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Abstract

Data-driven methods are an innovative model-free approach for engineering and

sciences, still in process of maturation. The idea behind is the combination of

data analytics techniques, to handle the huge amount of data derived from con-

tinuous monitoring or experimental measurements, and of the constraints im-

posed by universal physical laws, particular to the field in hands. A well-known

problem in the former corresponds to the quality and completeness of the avail-

able data that, sometimes, are so poor that make the predictions useless. In

data-driven simulation-based engineering and sciences (DDSBES), the intrinsic

physical constraints may help in completing the missing data in a more precise

manner, by forcing them to remain in the manifold defined by the physical laws.

In this work, a suitable imputation method to complete incomplete data that

preserves the data context-dependent structure is presented. This is accom-

plished by enforcing the set of physical constraints, specific to the problem. For

this purpose, a generalization of the weighted mean concept is proposed, where

the distance to the admissible points (in a physical sense) is used as a weighting

function to get the optimal candidate. The method is evaluated in a classical

regression problem, where it is compared with other standard methods, showing
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better results. Then, its application is illustrated in two data-driven problems,

where no filling data procedure has been yet proposed, showing good predictive

capability, provided that the data are close enough to the actual system state.

Keywords: Data-driven methods, Data completion, Statistical imputation,

Weighted mean, Computational Mechanics

1. Introduction

Data are everywhere around us. An incredibly huge amount of sensors and

transducers get measurements from the physical world. Businesses of every kind

search and collect data across the globe related to consumer preferences and

trends. Governments regularly collect all sorts of data from census information5

to incident reports in police departments. According to the 2016 IDC directives

presented in its yearly event in San Jose (US), this deluge of data is set to

rise steeply from the estimated world total amount of 4,4 zettabytes of data in

2013 to 180 zettabytes by 2025 (one zettabyte is equivalent to one trillion of

gigabytes). The advent of the Internet of Things will likely make to surpass10

these figures by far [1].

More and more complicated strategies are used to extract patterns and/or

relevant knowledge from this massive amount of available structured and un-

structured data. In fact, the framework, in which it is easier to get predictions

directly derived from available data than from tedious, complicated and some-15

times inaccurate mathematical models, is progressively changing the paradigm

of predictive Physics [2, 3].

Since the main ideas and concepts were introduced at the beginning of the

century, an extensive literature may be found on this broad area of Data Ana-

lytics and Artificial Intelligence [4, 5, 6]. The main trend today is the constant20

improvement of the accuracy of predictions by continuous “learning” from a

non-stop input of new data, thus progressively refining the predictions by com-

paring the predicted and actual responses.

Since the seminal idea of the perceptron [7], artificial neural networks has
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been another pushful field where new concepts as Deep Learning and Dynamic25

Networks are in continuous development. Today, these methods allow extract-

ing abstract features and solving very complex problems, many times not fully

formalized [8, 9]. These techniques try to mimic the process of human knowl-

edge acquisition and structuring and have become amenable after remarkable

advances in sensoring; data acquisition, transfer, storage and management; enor-30

mous improvements in the performance of computers; and continuous contribu-

tions in their theoretical and algorithmic foundations.

In an engineering context, a straightforward application of all these tech-

niques is the so-called dynamic data-driven assimilation systems (DDDAS) [10],

in which the idea is providing both predictive and learning capabilities to a con-35

trol system from data acquired from a set of sensors. This paradigm was settled

down by Kalman [11] in the sixties with his groundbreaking filter. Nowadays,

it is still a hot topic of research [12].

