the interval I ¼ ½�h;0� is divided into N subintervals of length Dz ¼ h=N, with nodes
zi ¼ �hþ iDz; i ¼ 0; . . . ;N, and construct the finite element space:
VD ¼ fwD 2 C0ðIÞ jwD jðzi�1 ;ziÞ
is affine; i ¼ 1; . . . ;N; wDð�hÞ ¼ 0g: ð17Þ
To discretize the equation for u, for instance, we consider on one hand the semi-implicit method:
Obtain uD 2 Ub þ VD such that



Fig. 1. Solution of the equation for equilibrium gradient Richardson number with model (5).

Fig. 2. Solution of the equation for equilibrium gradient Richardson number with model (3).
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ðPDÞ
Z 0

�h

unþ1
D � un

D

Dt
wD þ

Z 0

�h
f1 Rn

D

� �
@zunþ1

D @zwD ¼ LðwDÞ; 8wD 2 VD; ð18Þ
where:
LðwDÞ ¼ ru wDð0Þ þ
Z 0

�h
Du wD: ð19Þ
On another hand, we also consider the implicit method:
Obtain uD 2 Ub þ VD such that

ðQDÞ
Z 0

�h

unþ1
D � un

D

Dt
wD þ

Z 0

�h
f1 Rnþ1

D

� �
@zunþ1

D @zwD ¼ LðwDÞ; 8wD 2 VD: ð20Þ



Fig. 3. Solution of the equation for equilibrium gradient Richardson number with model (4).
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We consider similar discretizations for v and q. These discretizations were introduced in [5].
Both discretizations proposed, under certain hypotheses, are stable and verify a maximum principle. Denote by UD the

continuous piecewise affine function from ½0; T� onto ½VD�3 whose value in tn is Un
D ¼ ðun

D;vn
D;qn

DÞ, by LpðLqÞ the space
Lpðð0; TÞ; ½LqðIÞ�3Þ, and similarly the spaces LqðHkÞ. We have the following:

Lemma 3.1. Assume that the turbulent viscosities f1; f 2 are uniformly bounded and positive. Then the discrete unsteady solution
UD (in its semi-implicit and implicit version) satisfies:
kUDkL1ðL2Þ þ kUDkL2ðH1Þ þ k@tUDkL2ðH�1Þ 6 C; ð21Þ
where C is a positive constant that only depends on the data (and not on Dz and Dt).
The proof of Lemma 3.1 is just the analogous of the one that can be found in [5] for the un-perturbed model. This result

proves the stability of the discrete solutions in standard norms for parabolic problems.
Moreover, both discretizations ðPDÞ and ðQDÞ verify a maximum principle, that we state without proof, as it is a standard

result:

Lemma 3.2. Assume f1 > 0. If the data U0; Ub and ru are positive, and Du is positive or null, then uD is positive in

½�h;0� � ½0;þ1Þ. If Du is negative, then uD is positive in a time interval ½0; T� such that kDukL1ðIÞ < minz2IU0ðzÞ
� �

=T.

Observe that if Du is negative, it acts as an adverse pressure gradient. Then it will revert the direction of the velocity if it is
applied for a long enough time. Similarly, it is possible to deduce this result for vD.

The previous analysis presents some limitations. On one hand, the parabolic stability norms that appear in Lemma 3.1 are
not strong enough to deduce the existence of solutions for the continuous problem (Cf. [7]). On another hand, the hypothesis
that the turbulent viscosities are uniformly bounded is somewhat unrealistic, as in practice f1 and f2 are unbounded for R < 0.
In the sequel, we shall develop a specific analysis for the actual turbulent viscosities corresponding to PP, Gent and Bennis
et al. models, with much less restrictive conditions.

4. Analysis of discrete equilibria

In this section, we perform an analysis of the discrete equation and its relationship with the continuous one. We prove
existence and uniqueness of discrete equilibrium, and its convergence to the continuous one as Dz! 0. We also prove a
result of practical interest: the continuous equilibria are asymptotically reached by the solutions of scheme (20) as
n! þ1 and Dz! 0. We assume the following:

Hypothesis 2. The turbulent viscosities f1; f2 2 C1ð½0;þ1ÞÞ, and are uniformly bounded and positive for R P 0, that is:
9 0 < m 6 M such that m 6 f1ðRÞ; f2ðRÞ 6 M; 8R P 0:

The turbulent viscosities of the PP (3), Gent (4) and Bennis et al. (5) models satisfy Hyptohesis 2. Indeed, for PP and Bennis

et al. models:
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a1 6 f1ðRÞ 6 a1 þ b1; a2 6 f2ðRÞ 6 a2 þ a1 þ b1; 8R P 0;
while for Gent model:
a1 6 f1ðRÞ 6 a1 þ b1; a2 6 f2ðRÞ 6 a2 þ b1; 8R P 0:
4.1. Existence and uniqueness of discrete equilibria

We prove existence and uniqueness of discrete equilibrium solutions. The main problem that we face is that for zero gra-
dient velocities, the gradient Richardson number is not defined. We prove that under Hypothesis 1, there exist an equilib-
rium with bounded (from above and from below) velocity gradient.

We reformulate the discrete steady problem as a system of algebraic equations for the unknowns:
aD ¼ @zuD; bD ¼ @zvD; hD ¼ @zqD:
To do that, we define the piecewise constant finite element space:
GD ¼ uD 2 L2ðIÞ such that uD jðzi�1 ;zi Þ
is constant; i ¼ 1; . . . ;N

n o
:

The equilibria of the discrete problem, if these exist, are solutions ðue
D; ve

D;qe
DÞ 2 ðUb;Vb;RbÞ þ ½VD�3 of the non-linear system of

equations:
R 0
�h f1ðRDÞ@zuD@zw1D ¼ L1ðw1DÞ; 8w1D 2 VD;R 0
�h f1ðRDÞ@zvD@zw2D ¼ L2ðw2DÞ; 8w2D 2 VD;R 0
�h f2ðRDÞ@zqD@zw3D ¼ Lqðw3DÞ; 8w3D 2 VD;

8>><>>: ð22Þ
where:
RD ¼ �
g
qr

@zqD

@zuDð Þ2 þ @zvDð Þ2
;

L1ðw1DÞ ¼ ru w1Dð0Þ þ
Z 0

�h
Du w1D; L2ðw2DÞ ¼ rv w2Dð0Þ þ

Z 0

�h
Dv w2D;

Lqðw3DÞ ¼ rq w3Dð0Þ þ
Z 0

�h
Dq w3D:
We prove that problem (22) is equivalent to:
ðaD; bD; hDÞ 2 ½GD�3 such that

