Depésito de Investigacion
Universidad de Sevilla

Depdsito de investigacion de la Universidad de Sevilla

https://idus.us.es/

Esta es la version aceptada del articulo publicado en:
This is an accepted manuscript of a paper published in:

Computer Methods in Applied Mechanics and Engineering (2014):
13/11/2014

DOI:
Copyright:

El acceso a la version publicada del articulo puede requerir la suscripcion de la
revista.

Access to the published version may require subscription.

“This is an Accepted Manuscript of an article published by Elsevier in Computer
Methods in Applied Mechanics and Engineering on 13 November 2014, available
at: http://dx.doi.org/10.1016/j.cma.2014.11.023”


https://idus.us.es/

Accepted Manuscript e —

Numerical comparisons of finite element stabilized methods for a 2D Computer
vortex dynamics simulation at high Reynolds number "'":::,',.':

Naveed Ahmed, Samuele Rubino

PII: S0045-7825(19)30084-2
DOI: https://doi.org/10.1016/j.cma.2019.02.013
Reference: CMA 12297

To appear in: ~ Comput. Methods Appl. Mech. Engrg.

Received date: 9 April 2018
Revised date: 29 January 2019
Accepted date: 10 February 2019

Please cite this article as: N. Ahmed and S. Rubino, Numerical comparisons of finite element
stabilized methods for a 2D vortex dynamics simulation at high Reynolds number, Computer
Methods in Applied Mechanics and Engineering (2019), https://doi.org/10.1016/j.cma.2019.02.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.cma.2019.02.013

*Manuscript

Click here to download Manuscript: main.tex Click here to view linked References
1
2
2 Numerical comparisons of finite element stabilized metaods for
5 a 2D vortex dynamics simulation at high Reynolds nu..-her
6
7
8 Naveed Ahmed?, Samuele Rubino”
9 @ Department of Mathematics, School of Science and Engineering, Lahore University of Mai. ~ement Sciences, Opposite
10 Sector U, DHA, Lahore Cantt., 54792, Pakistan
11 b Department EDAN & IMUS, University of Seville, Avda. Reina Mercedes s/n, ,..? Seville, Spain
12
13
14
15
16 Abstract
17
18 In this paper, we consider up-to-date and classical Finite Eleirer, (F ) stabilized methods for time-
19 dependent incompressible flows. All studied methods belong t. the V- ational MultiScale (VMS) frame-
20 work. So, different realizations of stabilized FE-VMS methods are c. npared using a high Reynolds number
21 vortex dynamics simulation. In particular, a fully Residua. Rased (3B)-VMS method is compared with
22 the classical Streamline-Upwind Petrov—Galerkin (SUPG) . athcl cogether with grad-div stabilization, a
23 standard one-level Local Projection Stabilization (LPS) methou. and a recently proposed LPS method by
24 interpolation. These procedures do not make use of the -tatistical theory of equilibrium turbulence, and
25 no ad-hoc eddy viscosity modeling is required for all methol-. Applications to the simulation of a high
26 Reynolds number flow with vortical structures on re. tive., _oarse grids are showcased, by focusing on a
27 two-dimensional plane mixing-layer flow. Both Inf-Sup ." able (ISS) and Equal Order (EO) H'-conforming
28 FE pairs are explored using a second-order semi-im, .. ** b..ckward Differentiation Formula (BDF2) in time.
29 Based on the numerical studies conducted, it is conci *deu that the SUPG method using EO FE pairs per-
30 forms best among all methods. Furthermore, ti. ve sco.as to be no reason to extend the SUPG method by
g% the higher order terms of the RB-VMS method.
33 Keywords: Variational multiscale metho s; .. “e element stabilized methods; high Reynolds number
34 incompressible flow; 2D vortex dynamicc »roblen
35
36
37
38 1. Introduction
39
40 In this paper, we consider np-to-da.> and classical Finite Element (FE) stabilized methods for time-
41 dependent incompressible flo,s t. lfilling the incompressible Navier-Stokes Equations (NSE). Let Q € R%,
42 d € {2,3}, be a bounded dc ~ai'. with Lipschitz boundary T and (0,7) be a bounded time interval. The
ii incompressible NSE read - s follo. -
45 Find a velocity field *:(,, 7] < Q — R? and a pressure field p : (0,7] x Q — R such that
46
47 Fu—vAu+ (u-V)u+Vp = f in (0,7] x £,
48 V.u = 0 in[0,T] xQ, (1)
49 u = 0 on[0,7]xT,
50 u(0,x) = wug in Q,
gé where v is the k nemat’: viscosity that is assumed to be positive and constant, f is the given body force,
53 and ug is th~ eiven uutial velocity field, assumed to be divergence-free. For simplicity of presentation, the
case of homo, =n¢ bus Dirichlet conditions is considered on the whole boundary.
54
55
56 *Corresponding author
57 Email addresses: naveed.ahmed@lums.edu.pk (Naveed Ahmed), samuele@us.es (Samuele Rubino)
58
59 Preprint submitted to Elsevier January 29, 2019
60
61
62
63
64



O©CoO~NOUIAWNER

The main contribution of this paper is a comprehensive and thorough numerical st udy in the FE stabi-
lized framework of two-scales fully Residual-Based (RB) and local projection-based "/a. ational MultiScale
(VMS) methods for a time-dependent high Reynolds number incompressible flow with a stro.. ; dynamic vor-
tical structure. The derivation of efficient and accurate numerical schemes for t} s1 wlation of turbulent
incompressible flows is a very active field of research. In particular, various realiz. ‘ior s of VMS methods for
simulating turbulent incompressible flows have been proposed in the past fiftc » yea. - (see [1] for a recent
detailed review). All of these realizations obey the basic principles of VMS m~thoa. they are based on the
variational formulation of the incompressible NSE and the scale separatior is d “~ed by projections. How-
ever, apart from these common basic features, the various VMS methods lo ~k - uite different. In this paper,
our main goal is to focus on two-scales VMS methods, and provide a thor~--gh 1.. merical investigation of up-
to-date and classical FE stabilized methods belonging to this category = hen ap ©lied to a relevant fixed setup
for numerical studies such as the 2D Kelvin—Helmholtz instability pro. lem. Ir leed, even if VMS methods,
despite their relatively recent development, are already well-estab)’ = ad, ... considered state-of-the-art in
turbulence modeling that provides a promising and successful alter aati- ¢ v classical Large Eddy Simulation
(LES) models, in the literature, not much has been done about a ..cuctr ed comparison of them in terms
of numerical studies. To the best of our knowledge, the first (ana « ~ly) attempt to go towards this research
direction has been performed in [2], where the authors studied differen. realizations of VMS methods within
the framework of FE in turbulent channel flow simulations Ho. =ver, their main focus was on three-scales
VMS models, in which the effect of the unresolved scales on the . ~solved ones is modeled by means of an eddy
viscosity term of Smagorinsky type that only acts direct] _.. ... o.nall resolved scales. In the present paper,
it is aimed to complement and extend this research avenue, . - mainly focusing on two-scales VMS methods,
which use a direct modeling of the subgrid-scale flov ., —'merically approximating the related equations.
This numerical approach, which hence relies on purely w .nerical artifacts without any modification of the
continuous problem, was seldom followed. The M. %S (. Tonotone Integrated LES) approach [3] being the
main exception, until the RB-VMS models were imoa. ~ed in the seminal papers [4, 5] and subsequently
proposed as implicit LES techniques (ILES) " . *urh lent flows in [6]. These models provide a unified
framework for the definition of spatial approximau.~n schemes capable of preventing numerical instabilities
that arise when the standard Galerkin FE method is used, and are adequate to represent the turbulence
LES modeling. Thus, these models do not neeu “ny modeling of the subgrid-scales by statistical theories of
turbulence, and in particular they do nc include eddy viscosity. The numerical diffusion inherent to those
stabilized models basically plays the rc’e of v. ~ ¢ 1dy diffusion. In this way, the present paper aims at giving
a thorough numerical investigation, <.mil .r to the one performed in [2], but for two-scales VMS methods.
A structured presentation is provideu ‘v this framework, with special emphasis on experience in numerical
studies. After reaching almost “de initive  onclusions within this paper, a comparison of the selected “best
performing” two-scales VMS me no. with three-scales VMS methods that use eddy viscosity (in a more or
less sophisticated manner) to madel the cffect of subgrid-scales shall appear in a forthcoming paper. In this
way, the numerical performar ces f different VMS methods would be assessed.

