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Borsuk Number for Planar Convex Bodies

Antonio Cañete and Uwe Schnell

Abstract. By using some simple tools from graph theory, we obtain a
characterization of the compact sets in R

n with Borsuk number equal to
two. This result allows to give some examples of planar (convex) compact
sets with Borsuk number equal to three. Moreover, we also prove that
the unique centrally symmetric planar convex compact sets with Borsuk
number equal to three are the Euclidean balls.
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1. Introduction

In 1933, K. Borsuk formulated the following question [5]:
Let C be a bounded set in R

n. Is it possible to divide C into n + 1
subsets with diameters strictly smaller than the diameter of C?

This question has become a classical problem in Geometry [8, Sect. D14], be-
ing deeply studied during the last century. In the planar case (n = 2), Borsuk
gave an affirmative answer in his original paper [5], basing the proof in the
following nice result by Pál [27], see also [2, Lemma 1.1]: any planar set C with
diameter h > 0 is contained in a regular hexagon H of width equal to h. It is
not difficult to check that H can be divided into three congruent subsets with
diameters less than h, and consequently, the induced division for C will satisfy
the same property. For n = 3, the answer is also affirmative and was proven
by several authors with different techniques [10,14,16,28]. Moreover, the same
property holds in R

n when C is compact, convex with smooth boundary [15],
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Figure 1. A division of a square into two subsets with
strictly smaller diameters

or when C is compact, convex and centrally symmetric [31]. However, the an-
swer to this question is negative in general, as the celebrated counterexample
by Kahn and Kalai in 1993 exhibits [20]. In that work, they consider an equiva-
lent discrete formulation of the problem (see [24]), and they deduced, by using
a combinatorial result by Frankl and Wilson [12], that the answer to Borsuk’s
question is negative in R

n for n ≥ 2015 (indicating also that the same hap-
pens in R

1325). This was the initial point for a sort of competition searching
for the least-dimension Euclidean space for which Borsuk’s question does not
hold [13,17,18,26,29,30]. Up to our knowledge, the last recent results in this
direction show that the answer is negative in R

65 [3] and in R
64 [19]. In these

last two works, the authors give elaborated counterexamples by considering a
particular strongly regular graph and constructing a finite set of points in the
corresponding sphere (in fact, the second reference is a refinement of the first
one).

Particularizing in R
2, the affirmative answer to Borsuk’s question implies

that any planar bounded set C can be divided into three (or less) subsets with
diameters strictly smaller than the diameter of C. It is clear that there are
planar sets which can be partitioned into two subsets with smaller diameters
(for instance, consider a square, whose diameter is attained by the distance
between any two non-consecutive vertices, and the division determined by any
horizontal line, see Fig. 1).

This fact leads to the following reformulation of the problem, which will
be stated for general dimension: for a given bounded set C in R

n, let α(C)
denote the minimal number of subsets with strictly smaller diameters into
which C can be decomposed. This number is usually called Borsuk number of
C. The original question by Borsuk can be thus rewritten as:

Let C be a bounded set in R
n. Is it true that α(C) ≤ n + 1?

The calculation of the precise value of Borsuk number for a given bounded
set also constitutes an interesting issue and has been considered in different
texts in literature, see for instance [2,32]. Moreover, in [22, Sect. 4] we can find
a nice equivalent formulation of Borsuk’s question in terms of the Minkowski
sum of two convex compact sets of constant width, based on the precise values
of the corresponding Borsuk numbers.
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As noted previously, we know that α(C) is less than or equal to three
for any planar bounded set C (since Borsuk’s question in R