R 0
�h f1ðeRDÞaDu1D ¼ L1ðwðu1DÞÞ; 8u1D 2 GD;R 0
�h f1ðeRDÞbDu2D ¼ L2ðwðu2DÞÞ; 8u2D 2 GD;R 0
�h f2ðeRDÞhDu3D ¼ Lqðwðu3DÞÞ; 8u3D 2 GD;

8>><>>: ð23Þ
where:
eRD ¼ eRDðaD;bD; hDÞ ¼ �
g
qr

hD

aDð Þ2 þ bDð Þ
2 ; ðwðuDÞÞðzÞ ¼

Z z

�h
uDðsÞds ðsee Fig:4Þ:
Lemma 4.1. Problem (22) is equivalent to problem (23) in the sense that ðaD; bD; hDÞ is a solution of (23) if and only if the triplet:
uDðzÞ ¼ Ub þ
Z z

�h
aDðsÞds; vDðzÞ ¼ Vb þ

Z z

�h
bDðsÞds; qDðzÞ ¼ Rb þ

Z z

�h
hDðsÞds;
is a solution of (22).
Proof. On one hand, as GD ¼ f@zwDjwD 2 VDg, if ðuD; vD;qDÞ 2 ðUb;Vb;RbÞ þ ½VD�3 is solution of problem (22), then
ðaD; bD; hDÞ 2 ½GD�3 is solution of problem (23). On another hand, if ðaD; bD; hDÞ 2 ½GD�3 is solution of problem (23), as:
@zuD ¼ aD; @zvD ¼ bD; @zqD ¼ hD;

uDð�hÞ ¼ Ub; vDð�hÞ ¼ Vb; qDð�hÞ ¼ Rb;

�
ð24Þ
then ðuD;vD;qDÞ 2 ðUb;Vb;RbÞ þ ½VD�3 is solution of problem (22). h

To prove existence of discrete equilibria, we may refer to problem (23):



Fig. 4. Graphic of the function y ¼ ðwðuDÞÞðzÞ.
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Theorem 4.1. Under Hypotheses 1 and 2, problem (23) admits at least a solution that verifies:
aD > 0; bD > 0; hD < 0; and C1 6 jaDj; jbDj; jhDj 6 C2; ð25Þ
where:
C1 ¼
k

2M
min Q u; Qv ; jQqj

� 	
; C2 ¼ 3

k
2m

max Q u; Qv ; jQqj
� 	

: ð26Þ
Proof. We initially focus on the first component of the velocity. Let aD; bD; hD 2 GD. Assume that eRD ¼ eRDðaD; bD; hDÞ > 0.
Consider the following linearization of the first equation of system (23):
ba 2 GD such that
Z 0

�h
f1ðeRDÞ baDu1D ¼ L1ðwðu1DÞÞ; 8u1D 2 GD: ð27Þ
Problem (23) is exactly solved as follows:
Set baD ¼

PN
i¼1baiu1D, where u1D ¼ 1ðzi�1;ziÞ ¼ u1i 2 GD, and 1ðzi�1 ;ziÞ is the indicator function of the subinterval ðzi�1; ziÞ.

Then, (27) becomes:
bai

Z zi

zi�1

f1ðeRDÞ ¼ L1ðwðu1iÞÞ; for i ¼ 1; . . . ;N:
It implies that:
bai ¼
L1ðwðu1iÞÞR zi
zi�1

f1
eRD

� � :

Observe that:
L1ðwðu1iÞÞ ¼ ru ðwðu1iÞÞð0Þ þ
Z 0

�h
Du wðu1iÞ;

ðwðu1iÞÞðzÞ ¼
Z z

�h
u1iðsÞds ¼

0; if z < zi�1;

z� zi�1; if zi�1 < z < zi;

zi � zi�1 ¼ Dz; if z > zi:

8>><>>:

Then, we obtain:
ðwðu1iÞÞð0Þ ¼ Dz;
Z 0

�h
DuðzÞ ðwðu1iÞÞðzÞdz ¼

Z zi

zi�1

DuðzÞ ðz� zi�1Þdzþ Dz
Z 0

zi

DuðzÞdz:
Moreover, we can write:
Z zi

zi�1

f1ðeRDÞ ¼ Dzf1ðRiÞ; with Ri ¼ eRðai; bi; hiÞ:
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Thus, we have:
bai ¼
ru þ

R zi
zi�1

DuðzÞ ðz� zi�1Þ=Dzdzþ
R 0

zi
DuðzÞdz

f1ðRiÞ
: ð28Þ
As:
 Z zi

zi�1

DuðzÞ ðz� zi�1Þ=Dzdzþ
Z 0

zi

DuðzÞdz
���� ���� 6 kDukL1ðIÞ;
using Hypothesis 1, we obtain:
k
2

Qu 6 ru þ
Z zi

zi�1

DuðzÞ ðz� zi�1Þ=Dzdzþ
Z 0

zi

DuðzÞdz 6 3
k
2

Q u:
Using Hypothesis 2, this implies that:
0 <
k
2

Q u

M
6 baD 6 3

k
2

Q u

m
: ð29Þ
Similarly:
0 <
k
2

Qv

M
6 bbD 6 3

k
2

Qv

m
and 3

k
2

Qq

M
6 bhD 6

k
2

Qq

M
< 0: ð30Þ
Let us define the set:
KDðC1;C2Þ ¼ ðw1D;w2D;w3DÞ 2 ½GD�3 such that C1 6 jwiDj 6 C2; i ¼ 1;2;3
n o

; ð31Þ
where C1 and C2 are given by (26). The set KDðC1;C2Þ is a non-empty convex compact subset of the finite-dimensional vector
space ½GD�3. Let s : KDðC1;C2Þ ! KDðC1;C2Þ be the map defined by:
sðaD;bD; hDÞ ¼ baD; bbD; bhD

� �
:

By (28), it is clear that s is continuous. By applying Brouwer’s fixed point theorem (Cf. [8]), it follows the existence of at least
a solution of the discrete steady problem (23). h

We next step to the analysis of uniqueness of solution of problem (23). We state at first a technical result. We denote by
j � j the Euclidean norm on Rm.