The RB-VMS method we. ir croduced in [6]. A straightforward simplification of the RB-VMS method
leads to the classical Stre' mline-~wind Petrov—Galerkin (SUPG) method [7, 8]. Also, another variant of
the RB-VMS method, w! ich *, not fully consistent, but of optimal order with respect to the FE interpolation,
is given by the so-called L. al P ojection Stabilization (LPS) methods [9, 29, 47]. So, different realizations
of stabilized FE-VMYS methnds are compared in a 2D vortex dynamics simulation at high Reynolds number
in this paper. In pe ticular, the RB-VMS method [6] is compared with the classical SUPG method [7, 8]
together with grad-d. stak ization, a standard one-level LPS method [10], and a recently proposed LPS
method by inter yolaticn |11, 12]. To the best of our knowledge, a comparison of these methods is so far
not available. | »wever, nany other alternatives exists, such as for instance the stabilized method of Franca
and Frey [48] emy.'~vi»; the negative adjoint differential operator (USFEM, Unusual Stabilized FEM) just
to cite one, .. "~ve not considered here in order keep the length of the paper within reasonable limits.
To keep the p. »r self-explanatory, a brief presentation of the cited numerical methods will be considered
hereafter to prov de the basic concepts. For more details on their derivation, see the up-to-date review on
VMS methods for the simulation of turbulent incompressible flows [1].

To assess the different numerical methods, applications to the simulation of a high Reynolds number
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flow with vortical structures on relatively coarse grids are presented, by focusing on a t ,o-dimensional plane
mixing-layer flow as benchmark problem, since it presents a wide range of flow scales - a. ~n interesting time
evolution of the flow field. Starting from a perturbed initial condition, the transition to 1..2 development
of small vortices takes place, which are then paired to larger vortices until one si .gle >ddy finally remains,
rotating at a fixed position. In particular, we analyze different quantities of _-te’ 2st associated to this
problem (i.e, temporal evolution of kinetic energy, enstrophy, palinstrophy, anc. ~ortic."~ thickness) in order
to judge the performance of all the studied methods and draw some definitive ~onciu *ons. All the numerical
results are benchmarked against a reference solution, obtained in the ver  rec~ + paper [13]. There, the
authors present computational studies for the long-time integration of the ™D "yelvin—Helmholtz instability
problem at three different Reynolds numbers (Re = 102,10%,10%) with “izh 0. 'er divergence-free H(div)-
FE methods. In particular, they used a Hybrid Discontinuous Galer <in (H. G) approach for the spatial
discretization and a multistep implicit-explicit (IMEX) method that ~ombir :s a second-order Backward
Differentiation Formula (BDF2) with a second-order accurate ex’. .pola..on in time. In our numerical
simulations, we have used the results obtained with Re = 10* on he f .es mesh consists of 2562 square as
a reference solution. Note that this model problem is very sensitive o sp all perturbations that are almost
unavoidable in numerical simulations, thus some targets, such as « mesu-independent prediction of the final
pairing, are not achieved even among the very accurate simlations v ith the highest resolution in [13]. In
this paper, we mainly focus on efficient spatial and temporal a.. -veti .ations, for which both Inf-Sup Stable
(ISS) and Equal Order (EO) low-order FE pairs are explored, ‘sing a second-order semi-implicit Backward

Differentiation Formula (BDF2) in time, where the line ‘...l .. of the fully discrete problem at each time
step is done by means of temporal extrapolation. In contras. +o a fully implicit scheme, this approach yields
a unique linear system of equations to be solved at ez .. “*e step. Altogether, performing simulations with

semi-implicit schemes uses less computing time than fu'v implicit schemes. However, while a fully implicit
approach is generally yielding a stable time discre “-atio. scheme, a semi-implicit approach may require a
time step restriction due to the stability issues of t1.> 1. ~e stepping scheme. Note that semi-implicit BDF
schemes for the numerical simulation of NSE w' 1. VM, turbulence modeling have already been investigated
in the literature, see for instance [15], and also [1u; for a stable velocity-pressure segregation version.

The paper is organized as follows. Section 2 explains briefly the used VMS methods with a special focus
on the derivation of two-scales VMS met iods. In Section 3, a semi-implicit approach based on two-step
BDF (BDF2) for the time discretization < detail d for each studied method, together with some numerical
implementation aspects. Section 4 pres nts t.. v anerically comparison for the simulation of two-dimensional
Kelvin—Helmholtz instabilities in the aigk Revnolds number regime. Here, several quantities of interest are
presented, evaluated and discussed. .“rally. section 5 summarizes the main conclusions of the paper and
gives an outlook.

2. Variational multiscale » .c hods

As already mentioned, V.."¢ methods are based on the variational formulation of the incompressible
NSE (1). To define the v wriationa. formulation of (1), the velocity space V = [H}()]? and the pressure
space Q = L2(2) are int odr ced. Let (-,-) denote the L? inner product with respect to the domain Q. The
variational formulation of .} re «ds as follows:

Find (u,p) : (0,7) =V - @ such that for all (v,q) € V x Q
%(u )+ viVu, Vv) + (u-V)u,v) — (p,V-v)+ (V- -u,q) = (f,v) in D*(0,T), (2)

with u(0,x) = ug, ' i~ 2, where (-, -) denotes the duality pairing between the velocity space V and its dual
V* and D*( ., *~ the space of distribution on (0, 7).

In standa1.’ onforming Finite Element (FE) formulations, the infinite-dimensional spaces (V, Q) are
replaced with fir. te dimensional-subspaces (Vj,, Q) consisting of typically low-order piecewise polynomials
with respect to a triangulation 7 of . In this paper, both Inf-Sup Stable (ISS, [17, 18]) and Equal Order
(EO) H!-conforming FE pairs are explored, which are not exactly divergence-free, by considering in general
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the popular Taylor-Hood FE pair Py /Px_1 [19] and the EO FE pair Py /Py, respective y, with & > 2, where
P, denotes the space of continuous functions whose restriction to each mesh cell K « 7w is the Lagrange
polynomial of degree less than or equal to k and P = [P;]?. Thus, low-order H!'-cont.. ming FE (not
exactly divergence-free) are considered in this work. Another alternative stratery is to use discontinuous
approximations such as Discontinuous Galerkin (DG) methods. This has been €. ~lo  ed for instance in [13,
36], where, in particular, an exactly divergence-free hybrid discontinuous Galer: ‘n (L. 23) method based on
H(div)-FE is considered. However, this usually leads to a more expensive dis~retiz. “ion.

2.1. Two-scales VMS methods

This section discusses the basic concepts of two-scales VMS methe 2. A . arting point of two-scales
VMS methods is the separation of the flow field into resolved scales (@ 5) and = uresolved scales (u’,p’) such
that u = u+ u’ and p = p + p’. Analogously, a direct-sum decompos “ion of velocity space V.= V @ V’
and pressure space Q@ = Q ® Q' is considered. It should be emph ..zed tuat although this approach is in
principle the same as in Large Eddy Simulations (LES), it is we ( kr bwn that the definition of the scales
is different. A variational projection, either L? projection or ellintic prois ction, for the separation of scales
and spaces is performed in VMS methods.