2 has an affirma-
tive answer). As described in [2, Sect. 1.4], it is natural investigating when
the equality to three occurs. The first characterization of the planar sets with
Borsuk number equal to three is due to Boltyanskii [1], by means of the notion
of completion of constant width: Pál proved that any set C (in arbitrary di-
mension) with diameter h > 0 can be covered by a compact set with constant
width equal to h [27], see also [4, Sect. 15.64]. This constant-width set is called
a completion of C, and is not unique in general. Boltyanskii’s characterization
(whose proof is purely geometrical) states that α(C) = 3 if and only if the
completion of C is unique [2, Theorem 1.3]. Unfortunately, it is not easy to
check in practice whether the completion of a general set is unique, and so the
applicability of this result is not very extensive. Later on, K. Ko�lodziejczyk
provided a new characterization in the convex setting: for a given planar con-
vex compact set C, a diameter segment of C will be a segment contained in
C with length equal to the diameter of C. Then, α(C) = 2 if and only if there
exists a non-diameter segment in C which intersects the interior of any diam-
eter segment of C [22, Theorem 3.1]. A definitive characterization holds when
restricting to the family C2 of centrally symmetric planar convex compact sets:
D. Ko�lodziejczyk proved that, if C ∈ C2, then α(C) = 3 if and only if C is
a Euclidean ball [21, Appendix]. We note that this nice result is stated for
a wider family of sets, namely, the planar convex compact sets with all the
diameter segments being concurrent at one point, and additionally, for general
dimension.

In these notes we introduce an alternative approach to these questions, by
using some tools from graph theory. This point of view has not been used when
treating this kind of problems, and it might provide some advances in future.
We have organized these notes into two separate main sections. Section 3 will
be devoted to the family C2 of centrally symmetric planar convex compact
sets, and in Sect. 4 we will consider general compact sets. We have chosen this
structure because we think it will show the remarkable differences appearing
due to the lack of symmetry.

In Sect. 3 we will recover the previous detailed results in C2 by means
of the diameter graph of a set, as follows. For a given planar compact set C,
we can consider the diameter graph GC = (V,E) associated to C, whose set
of vertices V is composed by the endpoints of the diameter segments of C,
and whose set of edges E is composed precisely by such diameter segments,
see [9,11]. With this notation, our Lemma 3 provides a characterization for
the sets in C2 with Borsuk number equal to two, expressed in terms of the
associated diameter graph: for any C ∈ C2, we have that α(C) = 2 if and
only if V �= ∂C. This result leads to the known fact that the only centrally
symmetric planar convex compact sets with Borsuk number equal to three are
the Euclidean balls (see Theorem 1).
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Finally, in Sect. 4 we focus on general compact sets. Some similar reason-
ings involving the diameter graph will allow us to obtain Theorem 2, where
a characterization for the compact sets in R

n with Borsuk number equal to
two is established. In particular, this result easily provides several examples
of planar (convex) sets with Borsuk number equal to three, different from a
Euclidean ball (some of them are depicted in Figs. 3 and 4).

2. Some Basic Definitions

In this section we will give some simple definitions for compact sets which will
be used along these notes.

Let C ⊂ R
n be a bounded set, and denote by d the Euclidean distance

in R
n. The diameter of C is defined by

D(C) = sup{d(x, y) : x, y ∈ C}. (1)

Throughout these notes, we will focus on compact sets (also referred to as
bodies, as usual), and so the supremum in (1) can be replaced with the maxi-
mum, and the diameter of a compact set C will represent the maximal distance
between two points of C. Any line segment x y with endpoints x, y ∈ ∂C satis-
fying that d(x, y) = D(C) will be called a diameter segment of C. This notion
leads us to a particular graph associated to any compact set in the following
way, see [6,9,11].

Definition 1. Let C be a compact set in R
n. The diameter graph GC = (V,E)

associated to C is the graph whose vertices are the points in ∂C which are
endpoints of the diameter segments of C, and whose edges are the diameter
segments. In other words,

V ={xi ∈ ∂C : ∃ yi ∈ ∂C with d(xi, yi) = D(C)}, and

xi xj ∈ E if and only if d(xi, xj) = D(C).

Definition 2. Let C be a compact set in R
n. The Borsuk number of C is defined

as the minimal number α(C) ∈ N satisfying that C can be divided into α(C)
subsets, all of them with diameters strictly smaller than D(C).