In the last years, a new approach to simulation-based engineering and sci-

ences that uses the power of data-science methods has been proposed. This40

approach, of increasing importance, and known as data-driven simulation-based

engineering and sciences (DDSBES), combines physical constraints and raw

data. In the absence of physical constraints, the standard Data Science and

Machine Learning framework is recovered, while the use of an a priori paramet-

ric model, that fits the experimental data, recovers the classical SBES. Actually,45

all linear and nonlinear phenomenological constitutive models can be formulated

in terms of parametric mathematical equations, where the variables of interest

are forced to remain within a given pre-established manifold. This manifold is

derived from observation and experience (empiricism) eventually by means of a

trial-error fitting procedure.50

One idea in this direction was started by Chinesta and coworkers [13] who

defined a strategy for data-driven Computational Mechanics, combining mani-

fold learning techniques and a (possibly optimized) directional search strategy

inspired in the LaTin method [14]. Ortiz and his group [15] presented a model-

free method based on the minimization of the distance between the searched55
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solution and a set of experimental data, using a proper energy norm. The so-

lution was also forced to remain in the equilibrium manifold, by means of a

well-posed penalty approach. This work was extended by several groups to take

into account the uncertainty of the data in what are now called as reliability

based data-driven solvers [16, 17].60

However, the referred works are often restricted to the frame of perfect

information, that is, the data-set is complete. In other words, all state variables

are assumed to be known for a given measure. This is not always the case

in practical situations, being this one of the main concerns in Data Science

[18, 19, 20, 21, 22, 23].65

There are many methods that have been developed to address this problem,

both model-free or model-based. Among the model-free, the most fundamental

are Listwise Deletion (LD) and Pairwise Deletion (PD) [22] that consist of dis-

carding incomplete data. These methods, however, decrease statistical power

[24] and introduce bias [25] if the missing process is Missing Not At Random70

(MNAR) [18, 26, 27], what is obviously the case when dealing with data ob-

tained by experiments or measurements. Another common approach is Single

Imputation (SI), based on a filling strategy for the missing data that uses values

obtained from complete data, for example, Mean or Mode Imputation [19, 20].

This technique, however, reduces the variability and weakens the covariance be-75

tween variables. Another approach is to create dummy variables accounting for

the missing data variables (Dummy Variable Adjustment) [19, 20]. This results

in biased estimators and is not theoretically based. Finally, it is also possi-

ble to replace missing values with a predicted score from a regression equation

[20, 19]. This weakens the variance and overestimates model fit and correlation80

estimates. Moreover, these methods do not take into account the local structure

and geometry of the data, which is critical when the data have some underly-

ing physics. In order to solve this problem, interpolation (linear interpolation,

nearest interpolation or spline interpolation, [28]) is a common technique. In

this approach, only the physics inherent to the data is learned in the imputation85

process.
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Other model-based methods have been developed to deal with the missing

data problem, such as Multiple Imputation [29] using the regression method

[30], the Predictive Mean Matching Method [31] or the Markov Chain Monte-

carlo Method (MCMC) [25, 32], Full Information Maximum-Likelihood (FIML)90

estimation [33, 34, 35] and Expectation-maximization [36]. The problem of all

these model-based methods is that they assume, one way or the other, a sta-

tistical model for the data (e.g. normality). This is usually the case in social

and economical sciences [37] but is not the general case for physical problems,

where variables follow some fundamental laws incompatible with normality or95

other distributional assumptions.

The amount of missing data is not, however, the sole criterion to assess the

quality of the available data, especially if they correspond to a problem that

relies on some physical laws [38]. Our aim in this work is then to establish a

framework in which both the local structure of the data and the supplementary100

physics, not explicitly included in the data structure, are used to improve the

imputation procedure. In this context, the imputation method can be compat-

ible with any DDSBES method. The presented technique is based on the mean

concept and, therefore, could be interpreted as a generalization of the Mean

Imputation Method. On one hand, the local structure of the empirical data-set105

is preserved since the data are forced to belong to specific manifolds, which de-

pend on the problem nature. On the other hand, the underlying physics of the

problem is imposed via supplementary constraints on the data. The imputa-

tion procedure is then performed by using an unsupervised learning algorithm

that finds the point that minimizes an, in general context-dependent, weighted110

quadratic error, while preserving the local and global physics of the problem.
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2. Mathematical formulation