Note that the VMS methodology allows further decompos “ions of t 1e resolved scales. The most common
approach of this kind is a decomposition of these scales ints larg. “o< Jlved scales (or large scales) and small
resolved scales, leading finally to a so-called three-scales Vi." method. In this case, the effect of the
unresolved scales on the resolved ones is modeled by mec > ui an eddy viscosity term that only acts directly
on the small resolved scales (cf. [20-22]). However, in the . ~sent paper, we just focus on the comparison
between VMS methods that use a direct modeling ¢ v.. —herid-scale flow by approximating the related
equations, for which no eddy viscosity is introduced tc v.odel the effect of the subgrid-scales. This is the
reason why we restrict to two-scales VMS methoa.

For clarity of presentation, the weak formulation ‘2) .{ the NSE is expressed in a short form as follows:

Given u(0,x) = up(x), find (u,p): (0,7) = .7 X  satisfying
A (u,p). == 1) =£(v) V(v,q) eV xQ. (3)

Decomposing the test functions als¢c ‘nto tw, scales and using the linearity with respect to the test
functions, the variational formulation 3) leaw. ‘o the coupled set of equations:

e an equation for the resolved sc. 'es
A (@), (v,0) + A (0',p), (7,9) =£(¥), (4)
e and an equation for the um. solved scales
(W), (V) + A(w (v, p), (v, ¢)) = £ (V). (5)
The form A(-;-,-) is dec. mp ssed .nto its linear part and the trilinear convective term as
A(w; U, W) = Ajiyn (U, W) + ((u- Vu),v)

where the abbreviatic. < U = (u,p)T and W = (v, ¢)T are used for simplicity. Then, the equation (5) for
the unresolved s ales con be written in the form

Ay (U, W) + (- V)u',v') = <R (ﬁ) ,W’> (6)
with

Ay (U, W) = A, (U, V) + (0 - V)&, v/) + (|- V)u', ),
(R(T), V') = £(v)) — A (T, W) — ((u- Va),v'),

4
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where Ay (U, W’) is the Géateaux derivative of A(+;-,-) at U in the direction of U’. T" e solution of (6) can
be formally represented as -
U = Fy (R (D)), (7)

which can be interpreted as the unresolved scales that are derived as a function of .he r sidual of the resolved
scales. Finally, inserting expression (7) in the resolved scales equations (4) leads to  single set of equations
for the resolved scales.

Two-scales VMS methods aim to approximate Fy by models which do .o rely .. considerations from
the physics of turbulent flow, but are derived just with mathematical arg-.mer .s. .1 the next subsections,
concrete approaches will be presented.

2.2. Restdual-based VMS method

The main idea in the derivation of the two-scales RB-VMS methed is . -~ . on a perturbation series with
respect to the norm of the residual associated with the resolved scales. 7. ‘s proposed in [6] to truncate the
series after the first term and to apply some modeling of this term. ™.ie re ulting method can be considered
as a generalization of classical stabilization methods for the NSr..

A perturbation series for a potentially small quantity € = [|[R(U), ~v/xq)- is considered. It is assumed
that the larger the space (V x @), the better U approximates U, »nd *ae smaller is R(U). The perturbation
series is of the form

U =eU) +°Up+ =) UL (8)
=1

In particular, if € = 0, i.e. R(U) =0, then U’ = Fy (> (7.)) = 0 from (7)-(8) . Inserting the perturbation
series (8) in the terms of (5) for the unresolved sc 'es g1. s

o (Z e'U, \, DAy (UL W)
i=1 i=1

7

and

((Z el - V) Zs"u&v'> = 2 (g ¥ Jul, V) + B [((u] - V)ul, V) + () - V)ul )] +
=1 =1

I DRI
= \I
Substituting these terms intc (5) ‘ields
i&iAU (U, W’ +\T“5" i (0 - V)ul_;,v') :e< E{(ﬁ) W’>.
P V@ = =A IR (O)ll vy

Collecting similar t rms w1 h respect to € leads to a system of variational problems which are coupled
through the right-ha, 1 side that is

Ay ( Q,W/)=< R (0) >W/>7
)*

IR (O) || v
i—1

Ay (U, W) = =) " ((u)- V)u_;,v) i>2.
j=1
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In the modeling of the unresolved scales, it is suggested in [6] to truncate the series (& after the first term,
and to use a linear approximation of the so-called fine-scale Green’s operator that fo u. v represents U

U’ =~ U/

T7 TT u
IR(0)l|vrxq-U; = 7R (TU) = 7R (p:)

Tm (£, — Opup + vAu, — (uy, - V)uy, — Vph)\ /n‘,\b4

= 9)
—7e (V- up) ) \ RY

where 7 is a 4 x 4 diagonal tensor-valued function, and the approximation of t.. resolved scales is computed
in a standard FE space.

The RB-VMS FE formulation is obtained by inserting the approxim: tion (9) nto the large scales equation
(4), omitting the models of the terms (9,u’, v) and v(Vu', Vvy,), nevlec.) *~ Lae inter-element jumps of the
fine scale functions, and integrating by parts the continuity equati »n w* .. vespect to the unresolved scale in
(4), assuming that u' =0 on I":

Find up : (0,T) = Vy, pr ¢ (0,T) — Qp, satisfying

(Opup,vi) + v (Vug, Vvy) + ((up - VYup, v, = (o, - vi) + (V- up, qn)
+b (Rl,\f, uh,vh) +b (uh, RhM,Vh} o)) (H%,R}\L/I,vh)
- (Rg»V'Vh) - (RhM7VQh) “ \Up, Vi) (10)

for all (vp,qn) € Vi x Qp, where b in (10) denote . -~ trilinear convective form given by b(u,v,w) =
(u-V)v,w), u,v,weV.

Concerning the actual choice of b, it is advisab. = “rom he practical point of view that one does not need
to compute a derivative of the residual of the mome«ntu. ~ equation. For this reason, it is suggested to use
the following form, which is obtained from the I -roe, ce form with integration by parts:

-

b(u,v,w) = (V- (uv ),w) = —(uv’, Vw). (11)

The two terms b(RM, up, v,) and b(uy, P4, v) « "e known as cross-stress terms, and b (RhM, RM, vh) as the
subgrid (or Reynolds-stress) term. Using " 1), (*.v?, Vw) = (v, (Vw)Tu) and (Vv)u = (u- V)v, one gets
for the first cross-stress term in (10):

b (R,%\l/[7 uh,vh) = — (Rl}\b/[(uh)T, V"h) h— /Jh, (Vvh)TRhM) = — (R}}L/I, (Vvh)uh) = — (R}I\L/[, (uh . V)Vh() 3 )
12

which together with the last term in the left-hand side of (10) gives:
b(E v, vi) — R, Va,) = — (R (wy - Vv + Vay,) . (13)

This term corresponds t, th . weli known stabilization term of the Streamline-Upwind Petrov-Galerkin
(SUPG) method for the ~n ectir a field u,. One can also observe the contribution of the so-called grad-div
stabilization term by i»~ertu., * ie concrete formula of the residual of the continuity equation into (10), that
is:

(TCV-uh,V-vh). (14)

Similarly, using 11) and (uv?, Vw) = (v, (Vw)Tu), one obtains for the second cross-stress term and the
subgrid term in (10):

b (llh,R%/Ith) = - (uh(RhM)Tvvh) == (RhMa (VVh)Tllh) ) (15)

bRy Ry, vi) = — (R (R, vi) = — (R, (Vvi) 'Ry (16)

Considering formulas (12) and (15) for the cross-stress terms, and formula (16) for the subgrid term, the
RB-VMS method (10) can be expressed as:
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Find up : (0,T) = Vp, pr = (0,T) — @y, satistying

