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Abstract: Numerous drylands worldwide have experienced degradation of both soil and vegetation
in proximity to watering areas. Degradation can be observed in satellite imagery as fading radial
brightness belts extending away from the water sources. The main objective of this study was to
examine the spatio-temporal patterns of land degradation and rehabilitation in the drylands of the
southeast Iberian Peninsula. The brightness index of tasseled cap was discovered to be the best
form of spectral transformation for enhancing the contrast between the bright-degraded areas near
the points and the darker surrounding areas far from and in between these areas. To comprehend
the spatial structure present in spaceborne imagery of two desert sites and three key time periods,
semi-variograms were created (mid-late 2000s, around 2015 and 2020). To assess spatio-temporal
land-cover patterns, a kriging was used to smooth the brightness index values extracted from 30 m
spatial resolution images. To assess the direction and intensity of changes between study periods, a
change detection analysis based on kriging prediction maps was performed. These findings were
linked to the socioeconomic situation prior to and following the EU economic crisis. The study
discovered that degradation occurred in some areas as a result of the region’s agricultural activities
being exploited.

Keywords: Sierra Alhamilla; desert of Tabernas; Landsat 5 TM and Landsat 8 LC; aridity index;
Almería; geostatistical model

1. Introduction

Overgrazing, according to the United Nations Environment Program (UNEP), is the
practice of allowing a much greater number of animals to graze at a location than it can
actually support. As a result, in terms of plant density, plant chemical content, community
structure, and soil erosion, overgrazing by various types of livestock is perhaps the most
significant anthropogenic activity that degrades rangelands and causes desertification [1].
Overgrazing degrades approximately 75 million ha of land globally, destroying its original
biotic functions [2]. According to [3], land (soil and vegetation) degradation is particularly
associated with areas surrounding natural or artificial water sources, such as wells or
boreholes, in arid and semi-arid environments.

During grazing, domestic animals tend to concentrate near watering points, with the
concentration gradually decreasing as the distance from water increases [4,5]. Typically,
grazing occurs about 5 km from the watering point, but this can increase up to 20 km in
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extreme conditions [3,6]. It is also interesting to specify that the radial grazing pattern,
known as the “piosphere”, was named after the Greek root “pios”, meaning “drink” [3].
On the other hand, and according to [7], “grazing gradient” refers to the spatial patterns in
soil or vegetation resulting from grazing and can indicate land degradation. For this reason,
most of the drylands used for pastoralism show degraded features caused by grazing
activities.

Studies conducted using ground measurements and/or analyses of data obtained
from remote sources have been conducted to observe the effects of changes in grazing on
rangelands. A variety of biotic, abiotic, and environmental effects have been documented
in the literature, such as those discussed in references [8–11]. Studies have looked at
how vegetation cover, species richness and diversity, and the spread of biological soil
crusts change depending on the distance from the watering point. Further, research has
been conducted on soil chemistry and physical properties, as well as the effect of erosion
and trampling. The majority of the ground-based measurements are taken from samples
along transects, and these samples are taken from plots of varying sizes, ranging from
1 to 100 m2. It has been demonstrated that methods which assess only limited areas are
heavily influenced by natural changes in vegetation composition and landscape features
that cannot be confidently linked to the effects of grazing [12]. Traditional ground-based
measurements are laborious and relatively costly, and distant sites are not available for
regular repeatable sampling [7]. Ref. [4] postulated that grazing effects cannot be monitored
when the measurement is conducted in a limited spatial scope. The challenges associated
with semi-arid rangelands are exacerbated, yet remote sensing data can be utilized to
counter them.

Since the radial pattern around watering points is clearly visible from satellite imagery,
recent studies have been conducted by interpreting and modeling the remote sensing
data [13,14], which can be processed in a semi-automated and repeatable manner over large
and distant regions. For this reason, different remote-sensing models that utilize geographic
information systems techniques have been created to calculate the spatial spread of various
elements in the vicinity of watering points [5,13–15].