Lemma 4.2. Let the set:
S ¼ k
2M

Qu;
3k
2m

Qu


 �
� k

2M
Qv ;

3k
2m

Qv


 �
� 3k

2m
Qq;

k
2M

Qq


 �
: ð32Þ
Then, for any A1 ¼ ða1; b1; h1Þ; A2 ¼ ða2; b2; h2Þ 2 S, the following estimates hold:
jf1ðRðA1ÞÞ � f1ðRðA2ÞÞj 6 K1 jA1 �A2j; ð33Þ

jf2ðRðA1ÞÞ � f2ðRðA2ÞÞj 6 K2 jA1 �A2j; ð34Þ
where:
RðAiÞ ¼ �
g
qr

hi

a2
i þ b2

i

; i ¼ 1;2; ð35Þ
and:
K1 ¼
C

ð1þ RÞ3
M2

mk

 !2
ðQ u þ QvÞRþ 1

Q 2
u þ Q 2

v

" #
; ð36Þ

K2 ¼
C

ð1þ RÞn
M2

mk

 !2
ðQ u þ QvÞRþ 1

Q 2
u þ Q 2

v

" #
; ð37Þ
with:
R ¼
jQqj

Q 2
u þ Q 2

v

; n ¼
4 if f1; f 2 are defined by ð3Þ; ð4Þ;
5 if f1; f 2 are defined by ð5Þ;

�

and C a numerical constant.
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Proof. Observe that if A ¼ ða; b; hÞ 2 S, then the associated Richardson number R ¼ � g
qr

h
a2þb2 is positive. Then f1ðRð�ÞÞ and

f2ðRð�ÞÞ are smooth functions on S. By the mean value theorem:
jf1ðRðA1ÞÞ � f1ðRðA2ÞÞj 6 jjf 01jjL1ðJÞjRðA1Þ � RðA2Þj 6 jjf 01jjL1ðJÞjrRðBÞj jA1 �A2j; ð38Þ
for some B in the open segment of extremities A1 and A2, and J denoting the set:
J ¼ g
qr

2m
3k

R;
g
qr

2M
k

R

 �

:

Assume for instance that f1 and f2 are given by (4). Then:
f 01ðRÞ ¼ �20b1ð1þ 10RÞ�3
; f 02ðRÞ ¼ �30b1ð1þ 10RÞ�4;

rRða;b; hÞ ¼ g
qr
ð2ahða2 þ b2Þ�2

; 2bhða2 þ b2Þ�2
; �ða2 þ b2Þ�1Þ:
By estimates (25) and (26), we deduce:
jjf 01jjL1ðJÞ 6
C1

ð1þ RÞ3
; jjf 02jjL1ðJÞ 6

C2

ð1þ RÞ4
;

jjrRjjL1ðSÞ 6 C3
M2

mk

 !2
ðQ u þ QvÞRþ 1

Q 2
u þ Q 2

v

" #
;

where:
C1 ¼ 20b1 max
M
m

� 
2

;
9k
20

;
M
nu2

qr

g

( )3

; C2 ¼ 30b1 max
M
m

� 
2

;
9k
20

M
nu2

qr

g

( )4

; C3 ¼ 72
g
qr
:

Combining with (38), estimates (33) and (34) follow. When f1 and f2 are given by (3) and (5), estimates (33) and (34) follow
in the same manner, as in these cases:
jjf 01jjL1ðJÞ 6
C1

ð1þ RÞ3
; jjf 02jjL1ðJÞ 6

C2

ð1þ RÞn
;

for some numerical constants C1;C2 > 0, and n ¼ 4;5 respectively for model (3), (5). These exponents are justified by the fact

that we are interested in tropical seas, where usually R � 102 (see Section 5.1), and so R 2 J � 2�10�5k
3 ; 2�10�2

k

h i
, since g

qr
� 10�2,

and m � 10�5, M � 10�2 for model (3), (5). It implies that, at least for k P 10�1; R 6 0:2, and from this follow the above
exponents. h

We are now in a position to state our result of uniqueness of solution for problem (23).

Theorem 4.2. Under Hypotheses 1 and 2, assume that the momentum fluxes Q u; Qv remain bounded from above and from below.
Then, for large enough negative surface heat fluxes Qq, problem (23) admits a unique solution.
Proof. Assume that aD and a1
D are both solutions of the first equation of system (23). Let us set daD ¼ aD � a1

D. AsR 0
�h f1

eRD

� �
aDu1D ¼

R 0
�h f1

eR1
D

� �
a1

Du1D, with obvious notation, we have:
Z 0

�h
f1
eRD

� �
daDu1D ¼

Z 0

�h
f1
eR1

D

� �
� f1

eRD

� �h i
a1

Du1D; 8u1D 2 GD: ð39Þ
Using Lemma 4.2:
Z 0

�h
f1
eRD

� �
daDu1D 6 K1

Z 0

�h
jdADj ja1

Dj ju1Dj; ð40Þ
where dAD ¼ ða1
D � aD; b

1
D � bD; h

1
D � hDÞ. Let u1D ¼ daD, so that, as f1 P a1, we obtain:
a1 jjdaDjjL2ðIÞ 6 K1 kdADjjL2ðIÞ jja1
DjjL1ðIÞ 6 Nu kdADjjL2ðIÞ; ð41Þ
where Nu ¼ 3k
2m K1 Qu. Similarly:
a1 jjdbDjjL2ðIÞ 6 Nv kdADjjL2ðIÞ; ð42Þ
where Nv ¼ 3k
2m K1 Qv , and:
a2 jjdhDjjL2ðIÞ 6 Nq kdADjjL2ðIÞ; ð43Þ
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where Nq ¼ 3k
2m K2 jQqj. Then, we can write:
bC jjdADjjL2ðIÞ 6 0;
where:
bC ¼ mð1� NÞ; m ¼ minfa1; a2g;

and:
N ¼ C

ð1þ RÞ3
M
m

� 
4 ðQu þ QvÞRþ 1
Q 2

u þ Q 2
v

" #
ðQ u þ Qv þ jQqjÞ; ð44Þ
for some numerical constant C > 0. Assuming r 6 Q u; Qv 6 s for some 0 < r < s, then the bound:
N 6 C
M
m

� 
4 1

ð1þ RÞ3
3Rþ s=r2 þ 2sR2� �

;

holds. Then, N < 1 if jQqj is large enough, and consequently, the solution of the discrete problem (23) is unique. h
Remark 4.1. We have proved the uniqueness of solutions of the discrete model (23) for flows dominated by negative
(warming) surface thermodynamic fluxes. This is coherent from a physical point of view, as the warming of the surface
has a stabilizing effect on the mixing layer. The flow in the tropical seas fits into this case, as Qq is typically negative. How-
ever, for all models, if we consider realistic values of the momentum and heat surface fluxes in tropical seas (see Section 5.1),
the constant N defined by (44) is typically greater than one. Nevertheless, in a small neighbourhood of an equilibrium, the
estimate for the constant N given by (44) can be directly replaced by an expression in terms of the equilibrium solution, and
thus can be reduced enough, resulting to be effectively smaller than one for all models.
4.2. Convergence of discrete equilibrium to the continuous one

We next prove that the discrete equilibria converge to the continuous ones, for large enough negative surface heat fluxes.
This analysis implies the existence of equilibria of problem (7,8) as weak solutions of the steady version of this problem, so as
its stability with respect to numerical discretizations.