(Orap, vi) + v (Vag, Vi) + ((w, - V)us, vi) — (pr, Vvi) + (V- up, qn) — (R (u, -V, -, + CVgy)
- (le\l/l7 (Vvh)Tuh) — (RhM, (Vvh)TR}\f) + (TCV - Up, V- Vh) = (fh /h)7 (17)

for all (vp,qn) € Vi x Qp. The formulation (17) provides the complete RB-""MS .. ~thod, which retains
numerical consistency in the FE equations, in the sense that the continuouc solu.. 'n exactly satisfies the
discrete equations, whenever it is smooth enough. In this paper, both ISS 7 .ad I 2 H'-conforming FE pairs
would be explored. For this reason, we have added the constant C' in the “w wlation (17), so that C =1
when using EO FE pairs, and we will drop the dependency of the pressur~ ~tabu. -ation term from (17) when
using ISS FE pairs by fixing C' = 0. We recall that in (17) the terms

(RY, (un - V)vi + Van) and 7 (a7 vy)

are the classical stabilization terms of the SUPG and grad-div 1. ~".10ds respectively. In this paper, we
are interested in performing numerical studies also with a simp..“ed 1. _uel arising from (17), which is the
classical SUPG method together with grad-div stabilization:

Find up : (0,T) = Vy, pr ¢ (0,T) — Qp, satisfying

(Oran, vi) + v (Vag, Vvi) + ((w, - V), vi) — (pr, Vvi) +1 7o up, ) — (R (ug, - Vv, + CVg,)
+(7—cv'uh7v'vh) - (fhavh)a (18)

for all (vh,qn) € Vi X Qp, again for both ISS (C' =0, anr ru (C = 1) FE pairs.

2.8. Local projection stabilization methods

Local Projection Stabilization (LPS) metho/" - ~re si bilization methods that provide specific stabilization
of any single operator term that could be a source ~f instability for the numerical discretization. They were
introduced in [9] and they could be viewed as simplincations of the two-scales RB-VMS method described
in the previous section. Indeed, LPS met} ,as . “e not fully consistent (only specific dissipative interactions
are retained), but are of optimal order w th respe :t to the FE interpolation. The fact that the stabilization
enjoys the right asymptotic behavior -vithc + f .l consistency allows to decouple the stabilization of the
pressure and the velocity without h-vine all the residual terms coupled thus relying on a term-by-term
structure. This feature could be con. e ed 2 « important advantage with respect to the more complex RB-
VMS method in view of practical i apleme. * stions such as to perform the numerical analysis since it leads to
a simpler and less expensive strv .tu ~. Different variants of LPS methods have been investigated during the
recent years for incompressible flow prov’ems. The main common feature is that, thanks to local projection,
the symmetric stabilization t rms only act on the small scales of the flow, thus ensuring a higher accuracy
with respect to more classic.' st .bilization procedures, such as penalty-stabilized methods, cf. [23]. Thus,
the effect of LPS is on the Jne ha. 1 to improve the convergence to smooth solutions and on the other hand,
for rough solutions, it li-1it t 1e propagation of perturbations generated in the vicinity of sharp gradients.
This way these schemes 1. > ain ‘ ¢able and useful tools for the simulation of turbulent flows.

As a single rule, t'.c strucv.re of LPS method is achieved by considering in the RB-VMS method (17)
just the specific diss pative 1 teractions that stabilize convection and pressure gradient, and by introducing
local L? projections i. the a*,proximation of the unresolved scales, in such a way the symmetric stabilization
terms only act o. tne small scales of the flow. This leads to a family of methods associated with the choice
of the actual lo. al L? pijection.

The main der, =tior of the LPS methods will be introduced here for the NSE (1). The stabilization effect
is achieved ", ~7ding least-squares terms that give a weighted control on the fluctuations of the quantity
of interest. 1 is control is based upon a projection operation m, : L?(Q)) + Dj onto a discontinuous FE
space Dy, (the *, rojection” space). This space is built on a grid M, formed by macro-elements built from
the triangulation 7, of ). The component-wise extension of 7, to vector functions is denoted by 7r;. The
LPS approximation of the NSE reads:
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Find up : (0,T) = Vp, pr = (0,T) — @y, satistying

(atuh,vh) + v (Vuh, Vvh) + ((llh . V)uh,vh) — (ph, Vvh) + (V . uh,qh)

+ (Tmkn((un - V)ug), kn((un - V)va)) + (Timkn(Vor), kn(CVan)) +(1.V - 1,V - vy) = (fh,(Vh)),
19

for all (vp,qn) € Vi X Qp. In (19), kp, = I — 7, is the “fluctuation” operator, being T the identity operator.
Also, the additional grad-div stabilizing term has been added, since not ¢ ;aci'v divergence-free FE pairs
would be explored. As before, we have added the constant C' in the form 'ati n (1Y), so that C' = 1 when
using EO FE pairs, and we will drop the dependency of the pressure stabilizatic ~ term from (19) when using
ISS FE pairs by fixing C' = 0.

The stability of LPS methods is based on local inf-sup conditions (se¢ [1], Sec ion 6.2): the local restriction
V(M) of the velocity space V), (the “approximation”space) to anv mac. .ement M € M}y, must be rich
enough in degrees of freedom with respect to Dy, (M), more than ir mi¥ . methods the global velocity space
V}, must be rich enough with respect to the pressure space (), . achir ve the standard discrete inf-sup
condition [17, 18]. There are two main approaches of LPS meu. ~ds ..ave been proposed (see [24]). The
first one is the one-level approach, wherein the approximation space . enriched such that the local inf-sup
condition holds and both Vj, and Dy are built on the same ni. “h. T 1e second one is the two-level variant
of LPS method, where the projection space is built on a ¢ ~rser mesh level to satisfy the local inf-sup
condition. It is possible to consider overlapping sets of =~~~ cments (see [25]). In this work, we will
restrict numerical studies to the one-level LPS method (de/ed on a single mesh), considering PHubble /pde
ISS FE pair on the one hand, and Phubble /pbubble 22 T payr on the other hand, with projection space
D,;, = ]P’f‘c7 i.e. the discontinuous version of P;.

2.8.1. Local projection stabilization by interpolation

A further simplification of LPS schemes is 2 “iavea when the local L? projection operator 7, is replaced
by an interpolation operator from [L?(Q)]% onto « ~rojection space D} formed by continuous FE (see [11]).
To describe this approach, assume that the discrete velocity and pressure spaces V, and Q) are formed by
piecewise polynomial functions of degree / at .. 7st, e.g.

V=PV, Qn=P,nNQ. (20)

It is assumed that 7rj, is some loc' lly cabl approximation operator from [L?(Q)]¢ onto D;, = Pj_1,
satisfying optimal error estimates. In . ~ct'cal implementations, we choose 7, as a Scott—Zhang-like [26]
linear interpolation operator in t" ~ space ¥ (since we consider Py as FE velocity space), implemented in
the software FreeFem++ [27]. T his m. ~rpolant may be defined as

Vel mv)(0 = 3 Mi(v)(@)p,(x),
aeEN

where N is the set of L grar ge irterpolation nodes of Py, ¢, are the Lagrange basis functions associated
to N, and IIj is the inter, ‘lati .n operator by local averaging of Scott-Zhang kind, which coincides with
the standard nodal T .grange wuiterpolant when acting on continuous functions (cf. [11], section 4). This is
an interpolant that _ 1st uses nodal values, and so is simpler to work out and more computationally efficient
than the variant of th. Scot —Zhang operator introduced in [28] for the Stokes problem, which is instead an
operator defined rom » node-to-element map and requires integration on mesh elements. The LPS method
by interpolatior is still tated by (19), but assuming that the grids 7, and M} coincide. The stability of
this LPS methoa | = i~ erpolation follows from a specific discrete inf-sup condition (see [12], Lemma 4.2).
Therefor . .2~ method presents the same structure of the Streamline Derivative-based (SD-based) LPS
model [29, 30, "ut it differs from it because at the same time it uses continuous buffer functions and it
does not need e. "iched FE spaces. Further, it does not need element-wise projections satisfying suitable
orthogonality properties and it does not require different nested meshes. An interpolant-stabilized structure
of Scott—Zhang type replaces the projection-stabilized structure of standard LPS methods. The interpolation

8
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operator takes its values in a continuous buffer space, different from the discrete veloci .y space, but defined
on the same mesh, constituted by standard polynomials with one degree less thar 1..~ FE space for the
velocity. This approach gives rise to a method with a reduced computational cost for som. choices of the
interpolation operator. This method has been recently supported by a thorough nu- 1er1 al analysis (existence
and uniqueness, stability, convergence, error estimates, asymptotic energy balance, for che nonlinear problem
related to the evolution NSE, cf. [12], using a semi-implicit Euler scheme for .“e mc. nlithic discretization
in time. In particular, the error analysis reveals a self-adapting high spatial ~~cura 7 in laminar regions of
a turbulent flow that turns to be of overall optimal high accuracy if the fow - “illy laminar. Numerical
simulations of 3D Beltrami flow in laminar regimes [12] confirm this fac. Tais also allows to obtain an
asymptotic energy balance for smooth flows.