2.1. Data-driven simulation-based engineering and sciences (DDSBES): A gen-

eral framework

Our aim is to present a methodology that fits within the context of data-115

driven problems. In particular, problems in which the governing equations of the

system are fundamental laws of Physics and the modeling strategy is replaced

by data, that, in general, may be incomplete. This means that computations

will be carried out directly from data without an a priori parametrization step

of the state equations (e.g. constitutive model in Continuum Mechanics).120

In fact, any physical system can be defined as a manifoldM, the state space,

that corresponds to the admissible states that fulfil a set of equations defining

the particular physical problem in hands [39]. Usually, the state space is treated

as an embedded manifoldM⊂ Rn in a higher Euclidean dimensional space and

is defined in terms of a set of state governing equations F (x) = 0,x ∈ Rn.125

Observables of the system are magnitudes that are related to the state variables

by means of geometric or physical relations. For example, in Continuum Me-

chanics, forces are observable variables related to the stress components, while

displacements are observable variables associated with strains. The relationship

between forces and stresses is defined by means of the equilibrium equations,130

while the relation between displacements and strains is derived from kinematic

conditions. A set of measurements of the system is a set of observables obtained

in particular conditions.

For instance, in Continuum Mechanics, the state variables are the stress

and the strain tensors with 6 + 6 = 12 components in 3D problems for each135

spatial point (assuming balance of angular momentum yields). But these com-

ponents are not independent. Indeed, they are related to the observables by

kinematic and equilibrium (linear momentum conservation) constraints (note

that the standard constitutive relations are implicit in the measurements so

they are not considered explicitly).140

The fundamental problem in Physics is stated as: from a set of measure-
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ments in the physical system given by the values of several observables, derive

the value of another observable of interest or/and the rest of state variables.

Unfortunately, this inference strongly depends on the quality of measurements

as well as on the particular complexity of the system.145

As we have seen, measurements (observables) are related to the state-space

variables. However, the information given by these measurements is frequently

less informative than the state variables themselves. In other words, measure-

ments are known variables living in a lower dimensional space. For example,

the displacements along a given direction do not give us the information about150

the complete strain tensor while the forces over a surface do not characterize

the whole stress tensor. In a data-driven framework, the state of the system as

well as any desired observable has to be derived from a set of measurements.

However, in practical situations, we do not have complete information about

the state variables, but only particular measurements in particular states. That155

is, we have an incomplete set of data. As these measurements are related to the

state variables, they may be formulated in terms of manifolds. For the Con-

tinuum Mechanics problem, for instance, the knowledge of the stress associated

with a given plane orientation tells us the relationship between components of

the stress tensor, so we have a set of measurements with a reduced dimension of160

the state space. It is essential, therefore, to use these values as points of measure

sets being then the goal to properly complete these incomplete measurements

to perform data-driven computation. The filling data strategy should take into

account therefore the following assumptions:

• It should take into account all the measurements, that are formulated165

in terms of manifolds embedded in the state space (incomplete measure-

ments) better than in terms of points (complete measurements). We call

this condition the generalization assumption.

• It should respect the physics of the system: the new derived data obtained

from the incomplete data should be consistent with the geometric struc-170

ture defined by the data manifolds. We call this condition the consistency
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assumption.

• It should guarantee accuracy for the states associated with the input ob-

servables used as starting points for predictions. Among all observations

in our data-set, those closer to our physical constraints or to our actual ob-175

servables should be overweighted. This is done by means of an appropriate

weighting strategy.

The methodology for incomplete data processing presented herein should be

defined to be in accordance with this framework for DDSBES.

First, it is fundamental to define an averaging technique that takes into ac-180

count complete and incomplete measurements according to the generalization

assumption and that respects the data structure, according to the consistency

assumption. Next, an appropriate weighting strategy for this kind of problems

will be defined, i.e, how to compute a set of weighting values in the averaging

process in order to make good predictions on the state of the system. Con-185

sequently, the data completion step should take into account how far are the

measurements from the known observables and/or the physical manifolds.
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2.2. Averaging procedure: Generalization and consistency

In this section, the filling-data strategy is presented, using a formal math-

ematical framework. Let us consider a set of complete measurements in the190

measurement space, p ∈ Rn, being n the dimension of the space, and a set of in-

complete measurements that, in general, will be embedded manifoldsM⊂ Rn,

withM = {x ∈ Rn|Φ(x) = 0}, Φ : Rn → Rk, k < n, the map defining the mani-

fold, and dim(M) = n−k = m. A very particular example of these maps is the

one of orthogonal projections on a linear manifold. In this particular case, if195