Theorem 4.3. Assume that Hypotheses 1 and 2 hold, and that Du; Dv ; Dq 2 L1ðIÞ. Assume also that the momentum fluxes
Qu; Qv remain bounded from above and from below. Then, for large enough negative surface heat fluxes Qq, the sequence
fðuD;vD;qDÞgDz>0 is strongly convergent in ½H1ðIÞ�3 to a weak solution ðu;v ;qÞ of the steady version of problem (7,8).
Proof. We prove that aD; bD; hD are BV (bounded variation) functions on I ¼ ð�h;0Þ. Indeed, let us consider the total vari-
ation of aD on I, that is defined as:
TV ðIÞðaDÞ ¼
XN�1

i¼1

jaiþ1 � aij:
By identity (28) and Hypotheses 1 and 2, we have:
jaiþ1 � aij ¼
ru þ 1

Dz

R 0
�h Du whðu1;iþ1Þdz
f1ðRiþ1Þ

�
ru þ 1

Dz

R 0
�h Du whðu1;iÞdz
f1ðRiÞ

�����
�����

6 jruj
f1ðRiþ1Þ � f1ðRiÞ

f1ðRiþ1Þf1ðRiÞ

���� ����þ 1
Dz

R 0
�h Du whðu1;iþ1Þf1ðRiÞ �whðu1;iÞf1ðRiþ1Þ

h i
dz

f1ðRiþ1Þf1ðRiÞ

������
������

6 ð2� kÞ Qu

m2 jf1ðRiþ1Þ � f1ðRiÞj þ
f1ðRiÞ
Dzm2

Z 0

�h
Du whðu1;iþ1Þ �whðu1;iÞ
h i

dz
���� ����

þ 1
Dzm2

Z 0

�h
Du whðu1;iÞ f1ðRiÞ � f1ðRiþ1Þ½ �dz

���� ����
6

1
m2 ð2� kÞQ u þ kDukL1ðIÞ

h i
jf1ðRiþ1Þ � f1ðRiÞj þ 2

M
m2 kDukL1ðIÞDz; ð45Þ
where the last inequality follows from jwhðu1;iÞj 6 Dz and from the estimate: �
Z 0

�h
Du whðu1;iþ1Þ �whðu1;iÞ
h i

dz
���� ���� 6 Z ziþ1

zi

DuðzÞ ðz� ziÞdz�
Z zi

zi�1

DuðzÞ ðz� zi�1Þdz
���� ����þ Z 0

ziþ1

DuðzÞDzdz
����

�
Z 0

zi

DuðzÞDzdz
���� 6 kDukL1ðIÞDz2 þ Dz

Z ziþ1

zi

jDuðzÞjdz 6 2kDukL1ðIÞDz2:
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Recall that, by Theorem 4.1, for all Dz > 0 the triplet ðaD; bD; hDÞ lies in the set S defined by (32). By Lemma 4.2:
jf1ðRiþ1Þ � f1ðRiÞj 6 K1 jaiþ1 � aij þ jbiþ1 � bij þ jhiþ1 � hij
� �

;

where K1 is given by (36). Combining this estimate with (45), we obtain:
jaiþ1 � aij 6 L1½jaiþ1 � aij þ jbiþ1 � bij þ jhiþ1 � hij� þ 2
M
m2 kDukL1ðIÞDz;
where L1 ¼ C1

ð1þRÞ
3

M2

m2k

� �2 ðQuþQv ÞRþ1
Q2

uþQ2
v

h i
Qu. Similar estimates hold for jbiþ1 � bij and jhiþ1 � hij, so we can write:
ð1� L2Þ
XN�1

i¼1

ðjaiþ1 � aij þ jbiþ1 � bij þ jhiþ1 � hijÞ 6 L3

XN�1

i¼1

Dz 6 L3h;
where:
L2 ¼
C2

ð1þ RÞ3
M2

m2k

 !2
ðQu þ QvÞRþ 1

Q 2
u þ Q 2

v

" #
ðQ u þ Qv þ jQqjÞ;
for some numerical constant C2 > 0, and:
L3 ¼ 2
M
m2 ðkDukL1ðIÞ þ kDvkL1ðIÞ þ kDqkL1ðIÞÞ:
Arguing as in the proof of Theorem 4.2, the constant L2 is smaller than one if Qq is negative and large enough, then:
XN�1

i¼1

ðjaiþ1 � aij þ jbiþ1 � bij þ jhiþ1 � hijÞ 6
L3

1� L2
h:
It implies that aD; bD; hD are uniformly bounded in BVðIÞ. As BVðIÞ is compactly embedded in L1ðIÞ (Cf. [9]), there exists a sub-

sequence fðaD0 ; bD0 ; hD0 Þg of fðaD; bD; hDÞg strongly convergent in ½L1ðIÞ�3 to ða; b; hÞ. We deduce that there exists a sub-sequence
of fðaD0 ; bD0 ; hD0 Þg, that we may denote in the same way, such that ðaD0 ; bD0 ; hD0 Þ ! ða; b; hÞ a.e. in I. It follows that

f1
eRD0

� �
! f1ðeRÞ a.e. in I. At the same time, ff1

eRD0

� �
g is bounded in L2ðIÞ, so that, up to a sub-sequence, f1

eRD0

� �
weakly con-

verges to a function g in L2ðIÞ. Let u 2 L2ðIÞ. For a positive constant C, we have:
jf1
eRD0

� �
jjuj 6 Cjuj; f 1

eRD0

� �
u! f1ðeRÞu a:e: in I:
By the dominated convergence theorem (Cf. [10]):
Z 0

�h
f1
eRD0

� �
u!

Z 0

�h
f1ðeRÞu:
As f1
eRD0

� �
* g in L2ðIÞ, we obtain:
Z 0

�h
ðf1ðeRÞ � gÞu ¼ 0; 8u 2 L2ðIÞ ) f1ðeRÞ ¼ g:
So that, f1
eRD0

� �
* f1ðeRÞ in L2ðIÞ. Moreover, for a positive constant C:
jf1ðeRD0 Þj2 6 C; jf1ðeRD0 Þj2 ! jf1ðeRÞj2 a:e: in I:
By the dominated convergence theorem:
jjf1
eRD0

� �
jjL2ðIÞ ! jjf1ðeRÞjjL2ðIÞ:
It follows that f1
eRD0

� �n o
strongly converges to f1ðeRÞ in L2ðIÞ. Let us consider u 2 C0ðIÞ. There exists a sequence fuD0 g with

uD0 2 GD such that uD0 ! u in L1ðIÞ. Then:
f1ðeRD0 ÞuD0 ! f1ðeRÞu in L2ðIÞ:
Finally, as aD0 * a in L2ðIÞ, we can conclude:
Z 0

�h
f1
eRD0

� �
aD0uD0 !

