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Abstract

Data Science has burst into simulation-based engineering sciences with an im-

pressive impulse. However, data are never uncertainty-free and a suitable ap-

proach is needed to face data measurement errors and their intrinsic randomness

in problems with well-established physical constraints. As in previous works,

this problem is here faced by hybridizing a standard mathematical modeling

approach with a new data-driven solver accounting for the phenomenological

part of the problem, with the aim of finding a solution point, satisfying some

constraints, that minimizes a distance to a given data-set. However, unlike

such works that are established in a deterministic framework, we use the Maha-

lanobis distance in order to incorporate statistical second order uncertainty of

data in computations, i.e. spread and correlations. We develop the underlying

stochastic theoretical framework and establish the fundamental mathematical

and statistical properties. The performance of the resulting reliability-based

data-driven procedure performance is evaluated in a simple but illustrative uni-

dimensional problem as well as in a more realistic solution of a 3D structural

problem with a material with intrinsically random constitutive behavior as con-

crete. The results show, in comparison with other data-driven solvers, better
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convergence, higher accuracy, clearer interpretation, and major flexibility be-

sides the relevance of allowing uncertainty management, with low computational

demand.

Keywords: Data-Driven, Reliability, Mahalanobis distance

1. Introduction

Nowadays, Data Science and disciplines such as Big Data or Data Analytics

[1] are essential in our everyday life. Photos and videos handling, control of

patients data, consumer preferences data, census information and police incident

reports are just some examples of the daily huge data treatment.5

These methodologies permit the extraction of patterns and/or relevant infor-

mation from available unstructured data [2]. Since the main ideas and concepts

were introduced at the beginning of the century [3, 4], an extensive literature

may be found on this broad area [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

For example, in Machine Learning approaches [3, 15], the idea is improving10

continuously the accuracy of predictions by means of new available data, adding

new explicit knowledge from the actual response to previous predictions. A par-

ticular subdiscipline of Machine Learning is Manifold Learning [16, 17] in which

the particular aim is getting newer and richer hidden knowledge related to the

underlying structure or, in mathematical terms, the dimensionality and local15

bases of the relevant working space. There are many methods for building the

underlying manifold from data, ranging from pure interpolation to pure regres-

sion, including all Manifold Learning techniques (kernel Principal Component

Analysis (kPCA) [18], Self Organizing Map (SOM) [19], Locally Linear Embed-

ding (LLE) [20], Isomap [21], Laplacian Eigenmap [22], t-distributed Stochastic20

Neighbor Embedding (t-SNE) [23] among others [8]).

In the same direction, since Rosenblatt developed the perceptron [24], artifi-

cial neural networks is another field where new concepts as Deep Learning and

dynamic networks are in continuous development and are able to identify more

abstract features and solve more complex problems [25, 26, 27].25
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Despite the wide application of Data Science in areas such as marketing

and e-commerce [28], social sciences [29], or healthcare [30], there are other

fields where very little has been done. An example are the disciplines where

physical models and the corresponding mathematical and numerical simulation

tools are well established like Computational Physics, Computational Chemistry30

or Computational Engineering (Simulation-Based Engineering and Sciences -

SBES-). A straightforward application of these techniques is Dynamic Data-

Driven Applications Systems (DDDAS) [31], in which the idea is providing both

predictive and learning capabilities to the control system of data acquired from

a sufficient set of sensors. This paradigm was settled down by Kalman [32] in35

the sixties with his groundbreaking filter and is still nowadays a hot topic of

research opening up a huge range of possibilities [33]. Some work has been done

for dynamical systems [34] and for parameterized PDEs systems [35].

SBES may incorporate, in addition to data, some a priori characteristic

physical knowledge of the analyzed system. At this point, it is crucial to distin-40

guish between two kinds of knowledge. On one hand, physical general principles,

such as conservation and thermodynamic laws that are universally accepted as

able to describe the underlying universe structure. On the other hand, we find

phenomenological models, such as macroscopic material constitutive relations.

The latter is an intelligent simplification of the real interactions at molecular45

level extracted from available experimental data.

From above, it is clear that Data Analytics techniques would be very useful

in SBES to extrapolate the phenomenological model, but now constrained with

the mathematical expression of first principles. This approach, of increasing im-

portance, is known as Data-Driven Simulation-Based Engineering and Sciences50

(DDSBES). In this mixed approach, the absence of physical constraints implies

recovering the Data Science and Machine Learning framework, while total a

priori parameterization of experimental data recovers classical SBES. Actually,

all linear and non-linear phenomenological models are formulated in terms of

parametric mathematical equations, where the variables of interest are forced55

to remain within a given pre-established manifold. DDSBES may be considered
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then as an a posteriori manifold constructor that may be context-dependent. In

other words: let the data tell us which physical variables persist without forcing

them a priori, except for universal physical laws.

Recently, F. Chinesta and coworkers defined a strategy for Data-Driven (DD)60

Computational Mechanics [36], combining Manifold Learning techniques and a

(possibly optimized) directional search strategy inspired in the LaTin method

[37]. In that work, it is highlighted that manifold construction step is not

compulsory, but could give some insight about underlying physical structure

and could result in less computationally demanding solutions. M. Ortiz and65

his group presented a material model-free method based on the minimization

of the distance between the searched solution and a set of experimental data,

using a proper energy norm, while remaining in the equilibrium manifold, or

equivalently, a well-posed penalty approach [38]. Other DD hybrid approaches

use Gaussian processes (GP) in a given data-set for dynamical feedback of the70

parametrical model [39], or fusion prognosis [40, 41], to combine DD and physical

models, but these methodologies remain encapsulated in the underlying specific

physical phenomenological model.

None of these works take into consideration the inherent inaccuracy of the

data. Conversely, empirical data are considered as error-free for both directional75

search and penalty approaches [36, 38]. Only for the latter, some mathemat-

ical convergence results are derived for zero uncertainty approaches, which in

practice is never the case.

In this paper, a new family of methods, called reliability-based data-driven

solvers (RBDD), based on a metric accounting for uncertainty are defined and80

some new mathematical results are derived. It is highlighted how DD solver

methodology naturally allows incorporating reliability along the statement of

the modeling. The penalty approach suggested in [38] is chosen as starting

point, but now, a metric taking into account the uncertainty, the Mahalanobis

distance, is employed, in order to deal with spread and correlations of the data.85

With this, data-driven simulations become sensitive to measurements precision

and incorporate uncertainty considerations.
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Through this paper, we will discuss the main problems of the classical and the

new simulation-based techniques when dealing with noisy data, highlighting the

limitations of each methodology. An easy but illustrative one-dimensional prob-90

lem is used to compare results and to show improvements using this methodol-

ogy. We also present another more realistic example with real concrete test data,

emphasizing the implications of nonexistence of an explicit set of well-defined

hypotheses and the corresponding material model.