Various studies have indicated that the circular pattern of grazing gradients around
watering points results in similar patterns for various biotic, abiotic, and environmental
variables. Vegetation cover, measured using indices such as SAVI (soil-adjusted vege-
tation index) or NDVI (normalized difference vegetation index) [5,15–17], annuals and
grass production [14,18], organic content, soil pH and bush encouragement, nitrate and
phosphate [11], soil nutrient concentrations [19], and track density [20], are commonly
used variables that follow this pattern. The improvement or decline in each variable does
not change significantly a few kilometers from the watering point. However, in some
cases, such as inversed, composite, and complex gradients [17,21], different responses were
observed. The composite gradient is associated with non-native species replacing desirable
ones, while the inverse gradient is observed in areas with dams and mostly woody vegeta-
tion. The complex gradient is seen in areas where vegetation growth is decreased in runoff
and erosion areas, but increased in run-on and sediment deposits. According to [11], the
grazing effects form a radial pattern with a sacrifice zone up to 50 m from the borehole; a
nutritious grass zone up to 800 m, dominated by palatable and grass species; and a bush
encroachment zone up to 2000 m. This distance is considered as the farthest point at which
grazing has a significant impact.

Intensive grazing near water sources is a global occurrence. However, this research was
carried out in the arid regions of Southeast Iberian Peninsula, focusing on the socioeconomic
changes that took place in this region towards the end of the 20th century. In these desert
areas, livestock farming is a significant sector of the economy [22].

In this regard, the importance of goats must be considered, since although they are
important for the socioeconomic development of the study area, they are also important
factors in the overgrazing process. This fact means that the canopy cannot regenerate in
time, and therefore, erosive processes dominate the system [23].
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A study conducted in 2006 [24] used remote-sensing methods to examine local deser-
tification processes in the southeast Iberian Peninsula. In this current study, the authors
present a different method for evaluating and mapping the impact of grazing around
watering points. The main objective of the study was to investigate changes in the vege-
tation and soil patterns in the drylands of the Southeast Iberian Peninsula over time, in
relation to socio-economic changes. Although similar studies have been carried out in other
regions around the world, such as China [5,14,21], Australia [6], the South of Africa [11,14],
America [14,15,20], the Mediterranean region [16], Eurasian steppes [17], and Tibet [19],
this is novel, since it has not been carried out before in the drylands of the southeast
Iberian Peninsula. In another vein, it is interesting to highlight that one of the primary
features of the southeast Iberian Peninsula drylands is the extensive range of abiotic and
biotic surroundings (this is the main difference from other studied areas). These areas
are characterized by the prevalence of underdeveloped soils with minimal organic matter,
limited aggregate stability, and nutrients, as well as a low water retention capacity, all of
which contribute to the exacerbation of drought conditions for vegetation [23].

The study had four specific goals: (1) to analyze the spatial structure of imagery from
two desert sites during three different time periods (mid-late 2000s, around 2015, and 2020)
using semi-variograms; (2) to apply the kriging interpolation technique to smooth the
brightness index values extracted from satellite images with a spatial resolution of 30–80 m,
in order to assess spatial and temporal land-cover patterns; (3) to use kriging prediction
maps for change detection analysis to determine the direction and intensity of changes
between study periods; and (4) to relate these findings to the socio-economic situation
before and after the EU economic crisis, which affected grazing intensity and, therefore, the
land-use and land-cover state of the study sites.

2. Study Area

The region under investigation is situated in the southeastern part of Spain, in the
Almeria province, as shown in Figure 1. It spans approximately 50 square kilometers and
includes Tabernas, the largest town in the area, with a population of 4025 people. The
nearest large urban center is the city of Almeria, which has a population of 199,237 and is
located 37 km to the south of Tabernas.

The central region of the study area, where human activities are concentrated, is the
Tabernas valley. It is surrounded by two mountain ranges running from east to west: the
Sierra de los Filabres to the north and the Sierra Alhamilla to the south. In the western
portion of the study area lies the Desert of Tabernas, which is regarded as the sole authentic
desert in Europe meeting the desert criteria. Protection has been granted to both the Desert
of Tabernas and a section of the Sierra Alhamilla as natural reserves [25].

The prevailing land cover types found in the region include vegetation consisting
of bushes and grass, with or without trees [26]. Agriculture, primarily barley and some
irrigated crops, is the primary form of land use, although it faces significant constraints
due to the area’s climatic and topographical conditions [27]. Nonetheless, within the past
ten years, irrigated olive and almond plantations have been implemented. Currently,
mining only occurs in a handful of gypsum quarries, and abandoned mines are prevalent
in the area. While industry is not a major contributor to the local economy, the movie and
entertainment industry has attracted numerous visitors in recent years. As a matter of
fact, tourism is becoming increasingly important and could emerge as one of the primary
economic activities in the future.