Φ = πV is a linear projection over a given linear manifold V, then M = V⊥. In

the field of continuum mechanics, normal stresses associated with a given plane,

strains associated with a given direction or the mean pressure at a given point

are examples of these incomplete measurements, because only linear relations

between the components of the whole stress or strain tensors are known.200

2.2.1. Manifolds instead of points: generalized mean and variance

Next, some mathematical generalizations of the mean concept will be de-

rived. Let us assume that we have a set of N weighted points {(wj , xj)| , 0 ≤
wj , xj ∈ Rn, j = 1, · · · , N}. A possible interpretation of this mathematical

structure is a set of data points with different reliability. Weights can then be205

associated with the measurement accuracy, physical reliability (explored later

in Section 2.3) or other reliability criteria as clustering or outlier filtering. We

define the mean squared error (mse) function associated to a given point x

(represented by its coordinates x) as:

mse(x) =

N∑

j=1

wjd
2(x, xj) =

N∑

j=1

wj ||xj − x||2 (1)

A classical result from probability theory [40] states the following:210

The function mse is minimized when x has coordinates x = x̄ and the value

of this minimum is Tr(S) where x̄ =
∑N
j=1 wjxj is the weighted mean value of

the data and S =
∑N
j=1 wj(xj − x̄)(xj − x̄)T its covariance matrix.
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Let us suppose now that we have N manifolds M1, · · · ,MN . Given a set

of N weights {0 ≤ wj , j = 1, · · · , N}, we call generalized mean value to the215

value x∗ that minimizes the weighted mean squared error function (1) except

for the fact that now we consider manifolds instead of points (and therefore the

distance from a point to a manifold, not between points). We can define a new

unconstrained minimization problem, which is the natural generalization of the

former, as:220

min
x∈Rn

mse(x) =
N∑

j=1

wjd
2(x,Mj) (2)

The value VG = mse(x∗) is called the generalized variance.

Computational solution.. Let us derive a computational solution to the problem

(2) for linear manifolds. Let us consider the linear manifolds defined in terms

of their vector director subspaces Mj = pj + Mj , where pj ∈ Rn and Mj

is the generator vector space associated to Mj , that can be defined with an225

orthonormal basis Mj =
〈
uj1,uj2, · · · ,ujmj

〉
. Here mj is the dimension of

Mj . Let Aj be the matrix with column vectors uji, Aji = uji, j = 1, · · · , N ,

i = 1, · · · ,mj , and pj the vector associated with the point pj , then we have:

Proposition 2.1 (Computational characterization). The solution of the

problem (2) is obtained by solving the linear system230

Ax = b (3)

where:

A = (
N∑

j=1

wj)I−
N∑

j=1

wjAjA
T
j (4)

and

b = (
N∑

j=1

wjpj)−
N∑

j=1

wjAjA
T
j pj (5)
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Proof:. The distance from the point x to a linear manifold Mj = pj +Mj , dj ,

is given by

d2j (x,Mj) = ||x− (πMj
(x− pj) + pj)||2 (6)

with, as always, pj ,x refers to the coordinates, in a reference system, of points235

pj , x, respectively, πMj
is the (vectorial) orthogonal projection over the vector

subspace Mj .

Using the matrix expression in coordinates of the orthogonal projection:

d2j = ||x− (AjA
T
j (x− pj) + pj)||2 (7)

with Aj the matrix associated to Mj .