2. Data-driven solvers95

Following [38] and [36], DD solvers may be seen as iterative solvers searching

for the intersection of a (data based) empirical manifold and a physical mani-

fold. The first one is in many practical applications experimentally based and

has, therefore, a discrete nature. The second is usually established in terms of

sound laws particular to the problem in hands, but otherwise derived from first100

principles universally accepted as the basis of Physics. For the sake of simplic-

ity, we may consider the elastic three-dimensional problem. In that case, the

physical manifold is the set of states that verify global and local equilibrium (i.e.

conservation of linear and angular momenta), that in the static case (negligible

inertial effects) is written in differential form as:105

∇ · σ = 0 (1)

with σ the stress tensor.

Equation (1) is usually approximated and solved in a discrete form using

numerical methods like Finite Elements (FEM). In that case, after a convenient

discretization we can state:110

By = 0 (2)

where y is a finite dimensional vector containing the full stress tensor field

information related to a given discretization (for FEM, this vector contains the
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components of the stress tensor for all the integration points) and B is a matrix

encoding the geometry and connectivity of the domain.

The empirical manifold is defined via a set E = {(xj ; yj)}j=1,··· ,m of data115

points, resulting from experimental measurements (and therefore not uncer-

tainty free) as it will be illustrated subsequently. The set E may be seen as a

representation of the underlying material behavior in the following asymptotic

sense: (i) if E approximates a mathematical manifold and (ii) uncertainty of

each point approximates to zero. Some basic mathematical results related to120

these considerations may be found in [38].

When solving the problem, there are two main approaches:

1. The first one is based on identifying, at least locally, manifolds from data.

Here, regression techniques (based on least squares or other optimization

approach) [36] or interpolation techniques [42, 43] are generally used. For125

high dimensional spaces, regression algorithms are expensive and therefore

a previous step including dimensionality reduction, i.e. Manifold Learning,

is generally compulsory [36]. Once the underlying manifold is built, locally

tangent spaces may be computed and tangent-based iterative solvers such

as Newton-Raphson (NR), quasi-Newton or arc-length strategies may be130

used. We call this the linearization approach.

2. The second one is searching for the solution point directly from data,

following [38], or equivalently the third approach presented in [36]. In

that case, it is necessary to define a distance, i.e. a metric, in order

to select the nearest data point to the physical manifold. In [36], the135

euclidean norm is selected, despite it is dimensionally inconsistent, while

in [38] a more physically-meaningful norm (energy norm) is selected. Both

norms, however, do not consider uncertainty in data. The problem is then

formulated as a constrained minimization problem, and solved iteratively.

We call this the pure DD approach.140
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2.1. Problem formulation

We present here the general framework for DDSBES problems. With this

aim, we postulate that a model-free engineering problem may be defined in

terms of state variables (X,Y ) that are related through a latent and unknown

relationship F (X,Y ) = 0. For most computational frameworks, state variables145

are presented in a discrete manner such as (X,Y ) = (xi,yi)i=1,··· ,N where

xi, and yi are vectors whose dimension n is the size of the state vector and

N = N × n is the number of scalar state variables of the problem. Returning

to the elastic problem, xi is the vector containing all strain components (εkl) at

the point i and y the vector containing all stress components (σkl) at the point150

i. It is now necessary to define a distance (a metric) in the state space for xi

and yi. That is, for example for xi, to define a symmetric and positive-definite

matrix Mx and:

||xi||2x,i =
1

2
xTi Mx,ixi (3)

Therefore:

d2x,i(xi,x
′
i) = ||xi − x′i||2x,i =

1

2
(xi − x′i)

TMx,i(xi − x′i) (4)

As we are considering engineering problems, we have physical constraints.155

For the sake of simplicity, but without any conceptual limitation, we shall con-

sider linear constraints only, so they can be written as:

Ax = a

Cy = c (5)

At each point i, we have a trial set Ei that may be thought as the result of

experimental tests. We then define a local penalty function for each point i as:

Fi(xi,yi) = min
(x′,y′)∈Ei

{dx,i(xi,x′) + dy,i(yi,y
′)} (6)
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It is obvious that the penalty function vanishes for each point in Ei, Fi|Ei = 0.160

Finally, a global penalty function is defined, F (x,y|E) =
∑N
i=1 Fi(xi,yi)

where E =
∏N
i=1 Ei, x = (xi)i=1,··· ,N and y = (yi)i=1,··· ,N . Here we have, for

each (x,y) ∈ E , F (x,y) = 0, F |E = 0 and we have a global norm ||(x,y)||2 =
∑N
i=1 ||(xi,yi)||2.

Therefore, a DDSBES problem is defined by the constrained optimization165

problem:

min
(x,y)

F (x,y|E)

subject to

Ax = a

Cy = c

(7)

For the elastic problem, problem (7) takes the form:

min
(ε1,··· ,εN ,σ1,··· ,σN )

F (ε1, · · · , εN ,σ1, · · · ,σN |E)

subject to

C[σ1, · · · ,σN ]T = c

(8)

where C is a matrix encoding connectivity and geometry of the problem, de-

pending on the particular discretization.

This formulation is similar to the one proposed in [38], except for the fact170

that it is formulated in a slightly more general context, including a generalized

distance (and therefore a more flexible way of measuring how far is a point from

the data-set).

It is important to note that state variables xi, yi may be in a lower di-

mensional space obtained after dimensionality reduction. For example, for the175

elastic problem, ε and σ live in a space of 6 dimensions, so (ε,σ) has 12 di-

mensions. These dimensions may be reduced if additional simplifications are

imposed a priori onto the material behavior. For example, if a homogeneous

isotropic linear material is considered, this dimension is actually two, because
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of the Hooke law states σ = λTr(ε) + 2µε where λ and µ are Lame’s constants,180

related to phenomenological parameters E and ν.

Proposition 1. The problem defined by (7) has a unique solution if rang(A) =

rang(C) = r where r is the number of restrictions.