In another vein, according to the Andalusian Government [28], in the study area, the
primary use is very scarce. This fact makes it possible for livestock activity to concentrate
in areas where the canopy has reached a higher level of growth. It is evident that overgraz-
ing, as well as livestock trampling and seasonal variation in rainfall regimes, leads to a
progressive loss of existing vegetation, and as a result, a progressive loss of soil.
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Figure 1. Location of the study area (Desert of Tabernas “37°00′00″N; 02°27′00″W” and Sierra Alha-
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Figure 1. Location of the study area (Desert of Tabernas “37◦00′00′′N; 02◦27′00′′W” and Sierra
Alhamilla “36◦59′20′′N; 02◦21′05′′W”) with land use maps obtained from the data in [25].

In reference to the loss of sustainability of the study area, it is of great interest to high-
light the difference between the erosive and desertification processes that occur. According
to the Andalusian Government [28], the concept of desertification is more functional, and
is now being considered as a disturbance that occurs in arid climates and that leads the
system (human beings—natural resources) to an irreversible loss of sustainability. On the
other hand, erosion consists of the loss of soil by uprooting, transport, and subsequent
accumulation, either by the action of wind or water. This phenomenon can be interpreted
as a type of soil degradation resulting from desertification, but it is important to note that
it is not the sole contributing factor. While wind erosion is the primary form of erosion
associated with desertification globally, in the Iberian Peninsula, water erosion takes prece-
dence, representing a prevalent environmental issue across much of Mediterranean Spain.
This is particularly evident in the peninsular southeast, which encompasses the Desert of
Tabernas and Sierra Alhamilla.

Regarding the climate of the study area, it should be noted, according to the Köppen
and Geiger classification, that it is of the BSk type (local steppe).

The main climatic feature of the study area is its Mediterranean character, with mild
temperatures and marked aridity. This is because the Betic mountains intersect the Atlantic
fronts and leave this area in a rain shadow. The average annual precipitation is 239 mm
and the number of rainy days per year ranges from 25 to 55, although only 6% of the
rainy episodes exceed 20 mm. The average annual temperature is 17.9 ◦C and the average
minimum of the coldest month is between 3 ◦C and 10 ◦C, with the maximum exceeding
40 ◦C in summer (sometimes reaching 48).

As is known, the study area is made up of loose sediments [29], which are highly
salinized and easily washed away by rainwater. This fact, along with the sparse vegetation
(Figure 2c) and torrential rains, has caused the soil in these areas to erode almost completely
(Figure 2b,e), excavating large gullies and ravines separated by steep slopes. On these
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slopes, erosion is intense and allows few plant species to take root, which is why they
are often bare and give the landscape as a whole its characteristic desert appearance
(Figure 2a,b,d,e).
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3. Materials and Methods

A total of 528 Landsat pictures were obtained from the Earth Explorer platform
https://earthexplorer.usgs.gov/ (accessed on 1 October 2022) and utilized to cover the
two research locations. These images were captured by the Thematic Mapper (TM) sensor
of the Landsat 5 and Landsat 8 satellites at three different time intervals, as indicated in
Table 1. The only land-use method in these areas is livestock grazing.

Table 1. Satellite images used in this study (both in the desert of Tabernas and in the Sierra Alhamilla).

Satellite and Sensor No. of Images Date Path/Row (WRS-2)

Landsat 5 TM 188 Mid-late 2000s (1 January 2005–31 December 2010) 199 and 200/034
Landsat 8 LC 204 Around 2015 (1 January 2014–31 December 2016) 199 and 200/034
Landsat 8 LC 136 2020 (1 January 2019–31 December 2020) 199 and 200/034

https://earthexplorer.usgs.gov/
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The process of image processing commenced by transforming the digital numbers of
the image into reflectance values [30,31]. From these values, various vegetation indices
such as NDVI [32], SAVI [33], MSAVI [34], perpendicular vegetation index or PVI [35], and
greenness and brightness indices [36] derived from tasseled cap were computed for each
image subset. To determine the most appropriate index for distinguishing degraded from
non-degraded land, a spectral separability analysis was carried out using the mean and
standard deviation values of extreme classes in each scene for all the indices [37–39]. The
results of this analysis showed that the brightness index (BI) had the highest separability
value, and hence, it was selected for further analysis (see Equation (1)).