To minimize D2 =
∑N
j=1 wjd

2
j , the function to minimize yields:240

D2(x) =
N∑

j=1

wj ||x− (AjA
T
j (x− pj) + pj)||2 (8)

We can compute the gradient of D2 as:

∂(D2)

∂x
= 2

N∑

j=1

wj
(
I−AjA

T
j

) (
x−

(
AjA

T
j (x− pj) + pj

))

∂(D2)

∂x
= 2

N∑

j=1

([
wjI− wjAjA

T
j

]
x−

[
wjI− wjAjA

T
j

]
pj
)

Solving for ∂(D2)
∂x = 0, we obtain






N∑

j=1

wj


 I−

N∑

j=1

wjAjA
T
j


x =



N∑

j=1

wjpj −
N∑

j=1

wjAjA
T
j pj


 (9)

�
We observe that if wj = 1

N and the linear manifolds have 0 dimension, that

is, they are points, Mj = {pj} and Aj = 0, then245

A = I (10)
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b =
1

N

N∑

j=1

pj = p̄ (11)

obtaining, therefore, the mean of the points pj , being this the reason for the

denomination of generalized mean.

2.2.2. Manifolds instead of the whole space: consistent mean and variance

Let us suppose now that we have a manifold M (that is, an incomplete

measurement) and N points xj of Rn, j = 1, · · · , N , described in terms of N250

coordinate vectors x1, · · · ,xN .

Given a set of N weights {0 ≤ wj , j = 1, · · · , N}, the value x∗ ∈ M that

minimizes the weighted mean squared error function (1) is called the consis-

tent mean value with respect to M, which is the solution of the constrained

minimization problem:255

min
x∈M

mse(x) =

N∑

j=1

wjd
2(x, xj) (12)

The value VM = mse(x∗) is called the consistent variance with respect to

M. Note that now the manifold M acts as a constraint of the problem.

Computational solution. Now, to derive a computational solution to the prob-

lem (12) when M is a linear manifold, we solve an equivalent unconstrained

minimization problem.260

Proposition 2.2. Let xj, j = 1, · · · , N coordinate vectors associated to points,

xj ∈ Rn, such as x̄ and S are the mean and covariance matrix of the vectors.

Let M be a linear manifold of dimension m ≤ n, then, the solution to the

constrained minimization problem

min
x∈M

mse(x) (13)

is given by:265

x∗ = πM(x̄) (14)
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Moreover, if s2 = mse(x∗), then:

s2 =

N∑

j=1

wj(xj − πM(xj))
2 +

N∑

j=1

wj(πM(xj)− x∗)2 (15)

Proof:. The proof is based on Pythagoras theorem. So, we can get:

mse(x) =

N∑

j=1

wj(xj − x)2

=

N∑

j=1

wj
[
(xj − πM(xj))

2 + (πM(xj)− x)2
]

=

N∑

j=1

wj(xj − πM(xj))
2 +

N∑

j=1

wj(πM(xj)− x)2

(16)

If we analyze this last expression, the only term depending on x, is
∑N
j=1 wj(πM(xj)−

x)2, then the minimum is achieved for x∗ = πM(xj) = πM(x̄), where in the

last expression we use linearity of the projection operator.270

Additionally, using the equation (16), and s2 = mse(x∗), we obtain:

s2 = mse(x∗) =
N∑

j=1

wj(xj − πM(xj))
2 +

N∑

j=1

wj(πM(xj)− x∗)2 (17)

�
We have then obtained an orthogonal decomposition of the quadratic spread

of vectors xj . The term
∑N
j=1 wj(πM(xj) − x∗)2 is denoted as s2M since it

represents the spread of the points xj projected on the manifold M.275

Therefore, the next result is straightforward.

Corollary 2.1 (Computational characterization). Using the same hypoth-

esis as in the previous result and if the linear manifold M is described using an

orthonormal basis R = {p; u1, · · · ,um}, we have:

13



x∗ = AAT x̄

s2M = Tr(AATS)

with A the matrix with column vectors ui, x̄ the coordinates in the reference280

frame of the mean of points xj, that is, x̄ =
∑N
j=1 wjxj and S the covariance

matrix of points xj, that is S =
∑N
j=1 wj(xj − x̄)(xj − x̄)T .

Proof:. Let us define T =
∑N
j=1 wj(πM(xj)−πM(x̄)(πM(xj)−πM(x̄))T , there-

fore:

T =
N∑

j=1

wj(AATxj −AAT x̄)(AATxj −AAT x̄)T

T = AAT



N∑

j=1

wj(xj − x̄)(xj − x̄)T


AAT

T = AATSAAT

(18)

Therefore s2M = Tr(T) = Tr(AATSAAT ) = Tr(AATS) where we have285

used the fact that Tr is a cyclic operator and ATA = I as ui are orthonormal

vectors.