Proof:. Let Mx =
⊕n

i=1 Mx,i y My =
⊕n

i=1 Mx,i. Let (x∗,y∗) a pair of state

variables verifying Fi(xi,yi) = d2x,i(xi,x
∗
i ) +d2y,i(xi,y

∗
i ) which exists because of185

Ei finiteness. With these definitions we can write

F (x,y) =
1

2
(x− x∗)TMx(x− x∗) +

1

2
(y − y∗)TMy(y − y∗) (9)

We define the lagrangian function L(x,y,λ,µ) = F (x,y) − λT (Ax − a) −
µT (By − b). Then:

∂L
∂x

= Mx(x− x∗)−ATλ

∂L
∂y

= My(y − y∗)−BTµ

∂L
∂λ

= Ax− a

∂L
∂µ

= By − b (10)

Using Lagrange multipliers theorem: ∂L
∂x = 0, ∂L

∂y = 0, ∂L
∂λ = 0 y ∂L

∂µ = 0,

therefore:190

Mxx−ATλ = Mxx∗

Myy −BTµ = Myy∗

Ax = a

By = b (11)
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We define K, X and F as:

K =




Mx −AT 0 0

A 0 0 0

0 0 My −BT

0 0 B 0




(12)

X =




x

λ

y

µ




(13)

F =




Mxx∗

Myy∗

a

b




(14)

Then (11) writes as KX = F and, would have a single solution if and only if

det(K) 6= 0. Using block decomposition of determinant:

det(K) = det(Mx) det(My) det(AMxAT ) det(BMyBT ) (15)

As det(Mx) =
∏n
i=1 det(Mx,i) and det(My) =

∏n
i=1 det(My,i) and Mx,i

and My,i are positive definite matrices, det(K) 6= 0⇔ det(AMxAT ) det(BMyBT ) 6=195

0⇔ AMxAT and BMyBT are regular. Finally, if D is a positive definite ma-

trix and rang(BDBT ) = rang(B) then regularity condition is equivalent to

rang(A) = rang(B) = r.

�
The reason of why the solution may be not unique relies on the (possible)200

existence of many points (x∗,y∗) on the set to minimize the penalty function.

When solving the nonlinear problem (7), two steps are required:
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• Local search of a minimum of the penalty function Fi for each element

i using the nearest neighbor algorithm. This search looks for the most

representative datum in the empirical discrete manifold.205

• Global resolution of the linear system KX = F. This equation states that

the searched points should remain on the physical manifold.

An easy algorithm for data-driven problem solving is:

1. Initialization x∗(0) y∗(0) and k = 0.

2. While (x∗(k−1),y∗(k−1)) 6= (x∗(k),y∗(k)).210

(a) Compute Fk.

(b) Solve KXk = Fk.

(c) Extraction of components xk and yk of X.

(d) Compute (x∗(k+1),y∗(k+1)), nearest sample point to (xk,yk).

(e) Update: k := k + 1.215

3. Solution is (x,y) = (xk,yk).

2.2. Reliability-based data-driven solver

Let’s suppose we have a method for creating data couples, i.e, state pairs,

(Xj , Y j), j = 1, · · · ,m. Now, each of the pairs U j = (Xj , Y j) is consid-

ered to have random nature. Returning to the discrete case, U = (X,Y ) =220

(Xi,Yi)i=1,··· ,N where Xi, and Yi are now random vectors whose dimension n

is the size of the state vector and, as before, N = N ×n is the number of scalar

state variables. Now, we may define the stochastic analogous problem to the

deterministic one (7):

min
(x,y)

E[F (x,y|E)]

subject to

Ax = a

By = b

(16)
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Note that with this formulation, the solution candidate u = (x,y)T is not225

random, while F (x,y|E) = F (u, E) is a random variable due to the random

nature of E .

Proposition 2 (Second-order properties of minimal distance). Let D2
E =

F (x,y|E) the random variable representing the squared distance between u and

the set E and d2E the certain equivalent squared distance, obtained by substituting230

in the penalty function (6), x′ and y′ by E[X′] and E[Y′] respectively. Besides,

we denote as U∗ the random vector associated to the minimization of dE , i.e,

verifying F (u|E) = ||u−E[U∗]||2. If Σ is the variance-covariance matrix of U∗

and Ω is the fourth order moment tensor of u −U∗, that is, tensor defined by

Ωijkl(u−U∗) = E[(ui − U∗i )(uj − U∗j )(uk − U∗k )(ul − U∗l )] then:235

µ(D2
E) = E[D2

E ] =
1

2
Tr(MΣ) + d2E (17)

σ2(D2
E) = Var(D2

E) = M : Ω : M− (Tr(MΣ) + d2E)
2 (18)

with M = Mx ⊕My.

Proof:. We define u = (x,y)T , U∗ = (X∗,Y∗)T and µ = E[U∗], so we have

E[F (u|E)] = 1
2E[(u − U∗)TM(u − U∗)]. It is possible to define a random

quadratic form:

Q 1
2M

(u−U∗) = F (u|E) (19)

Then, we have D2
E = F (u|E) = Q 1

2M
(u −U∗), d2E = Q 1

2M
(u − µ∗). In the240

Appendix we show that for a stochastic quadratic form QA(Z) with expected

value µ, variance-covariance matrix Σ and fourth order moment tensor Υ, it is

possible to write:

E[QA(Z)] = Tr(MΣ) + µTMµ (20)

Var(QA(Z)) = A : Υ : A− (Tr(AΣ) + µTAµ)2 (21)
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Then, using A = 1
2M and Z = u−U∗, the final statement is easily obtained.

�245

Proposition 3 (Second-order properties of minimal distance under normality).

Using the same conditions and notations of the later and assuming that U∗ is

a multivariate normally distributed random vector, U∗ ∼ N (µ,Σ), then

µ(D2
E) = E[D2

E ] =
1

2
Tr(MΣ) + d2E (22)

σ2(D2
E) = Var(D2

E) =
1

2
Tr(MΣMΣ) + (u− µ)TMΣM(u− µ) (23)

Proof:. It is again a consequence of the definition of D2
E = Q 1

2M
(u − U∗) =

F (u|E) and the result for quadratic forms shown in the Appendix, QA(Z), when250

Z is multivariate normally distributed random vector Z ∼ N (µ,Σ):

Var(QA(Z)) = 2Tr(AΣAΣ) + 4µTAΣAµ (24)

�
Now, the crucial point is to select a suitable norm for this stochastic approach

of the problem. A very recommended one is Mahalanobis distance [44]:

d(U,U′) =
√

(E[U]− E[U′])T (ΣU)−1((E[U]− E[U′])) (25)

This is equivalent to choose as metric matrix M = 2(Σ)−1. the expected255

value of the optimal penalty function is thus:

µ(D2
E) = E[D2

E ] = 2N + d2E (26)

and, the variance:

σ2(D2
E) = Var(D2

E) = 2Σ−1 : Ω : Σ−1 − (4N + d2E)
2 (27)

Under normality conditions, the variance writes
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σ2(D2
E) = Var(D2

E) = 2(2N + 2d2E)

Again, under normality conditions, we can state the following:

Proposition 4 (Squared distance distribution under normality conditions).260

Let D2
E = F (u|E) the (random) squared optimal distance to E using Mahalanobis

distance and d2E the optimal distance of the certain equivalent problem. Assume

that U∗ is a multivariate normally distributed random vector, U∗ ∼ N (µ,Σ),

then D2
E follows a non-central chi-squared distribution with n = 2N degrees of

freedom and non-centrality parameter λ = (u− µ)TΣ−1(u− µ).265

D2
E ∼ χ2

(
2N , (u− µ)TΣ−1(u− µ)

)

Proof:. Given u, we have du = u−U∗ ∼ N (u− µ,Σ), therefore, Σ−1/2du ∼
N (Σ−1/2(u−µ), I). By using the non-central chi-squared distribution definition

we get:

D2
E = duTΣ−1du = (Σ−1/2du)T (Σ−1/2du) ∼ χ2(n, λ)

where n = 2N and λ = (Σ−1/2(u−µ))T (Σ−1/2(u−µ)) = (u−µ)TΣ−1(u−µ).