BI = ∑n
i=1 αi· Bi (1)

According to [36,37], BI can be inferred for different sensors using spectral band
numbers (Bi) and appropriate BI coefficients (αi). One of the benefits of using the BI
index is its ability to compare different sensors that have different spectral bands. This is
possible because the BI values can be normalized to create a single layer of data, making
comparisons between sensors possible. Further, the BI index was originally designed to
analyze soil properties, and there have been statistically significant results achieved using
this method.

The following process involved averaging each window of 6 × 6 pixels in the TM
(Landsat 5) and LC (Landsat 8) images, which reduced the resolution by a factor of 6. This
resulted in a new pixel size of 171 m, which was small enough to assess changes within
the 6 km range from the watering point, where degradation is expected. The subset size
was reduced from around 1.5 million pixels to only 40,000 pixels, which made the data
more manageable for processing. Note that even though the pixel size was reduced, image-
to-image geometric correction was applied for better accuracy in the change detection
process.

In another vein, geostatistics is based on the concept of a regionalized variable, which
is a variable that can be characterized based on a number of spatial measurements. The
fundamental idea behind geostatistics is that when spatial continuity is assumed, adjacent
samples are expected to be more similar to each other than samples that are further apart.
This spatial dependence can be statistically analyzed and described using parameters
derived from a semi-variogram, which is a function that relates the semi-variance to
the distance and direction between two samples. The semi-variance, defined as half the
mean-squared difference between two samples that are a certain distance apart in a given
direction, is used to quantify this spatial dependence. This approach provides a way to
analyze and understand the spatial variation in a given variable (Equation (2)).

γ(h) =
1

2·N(h)
·∑N(h)

i=1 (Zxi − Zxi+h)
2 (2)

As is well known, Equation (2), referred to earlier, uses a vector h to define both the
direction and the distance between two samples, which is commonly known as the lag.

In Equation (2), the semi-variance at lag h is denoted by γ(h), and N(h) represents
the number of pairs of samples that are separated by a distance of h. The value of the
regionalized variable at a given location i is represented by Zi. In addition to the lag,
the variogram is characterized by three other parameters: the nugget, range, and sill.
The nugget accounts for variability at zero distance and is attributable to errors in both
sampling and analysis. The range represents the distance, often denoted as “a”, beyond
which spatial autocorrelation between sampling sites becomes negligible. The sill represents
the variability of samples that are spatially independent. Empirical semi-variograms can be
computed from a set of observations, and then a theoretical model can be fitted [40]. The
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exponential model is a popular theoretical model and is expressed in the form shown in
Equation (3), where C0 is the nugget, C0 + C1 is the sill, a is the range, and h is the lag.

γ(h) = C0 + C1·[1− e(
−3·|h|

a )] (3)

Other important theoretical models are the Gaussian model (Equation (4)) and the
spherical model (Equation (5)). Figure 3 shows the three aforementioned theoretical models.

γ(h) = C0 + C1·[1− e(
−3·|h2 |

a2 )
] (4)
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Regarding the Gaussian model, it exhibits a function with opposite curvature close
to the origin. As the function progresses, it gradually approaches its maximum value.
This model can be considered to have an effective range of around “(3)1/2 · a”, where it
encompasses 95% of its maximum variability. However, a significant drawback of the
Gaussian model is its tendency to approach the origin with a gradient of zero. According
to [40], this indicates the limit of random variation and the point where the underlying
variation becomes continuous and twice differentiable. As a result, this behavior may lead
to unstable kriging equations, prompting us to discourage the utilization of this particular
model.

γ(h) = C0 + C1·[
3·h
2·a −

1
2
·(h

a
)

3
] (5)

On a different note, the spherical model appears to be the most apparent choice for
characterizing variation in three-dimensional rock formations [40]. However, it may not
be as well-suited for describing variation in one or two dimensions, which are typically
more relevant for soil and land resource surveys like the one conducted in this study. This
function exhibits a gentler curvature at various scales, which is another reason why this
model was rejected. Due to what has been commented above, in relation to the Gaussian
and spherical models, in the present work, the exponential model will be used.