Z 0

�h
f1ðeRÞau:
Then, fðuD0 ;vD0 ;qD0 Þg strongly converges in ½H1ðIÞ�3 to a weak solution ðu;v ;qÞ of the steady version of problem (1)–(6). Since
we proved in Theorem 2.1 that ðu; v;qÞ is unique, then the whole sequence fðuD;vD;qDÞg converges to it. h
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Remark 4.2. It holds an analogous of Remark 4.1, i.e. the result of convergence holds for mixing layer flows dominated by
negative (warming) surface thermodynamic fluxes.
4.3. Non-linear stability of discrete equilibria

We analyze in this section the asymptotic stability of the discrete equilibria. The objective is to prove that the continuous
equilibria are well approximated by the solution of the evolutive discrete problems (18) and (20), which are computable in
practice. We give a positive answer when the time iterates have bounded derivatives. Actually, we prove the asymptotic sta-
bility of the implicit discrete model ðQDÞ. We assume the following:

Hypothesis 3. The sequence f@zUn
Dgn2N remains in the set S given by (32), for all n 2 N.

The proof of this hypothesis is actually in progress. Under this hypothesis, we prove the asymptotic stability of the impli-
cit discrete model ðQDÞ. Let us denote by PD the standard nodal interpolate of continuous functions onto the space VD.

Theorem 4.4. Assume that Hypotheses 1–3 hold, and that Du; Dv ; Dq 2 C0ðIÞ. Then, for large enough negative surface heat fluxes
Qq, and bounded (from above and from below) momentum fluxes Qu; Qv , the implicit discrete method ðQDÞ is asymptotically
stable, in the sense that:
supn!þ1jjUn
D �PDUejjL2ðIÞ 6 CDz; ð46Þ
where Un
D ¼ un

D; vn
D; h

n
D

� �
; Ue ¼ ue; ve; heð Þ and C is a positive constant.
Proof. Let us look for un
D as un

D ¼ PDue þ ûn
D, where ûn

D is a perturbation. As PDue 2 Ub þ VD, then ûn
D 2 VD. If we set

P�Due ¼ PDue � ue, for all wD 2 VD, we have that:
Z 0

�h

unþ1
D � un

D

Dt
wD þ

Z 0

�h
f1 Rnþ1

D

� �
@zunþ1

D @zwD ¼ LðwDÞ; ð47Þ

Z 0

�h

PDue �PDue

Dt
wD þ

Z 0

�h
f1ðReÞ@zPDue@zwD ¼ LðwDÞ þ

Z 0

�h
f1ðReÞ@zP

�
Due@zwD: ð48Þ
We take the difference between (47) and (48), and we add and subtract the quantity:
Z 0

�h
f1 Rnþ1

D

� �
@zPDue@zwD:
We obtain:
Z 0

�h
ûnþ1

D � ûn
D

� �
wDþDt

Z 0

�h
f1 Rnþ1

D

� �
@zûnþ1

D @zwD ¼Dt
Z 0

�h
f1ðReÞ� f1 Rnþ1

D

� �h i
@zPDue@zwD�Dt

Z 0

�h
f1ðReÞ@zP

�
Due@zwD: ð49Þ
Let us take wD ¼ ûnþ1
D . Using the identity ða� bÞa ¼ 1

2 jaj
2 � 1

2 jbj
2 þ 1

2 ja� bj2, we deduce:
jjûnþ1
D jj2L2ðIÞ þ jjû

nþ1
D � ûn

Djj
2
L2ðIÞ þ 2mDtjj@zûnþ1

D jj2L2ðIÞ 6 jjû
n
Djj

2
L2ðIÞ þ 2Dt

Z 0

�h
f1ðReÞ � f1 Rnþ1

D

� �h i
@zPDue@zûnþ1

D

� 2Dt
Z 0

�h
f1ðReÞ@zP

�
Due@zûnþ1

D ;
where we have used f1 Rnþ1
D

� �
P m > 0 from Hypotheses 2 and 3. By Lemma 4.2, we have:
Z 0

�h
f1ðReÞ � f1 Rnþ1

D

� �h i
@zPDue@zûnþ1

D 6 K1 @z Ue � Unþ1
D

� ���� ������ ���
L2ðIÞ
jj@zPDuekL1ðIÞ jj@zûnþ1

D jjL2ðIÞ;
where K1 is defined by (36). From (14) and Hypothesis 1, it follows:
jj@zPDuekL1ðIÞ 6 jj@zuekL1ðIÞ 6 2
Q u

m
;

so that:
Z 0

�h
f1ðReÞ � f1 Rnþ1

D

� �h i
@zPDue@zûnþ1

D 6 Lu jj@z Ue � Unþ1
D

� �
jjL2ðIÞ jj@zûnþ1

D jjL2ðIÞ

6 Lu jj@zP
�
DUejjL2ðIÞ þ jj@zÛnþ1

D jjL2ðIÞ

� �
jj@zûnþ1

D jjL2ðIÞ;
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where we denote Lu ¼ 2K1
Qu
m . Then:
jjûnþ1
D jj

2
L2ðIÞ þ 2mDtjj@zûnþ1

D jj2L2ðIÞ 6 jjû
n
Djj

2
L2ðIÞ þ 2Dt Lu jj@zÛnþ1

D jjL2ðIÞ jj@zûnþ1
D jjL2ðIÞ þ 2Dt ðLu jj@zP

�
DUejjL2ðIÞ

þM jj@zP
�
DuejjL2ðIÞÞ jj@zûnþ1

D jjL2ðIÞ;
as f1ðReÞ 6 M from Hypothesis 2. Similar estimates apply to the perturbations:
v̂nþ1
D ¼ vn

D �PDve; ĥnþ1
D ¼ hn

D �PDhe:
Summing these up, we deduce:
jjÛnþ1
D jj

2
L2ðIÞ þ 2mDtjj@zÛnþ1

D jj2L2ðIÞ 6 jjÛ
n
Djj

2
L2ðIÞ þ 2Dt L jj@zÛnþ1

D jj
2
L2ðIÞ þ 2Dt ðLþMÞ jj@zP

�
DUejjL2ðIÞ jj@zÛnþ1

D jjL2ðIÞ;
where:
L ¼ 2K1
Q u þ Qv

m
þ 2K2

jQqj
m
6

C

mð1þ RÞ3
M2

m2k

 !2
ðQ u þ QvÞRþ 1

Q2
u þ Q2

v

" #
ðQ u þ Qv þ jQqjÞ;
and K2 is defined by (37). Thus, for large enough jQqj, and bounded (from above and from below) Q u; Qv , we have L < m.
Then, denoting bm ¼ m� L, we obtain:
jjÛnþ1
D jj