Remark 1. Several authors have studied the links between residua. LPS n =thods and VMS strategies.
Braack and Burman established a connection between LPS and VMS . ~d".ng in [29], in the context of
a three-scales VMS formulation of the NSE. In that work, LPS s uss’ *o construct eddy diffusion terms
that vanish on the resolved large scales. Barrenechea and Valeni » ulso esigned consistent LPS methods
in [47], starting from a VMS formulation: an enriched Petrov—G . 'erki. ormulation for the Stokes problem,
in which velocity and pressure FE spaces are enhanced with solution. of residual-based local problems. The
static condensation procedure is then applied to build the medw ~d. T e resulting method does not need the
use of a macro-element grid structure and is parameter-free. Tere, u different approach is being followed and
a two-level RB-VMS formulation of the NSE is constructed and e sub-grid diffusive terms are retained to
describe the LPS discretizations.

3. Time discretization and numerical implemen. ' 1on aspects

In this section, a semi-implicit approach for the v"mc Jiscretization is proposed by applying the two-step
Backward Differentiation Formula (BDF2) in o- '~ ta ¢ ~t the fully discrete schemes. We compute the appro-
ximations u} and p} to u” = u(,t,) and p"™ = p{ t,), respectively, by using temporal schemes based on
semi-implicit BDF2, for which the nonlinear terms are extrapolated by means of Newton—Gregory backward
polynomials [31]. In order to abbreviate t’.c a.. “rete time derivative, we define the operator D? by

PPt —4ul 4 up !

Diut ' = 2AL :

n > 1. (21)
We consider the following extrapc ation “r che convection velocity: uj = 2u} — uZ_l,n > 1, in order to
achieve a second-order accuracy . time for all methods. For the initialization (n = 0), we have considered
u,:l = ug, being u% the initial conditic. so that time schemes reduce to semi-implicit Euler method for the
first time step (At)? = (2/3)2 ..

For the one-level variant f L} 3 method, numerical studies concerning the choice of stabilization param-
eters suggest that a good -hoi. is 1, = Cohg and 7. = Cy, where Cy € (0, 1), see [46]. Based on these
studies and on our own .xpe ience, the parameter Cy is set to be 0.1 in all simulations for the one-level
variant of LPS method. "t all ¢ her methods, the following expressions of the stabilization coefficients are
used in the fully discr~*~ sche = s

d v? 2 v o Ug e
7'?w :::"U([,'TTYLL] ), Wlth Tﬁn(K): (AtQ+dcl(hK/k>4+62(hK/k’)2) , (22)
and h /k)2
nK) = KM 2
(K) = gy (23)

by adapting the ‘orm proposed in [32, 33], designed by a specific Fourier analysis applied in the framework
of stabilized methods. In (22)-(23), v denotes the order of accuracy in time, d is the dimension of the
problem, ¢; and co are user-chosen positive constants, hy is the diameter of element K, k is the polynomial

9
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degree of the velocity FE approximation, and U} is some local speed on the mesh c . K at time step n,
n=0,1,..., N —1. In this work, we have v =2, d = 2, and k = 2. Also, the values r: ./ = constants ¢; and
¢y are chosen to be ¢; =4, ¢o = \/c1 = 2 (cf. [34]), and we set Uy = Hﬁh||iz(K)/|K|. with |.7] denoting the
surface (or volume, if d = 3) of element K. Thus, the stabilization coefficients re- ds

o4 V2 G122 ey /1T
and L oy2
oK) = (87'12{}()) (25)

In the following subsections, we specify in detail how it reads the f.1ly disc ete scheme for one of each
considered method.

3.1. Semi-implicit BDF2 RB-VMS scheme

We consider the time discretization of problem (17) by means . € a sc..1-implicit BDF2 scheme. Similarly
to [15] (section 2), the fully discrete semi-implicit BDF2 RB-VMb scheme consists in solving, for n =
0,...,N—1:

Find uZ“ € Vy, pzﬂ € @y, satisfying

(Dt vy) + v (Vuth, Vivy) + (@ - Vup ™ o = o™ Vve) + (Vo gn)
- (Rl}\L/I(uZ+1apz+l)a (ﬁ;LL : V)Vh + ﬂvﬂh) - (RI}\L/I(UZJ'_lapZJrl)a (vvh)TﬁZ)
— (R (), (Vv) TR (W), 7)) + (V- ap TV ev) = (B ), (26)

for all (vi,qn) € Vi, x Qp, where
Ry (wp ™t ppth) =7 (71 = 2Tt vAwt — (G- V)uptt - vt

and

Ry (ay,pp) =m0, (£ 7 Dy +vAuy — (§y - V)ug, — Vi) ,
with pp = 2p} — QpZ_l, and p = pgl f ~n =0 so that one has to initialize the pressure (e.g., solve the

steady Stokes problem at t = 0).

3.2. Semi-implicit BDF2 SUPG sche ~e with grad-div stabilization

Similarly to (26), for n =0,... N—1, e semi-implicit BDF2 SUPG scheme with grad-div stabilization
reads:

Find u} ™ € Vy, ppt! € Q- satisfyi.g

(Diup vy) + v (Vu' TS vy) + (@) V)upth ve) = (pp L Vve) + (Voup )
— (Rl)ﬂ(u;” ,Q"H), (up - V)vp, + C’th) + (TZLV . uZ‘H, V- vh) = (f,?“,vh), (27)
for all (Vh,qh) eV x(-.
3.8. Semi-implicit B JF2 LPS schemes
Apart from the ¢ flerence in the definition of the projection/interpolation operator 7, the semi-implicit
BDF2 time discretizat.. ~ ~ ooth one-level LPS and LPS by interpolation schemes is given, forn =0,..., N—
1, by:
Findup : (MNT) = Vi, pr = (0,T) — Qp, satistying
(72 vy) v (VU™ Vivy) + ((a) - V)uZ“,vh) — (pZ“,Vvh) + (V- uZH,qh)
+ (T ken (@] - V) ap ™), k(@ - V)va)) + (T k(Yo ), kn(CVan))
+ (TC"V . uZH, V- vh) = (f{;“,vh)7 (28)
for all (vi,qn) € Vi X Qp, where we recall that kj, = I — m, is the fluctuation operator.
10
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4. Numerical studies: 2D Kelvin—Helmholtz instability

In this section, the numerical study for a two-dimensional mixing layer problem evo. -ing in time at
Reynolds number Re = 10* is presented. All computations have been performed - 1. the FE package Par-
MooN [35], except for the LPS method by interpolation for which we used the FT sof* ware FreeFem++ [27]
is used.