To better understand the spatial structure of imagery for a given date and location,
variogram analysis was used at the studied sites. The decision to use semi-variograms
was based on the similarity in spatial structure of most of the variables, which gradually
increased or decreased as the distance from the watering point increased, until grazing
effects were no longer observed. Semi-variograms were introduced to remote sensing
by [41], which found that the variogram parameters could be directly linked to image
features. In this study, the presence or absence of a sill in the variogram could indicate the
presence of a radial grazing pattern around watering points, while the level of the sill could
be used to assess the homogeneity (i.e., lower variance) of an area. The lag distance in the
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variogram could also be related to the walking distance of livestock, with observations
becoming increasingly independent beyond a certain distance (the range).

In each subset of the data, the empirical semi-variogram was calculated using 40,000 pix-
els, and a theoretical model that best fit the semi-variogram was estimated. The model
parameters were then determined by minimizing the squared differences between the
empirical semi-variogram values and those of the theoretical model. Once the best-fitting
model was chosen, several criteria were applied to assess its accuracy and to fine-tune its
parameters: (1) a cross-validation scatter plot was carried out; (2) the mean estimation error
was inferred using Equation (6); and (3) the mean standardized squared estimation error
was obtained through Equation (7).

1
n
·

n

∑
i=1

(Zxi − Z∗xi) =
1
n
·

n

∑
i=1

εi ≈ 0 (6)

1
n
·

n

∑
i=1

[
Zxi − Z∗xi

S∗i
]
2

=
1
n
·

n

∑
i=1

(
εi
Si
)

2
≈ 1 (7)

In order to minimize the influence of local effects and to obtain a more even represen-
tation of surface brightness values across the study sites, researchers employed a linear
geostatistical method called ordinary kriging interpolation. This method, according to [42],
is useful for revealing spatial phenomena. The approach estimates the mean of the values
within a searching neighborhood as a constant.

The study employed the BI differencing method as a post-processing change detection
technique, which is a modified version of the vegetation index differencing method [43].
Its purpose was to evaluate the primary patterns of degradation (in magenta color) or
rehabilitation (in green color) in the study areas. To achieve this, two sets of kriging maps
(i.e., 2016–2005 and 2020–2016) were subtracted for each site (desert of Tabernas and Sierra
Alhamilla).

4. Results

Figure 4 displays the relevant BI products, which were computed using Equation (1)
and the corresponding coefficients. The bright areas scattered across the mid- to late-2000s
images, indicating watering areas, are much less visible in the 2015 and 2020 images. In
the more recent 2020 image of the desert of Tabernas and Sierra Alhamilla, many watering
areas are absent, but there is a large, bright area present. The brightness index (BI) values,
which indicate bare, degraded soil, were calculated using the same method for all sensors,
and the brightness levels were uniformly stretched.

The geostatistical analysis utilized all of the BI images. Initially, empirical semi-
variograms were created for each of the two sites for the three time periods. Field observa-
tions did not reveal any anisotropic patterns that could potentially govern the direction
of grazing, such as linear dunes or other barriers. Therefore, an isotropic distribution was
assumed in all cases. The results of the cross-validation analyses are outlined in Table 2.
The chosen slope coefficient and the intercept coefficient of the exponential model were
very close to unity and zero, respectively, indicating that the model was able to accurately
replicate the observed values.

After the examination of several theoretical models [40], the exponential model
(Equation (3)) was chosen as it yielded the best results during cross-validation. This choice
is due, as can be seen in Table 2, to the fact that the exponential model has a lower spatial
variance than the Gaussian and spherical models. In addition, it should be noted that at
smaller pixel sizes [40], the exponential model fit better than the Gaussian and spherical
models, the latter being the one that would best fit for larger pixel sizes (since the sill value
would be lower) as long as data from the MODIS satellite had been used, for example.

Later, kriging interpolation techniques were utilized, employing exponential models
(see Figure 5) with the parameters from Table 2. The final outcomes illustrating the distribu-
tion of BI values for the three periods and both sites are displayed in Figure 6. In Figure 6,
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the desert of Tabernas has BI values ranging from 0.66 to 0.95, while the Sierra Alhamilla
sites have BI values ranging from 0.20 to 0.60.
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Table 2. Variogram parameters in the study area for the exponential, Gaussian, and spherical models.