2
L2ðIÞ þ 2bmDt jj@zÛnþ1

D jj2L2ðIÞ 6 jjÛ
n
Djj

2
L2ðIÞ þ 2Dt ðLþMÞ jj@zP

�
DUejjL2ðIÞ jj@zÛnþ1

D jjL2ðIÞ:
Using Young’s inequality:
jjÛnþ1
D jj

2
L2ðIÞ þ bmDt jj@zÛnþ1

D jj2L2ðIÞ 6 jjÛ
n
Djj

2
L2ðIÞ þ Dt

ðLþMÞ2bm jj@zP
�
DUejj2L2ðIÞ 6 jjÛ

n
Djj

2
L2ðIÞ þ C1 ðDzÞ2 Dt; ð50Þ
for some constant C1 > 0, where the last inequality follows from the finite element interpolation error estimate:
jj@zP
�
DUejjL2ðIÞ 6 C2 Dzjj@zzU

ejjL2ðIÞ;
for some numerical constant C2. Here, we use the fact that Ue 2 ½C2ðIÞ�3 from (11), as Du; Dv ; Dq 2 C0ðIÞ. Using Poincaré
inequality jjbUn

Djj
2
L2ðIÞ 6 C3 jj@z

bUn
Djj

2
L2ðIÞ for some constant C3 > 0, we deduce from (50):
ð1þ C3 bmDtÞrnþ1 6 rn þ C1 ðDzÞ2Dt:
where we denote rn ¼ jjbUn
Djj

2
L2ðIÞ. Let K ¼ 1

ð1þC3bmDtÞ
, so we can write:
rnþ1 6 Krn þ KC1ðDzÞ2Dt ¼ ð1� C4DtÞrn þ ð1� C4DtÞC1 ðDzÞ2Dt; ð51Þ
where we denote C4 ¼ C3 K bm. Then:
rnþ1 6 ð1� C4DtÞnþ1r0 þ ðC1=C4ÞðDzÞ2; ð52Þ
and we conclude (46). h

We finally may state:

Corollary 4.1. Under the hypotheses of Theorem 4.4, the sequence fUn
Dgn2N asymptotically converges to the continuous

equilibrium Ue in ½L2ðIÞ�3 as ðn;DzÞ ! ðþ1;0Þ.
4.4. Numerical tests

We have performed some numerical tests to analyze the stability of the continuous equilibria (11), so as the convergence
of the discrete steady states computed with model 18,19 to the continuous ones.

We initialize the code with the initial conditions shown in Fig. 5. These conditions correspond to data taken from the
Tropical Atmosphere Ocean (TAO) array (Cf. [11]). We impose the boundary conditions ua ¼ 11:7 m � s�1 (eastward wind),
va ¼ 0:4 m � s�1 (northward wind) and Qq ¼ �10�6 kg � m�2� s�1 (heat flux), typical values in tropical seas (Cf. [12,13]). In
practice, the unsteady solutions corresponding to time T ¼ 10;000 hours (about 14 months) change very little as time
increases, so we consider them as steady solutions.

We present the results corresponding to model (5), by setting Dz ¼ 1 m, Dt ¼ 1 hour¼ 3600 s. Smaller values of Dz and Dt
provide quite similar results. We consider the case Du ¼ Dv ¼ D ¼ constant, with the following values: D ¼ 10�6 m �
s�2; D ¼ 0 m � s�2. The results are presented in Figs. 6 and 7.

On Fig. 6, we can observe in both cases a monotonic numerical convergence to the steady state, by computing the residual
values as:
rn ¼
XN

i¼0

ðjunþ1
zi
� un

zi
j2 þ jvnþ1

zi
� vn

zi
j2 þ jqnþ1

zi
� qn

zi
j2Þ

" #1=2

:



Fig. 5. Initial zonal velocity (top left), meridional velocity (top right) and density (bottom).
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Really, already after T ¼ 1500 hours (about 2 months), we reach a stable equilibrium, for which rn < 10�6. Collecting data at
time T ¼ 10;000 hours implies to consider a subsequent relaxation time, until to obtain rn � 10�12. On Fig. 7, at first we
observe that the theoretical and the numerical solutions are very close. Also, for D ¼ 0 m � s�2 we effectively obtain linear
profiles for both equilibrium velocity and density, as in Bennis et al. [5]. For D ¼ 10�6 m � s�2 the density does not practically
change its linear profile, while the zonal and the meridional velocities are largely changed.

We also test the convergence order of the iterates of the numerical scheme to the continuous equilibria, as stated in Cor-
ollary 4.1. Note that this result is based upon the hypothesis that the time iterates lie in a small enough neighbourhood of the
equilibrium. Our results are presented in Table 1, where we confirm the thesis of Corollary 4.1: The time iterates of the
numerical scheme approximate, for large enough time, the continuous equilibria, with order 1, in the sense that
jjUn

D � UejjL2ðIÞ ’ C Dz for large enough n. Actually, the convergence order deteriorates as Dz decreases, due to the error term
coming from the time discretization in estimate (52).
5. Stability with respect to 2D perturbations

We perform in this section a numerical investigation of the finite-time stability of the algebraic mixing-layer models (3)–
(5) with respect to 2D perturbations. Our procedure is to solve a 2D model of oceanic flow whose data are 1D plus a small 2D
perturbation. In practice, 1D models are coupled to 3D models for the inner oceanic flows, so the 1D model may be affected
by multi-dimensional perturbations. We test here whether replacing a multidimensional modeling of the mixing layer by a
1D mixing-layer model provides accurate results. We observe that the finite-time solutions provided by the 2D model loose
memory of the 2D perturbation, and are close to the solutions provided by the 1D mixing-layer model. We consider char-
acteristic times associated to the formation of mixing-layer profiles (almost constant density from the surface down to a
depth where a sharp gradient appears), typically of the order of two days.

As 2D model of oceanic flow, we use the Primitive Equations. These govern oceanic flows at large scales in space and time,
and are often used as a physical–mathematical basic model to analyze global climate changes and oceanic biosystems, usu-
ally in combination with turbulence models (Cf. [14]). In their reduced formulation, they form a set of PDEs for horizontal
velocity, surface pressure and density, arising from the Boussinesq Equations together with the hydrostatic approximation.