Remark 1. Recall that the answer to Borsuk’s question in R
2 is affirmative,

and so α(C) is at most three for any planar compact set C.

3. Centrally Symmetric Planar Convex Bodies

Throughout this section we will focus on the family C2 of centrally symmetric
planar convex bodies. We will see that the symmetry assumption allows us to
completely characterize the sets of this family whose Borsuk number is equal
to three.

Consider a planar convex body C which is centrally symmetric. Recall
that this means that C is invariant under the action of the rotation of angle π
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Figure 2. A diameter segment not containing p

centered at a point p ∈ C, which will be called the center of symmetry of C.
We first prove some properties for the diameter graph associated to C in this
setting.

Lemma 1. Let C ∈ C2, with p its center of symmetry. Then, any diameter
segment of C passes through p.

Proof. Let x y be a diameter segment of C, and assume that it does not pass
through p. Let p̃ be the intersection point between x y and the line perpendic-
ular to x y passing through p, see Fig. 2.

Without loss of generality, we can assume that d(x, p̃) ≥ d(y, p̃). Denote
by x′ ∈ ∂C the symmetric point of x with respect to p. Then,

d(x, x′) = 2 d(x, p) > 2 d(x, p̃) ≥ d(x, p̃) + d(y, p̃) = d(x, y) = D(C),

which is a contradiction. Thus x y necessarily passes through p, as stated. �

Lemma 2. Let C ∈ C2. Then, the diameter graph GC associated to C is bipar-
tite.

Proof. From Lemma 1, any diameter segment of C passes through the center
of symmetry of C, which necessarily implies that each vertex of GC has a
unique incident edge, and so it is a vertex of degree one. This directly gives
that GC is bipartite. �

Remark 2. Consider a centrally symmetric planar convex body C, with center
of symmetry p and associated diameter graph GC = (V,E). Lemma 2 asserts
that GC is bipartite, which means that V can be decomposed into two disjoint
subsets VR, VB ⊂ ∂C, satisfying that the endpoints of each edge of GC lie in
different subsets. Moreover, VR and VB are symmetric with respect to p, and
without loss of generality, we can assume that the vertices in VR are all placed
together along ∂C, with no alternation with the vertices in VB .

Remark 3. The reader may compare Lemma 2 above with [9, Theorem 1],
where it is shown, in the general case (i.e., without the assumption of central
symmetry), that the diameter graph minus one (particular) vertex is bipartite.

Remark 4. We note that Lemmas 1 and 2 immediately extend to the family
of centrally symmetric compact sets in R

n, n ∈ N.
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The following result characterizes the centrally symmetric planar con-
vex bodies with Borsuk number equal to two, by means of the corresponding
diameter graph.

Lemma 3. Let C ∈ C2, and let GC = (V,E) be the diameter graph associated
to C. Then, α(C) = 2 if and only if V �= ∂C.

Proof. Assume firstly that α(C) = 2, and let {C1, C2} be a division of C with
D(Ci) < D(C), i = 1, 2. There is a point v ∈ ∂C which belongs to the closure
of C1 as well as that of C2. Without loss of generality, we can assume that
its symmetric point v′ is contained in C1. If v′ ∈ V then D(C) = d(v, v′) by
Lemma 1, and by the choice of v we have D(C1) ≥ d(v, v′) = D(C), which is a
contradiction. Thus, it follows that v′ /∈ V (as well as v /∈ V ) and so V �= ∂C.

Assume now that V �= ∂C, and consider x ∈ ∂C such that x /∈ V . By
using again Lemma 1, we have that its symmetric point x′ will have the same
property. The division of C given by the line segment xx′ satisfies that the two
corresponding subsets have diameter strictly less than D(C), since no edge of
GC will be contained in any of them (in fact, xx′ splits any diameter segment
of C), and so α(C) = 2. �

Remark 5. If a centrally symmetric planar convex body C has associated di-
ameter graph with finite set of vertices, then Lemma 3 trivially holds, and so
C will have Borsuk number equal to two.