�270

Having some knowledge onto the expected value, variance and distributional

properties of the optimal distance to the initial data set, gives us tools for some

uncertainty considerations. In this sense, low mean values are related to good

convergence while low variance implies neighborhood to certain convergence.

It is important to highlight that in practical common applications, the ex-275

pected value and the variance-covariance matrix are not known and must be

estimated. This can be easily done using parametric estimation from a data

sample of size K. Thus, the expected value and variance-covariance matrix

may be estimated using the standard formulas:

µ = E[X∗] ' X∗ =
1

K

K∑

k=1

X∗k

14



Σ = COV(X∗) ' Q =
1

K − 1

K∑

k=1

(X∗k −X∗)(X∗k −X∗)T

Distributional properties of D2
E when substituting population parameters by280

sample estimators could be derived but are out of the scope of this work.

3. Numerical experiments

3.1. Unidimensional problem

Now we evaluate the performance of different data-driven solvers, including

the reliability-based one proposed herein. As it could be predicted, the main285

problem of the linearization approach appears when dealing with irregular (non-

smooth) empirical manifolds. This is typical in Physics when working with

models that have discontinuities, like in many mechanical problems such as

plasticity, damage, fracture and contact problems. A very basic unidimensional

trivial problem exemplifies well their main pathologies.290

Let us consider a simple uniaxial loaded rod, as schematized in Figure 1,

with F = 100 kN, A = a2 = 200 cm2 and L = 10 m. This problem may be

easily solved through traditional model-based techniques. The solution is based

on the combination of three equations. Equilibrium equation, stays σA = F ,

compatibility equation, stays ε = u
L . For this problem to be mathematically295

closed, we need a mathematical relation, i.e. a model, relating the internal

(state) variable stress, σ, and the measurable variable strain, ε, what is known

as constitutive relation of the material σ = f(ε). For linear elasticity, σ = Eε.

Here the approach is different. Let us consider that the constitutive rela-

tion is not known and the material behavior could be linear, smoothly non-300

linear or non-smoothly nonlinear. In any case, what we have to describe the

material behavior is a considerable amount of experimental pair values (ε, σ),

E = {(εj ;σj)}j=1,··· ,m. For testing DD solvers based on linearization, let us

compare the computed results when considering a non-smoothly nonlinear be-

havior and using the well-known iterative tangent Newton-Raphson method,305

with the analytic results obtained through the exact linear model.
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Figure 1: Rod under uniaxial load.

It is important to note in the next figures, corresponding to the numerical

experiments, that the grey dashed line, drawn as a function graph σ = f(ε),

represents the actual material behavior obtained in the experiments, whose ex-

pression is not known a priori. When using linearization approaches, we need to310

define, at least locally, a smooth manifold in order to work with tangent spaces.

This can be done by using the multiple Manifold Learning techniques presented

at the Introduction. As a rule of thumb, the more accurate and structured

empirical data set, the better interpolation-based techniques perform. On the

other hand, regression techniques are preferred when dealing with noisy and315

unstructured data but low dimensional and regular underlying manifolds are

desirable.

Besides, E can be generated either allowing control in one of the variables

(laboratory controlled tests) or control is impossible (for example sensors in

dynamic DD systems). The later case is the most general and challenging. We320

are going to test the convergence for these two cases using the typical Newton-

Raphson solver. We fixed a maximum number of iterations to 104 which is huge

taking into consideration that, usually, this kind of solvers achieve convergence

in a few iterations.

Four analyses are considered, varying the number of data sample points, m,325

and the error measure related to uncertainty, s. Data generation is as follows:

for each εj ∼ U(0; εmax), j = 1, · · · ,m and, as before, σj ∼ N (µj , s), with
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µj = f(εj) and s = ασmax, where σmax is the maximum stress.

Figures 2a, 3a, 4a, 4c, 5a and 5c show the considered empirical set, the

equilibrium manifold and the constitutive manifold built for some fitting tech-330

niques (linear interpolation, natural spline interpolation and 5 degree polyno-

mial regression). The vertical dashed line shows initial points considered for the

Newton-Raphson solver. Figures 2b, 3b, 4b, 4d, 5b and 5d show the empirical

set, the equilibrium manifold and final point for each solver. Both reliability-

based data-driven (RBDD) and DD solvers converge to the same point. Con-335

vergence is not achieved by the Newton-Raphson solver based on regression fit

because of the untrue local convexity of the built manifold, which is inherent

to parametric regression. In the case of natural spline regression, almost linear

behavior in the hardening part of the curve causes bad convergence. In Fig-

ure 2, solvers are based on an empirical set of m = 100 pairs (ε;σ) and a low340

homogeneous uncertainty is considered (α = 0.001).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0

2

4

6

8

10

12

14

16

18

<
[M

P
a]

Data
True behaviour
Linear interpolation
Natural spline interpolation
5 degree polynomial regression
Equilibrium manifold
Initial point

(a) Built manifold for linearization tech-

niques.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0

2

4

6

8

10

12

14

16

18

<
[M

P
a]

Data
True behaviour
Equilibrium manifold
Linear interpolation + NR
Natural spline interpolation + NR
Regression + NR
DD & RBDD solvers

(b) Solution point for different solvers.

Figure 2: Performance of different solvers for m = 100 and α = 0.001.

In Figure 3, we use an empirical set of m = 100 pairs (ε;σ) but higher ho-

mogeneous uncertainty is considered (α = 0.05). Even if polynomial regression

is not sensitive to noise, convergence is again not achieved because of the untrue

local convexity of the built manifold. Besides, due to noise, natural splines suf-345

fer spurious oscillations provoking bad convergence. This can be avoided using
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linear interpolation, but in this case, non-smoothness of the broken line is incom-

patible with a tangent-based solver, which in turns results in non-convergence.
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(b) Solution point for different solvers.

Figure 3: Performance of different solvers for m = 100 and α = 0.05.

We next analyze the solver behavior for reduced sample sizes. Using an em-

pirical set of m = 20 pairs (ε, σ). First, we consider accurate data (α = 0.001).350

For soundness considerations, we analyze the case with F = 100 kN and

F = 200 kN. Empirical sets are different but are associated to the same m

and α. Results are shown in Figure 4. The regression based solver is not con-

vergent for any method. Obviously, due to the lack of data, the DD solver has,

in that case, less accuracy than linearization approaches based on interpola-355

tion techniques. However, spline interpolation may also have bad convergence,

depending on the empirical set mesh and the equilibrium manifold. Linear in-

terpolation would give accurate results only for quasi-linear behavior and/or

fine constitutive manifold meshes. Convergence problems increase dramatically

when considering greater noise, as seen in Figure 5, where only DD solvers360

converge to an accurate enough solution.