4.1. Model problem and monitored quantities of interest

Following a similar setup as described in [12, 13, 21, 36], the setting ~f ‘.1e model problem is briefly
summarized. The problem is defined in Q = (0,1)2. Free slip boundar <onu."ions are imposed at y = 0
and y = 1. At z =0 and = = 1, periodic boundary conditions are pres cribed. There is no external forcing,
that is f = 0. The initial velocity field is given by

Use tanh((2y — 1)/80) [ S
g = +

'IIDCN b
0 - \' o

where Uy, is a reference velocity, &g is the initial vorticity "hickne s that will be defined later, ¢, is a
parameter giving the strength of perturbation, and the stre. m funcuon is given by

¥ =exp (—((y — 0.5)/80)%) (« st87x) + cos(20my)) .

Let the initial vorticity thickness 6y = 1/28, Uy, = 1, e - ~ling/noise factor ¢, = 1073, and the inverse of
viscosity v~1 = 28 x 10*. Thus, the Reynolds number & < ciated with the flow is Re = Uy, 8o/v = 10*%. The
mixing layer problem is known to be inviscid uns. .. 'e, t. 1s the chosen small viscosity makes the solution
very sensitive. Slight perturbations of the initial con.'iti... are amplified by the so-called Kelvin—Helmholtz
instabilities. Because of the unstable nature o. - ... 7=~ lem, this is a challenging test case for the study of
2D turbulence and vortex dynamics in free shear 1., =ts of incompressible flows (cf. [13, 37]).

Several attempts have been made in the literature to numerically investigate the Kelvin—-Helmholtz
instabilities caused by slight perturbatior , in ti. initial condition of the described model problem (both in
2D and 3D). In particular, it has been de. ~ly disc ssed in [37], where a direct numerical simulation of a two-
dimensional temporal mixing layer pro’,Jlem w. ~ performed, applying a second-order finite difference method
at the high resolution of 2562 grid - oint, wi‘h a uniform spacing in each direction. More recently, very
accurate computational studies for a ..~ 2-tir .e integration of the 2D Kelvin-Helmholtz instability problem
at three different Reynolds numbe s (Re = _0%,10%,10*) with high order divergence-free H(div)-FE methods
have been presented in [13]. T’.ere, “he authors used a Hybrid Discontinuous Galerkin (HDG) approach
for the spatial discretization v~ *o the high resolution 2562 square mesh, and a multistep implicit-explicit
(IMEX) method that combi- es a second-order Backward Differentiation Formula (BDF2) with a second-
order accurate extrapolation 1. + me with a very small time step At = 3.6 x 10~°. Further numerical studies
for this problem, includin‘, LES, v IS and stabilized models, may be found, e.g., in [12, 21, 36, 38—40]. The
corresponding three-dinr -nsi nal - ase has been numerically analyzed, e.g., in [40, 41].

For the evaluation of cu. nu’ ational results, we are interested in studying the temporal evolution of the
following quantities - 1 interest. The kinetic energy of the flow is the most frequently monitored quantity,
given by

1
Fxin = 5||u ||L2(Q) / lu(t, x) |2 dx.

For the studied , voblenr the physically correct behavior of Fk;, is that it strongly monotonically decreases.
In Section 4 2-4.7, wo will illustrate the temporal evolution of Fx;, in our conducted numerical simulations
for the studic 1 v :vods on different refinement levels and on different time step lengths.

The next st died quantity of interest is the enstrophy, defined as

1 1 1
= 519 X Ol = Ol = 5 [ IV x wlt. ) dx.
S| a0y = 5l OlFam = 5 [ IV xwl

11
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Similar to the kinetic energy, the enstrophy can not increase. Numerical studies presen’ 2d in [36] shows that
the physically correct behavior is a monotone decline from its initial value. Further ac ~ a more accurate
method with a higher resolution leads to a later decrease in enstrophy [13]. This auantity >f interest has
been investigated by several other authors too, for details see [42-44]. In Sectior 4.4- 1.7, we will illustrate
the temporal evolution of £ in our conducted numerical simulations for the stu 'iec methods on different
refinement levels and on different time step lengths.

Afterwards, we will investigate another important and challenging quantit- ot .. *erest, known as palin-
strophy, which in the context of 2D turbulence drives the dissipation prc ess ~d is very sensitive with
respect to the different pairings of vortices. Palinstrophy is defined by

1 2 1 - 2
P = 5IVea e = 5 [ [Velt: )P

Note that, in contrast to Fk;i, and £, P can increase in time (cf. "+o), Section 3.3). In Section 4.5-4.7, we
will illustrate the temporal evolution of P in our conducted nume "ice” sin 1lations for the studied methods
on different refinement levels and on different time step lengths

Finally, we consider the vorticity of the flow

w=Vxu=0,us — 0y

The vorticity thickness is defined by

5(t) = 2U .

1

SUPye(, 1 I / \u7tn)|

where (w)(y,t,) is the integral mean in the perioc - direc fon and is defined as

1
/ <X, 'Jn; i 1
@MMJZJ—TA—:/wmmm.
dx 0

v )

In the computation, this integral was ~valu.'~d discretely for all grid lines parallel to the z-axis (cf. [40]),
and the maximum of the computed - alue s was taken to obtain 6(¢,). In the evaluation of computations,
we considered the vorticity thickness ol .tive co g : §(¢,,)/d9. The understanding of the physical evolution
of the flow is done by determinir s the v.~.poral evolution of the relative vorticity thickness. Similar to
the results for the palinstrophy,  h.. uantity is very sensitive with respect to vortex pairings. Thus, some
conclusions can be drawn depending on the pairing, time at which the pairing happens, and values of the
peaks of the relative vorticity chic ness, corresponding to the pairing of eddies. The qualitative behavior of
the vorticity field is as follow. ‘se : [13], Figure 3 for a graphical visualization of the evolution of the vorticity
field through meaningful "astanu.’ Starting from the noisy initial condition ug, four primary eddies are
developed, which are the 1 pe red to two larger secondary eddies that are standing for a long-time. Finally,
the pairing of secondary .’ ties eads to one larger eddy, rotating at a fixed position. It can be found in
the literature that, d pending on the numerical method used for the simulations, the position of the final
eddy is located eith r at th. center of the domain [13, 36, 39] or at the periodic boundaries [12, 21, 40].
So, there is no consei. s i che literature concerning the location of the last vortex, and one can conclude
that different dic _rete settings generally lead to different final states (see [13], Remark 3.7). A comparison
of the temporal =volutic 1 of the relative vorticity thickness, obtained with the studied methods on different
refinement levels . d o . different time step lengths, is discussed in Section 4.6-4.7.

Note the "' ~wantities of interest will be compared with the reference solution.

4.2. Preliminar. s to numerical simulations
Our calculations were carried out on structured triangular grids where the coarsest grid (Level 0) is
obtained by dividing the unit square into two triangles. This grid is refined uniformly and the number of

12
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Table 1: Overview of meshes and degrees of freedom (d.o.f.).

Level h P, dof. | Py dof. | PYwbble dof | Pde d o f.
6 | 2210x10 2| 131584 | 16512 | 328192 98 77
7 | 1.105x 1072 | 525312 | 65792 | 1311744 39,216
8 | 5.525x 1073 | 2099200 | 262656 | 5244928 157224

degrees of freedom on finer grids is given in Table 1 for different FE spac = .sed in the simulation. It is
shown that how sensitive the solution is towards mesh refinement by cor-, wring .“ree different refined levels
of resolution (Level 6, 7 and 8) against the reference solution, obtair >d on « square mesh of 2562 square
elements with RT8 FE, i.e. Raviart-Thomas FE of order 8, and resu. ing in > 378560 degrees of freedom
for velocity and 65536 degrees of freedom for pressure (see [13], T .le 1).