Model Date Nugget Sill Range (m) Spatial Variance

Exponential
Mid-to-late 2000s 0 0.00088 4800 0.00088

Around 2015 0.0001 0.00064 6400 0.00054
2020 0.0001 0.0008 12,000 0.0007

Gaussian
Mid-to-late 2000s 0 0.00149 2771.28 0.00149

Around 2015 0.0001 0.00108 3695.04 0.00098
2020 0.0001 0.00136 6928.20 0.00126

Spherical
Mid-to-late 2000s 0 0.00149 1600 0.00149

Around 2015 0.0001 0.00108 2133.33 0.00098
2020 0.0001 0.00136 4000 0.00126
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The BI differencing method, explained in the concluding paragraph of Section 3, was
utilized to analyze changes in grazing patterns over two specific time periods. Figure 7
displays the maps illustrating these changes.



Remote Sens. 2023, 15, 3984 11 of 19
Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 6. Kriging maps inferred by interpolation in the Desert of Tabernas and Sierra Alhamilla. 
Dots that appear in the images below, corresponding to 2020, are the waypoints of the study area, 
which are accessible at the following link: https://acortar.link/Wef4eD. Note that values of 0.92 in 
the Desert of Tabernas Desert, and 0.55 in Sierra Alhamilla indicate the limit from which the impact 
caused by grazing pressure is significant around the watering areas (values of 0.95 for the Desert of 
Tabernas and 0.6 for Sierra Alhamilla). 

Figure 6. Kriging maps inferred by interpolation in the Desert of Tabernas and Sierra Alhamilla.
Dots that appear in the images below, corresponding to 2020, are the waypoints of the study area,
which are accessible at the following link: https://acortar.link/Wef4eD. Note that values of 0.92 in
the Desert of Tabernas Desert, and 0.55 in Sierra Alhamilla indicate the limit from which the impact
caused by grazing pressure is significant around the watering areas (values of 0.95 for the Desert of
Tabernas and 0.6 for Sierra Alhamilla).

https://acortar.link/Wef4eD


Remote Sens. 2023, 15, 3984 12 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

The BI differencing method, explained in the concluding paragraph of Section 3, was 
utilized to analyze changes in grazing patterns over two specific time periods. Figure 7 
displays the maps illustrating these changes. 

 
Figure 7. Result of the BI differencing method in the Desert of Tabernas (left side) and Sierra Alha-
milla (right side) for both the 2016–2005 (a) and 2020–2016 (b) periods. Note that the gray color of 
the utilized palette was enlarged on the value scale only so that it could be properly appreciated, 
even though its value is 0. 

Figure 7. Result of the BI differencing method in the Desert of Tabernas (left side) and Sierra Alhamilla
(right side) for both the 2016–2005 (a) and 2020–2016 (b) periods. Note that the gray color of the
utilized palette was enlarged on the value scale only so that it could be properly appreciated, even
though its value is 0.

5. Discussion

Regarding the BI maps (Figure 4), the brightness of the Sierra Alhamilla in the mid-to-
late 2000s was significantly different (or opposite) from the other two maps of the same
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region. This fact is due to a twofold reason. The first one refers to the topography of those
areas of Sierra Alhamilla in which the brightness is different. However, according to [25], at
the beginning of 2015, a reforestation of the bright areas was carried out in the mid-to-late
2000s in order to minimize the soil loss due to surface runoff phenomena. As a result of
this fact, for around 2015 and for 2020, said bright area appears with a dark hue.

The fit of the exponential model was assessed using the least-squares measure, and
the variogram parameters can be found in Table 2. Each variogram (see Figure 5) was
processed with 17 lags, each spanning a distance of 800 m. The lag values were determined
through a trial and error process to optimize the aforementioned criteria. When observed
visually, the variograms from the mid-late 2000s and around 2015 appear quite similar,
exhibiting a typical variogram shape. Two notable features can be observed. Firstly, the sill
of the variogram around 2015 was lower compared to the mid-to-late 2000s, suggesting
a decrease in variance in the latter year. Further, the range in the mid-to-late 2000s was
4800 m, while in around 2015, it was 6400 m, which corresponds to the reported walking
distance of livestock from their drinking source [44]. In contrast, the variogram for 2020
only reached a similar sill level after a distance of 12 km. This range does not appear to be
indicative of the grazing pattern in the region.