For homogeneous uncertainty, the DD solver and the RBDD solver give the

same result, as pointed out before. Table 1 shows the squared distance results

for DD solvers. RBDD is more informative in the following sense: for m = 100,

the distance to the empirical set increases when passing from α = 0.001 to365
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Figure 4: Performance of different solvers for m = 20 and α = 0.001.
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F = 200 kN.

Figure 5: Performance of different solvers for m = 20 and α = 0.05.
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α = 0.05. This is due to pure hazard; each realization will give us a different

distance depending only on the empirical set sample. RBDD solver does not

have this problem because it is uncertainty dependent and can detect when

uncertainty is of the order of the optimal distance. Only when α → 0 and

the empirical set is almost a subset of the constitutive manifold, this distance370

can be used as a good uncertainty-free indicator. Otherwise, the locus of the

underlying manifold is unknown and there is no way to interpret DD optimal

distance in a coherent manner.

m 100 20 20

F [kN] 100 100 200

α 0.001 0.05 0.001 0.05 0.001 0.05

DD solver 275 6040 75251 112431 6692 1602

RBDD solver 183.43 1.61 50167.62 29.98 29.59 0.096

Table 1: Squared distance results for DD solvers.

To analyze the statistical properties of the squared distance, we consider

α = 0.1, m = 100 and F = 230 kN to generate two possible empirical sets with375

the same statistical properties. Let us suppose that the expected value of the

empirical set is known. This should approximate the true underlying manifold

but actually it may be estimated from experimental samples. Figure 6 shows

the considered data points, expected values µ and an error band, defined by

µ± s, where s is the standard deviation. Table 2 shows statistical properties of380

the RBDD solver for both cases, assuming normality. It is important to note

that here we consider ε as an uncertainty free variable, and therefore chi-squared

distribution of D2
E =

(
σ−µ
s

)2
has n = 1 degree of freedom. The squared distance

computed from data is almost zero in both cases, but a deeper knowledge about

empirical set statistics (µ = µ(ε), s = s(ε)) highlights the distance to the true385

manifold. Anyway, for the case analyzed, 96 simulations have had to be carried

out to obtain such result (Case 2).

RBDD solver is not only a more suitable and more informative solver. It
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Figure 6: Performance of DD and RBDD solvers for m = 100 and α = 0.1 considering two

different samples.

Case 1 2

Squared Optimal distance 0.0056 0.0000

Expected value 1.001 6.725

Variance 2.003 24.899

95%-Confident bound 3.84 16.30

Table 2: Statistical characteristics of the two solution points.
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can, for non-homogeneous uncertainty, result in a proper convergence in the

following sense. Figure 7 shows solution points for the DD and RBDD solvers390

for a material with different (ε, σ) constitutive relationship. Note that the un-

certainty associated with the actual material behavior is not homogeneous: in

the elastic zone, where the material is very well characterized, uncertainty is

low, but it increases when strains are higher. RBDD solver is sensitive to this

variation, while DD solver is not. For complete information, Figure 7 should395

be complemented by the statistical properties summarized in Table 3. Thus,

in Figure 7a, we can see that the DD solver converges to a very unlikely point

while RBDD converges to a more likely one. This is due to the smaller ratio

between the geometric distance from the solution point to the empirical data

set point and the bandwidth, in case of the RBDD. However, even though the400

squared distance is small, the expected value indicates that the RBDD solver

has converged to a point not very close to the mean manifold. In Figure 7b,

a different convergence point is also observed. Now, the RBDD solver has an

undesirable behavior because of the lack of data in the linear and certain region.

This is detected by means of the expected value and variance, as well as the405

95% upper bound. RBDD solvers may be therefore used for sampling strat-

egy considerations. In any case, this is a very unreasonable case, because often,

more sample points are associated with less uncertainty. In Figure 7c we can see

that both solvers converge to the same values and the statistical properties are

similar to those of the first case, indicating a reliable convergence. Finally, the410

fourth case is similar to the second one, but with higher uncertainty, which in

turn reduces the expected value of the squared distance, although the variance

remains relatively high.

Note that knowledge of the upper confident bound of the squared distance,

D2
E , could be interesting for defining a quantitative criterion for convergence.415

3.2. Scale data reduction

An interesting application of the here introduced RBDD solver in the do-

main of Computational Mechanics appears when dealing with several scales.
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(d) Case 4.

Figure 7: Performance of DD and RBDD solvers for heterogeneous uncertainty.

Case 1 2 3 4

DD Squared distance 24.72 · 102 54.14 · 102 6.98 · 102 54.14 · 102

RBDD

Squared distance 0.08 1.12 1.44 0.01

Expected value 3.70 10.98 4.20 4.94

Variance 12.82 41.91 14.18 17.76

95%-Confident bound 10.82 23.07 11.79 13.18

Table 3: Statistical properties of both solvers for each of the presented cases.
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One of the main strategies used when coupling two scales (multiscale approach)

is selecting a representative volume element (RVE) and establishing a sound420

transition procedure between the microscale properties and the macroscale re-

sponse [45, 46]. This strategy has allowed setting up implicitly material consti-

tutive relationships that were not known explicitly at the macroscale [47, 48].

Recent works foreground the crucial point of scales decoupling in the averaging

process and the need of uncertainty quantification when building the restriction425

operator [49]. As answer, many works have incorporated microscale randomness

in the multiscale procedure, either using Montecarlo Method (MCM) sampling

[50, 51, 52] or Perturbation Method [53]. However, these considerations are

still used for model validation and uncertainty has not been incorporated rou-

tinely in macroscale computations, except through expensive MCM sampling.430

A different alternative has been proposed by using stochastic partial differential

equations (SPDEs) [54].

We can apply the presented RBDD solver for uncertainty propagation from

the microscale to the macroscale allowing to incorporate it in macroscale com-

putations. Let us assume that we have at the microscopic scale a (discrete)435

coupled field (xi,yi), i = 1, · · ·K. Therefore, classical RVE techniques allow

us to define a macroscopic reference value (X,Y) where X = xi and Y = yi.

For elastic problems, this could be strain-stress pairs (εi,σi). It is possible to

compute the variance-covariance matrix Σ of the sample ui = (xi,yi). Geomet-

rically, this means to define a 2n-dimensional ellipsoid in the state space (X,Y )440

associated to each single macroscopic point, where n is the space dimension of

state variable x or y. Figure 8 shows an ellipsoid in a two-dimensional plane for

two possible microstructural fields. Note that accounting only for average val-

ues, as done in classical RVE techniques, gives the same result in both of them.