The time discretization is performed for all methods with the sem’ im, licit BDF2 schemes described in
the previous section. Firstly, a relatively coarse equidistant time step of - agth At = 3.125 x 10~ has been
used, which guarantees somehow stable simulations. Then, since t.. main interest of the paper is in testing
the best performing methods among the analyzed ones on -~latively coarse grids, we have used two finer
time step lengths At; = 7.8125 x 10~% and Aty = 5.9523 x 19~*_~d _onsidered the best performing (on the
previous larger time step At) RB-VMS and SUPG methods o.. Tevel 6, which already provides very much
comparable results with respect to the reference solutior . icasy ror the SUPG method with EO FE. Note
that a (more than ten times) finer temporal resolution is used for the reference solution, i.e. At = 3.6 x107°
n [13]. As in [13], a long-time integration is perfori e, ~~ the final time is set to be T &~ 14.29, which
correspond to a final dimensionless time of 400 = TU,'4 .

For the one-level variant of LPS method that .. s e. viched FE spaces for velocities, we used mapped
FE spaces [49], where the enriched space on the refe.~nc. cell K = (—1,1)? is defined by

PP () = 0 (K) + DAy (K),

with b the cubic bubble on the referenc_ . ngle. Together with the choice Dy, (M) = P{¢(M) for the
projection space, this space is suited for ~lassicai one-level LPS methods. For all other methods, standard
Py FE spaces were used for velocities.

All monitored quantities of intere vs fc - the Kelvin—-Helmholtz instability problem in our computational
results are compared against the refe. nc - sol* tion obtained in [13] on a square mesh of 2562 square elements
with RT8 FE, and the small timr step 1~ ,th At = 3.6 x 107°. In addition to that, we will also discuss
our results compared with those p. sented in [36]. In [36], for the same setup of the problem, numerical
studies were performed employing unsu. ictured triangular meshes with exactly divergence-free H(div)-FE
based on Raviart-Thomas F7. ot order 3 (RT3) on four different refinement levels in space for velocities.
For the time discretization, .~ ¢ taptive BDF2 time stepping scheme was applied. In comparison to that,
our computational results are ou ~ined using much cheaper FE. However, their simulations are presented
for the shorter time peri d [, 2001, corresponding to a final simulation time T ~ 7.14.

In the following, each . -~ nitr red quantity of interest will be discussed and compared separately for all
the methods presente - .1 the | evious sections. Numerical simulations were done both with EO P5 /Py and
ISS Py /Py FE for tl = pair v locity/pressure on different refinement levels. In the case of the one-level LPS
method, EQ P5ubble , mbubble o4 19§ pbubble /pde FR pairs are used. We will also analyze in detail the effect
of time step leng .us on the computational results.

4.3. Kinetic Ene.

The tem -v..' ~valution of the total kinetic energy for all considered method will be discussed in this
section for the “i-ae step length At = 3.125 x 1073, Figures 1 and 2 presents the evolution of the total kinetic
energy respectiv y for EO and ISS pair of FE on different refinement levels. In principle, an evolution
exhibiting a monotone decaying total amount of kinetic energy has to be physically expected, since the
initial velocity distribution is subject to a non-zero viscosity, and no additional energy input is provided. A
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Figure 1: Temporal evolution of kinetic energy with EO-FE: RB-VMS (tc, left), SUPG (top right), one-level LPS (bottom

left), and LPS by interpolation (bottom right), on different mesh
ISS RBVMS

T T
—— Level 6
0.482 —— Level 7

—— Level

— reference |

0481} T B
g
5 N
048}
0.479 i ; | | | | J
0 50 100 150 200 250 ) 350 400

ISS one-level LPS

T T T
—— Level 6
0482 N —  Level 7 |
— Level 8
0.481 N— — reference
£
El f
204 | &
& 0.48
0.479 i
0.478 i
| I |

I I I I
0 50 100 150 200 250 300 350 400

Figure 2: Temporal evolutio. f sinet © energy with ISS-FE: RB-VMS (top left), SUPG (top right), one-level LPS (bottom

left), and LPS by interpolation (. *t m right), on different mesh

monotonically decreas ~o "aetic energy is obtained for all the methods, which can be clearly seen in the
‘or RB-VMS and SUPG methods, on all mesh levels the kinetic energy decreases very
finest grid approaches the reference solution for the

-

Figures 1 and
slowly, around ( 3%, as n [36]. However, results on the
LPS methods too.

4.4. Enstrophy

The temporai 2volution of the enstrophy is plotted in Figures 3 and 4 for all methods respectively with
EO and ISS FE on different refined meshes and the time step length At = 3.125x 1072, Similar to the kinetic
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Figure 4: Temporal evolution 0. mst ophy with ISS-FE: RB-VMS (top left), SUPG (top right), one-level LPS (bottom left),
and LPS by interpolatior (vottom 1.ght), on different mesh refinement levels, At = 3.125 x 1073.

energy, the amor .. of tuc mitial enstrophy is almost the same for all simulations and then behaves slightly
different for difl :rent re ‘nements. The strictly decaying behavior of the enstrophy is correctly displayed in
Figures 3 and 4 i~ all o~ :thods. Nevertheless, only results for the EO SUPG method are almost in agreement
on all grid le =l witn the finest solution in [36] and reference solution approximatively up to ¢ = 200¢, with

time unit ¢ = 59 Uno.
on the finest lev °L.
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Figure 5: Temporal evolution of palinstrophy with EO-FE: RB-VMS (ton 12 SUPG (top right), one-level LPS (bottom left),
and LPS by interpolation (bottom right), on different mesh refinen. "t levels, At = 3.125 x 1073.

4.5. Palinstrophy

The palinstrophy is one of the most sensitive qu v *ty ¢ © interest with respect to the different pairings of
vortices. In Figures 5 and 6, the temporal evolution f tie palinstrophy is presented for all methods using
respectively EO and ISS FE on different refinc. meol._ s, and the time step length At = 3.125 x 1073, In
contrast to kinetic energy and enstrophy, palinstropi, <an increase. In fact local maxima are almost attained
once merging processes of the vortices termi~~te. Reference solution indicates that the last merging process
does not terminate before ¢ = 200¢. As v oticed n [13], we also observe here that although the magnitude
of the palinstrophy is strongly mesh-depc. dent, .he points in time where the first two pairings occur can
be approximately identified independ atly ot " e particular level resolution. In terms of time intervals for
local maxima, the best results for al” me a le els are obtained again by EO SUPG method, where one can
see that the last merging process 5 st.. no’' ended at t = 200% for all grid levels. In terms of magnitude,
EO LPS by interpolation methocd ~n the finest grid better approaches the reference solution. However, we
reiterate that this quantity, botl. in n. -nitude and time intervals for local maxima, is highly dependent on
the studied method, used mes’., ~finement level, FE pair, and time step length.

4.6. Vorticity Thickness

The temporal evoluti m o' the relative vorticity thickness §/9¢ for all methods on different refinement
levels is displayed in Fig. = / us’1g EO FE and in Figure 8 using ISS FE, respectively. The computational
results are obtained w*''. the . .e step length At = 3.125 x 1073, The formation of succeeding peaks in the
evolution of the relat ve vory -ity thickness corresponds to the pairing process of the eddies. For the reference
solution, the local me -imum J/§y = 6.04 at ¢ = 34¢ indicates the pairing of two eddies from four. Comparing
the relative vorti- .., thicsness computed with all stabilization schemes on different refinement levels clearly
indicates that t e first | airing occurs almost at the same time. After that, the relative vorticity oscillates
until the next p.iring f eddies occur. The pairing into the final eddy happens somehow at a different
time for diff =~nt stapilization methods compared to the reference solution, where it occurs at t = 220¢. In
comparison w'th che reference solution, the second pairing is closest on all grid levels for the EO SUPG
method, where .- occurs around ¢ = 1807 for all mesh levels. Also, EO RB-VMS and LPS by interpolation
methods give comparable results on the finest level. Thus, note that the development of the extremely
sensitive quantity of vorticity thickness strongly depends on the mesh refinement. In particular, the last
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Figure 6: Temporal evolution of palinstrophy with ISS-FE: RB-VMS (ton 1o2 - SUPG (top right), one-level LPS (bottom left),
and LPS by interpolation (bottom right), on different mesh refinen. =t levels, At = 3.125 x 1073.

pairing process, where two secondary eddies merge to t:ecome one, is very sensible with respect to how
accurate the simulation is. However, the actual v .. es o' the amplitudes of the various peaks are almost
identical for all refinement levels, and in agreement ot wvith reference solution [13] and results in [36].