We can now state the following result, which proves that the unique
centrally symmetric planar convex bodies with Borsuk number equal to three
are the Euclidean balls.

Theorem 1. Let C ∈ C2. Then, α(C) = 3 if and only if C is a Euclidean ball.

Proof. It is well known that any planar Euclidean ball has Borsuk number
equal to three [5]. On the other hand, consider the diameter graph GC =
(V,E) associated to C, with V = ∂C in view of Lemma 3. Hence, for any
z ∈ ∂C, we have that z ∈ V and so d(z, z′) = D(C), where z′ ∈ ∂C is the
symmetric point of z with respect to the center of symmetry p of C. This
implies that d(z, p) = 1/2D(C), and so z ∈ ∂B(p, 1/2D(C)), where B(q, r)
denotes the Euclidean ball centered at q of radius r. This holds for all z ∈ ∂C,
and consequently, ∂C = ∂B(p, 1/2D(C)), as desired. �

Remark 6. As noted in the Introduction, some characterizations in the spirit
of Lemma 3 and Theorem 1 have appeared previously in literature. Boltyanskii
[2, Theorem 1.3] proved that a planar set has Borsuk number equal to three
if and only if the corresponding completion to a constant width set is unique.
Unfortunately, this nice result seems hard to be applied (in general, given a
planar set, it is difficult to check the uniqueness of a completion of this type).
Later on, a result by K. Ko�lodziejczyk [22, Theorem 3.1] shows that a planar
convex body C has Borsuk number equal to two if and only if there exists a
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non-diameter chord in C intersecting the interior of any diameter segment of
C, which is equivalent to our Lemma 3 in the centrally symmetric case. The
proof of this result is based on set theory and, in particular, on Zorn’s Lemma
[23, Appendix 2, Cor. 2.5]. More generally, D. Ko�lodziejczyk [21, Appendix]
proved that α(C) = n + 1 if and only if C is a Euclidean ball, for any convex
body C ⊂ R

n whose diameter segments have a common point, which includes
our Theorem 1.

Remark 7. A relative optimization problem involving the diameter functional,
treated in [25] (see also [7]), has a direct connection with Theorem 1. Those
papers focus on centrally symmetric planar convex bodies, searching for the di-
visions into two subsets that minimize the maximum relative diameter (which
is defined as the maximum of the diameters of the two subsets of the division).
Our Theorem 1 yields that the unique sets which are not suitable for this
problem are the Euclidean balls: for any division {C1, C2} of a given ball D,
it follows that max{D(C1),D(C2)} = D(D), since α(D) = 3. Therefore, the
maximum relative diameter functional is constant for all the divisions of D,
and this minimization problem is not meaningful for this particular set (any
division of D can be considered minimizing).

4. General Compact Sets

In this section we will focus on general compact sets, with special emphasis
in the planar case. The main difference with respect to Sect. 3 is that now
the sets are not centrally symmetric. This more general setting presents some
remarkable different properties. In particular, the associated diameter graph
is not always bipartite: this can be easily seen by considering, for instance,
an equilateral triangle (or a regular thetrahedron in R

3). The following The-
orem 2, which is stated for general dimension (and without the assumption
of convexity), gives a characterization of the compact sets in R

n with Bor-
suk number equal to two. It will lead us to find examples in R

2 with Borsuk
number equal to three, which are different from the Euclidean balls.