We have presented here an approach from the point of view of dimensionality re-445

duction (we use first and second order statistics instead of the whole microscopic

field). Besides, this could be exploited in multiscale computational mechanics

if a resourceful method allows second order statistical characterization of the

microscale without the whole microscale fields computation.
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Figure 8: Two possible data sets with associated error ellipsoids.

An application of the methodology described above is shown in Figure 9 with450

the rod problem presented in the previous section. For each macroscopic point

(ε, σ), we have the mean strain µ(ε), mean stress, µ(σ), strain variance s2(ε),

stress variance s2(σ) and correlation coefficient ρ(ε, σ) computed from data in

the microscale. For the sake of simplicity, these data have been randomly gener-

ated using a parametric law but should be interpreted as the result of measure-455

ments in the lower scale (pure dimensionality reduction) or obtained through

more complex multiscale procedures and techniques. In Figure 9, stresses and

strains are normalized using ε0 = 0.1 and σ0 = 10 MPa.

As it can be seen, RBDD allows uncertainty propagation, through a second

order moment characterization of state variables. In other words, geometry of460

the state space is distorted by means of uncertainty: the solution point is agreed

to be the nearest point to a given uncertainty ellipsoid, built from input data

or specific computations.
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Figure 9: Illustration of a coupling scale strategy using DD and RBDD solvers, with the latter

accounting for uncertainty.
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3.3. 3D Example

In this section, the potential of the proposed methodology is highlighted in a465

real example of application. For that, the RBDD solver is implemented in a 3D

model using actual data of concrete behavior, thus introducing a more complex

level of numerical implementation (now based on finite element methodology).

Besides, additional hypotheses are required for the practical use of the RBDD

methodology. Both issues are introduced next.470

Data regarding mechanical characterization of concrete are obtained from

the experimental setup shown in Figure 10. A squared mortar concrete speci-

men of 100 mm size is subjected to a uniaxial stress state by means of two com-

pression plates, as sketched in Figure 10. Concrete includes Portland cement

and a calibrated dosage to get an ultimate strength of 40 MPa expected value.475

Four experimental tests were carried out at a compression rate of 0.015 mm/s

with displacement control. Displacement values and loading were recorded up

to rupture of the specimen as seen in Figure 10. These values are treated to

build a 3D data-set as commented above.

On the other hand, a concrete specimen subjected to a compressive load480

- reminiscent to the bottom part of a structural column (see Figure 11) was

selected as the 3D problem of interest for the application of the RBDD method-

ology. Three steps of loading were considered in order to check the performance

of the solver at different regions of the mechanical behavior shown in Figure 12.

In this 3D example (but also extended to other scenarios of common practical485

use), stress-strain data are available along the direction of the load only. To

extrapolate this 1D behavior to a multiaxial situation some hypothesis have

to be assumed, that are explicitly stated when defining the 3D constitutive

model, but are not so explicit (while still necessary) when applying directly the

experimental data. The most important are the following:490

1. The material is considered homogeneous, or at last, with the same level

of homogeneity than the experimental sample used.

2. A given stress state is associated to a certain strain state disregard the
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particular material orientation. This implies that the material is isotropic

in average at the microstructural level.495

3. Only the behavior in one direction is known, so the stress-strain relation

in other directions has to be assumed as equal (again isotropy) while the

relation between different directions (e.g. Poisson ratio) has to be assumed

and estimated. This is a classical hypothesis made during characterization

of the mechanical behavior of materials. A value of 0.2 was assumed for500

concrete in accordance with standard codes of practice.

4. The measured behavior (in principal components) is extrapolated to a

multiaxial state using (a) and (b). This extrapolation is made using the

same sampling interval than original data.

This rises again the problem of having enough data to extract all possible505

situations (point location, direction, level of strain, etc.) in order to have the

possibility of accurately extrapolating every conditions possible in our particular

application. This is rarely the case in reality, so, at least a profound reflection

onto the applicability of the data to the particular context and the assumptions

it implies is mandatory.510

The 3D numerical RBDD solver implemented herein partially follows the

work by Kirchdoerfer and Ortiz [38]. Briefly, the algorithm proceeds iteratively

based on a finite element methodology to search at each Gauss point of every

element the closest solution to the material experimental data-set, i.e.

(σk+1
I , σk+1

II , σk+1
III )− (εk+1

I , εk+1
II , εk+1

III )

to

(σD−k+1
I , σD−k+1

II , σD−k+1
III )− (εD−k+1

I , εD−k+1
II , εD−k+1

III )

The optimality criterion is based on minimizing the Mahalanobis metric in

Equation (25) and therefore follows strictly the methodology explained in pre-

vious sections. For the sake of simplicity and computational cost, the searching

algorithm proceeds in the space of principal directions. Convergence is consid-

ered to be achieved once ‖W‖ < TOL, being TOL a certain (tolerance) value515
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and W a certain criterion defined in this section as follows,

W =

√
1

s
‖σk+1 − σk‖2 +

1

e
‖εk+1 − εk‖2 (28)

being s and e representative values of the stress and strain ranges in the test

data, respectively. The code was implemented in Matlab software.

Stress component along the compression direction is analyzed in Figure 13

for different regimes (steps) of the strain-strain curve, at two representative520

points (top and bottom) located at the surface of the specimen (see Figure 12).

Figure 13 also shows the stress-strain level of points 1 and 2 along the data-set

as well as mean and mean ± standard deviation curves. It is observed that

stress keeps in the linear range at steps 1 and 2. Conversely, point 1 at step 3

falls into the so-called damaged region of the concrete behavior. It is convenient525

to note that DD numerical methodology naturally deals with nonlinear material

behavior without the need of elaborated model-dependent formulations and as-

sociated nonlinear solvers, and RBDD solver turns out to be uncertainty robust

as well. For completeness, Table 4 shows the optimal Mahalanobis distance of

the obtained solution at points 1 and 2 for the different analyzed steps.530

Figure 10: Experimental setup and obtained experimental data from four different tests.
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Figure 11: Geometry and dimensions of the concrete test piece used in numerical simulation.

(a) σyy field obtained at

step 1.

(b) σyy field obtained at

step 2.

(c) σyy field obtained at

step 3.

Figure 12: Stress field obtained using RBDD methodology.

Point 1 2

Step 1 1, 44 · 10−3 7.93 · 10−4

Step 2 2.41 · 10−3 3.34 · 10−3

Step 2 6.89 · 10−3 3.60 · 10−3

Table 4: Mahalanobis optimal distance for RBDD methodology applied to the 3D example of

application
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Figure 13: Experimental data, confidence band at level µ ± s and numerical solution ad

different points and steps.