Let us consider the 1D domain:



Fig. 6. Temporal evolution of residual values.

Fig. 7. Comparison of numerical solutions computed at T ¼ 10;000 hours (about 14 months) and theoretical equilibria.
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Table 1
Estimated error and convergence order.

Dz (m) Final time T ¼ 10;000 h, D ¼ 10�6 m � s�2

jjUn
D � UejjL2ðIÞ Convergence order

8 0.7895 –
4 0.3893 1.02
2 0.2048 0.93
1 0.1149 0.83
0.5 0.0733 0.65
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x ¼ ð0; LÞ; L > 0;
that shall represent the rigid-surface domain of the flow. We define the 2D flow domain as:
X ¼ ðx; zÞ 2 R2 such that x 2 x; �h < z < 0
� 	

:

We assume that the flow is homogeneous in the y direction and turbulent, and we represent by:
U ¼ ðuðx; z; tÞ;wðx; z; tÞÞ; q ¼ qðx; z; tÞ; p ¼ pðx; z; tÞ;
the mean velocity, density and pressure of the fluid, arising from a statistical Reynolds averaging of the 2D Boussinesq Equa-
tions. The averaged form of the Primitive Equations is:
r � U ¼ 0;
@tuþ ðU � rÞu� a1Duþ @xp ¼ �r � hU0 u0i;
@zp ¼ � q

qr
g;

@tqþ ðU � rÞq� a2Dq ¼ �r � hU0q0i:

8>>>><>>>>: ð53Þ
As we are considering tropical seas, we neglect the Coriolis force. Also, the anisotropy of the domain ðL� hÞ permits to apply
the hydrostatic approximation:
@zp ¼ �
q
qr

g:
In system (53), U0; u0, and q0 are respectively the fluctuations of the total velocity, the horizontal velocity and the density of
the fluid, and a1; a2 are the laminar viscosity and diffusion. To solve the closure problem for model (53), we use the concept
of eddy viscosity and diffusion. So, we set:
�hU0 u0i ¼ ðmt
h @xu; mt

v @zuÞ; �hU0q0i ¼ ðkt
h @xq; kt

v @zqÞ;
where mt
h and mt

v are the horizontal and vertical eddy viscosity coefficients, while kt
h and kt

v are the horizontal and vertical
eddy diffusivity coefficients. We apply a Smagorinsky turbulence model for the horizontal eddy viscosity and diffusivity
coefficients mt

h and kt
h. The Smagorinsky turbulence model is a LES (Large Eddy Simulation) model based upon the eddy vis-

cosity and mixing length concepts, intrinsically linked to a discretization grid (Cf. [15]). We consider:
mt
h ¼ ðCs DxÞ2 j@xuj; kt

h ¼
a2

a1
mt

h;
where Cs is the Smagorinsky constant, estimated from experimental measurements (Cf. [16]), and Dx is the horizontal tur-
bulent mixing length, identified with the horizontal diameter of the elements of the grid considered on the computational
domain X. As for the vertical eddy viscosity and diffusivity coefficients mt

v and kt
v , we use the previous gradient Richardson

number-based model (5). So, we consider:
mt
v ¼

b1

ð1þ 5RÞ2
; kt

v ¼
a1

ð1þ 5RÞ2
þ mt

v

ð1þ 5RÞ2
;

where the gradient Richardson number R is now defined as:
R ¼ � g
qr

@zq
@zuð Þ2

:

Let us decompose the boundary of X into four pieces, @X ¼ Cb [ Cs [ C‘1 [ C‘2, where Cb is the domain bottom, Cs is the
Ocean surface, and C‘1; C‘2 are the vertical sidewalls. The hydrostatic and the rigid-lid assumptions allow to integrate the
hydrostatic equation from an arbitrary depth z up to the rigid-surface z ¼ 0:
Z 0

z
@spðx; s; tÞds ¼ � g

qr

Z 0

z
qðx; s; tÞds) pðx; z; tÞ ¼ psðx; tÞ þ g

qr

Z 0

z
qðx; s; tÞds;



T. Chacón Rebollo et al. / Applied Mathematical Modelling 38 (2014) 5836–5857 5853
with ps denoting the surface pressure. It follows that the horizontal gradient of the pressure is rewritten in terms of the hor-
izontal gradient of the surface pressure, plus a baroclinic contribution:
@xpðx; z; tÞ ¼ @xpsðx; tÞ þ g
qr
@x

Z 0

z
qðx; s; tÞds:
We consider the following initial-boundary value problem for the Primitive Equations:
ðaÞ@tuþ ðU � rÞu� @xðmh@xuÞ � @zðmv@zuÞ þ @xps þ ðg=qrÞ@x
R 0

z qðx; s; tÞds ¼ 0 in X��0; T½;
ðbÞ@tqþ ðU � rÞq� @xðkh@xqÞ � @zðkv@zqÞ ¼ 0 in X��0; T½;
ðcÞ@zw ¼ �@xu in X��0; T½;
ðdÞujCb

¼ ub; qjCb
¼ qb in ½0; T�;

ðeÞwjCb
¼ wjCs

¼ 0 in ½0; T�;
ðf ÞujC‘1 ¼ ujC‘2 ; qjC‘1 ¼ qjC‘2 in ½0; T�;

ðgÞmv@zujCs
¼ Q u; kv@zqjCs

¼ Qq in ½0; T�;
ðhÞuð0Þ ¼ u0; qð0Þ ¼ q0; wð0Þ ¼ 0 in X;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð54Þ
where mh ¼ a1 þ mt
h; mv ¼ a1 þ mt

v respectively are the total horizontal and vertical viscosity, and kh ¼ a2 þ kt
h; kv ¼ a2 þ kt

v
respectively are the total horizontal and vertical diffusion.

The boundary condition (54)-(e) includes the rigid-lid assumption: w ¼ 0 at the surface z ¼ 0. This model does not include
a free-surface. The boundary condition (54)-(f) represents periodic boundary conditions that we impose on the sidewalls
C‘1; C‘2. These boundary conditions are physically reasonable. The remaining boundary conditions are those of the 1D model
(1)–(6).

Remark 5.1. If the initial conditions are 1D (do not depend on x), the solutions of the mixing-layer models are solutions of
the Primitive Equations with a zero pressure gradient.

We have discretized model (54) with a Galerkin FEM (finite element method) in the spatial variables, and a semi-implicit
Euler scheme for the temporal variable. We have used (P2� P1) discretization for velocity–pressure. This ensures the stabil-
ity of the discretization of the pressure (Cf. [17]). We also have used a P1 discretization for the density.