Similar conclusions can be drawn both for .C .= BO FE, see Figures 7 and 8. One can see that the
mesh refinement have again a noticeable influence .~ the temporal development of the vorticity thickness,
but the values of the amplitude are almost identical. Similar to the results for the palinstrophy, this quantity
too is thus very sensitive with respect tc vorte.  pairings. Altogether, the EO SUPG method is superior
to all other methods, since almost app. ~ches t ie very fine reference solution on relatively coarse grids.
However, the EO RB-VMS method ar « EO,;."¢ LPS by interpolation methods on the finest level (Level 8)
also perform quite well, being almost in ¢ sreement with the finest simulation in [36].

4.7. Comparison of RB-VMS anc SUPG 1. ethods on finer time step lengths

Based on the computational stua.. ~ presented in the previous sections and after having performed nu-
merous simulations with differ ... time step lengths, it is noticed that smaller time steps could lead to very
accurate results on relativel” coa se grids. Therefore, this section is devoted to the numerical comparison
of the two methods (RB-VMS . 'd SUPG) that perform better on the larger time step length of the previ-
ous sections on a rather oars> mesh (Level 6) with the finer time step lengths (At; = 7.8125 x 10~* and
Aty = 5.9523 x 1073). ‘ar “ne & mplicity of presentation, we will use At; and Aty as an abbreviation for
the finer time step lenoths.

Results for EO F 1 are ¢'ven in Figure 9 and Figure 10, respectively, with At; and Ats. Concerning the
results for At; on F »ure 9, sbserving the peaks and times at which the pairing of eddies occurs, one can
clearly see that th~ sece. ! pairing in the case of RB-VMS occurs a bit earlier than the SUPG method, see
Figure 9 (top le ¢). Ho. =ver, concerning the kinetic energy, one can not observe any difference between the
two methods, se Figur 9 (top right). On the other hand, for enstrophy and palinstrophy, both methods
perform quite simue. up to ¢ = 180¢ time units. One can see that the SUPG method is more accurate
with respect "o t' ¢ ..B-VMS method when compared to the reference solution. Concerning the results for
the finer time . ep length Aty on Figure 10, one can clearly observe that the results computed with the
SUPG method a1 almost comparable to the reference data even on the rather coarse mesh for all quantities
of interest, especially the relative vorticity thickness. The palinstrophy being the most sensitive to the
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numerical setup (cf. |.”1 ic an exception. On the other hand, compared to the time step length At;, there
is a slight imprc vemen* in the RB-VMS results computed with Aty, compare the red curves in Figures 9
and 10. Compa ing the e results with the corresponding results in the previous sections, it can be clearly
seen that finer tin. <* p length already allowed to almost reach the reference results on a relatively coarse
structured t.~aun, o grid, at least for the SUPG method with EO FE. Note that a (more than ten times)

finer temporai ~ solution is used for the reference solution, i.e. At =3.6 x 107° in [13].

In the case o. 1SS FE, the results are plotted in Figures 11 and 12. For both time step lengths At; and

Ats, it could be observed in all simulations that both stabilization schemes gave the same results.
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Figure 9: Temporal evolution with EO-FE of: vorticity thickness (top left) - -etic energy (top right), enstrophy (bottom left),
and palinstrophy (bottom right), on mesh refinement level 6, At = 8125 x 10~4.
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Figure 10: Temporal evolution. ‘ith ".O-FE of: vorticity thickness (top left), kinetic energy (top right), enstrophy (bottom
left), and palinstrophy (b ..om rig.. ;, on mesh refinement level 6, At = 5.9523 x 10~4.

5. Summary ar ' ouu..uK

In this pape. we cor ipared two-scales VMS stabilized FE methods for the simulation of the incompres-
sible NSE. These 1...'".ods are widely used as one of the most promising and successful approaches that seek
to simulate 1 rge- o 2 structures in turbulent flows. The space discretization for the studied methods using
both ISS and .y FE is combined with a second-order semi-implicit time stepping scheme, based on BDF.
Relatively coarse ;rids are chosen for the space discretization, starting from large to small time step lengths.
Several variants of two-scales VMS approaches, from fully residual-based to weakly consistent, have been

19



O©CoO~NOUIAWNER

ISS SUPG vs RBVMS ISS SUPG vs RBVMS
T T T T T T T T T T T T T :
[—— SUPG — SUPG
—— RBVMS 0.482 - — RBVMS |+
reference —— reference

0.481 |- b

I I I I I I I I I
0 50 100 150 200 250 300 350 400 0 50 100 " 4 J0 250 300 350 400

Exin

5/0

time in units tir - in units
1SS SUPG vs RBVMS ISS Su. " vs RBVMS
T T T T l ] T : T
— SUPG 108 £ — SUPG |
— RBVMS — RBVMS
351 — reference | —— reference

lwonll3
"
g

:

1
2

20 -
L I L I L i i L il 1 L L L L

0 50 100 150 200 250 300 350 400 0 50 10 150 200 250 300 350 400

time in units time in units

Figure 11: Temporal evolution with ISS-FE of: vorticity thickness (too le. * kinetic energy (top right), enstrophy (bottom
left), and palinstrophy (bottom right), on mesh refinement level 6, “t = 7.8125 x 10~4.
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Figure 12: Temporal evolution. ‘ith "5S-FE of: vorticity thickness (top left), kinetic energy (top right), enstrophy (bottom
left), and palinstrophy (b ..om rig.. ;, on mesh refinement level 6, At = 5.9523 x 10~4.

applied to the siv latio.. of 2D Kelvin—Helmholtz instabilities, triggered by a plane mixing layer at high
Reynolds numb r Re = 10%.

Section 4 prcents, 1 ae detailed comparison of RB-VMS, SUPG, one-level variant of LPS and LPS by
interpolatior methous using both EO and ISS pair of FE on rather coarse grid levels and with different time
steps, with t. = a . of studying their influence on the accuracy of the numerical solutions. The numerical
performances ¢ all studied methods is discussed by monitoring the relevant quantities of interest, such
as relative vorticisy thickness, kinetic energy, enstrophy, and palinstrophy. From the computational point
of view, note that this problem is very sensitive and results strongly depend on the methods used, grid
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refinement, and time step lengths.

Through our numerical experiences, we have shown the need to consider relatively si. ~1l time steps, both
to prevent numerical stability issues of a less expensive semi-implicit time stepping scheme, a. 1 to guarantee
not excessive numerical dissipation. Altogether, based on the presented numerica’ stu 'ies, it turns out that
the EO SUPG method with the small time step length outperforms all other -turied variants. Closest
results to this best performing method are attained by RB-VMS method, for w. ‘ch hc ~aver the extra terms
seem not to provide increased accuracy for the studied problem on relativel» coai.~ grids, and thus there
seems to be no reason to extend the simpler SUPG method by the higher ¢ :der * »ms of the more complex
RB-VMS method in this case. On the other side, LPS methods, which ‘re aot fully consistent but are
of optimal order with respect to the FE interpolation, despite their ap~~aling ~tructure both in terms of
practical implementations such as to perform the numerical analysis, s ems to 1eed higher space resolutions
in order to achieve the same accuracy of fully residual-based VMS sta. ‘lized r ethods.

As a future research direction, we plan to compare the selected br .. peric..uing two-scales VMS stabilized
methods towards several variants of three-scales VMS methods th t us . cu “bulent eddy viscosity (in a more
or less sophisticated manner) to model the effect of subgrid-scales, a..o on r .ore complex problems presenting
genuine 3D turbulent structure, like 3D turbulent channel flow.
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