4. Discussion and conclusions

In this work, a new RBDD solver has been formulated for DDSBES problems,

allowing uncertainty considerations in the input data that are, therefore, not

considered as uncertainty-free, but of random nature. The DDSBES problem

is here defined as a constrained stochastic optimization problem. Constraints535

encode all relevant physical information of the system, such as fundamental

conservation or physical laws. Calculations are carried out directly from data,

avoiding any modeling error via state or constitutive equation assumptions.

Optimality is sought in terms of a penalty function showing the distance between

a candidate solution point and input data set.540

It has been shown that employing a proper uncertainty dependent distance,

the Mahalanobis distance, results in good statistical properties as well as an

easily interpretable optimal distances. Indeed, this optimal distance is computed

in terms of the data sample and data uncertainty, which allows assessing when

the solution point is accurate enough up to data precision. Moreover, this545

distance offers the possibility of considering heterogeneous uncertainty, leading

to most likely solution points, instead of getting deterministic solution points

which may be very sampling-dependent.
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Excluding very simple problems with uncertainty-free linear behavior and

small sample sizes (Figure 4 and Figure 7), where conventional solvers could be550

used, the method here proposed has shown better convergence, higher precision,

clearer interpretation, major flexibility and more soundness. Besides, the statis-

tical interpretation, depending on sampling statistics, allows decision-oriented

statistical inference.

RBDD solvers appear to be a very suitable tool for facing at least three555

important problems:

1. Dynamic DD systems, where predicting features and learning capabilities

are combined. The presented solver could start predictions from scratch,

where sample sets are small and the underlying true manifold is unknown.

Further knowledge of the analyzed system due to the increase of the sam-560

ple size will feed the RBDD solver, thus allowing faster updates of solution

points and statistical inference. This will, additionally, enhance the pos-

sibility to define different sampling strategies, data coverage and improve

solver performance. Moreover, it is sensitive to measurement errors, that

depends on equipment and human precision. In this sense, RBDD solvers565

conform a robust framework that provides coherent results within the ex-

perimental context.

2. Scale dimensionality reduction problems. From purely theoretical (sound

physical reasons) and/or practical (speed-up calculations) point of views,

it could be interesting to define the transition from a small scale to a higher570

one, defining a hierarchical procedure. The presented RBDD is an ideal

tool for uncertainty propagation from one scale to another. Moreover, this

may be helpful in case of a dimensionality reduction strategy anchored to

Big Data frameworks. For instance, if we work with an n-dimensional

field and two scales with two mesh sizes N and M , the whole problem will575

have N ·M ·n degrees of freedom. Averaging techniques could reduce the

problem to a M · n degrees of freedom problem, but all the variability of

the lower scale is lost. With the RBDD approach, lower scales variability
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is conserved, at low computational cost, resulting in M · n(n+3)
2 ∼ θ(Mn2)

degrees of freedom. If n�M , savings are evident.580

3. Model-free engineering based on empirical measurements. The new pre-

sented solver offers the possibility of carrying out simulation directly from

data, without explicit model assumptions. However, this rises an impor-

tant limitation not only of this methodology, but of Data Analytics in

general. This corresponds to the need of contextualize data in order to585

be sure that they can be extrapolated to a possibly different context cor-

responding to the particular application. The possibility (or not) of this

extrapolation is analyzed explicitly in the standard model-driven approach

when making explicit the assumptions that drive to such particular model.

The need of matching the DD methodology with existing (simplified) exper-590

imental setups today available to capture the mechanical behavior of materials

implies the need of making some explicit assumptions or, at least, to think about

the context in which the data have been obtained and the one of the application

in hand to decide if they can be extrapolated, and if there is additional data

required to fulfill the problems demands. Moreover, this method relies on the595

hypothesis that we have complete information for each point of the data-set,

that is, for each point, all the coordinates are known (for example, in the prob-

lem arising from computational mechanics, all the components of both tensors ε

and σ are known for each data point). When this is not the case, an appropriate

filling data strategy should be considered.600

Regardless of this, RBDD solvers present a meeting point between theoretical

sciences, through epistemologic constraints, and experimental sciences, through

uncertain real world data. The elegance of the mathematical formulation en-

ables many analysis and theoretical considerations for the whole spectrum of

Continuum Physics. The ease of combining the presented concepts with all605

trendy Data Science and Deep Learning tools opens up huge possibilities for

facing the most challenging problems because it offers a huge range of possi-

bilities in dynamic DD applications, dimensionality reduction, decision-support
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systems and any kind of problem in which uncertainty plays a major role.
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Appendix A. Mathematical proofs

Definition:. Let X = (X1, · · · , Xn)T a random vector and M a symmetric

positive-definite matrix.

The stochastic quadratic form (SQF) QM(X) is the random variable defined620

as:

QM(X) = XTMX (Appendix A.1)

Lemma Appendix A.1. Let QA(X) and QB(X) two SQF, and let {ek}k=1,··· ,n

the standard basis in Rn, then:

E[QA(X)] = AijΩij(X) (Appendix A.2)

E[QA(X)X] = AijΛijk(X)ek (Appendix A.3)

E[QA(X)QB(X)] = AijBklΥijkl(X) (Appendix A.4)

Cov(QA(X), QB(X)) = AijBkl (Υijkl(X)− Ωij(X)Ωkl(X)) (Appendix A.5)

where:625

Ωij(X) = E[XiXj ] (Appendix A.6)

Λijk(X) = E[XiXjXk] (Appendix A.7)

Υijkl(X) = E[XiXjXkXl] (Appendix A.8)
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Proof:. Using index notation QA(X) = AijXiXj therefore:

E[QA(X)] = E[AijXiXj ] = AijE[XiXj ] = AijΩij(X) (Appendix A.9)

E[QA(X)X] = E[AijXiXjXkek] = AijekE[XiXjXk] = AijΛijk(X)ek

(Appendix A.10)

E[QA(X)QB(X)] = E[AijXiXjBklXkXl] = AijBklE[XiXjXkXl] = AijBklΥijkl(X)

(Appendix A.11)

Finally,

Cov(QA(X), QB(X))

= E [(AijXiXj −AijE[XiXj ])(BklXkXl −BklE[XkXl])]

= AijBklE [XiXjXkXl − E[XiXj ]XkXl −XiXjE[XkXl] + E[XiXj ]E[XkXl]]

= AijBkl (E[XiXjXkXl]− E[XiXj ]E[XkXl]− E[XiXj ]E[XkXl] + E[XiXj ]E[XkXl])

= AijBkl (Υijkl(X)− Ωij(X)Ωkl(X)) (Appendix A.12)

�

Proposition Appendix A.1 (Expectation of a SQF). Let QM(X) a SQF

and let µ(X) the expected value of X and Σ(X) the variance - covariance matrix630

of X. Therefore:

E[QM(X)] = Tr(MΣ(X)) + µ(X)TMµ(X) (Appendix A.13)

Proof:. Following Lemma Appendix A.1, E[QM(X)] = MijΩij . Furthermore,

Ωij(X) = Σij(X) + µi(X)µj(X) then:
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E[QM(X)] = Mij(Σij(X) + µi(X)µj(X))

= MijΣij(X) +Mijµi(X)µj(X)

= Tr(MΣ(X)) + µ(X)TMµ(X) (Appendix A.14)

In the last equality we have used Tr(AB) = A : B.