5.1. Numerical tests

We have solved the Primitive Equations (54) on the rectangular computational domain X, with a length L ¼ 3000 m, and a
thickness h ¼ 100 m. We have set periodic 2D perturbations of the 1D initial conditions, of the form:
uð0Þ ¼ u0ðzÞ þ krðxÞ; qð0Þ ¼ q0ðzÞ þ krðxÞ in X; ð55Þ
by choosing a small k. It permits to set genuine 2D initial conditions for the current problem (54). The initial 1D zonal veloc-
ity u0 and density q0 profiles are typical of tropical seas, and are taken from the Tropical Atmosphere Ocean (TAO) array (Cf.
[11,12]).

We have performed two tests, respectively corresponding to physically unstable and physically stable initial conditions
(inverse and favorable density gradients). We have constructed on X a uniform regular mesh, with horizontal and vertical
Fig. 8. Test 1: Initial horizontal velocity and density profiles (from left to right) at x ¼ L=2.
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grid sizes Dx ¼ 15 m, Dz ¼ 1 m. We have used the application FreeFem++ to implement the practical solution of the problem
(Cf. [18]).
5.2. Test 1

The first test corresponds to an instability zone below the Ocean surface, where @zq > 0 (see Fig. 8, where we show the
initial horizontal velocity and density profiles for x ¼ L=2).

As for the boundary conditions, we impose a heat flux Qq ¼ �10�6 kg � m�2� s�1, and a zonal wind-stress Vx ’ 10�1 m�2�
s�2, that are typical values for the Equatorial Pacific region, called West-Pacific Warm Pool (Cf. [4]). We integrate the 2D
model for a final time T ¼ 48 hours, with Dt ¼ 60 s. In order to perform a comparison with the results of the 1D model,
we compute it with the same data, by neglecting the meridional velocity, which is usually smaller than the zonal one.

Fig. 9 shows a comparison between the final horizontal velocity (on the left) and the final density (on the right) computed
by the 2D model at x ¼ L=2, and the 1D model 18,19 with Du ¼ D ¼ 10�7 m � s�2, and Du ¼ D ¼ 0 m � s�2. The order of mag-
nitude for D is found by observing that it plays the role of a horizontal pressure gradient, that may compensate for a loss of
incompressibility in the initial conditions. Indeed, it is computed by the well-known Bernoulli’s law applied to the initial
velocity field along flow lines:
1
2
jUð0Þj2 þ p ¼ C;
where C is a constant, and then:
jDj ¼ j@xpj ¼ juð0Þ@xuð0Þj:
We consider the standard definition of mixed layer (Cf. [19]), that states that the base of the mixed layer is the depth at
which the density changes by 0:01 kg �m�3. From the final density profile we observe the formation of a mixed layer (almost
constant density) of about 70 m depth, by using either the 2D model or the 1D model with a zero and non-zero pressure
gradient D. A pycnocline (high gradient of density) is formed immediately below. This is a characteristic density profile
for a well-mixed layer.

The final fluid velocity and density obtained with the 2D model are horizontally homogeneous, even starting from 2D ini-
tial conditions. Moreover, the vertical component of the velocity is almost zero. The final surface pressure, shown in Fig. 10,
assumes its values in the range ½�2 � 10�7;2 � 10�7�.

The results of Fig. 9 stress that if we take into account a non-zero horizontal pressure gradient D in the 1D model, we
barely improve the accuracy in the mixing-layer profiles, with respect to the mixing-layer profiles obtained with the 2D
model. This not only shows the stability of the 1D model with respect to 2D perturbation, but also its accuracy to compute
the mixing layer.
5.3. Test 2

The second test corresponds to a stable initial density profile (see Fig. 11).
As for the boundary conditions, we impose a heat flux Qq ¼ �10�6 kg � m�2� s�1, and a zonal wind-stress Vx ’ 10�1 m�2�

s�2. We integrate the 2D model for a final time T ¼ 24 hours, with Dt ¼ 60 s. In order to perform a comparison with the
results of the 1D model, we compute it with the same data.
Fig. 9. Test 1: Comparison between 2D and 1D final horizontal velocity (left) and density (right).



Fig. 10. Test 1: Iso-values final surface pressure (2D-model).

Fig. 12. Test 2: Comparison between 2D and 1D final horizontal velocity (left) and density (right).

Fig. 11. Test 2: Initial horizontal velocity and density profiles (from left to right) at x ¼ L=2.
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Fig. 12 shows a comparison between the final horizontal velocity (on the left) and the final density (on the right)
computed by the 2D model at x ¼ L=2, and the 1D model (5) with the horizontal pressure gradient Du ¼ D ¼ 10�7 m � s�2,
and Du ¼ D ¼ 0 m � s�2.

From the final density profile we observe the formation of a mixed layer (almost constant density) of about 30 m depth,
by using either the 2D model or the 1D model with a zero and non-zero pressure gradient D. A pycnocline is formed



Fig. 13. Test 2: Iso-values final surface pressure (2D-model).
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immediately below. This structure is quite similar to the one of the first test, where the initial density presented an unstable
configuration.

Again in this test, the final fluid velocity and density obtained with the 2D model are horizontally homogeneous. More-
over, the vertical component of the velocity is almost zero. The final surface pressure, shown in Fig. 13, assumes its values in
the range ½�1 � 10�3;1 � 10�3�.

The results of Fig. 12 stress that taking into account a non-zero horizontal pressure gradient in the 1D model does not
improve the accuracy in the computation of the 2D mixing-layer profiles through the 1D mixing-layer model.
6. Conclusions

We have performed a non-linear stability analysis of algebraic turbulence models for oceanic mixing-layers. This analysis
applies to negative (warming) surface thermodynamic fluxes, with bounded kinetic momentum from above and from below.
In particular, it applies to tropical oceans in Earth.

We have obtained good stability properties for equilibria: The continuous perturbed model still present equilibria which
are close to the equilibria of the un-perturbed model. The perturbed equilibria are unique and are asymptotically reached by
time iterates of standard finite element discretizations. The numerical results show that the steady states for density are
rather insensitive to perturbations, while those for zonal and meridional velocities are largely sensitive.

The unsteady flow is also stable under 2D perturbations. The 1D model provide mixing-layer profiles on time scales of the
order of two days, which are accurate with respect to 2D perturbations of the initial conditions, and with respect to horizon-
tal pressure gradients.

We finally conclude that algebraic turbulence models for oceanic mixing-layers bear excellent stability properties and
provide good predictions of the formation of mixing-layer profiles and of flow equilibria, even with relatively large pertur-
bations of the data.
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