In Figure 6, the initial maps, specifically during the mid-late 2000s, reveal the presence
of bands encircling the watering points, signifying the progressive degradation of land
extending from the wells. These bands denote the grazing gradient or the impact of grazing.
Regions depicted in dark red (values of 0.95 for the Desert of Tabernas and 0.6 for Sierra
Alhamilla) in the images indicate watering areas. The adjacent belts in light red (values
of 0.92 in the Desert of Tabernas Desert, and 0.55 in Sierra Alhamilla) indicate the limit
from which the impact caused by grazing pressure is significant around the watering areas,
exerting a strong influence on spatial variation. Such regions are referred to as the “sacrifice
zone” by [11]. On the other hand, the orange and yellow colors represent a mixed zone
where the effects of grazing and natural variability coincide or establish a stable balance.
This zone can be likened to the outskirts of the grazing impact and highlights the primary
migration routes of livestock. The zone exhibiting green shades signifies an area where
natural variability surpasses the impact of grazing, and was termed the “grazing reserve”
by [11].

On the other hand, in Figure 7, and specifically in the change detection map for the
period of 2016–2005, a large portion of the area appears grey, indicating that there were
no noticeable alterations in grazing patterns. The remaining areas are represented in ma-
genta, indicating degradation, and green tones, representing rehabilitation. Consequently,
between the mid-to-late 2000s and around 2015, the overall trend was a positive one, with
land-cover conditions improving or undergoing rehabilitation. It is worth noting that
around 2015, the area became more uniform, as indicated by the reduced variation (lower
sill) in Figure 5 and the narrower range of colors in Figure 6a,b. Conversely, during the
second period (2020–2016), a significant portion of the area experienced degradation pro-
cesses (magenta colors), while the area undergoing rehabilitation (green tones) diminished
considerably (Figure 6a,b).

As a result of the 2007 economic crisis, there was a progressive decrease in the livestock
census in the study area due to increased costs, which is why many farmers had to abandon
economic activity due to lack of profitability. This fact had a positive influence on the
environment, since it led to the recovery of those areas where livestock pressure was
highest. This is one of the reasons why, from the mid-to-late 2000s to around 2015, a
recovery of the study area can be observed (see Figure 7a). Despite the above, and although,
in 2016, the Andalusian Government started the Recovery Plan for the Desert of Tabernas
and Sierra Alhamilla [45], the increase in degradation (Figure 7b) is mainly due to climatic
causes.

To explain the climatic effect in the study area, Table 3 shows the data corresponding to
the sum of both the average monthly temperature (in Celsius) and the monthly precipitation
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(in mm) in each of the years subjected to study. All climatic data were downloaded from
Version 4 of the CRUTS monthly high-resolution gridded multivariate climate dataset [46].

Table 3. Climatic data in the study area from 2005 to 2020.

Year Tª (◦C) P (mm) Year Tª (◦C) P (mm)

2005 179.6 226.6 2013 185.1 385.6
2006 180.7 392.3 2014 186.1 293.5
2007 182.2 410.8 2015 187.1 338.4
2008 183.7 407.3 2016 189.9 320.5
2009 185.0 428.2 2017 190.6 293.3
2010 185.3 646.6 2018 191.6 490.7
2011 184.2 333.0 2019 194.6 340.8
2012 184.8 386.1 2020 193.7 359.5

From Table 3, as a result of climatic peculiarities of the study area, the need to infer
a new aridity index was seen, and it was obtained to help explain the results shown in
Figure 6. We have called this index the RAMALL (RAmírez, MAdueño, López, and Leiva)
Aridity Index. Equation (6) specifies how the RAMALL index is calculated.

RAMALL Aridity Index =
∑12

i=1 MPj

∑12
i=1 AMT j + ∑12

i=1 AMT j+1
(8)

where:
i = months of each year;
j = year for which to calculate RAMALL aridity index;
MPj = monthly precipitation (mm) in the year “j”;
AMTj = average monthly temperature (◦C) in the year “j”;
AMTj+1 = average monthly temperature (◦C) in the year “j + 1”.
Values greater than 1 indicate a low aridity index, while values lower than 1 indicate a

high aridity index. The reason for using temperature and precipitation data is based on
the physical principle that evapotranspiration increases with temperature and, therefore,
precipitation becomes less effective. However, unlike methods based on evapotranspiration
(such as the Meigs aridity index [47] or the UNEP aridity index [48], among many others),
the proposed index (RAMALL aridity index) takes into account the effect of the soil on the
increase in environmental temperature close to the surface, as is specified by [39].

Figure 8 shows the evolution of this new RAMALL aridity index in the study area
between 2005 and 2020.