Theorem 2. Let C be a compact set in R
n, and let GC = (V,E) be the diameter

graph associated to C. Then, α(C) = 2 if and only if GC is bipartite, with a
decomposition V = VR ∪ VB such that the closures of VR and VB have empty
intersection (that is, VR ∩ VB = ∅).
Proof. Assume firstly that α(C) = 2, and let {C1, C2} be a division of C with
D(Ci) < D(C), i = 1, 2. Then, by considering VR = V ∩ C1 and VB = V ∩ C2,
we will have a decomposition of V which implies that GC is a bipartite graph:
if an arbitrary edge x y in GC has both vertices x, y in (say) VR, then

D(C1) ≥ d(x, y) = D(C),

yielding a contradiction. Suppose now that VR ∩ VB �= ∅, and consider v ∈
VR ∩VB . In particular, there exists a sequence {xn

R}n ⊂ VR which converges to
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Figure 3. Some planar convex bodies with Borsuk number
equal to three

v. Moreover, for each element xn
R of the sequence, there exists xn

B ∈ VB with

d(xn
R, xn

B) = D(C). (2)

Note that the sequence {xn
B}n is contained in ∂C, which is compact, so we

can assume that {xn
B}n converges to a certain w ∈ ∂C. Without loss of gen-

erality, we can assume that w belongs to C1. Taking now limit in (2) when
n tends to infinity, it follows that D(C1) ≥ d(v, w) = D(C), which is again a
contradiction. So necessarily VR ∩ VB = ∅, as stated.

Now assume that GC is bipartite with V = VR ∪ VB and VR ∩ VB = ∅.
Since VR and VB are two disjoint compact subsets in ∂C, the minimal distance
ε between points from VR and VB is attained and positive. Let

C1 = {x ∈ C : there is a y ∈ VR with d(x, y) ≤ ε/2},

that is, the intersection of C and the ε/2–parallel set of VR, and let C2 = C\C1.
Then {C1, C2} is a division of C with VR ∩ C2 = ∅ and VB ∩ C1 = ∅, where Ci

stands for the closure of Ci, i = 1, 2. Since any diameter segment of C has an
endpoint in VR and another one in VB, it follows that both C1 and C2 have
diameters smaller than D(C), and so α(C) = 2. �

Remark 8. Any planar (convex) body which does not satisfy the conditions
stated in Theorem 2 will have Borsuk number equal to three. This is the case
for any regular polygon with an odd number of vertices, or any Reuleaux
polygon (it is easy to check that the corresponding diameter graphs are not
bipartite). Moreover, any small variation of the previous sets preserving the
corresponding diameter segments will have the same property (Fig. 3).

The following Example 1 describes the construction of a family of planar
convex bodies with Borsuk number equal to three.

Example 1. Let C1 be a circle centered at the origin o = (0, 0) with radius
r > 0. Let a = (r, 0), and consider C2 the circle centered at a with radius
r. Call L the symmetric lens given by the intersection of the circles C1 and
C2. Choose two arbitrary points b ∈ L ∩ C2, and c ∈ L ∩ C1, both of them
in the upper half-plane, and let d be the intersection point of the two circles
centered at b and c with radius r, which is contained in L. Then, the convex
hull C of points {o, a, b, c, d} has five diameter segments, namely oa, ab, bd, cd
and oc, and the associated diameter graph GC is not bipartite. By applying
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Figure 4. A planar convex body with Borsuk number equal
to three

Theorem 2, we conclude that α(C) = 3. Figure 4 below shows a particular set
of this family for radius r = 4. We also note that slight variations of C will
provide new non-polygonal examples with Borsuk number equal to three.

Remark 9. Although Borsuk’s original question is not stated in a convex set-
ting, the following related problem can be posed: given a convex body C in
R

n, is it possible to divide C into n + 1 convex subsets with strictly smaller
diameters than C? We want to note that the answer is affirmative in R

2. Recall
that, in this case, α(C) ∈ {2, 3}. If α(C) = 3, the original reasoning by Borsuk
(already outlined in the Introduction) proves the claim: C is contained in the
regular hexagon H of width equal to D(C), and H can be divided into three
appropriate congruent subsets by using three line segments. Then, the induced
division of C will consist of three convex subsets with smaller diameters, due
to the convexity of C. And if α(C) = 2, then by [22, Theorem 3.1] there exists
a non-diameter segment in C intersecting any diameter segment of C, which
provides a division of C into two convex subsets with smaller diameters (taking
into account again that C is convex).
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