�635

Proposition Appendix A.2 (Variance and covarianze of SQF). Let QA(X)

and QB(X) two SQF and let µ(X) the expected value of X, Σ(X) the variance -

covariance matrix of X and Υ(X) the fourth order moment tensor of X. Then:

Cov(QA(X), QB(X))

= A : Υ(X) : B−
(
Tr(AΣ(X)) + µ(X)TAµ(X)

) (
Tr(BΣ(X)) + µ(X)TBµ(X)

)

(Appendix A.15)

In particular, if A = B:

Var(QA(X)) = A : Υ(X) : A− (Tr(AΣ(X)) + µ(X)TAµ(X))2

(Appendix A.16)

Proof:. Following Lemma Appendix A.1, Cov(QA(X), QA(X)) = AijBklΥijkl(X)+640

AijBklΩij(X)Ωkl(X). However, Ωij(X) = Σij(X) + µi(X)µj(X) therefore:

Cov(QA(X), QA(X))

= AijBklΥijkl(X) +AijBkl(Σij(X) + µi(X)µj(X))(Σkl(X) + µk(X)µl(X))

= AijBklΥijkl(X) + (AijΣij(X) +Aijµi(X)µj(X))(BklΣkl(X) +Bklµk(X)µl(X))

= A : Υ(X) : B− (A : Σ(X) + µ(X)TAµ(X))(B : Σ(X) + µ(X)TBµ(X))

(Appendix A.17)

The final result is obtained noting that Tr(AB) = A : B.
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�
Let’s now assume normality. The following result may be found in [55]:

Remark Appendix A.1 (Fourth order moments of centered multivariate normal distribution).645

Let Z ∼ N (0,Σ) n-dimensional multivariate normally distributed random vec-

tor whose expected value is zero and variance - covariance matrix is Σ. Then:

µi(Z) = 0 (Appendix A.18)

Ωij(Z) = Σij (Appendix A.19)

Λijk(Z) = 0 (Appendix A.20)

Υijkl(Z) = ΣijΣkl + ΣikΣjl + ΣjkΣil (Appendix A.21)

Lemma Appendix A.2. Let Z ∼ N (0,Σ) an n-dimensional multivariate nor-

mally distributed random vector with expected value µ = 0 and variance - co-

variance matrix Σ. Therefore, for symmetric matrices A and B:650

E[QA(Z)] = Tr(AΣ) (Appendix A.22)

E[QA(Z)QB(Z)] = Tr(AΣ)Tr(BΣ) + 2Tr(AΣBΣ) (Appendix A.23)

E[QA(Z)Z] = 0 (Appendix A.24)

Proof:. The first equation is obtained directly from linearity of the expected

value operator and the fact that µ = 0. For the second, note that, following

Lemma Appendix A.1 E[QA(Z)QB(Z)] = AijBklΥijkl(Z), but, by virtue of

Observation Appendix A.1, Υijkl(Z) = ΣijΣkl + ΣikΣjl + ΣjkΣil and then,

using Σ symmetry:655
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E[QA(Z)QB(Z)] = AijΣijBklΣkl +AijΣkiBklΣlj +AijΣjkBklΣli

= Tr(AΣ)Tr(BΣ) + 2Tr(AΣBΣ) (Appendix A.25)

Finally, for the third one, following again Lemma Appendix A.1, E[QA(Z)Z] =

AijΛijkek, and then, using Observation Appendix A.1 we obtain that E[QA(Z)Z] =

0.

�
We can then prove the following result:660

Proposition Appendix A.3 (Variance and covariance of two SQF under normality).

Let Z ∼ N (µ,Σ) an n-dimensional multivariate normally distributed random

vector with expected value µ = 0 and variance - covariance matrix Σ.

Then, if A and B are symmetric:

Cov(QA(X), QB(X)) = 2Tr(AΣBΣ) + 4µTAΣBµ (Appendix A.26)

In particular:665

Var(QA(X)) = 2Tr(AΣAΣ) + 4µTAΣAµ (Appendix A.27)

Proof:. We use the expression

Cov(X,Y ) = E[XY ]− E[X]E[Y ] (Appendix A.28)

With X = QA(X) and Y = QB(X). The first term of the right hand side

may be developed in terms of Z = X−µ using symmetry of matrices A and B

as:
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E[QA(X)QB(X)]

= E[(ZTAZ + ZTAµ+ µTAZ + µTAµ)(ZTBZ + ZTBµ+ µTBZ + µTBµ)]

= E[ZTAZZTBZ] + 2µTE[ZTAZZ] + 2µTE[ZTBZZ] + 4µTAE[ZZT ]Bµ

+ E[ZTAZ]µTAµ+ +E[ZTBZ]µTBµ+ 2µTAE[Z] + 2µTBE[Z] + µTAµµTBµ

= E[QA(Z)QB(Z)] + 2µTE[QA(Z)Z] + 2µTE[QB(Z)Z] + 4µTAΣBµ

+ E[QA(Z)]µTAµ+ E[QB(Z)]µTBµ+ µTAµµTBµ

= Tr(AΣ)Tr(BΣ) + 2Tr(AΣBΣ) + Tr(AΣ)µTAµ+ Tr(BΣ)µTBµ

+ 4µTAΣBµ+ µTAµµTBµ

(Appendix A.29)

In last equality we have used Lemma Appendix A.2.670

The second term of the right hand side, is obtained analogously:

E[QA(X)]E[QB(X)]

= E[ZTAZ + ZTAµ+ µTAZ + µTAµ]E[ZTBZ + ZTBµ+ µTBZ + µTBµ]

= (E[ZTAZ] + 2µTAE[Z] + µTAµ)(E[ZTBZ] + 2µTBE[Z] + µTBµ)

= (E[QA(Z] + µTAµ)(E[QB(Z] + µTBµ)

= (Tr(AΣ) + µTAµ)(Tr(BΣ) + µTBµ)

(Appendix A.30)

Again, in the last equality, Lemma Appendix A.2 was used.

Subtracting Equation (Appendix A.30) to Equation (Appendix A.29), we

obtain:

E[QA(X)QB(X)]− E[QA(X)]E[QB(X)] = 2Tr(AΣBΣ) + 4µTAΣBµ

(Appendix A.31)

�675
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Highlights

• A hybrid mathematical modeling and data-driven approach is proposed
• Data uncertainty managed by a proper metric, the Mahalanobis distance
• Good convergence, accuracy and flexibility with low computational demand 

were found
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