After analyzing the data shown in Table 3, as well as Figure 8, the RAMALL aridity
index presented mean values of 1.05 (low aridity index) between 2005 and 2015 and 0.94
(high aridity index) between 2016 and 2020.

As can be seen, the 2007 economic crisis had a positive effect on the average aridity
during the 2016–2005 period (the RAMALL aridity index value was greater than 1). During
this period, the water erosion phenomena [28] were minimized not only by the decrease
in livestock pressure, but also as a consequence of the increase in plant variety that, being
present in the soil seed bank, only colonized the area study as a result of said decreased
grazing.

However, in the second period under study (2020–2016 period), for which RAMALL
aridity index values were lower than 1, the progressive increase in the average annual
temperature (Figure 9), along with the near-disappearance of grazing that occurred at
the end of the first period (2016–2005), favored plant variety loss in the study area, and
therefore, the shrub stratum was dominant. On the other hand, it should be noted that in
2014 (see Table 3), there was a decrease in rainfall levels, which, along with the progressive
increase in temperature (see Figure 9), contributed even more to the desertification process
in the study area. This fact has, as a serious consequence for the environment of the study
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area, led to an increase in erosive processes, and will also lead to both soil and habitat loss
over time if the global warming trend continues [28].
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Finally, it is necessary to emphasize that, both in the Desert of Tabernas and in Sierra
Alhamilla, the influence of the arid climate has given rise, over time, to a landscape of
mainly erosive morphology, whose main signs are slopes (of soft materials) in the form
of gullies. With respect to the drainage network, it is necessary to indicate the action
of the existing channels on the smoothing of the relief, resulting in a predominance of
erosive action at the headwaters and, therefore, boxing in of the channels, as well as a
predominance of sedimentation in the lower part. The impact caused by raindrops on bare
soil gives rise to a wide variety of microforms in the landscape, a key characteristic of soil
loss through surface runoff.

6. Conclusions

The aim of the present study was to analyze the changes in vegetation patterns over
time in the Desert of Tabernas and Sierra Alhamilla (Almería, Spain), focusing on land
degradation and rehabilitation. Specifically, our research aimed to understand how these
changes were influenced by socio-economic factors following the economic crisis in 2007.
To achieve this, the tasseled cap-derived brightness index (BI) was employed as a tool
to depict the spatial distribution of land surface characteristics. The BI was chosen for
its superior ability to differentiate among various spectral indices, its original purpose of
examining soil properties, and its capability to compare different sensors with distinct
spectral bands by normalizing them into a single BI layer.

The use of geostatistical analysis, specifically semi-variance analysis, was determined
to be a suitable approach for understanding the spatial structure within imagery at a specific
date and location. This method was chosen due to the similarity between the variograms’
shapes and the directional changes observed in various biotic, abiotic, and environmental
variables along the grazing gradient emanating from watering points in arid and semi-arid
regions. By utilizing variogram models from the mid-to-late 2000s and around 2015, it
becomes possible to quantitatively generalize the observed phenomena across the region of
interest. The average range of 4800–6400 m aligns with the reported walking distance of
livestock from their water sources. Comparing variograms from different years can provide
insights into the temporal dynamics of the region, as evidenced by the failure to reach a sill
in the variogram when grazing ceased at the end of 2015.

The kriging interpolation method was employed as a smoothing filter, whereby each
pixel in the image was replaced with a solution derived from the variogram equation
(specifically, an exponential model in this case), which was calculated using all other pixels.
This approach aimed to reduce spatial errors and fine-scale variability, facilitating a more
accurate delineation of degradation boundaries surrounding the watering points. The
resulting maps of the study area revealed a radial pattern, indicating progressive land
degradation emanating from the wells, commonly referred to as the grazing gradient.
However, this pattern appeared blurred or absent in the 2020 maps. In comparison to
other interpolation techniques, ordinary kriging is regarded as the superior linear unbiased
estimator.

The index differencing technique was successfully utilized to analyze temporal changes.
This study showcases the capability of satellite image analysis to track land-use and land-
cover modifications resulting from both the 2007 economic crisis and the significant decrease
in grazing pressure.

In future work, it could be interesting to compare the existing similarity between the
Desert of Tabernas and Sierra Alhamilla with the existing desertification in other areas of
Mediterranean Europe. This study may be important in order to highlight the possible
peculiarities that favor the preservation of native fauna and flora.
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