�
We observe that, if wj = 1

N and M = Rn, that is, M is the whole space,

A = In and290

x∗ = x̄ (19)

s2M = Tr(S) (20)

obtaining directly the mean value for the points xj and the whole uncertainty,

being this the reason for the denomination of consistent mean.
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2.2.3. Filling data using the consistent generalized mean and variance: an un-

supervised learning technique

The idea of using both generalizations at the same time for missing data295

techniques is natural. Let us assume that we have a set of partially incomplete

data D of size N , that is a set of manifolds {Mj , j = 1, · · · , N} withMj ⊂ Rn

with respective weights {wj , j = 1, · · · , N}. Here, Rn is the embedding space

and Mj represents the (incomplete) measurements related to different states.

One strategy for data completion of missing data is using the tools presented300

in section 2.2.1. When those measurements are defined in terms of linear man-

ifolds, we have derived, also, a closed linear expression (Proposition 2.1 and

Corollary 2.1). The idea is, therefore, to solve the next minimization problem

for each measurement Mi, i = 1, · · · , N :

min
x∈Mi

mse(x) =
N∑

j=1

wjd
2(x,Mj) (21)

The solution xi of this problem is the completed data associated to the305

incomplete data Mi. To summarize, and for linear manifolds, a strategy is as-

sumed for finding a minimum candidate, which the natural and strongly reduces

the time required to obtain the actual solution of the minimization problem 21

directly using minimization algorithms. This strategy follows two steps:

1. Global computation step. Computation of the solution point for the310

unconstrained minimization problem using the expression given in Propo-

sition 2.1.

2. Projection step. Computation of the solution point for the constrained

minimization problem using the projection of the mean value and uncer-

tainty defined in Corollary 2.1.315

The geometric interpretation of this method is provided in Figure 1.

Remark. This two-step method may be used when working with non-linear

manifolds as an iterative tangent based algorithm. At each step, the tangent

space to the nonlinear manifold is computed at the current point and the linear

15



Figure 1: Geometric representation of the method. A, B and C represent three linear man-

ifolds of dimension 2, 1 and 0 respectively, associated to three measurements in a space of

dimension 3, the last one complete. Point P is the generalized mean in the sense defined in

Equation 2, that is, the point minimizing the sum of (eventually weighted) squared distances

to the manifolds. In orange, the uncertainty ellipsoid, related to the generalized variance,

represents the spread of (eventually incomplete) measurements. Points PA, PB and PC are

the consistent generalized means associated to each of the manifolds in the sense defined in

Equation 21, that is, the projection of the generalized mean on each manifold. In green,

the associated uncertainty ellipsoid, related to the consistent generalized variance, for each

manifold is depicted.
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problem is solved. Thus, a point belonging to the tangent space is obtained.320

Using the exponential map [41], it is possible to obtain an associated point

belonging to the manifold, which is used as the starting point for the next

iteration. This strategy is usual in nonlinear computational mechanics [42, 43].

The iteration scheme stops when the distance between the subsequent global

solutions is lower than a given tolerance. This construction is illustrated by325

the schematic diagram in Figure 2. This algorithm may be computationally

expensive and is very dependent on the manifold smoothness and convexity,

being this type of problems out of the scope of this paper. �
In any case, when the algorithm achieves convergence, N values of X are

obtained, one for each manifold, xi, i = 1, · · · , N , representing the expected330

value associated with the manifoldMi. Besides, for linear problems, we obtain

for each manifold a value s2Mi
that characterizes the uncertainty related to the

manifoldMi and the matrix SMi
characterizing the uncertainty spread on this

manifold. This uncertainty ellipsoid can be seen in Figure 1 for linear manifolds

of dimension 0, 1 and 2, respectively.335
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Figure 2: Extension of the method to nonlinear problems: Initially, for each manifold (A, B
and C) an initial point is selected (A0, B0 and C0 = C) and the tangent spaces are computed.

Then, the optimal completion, i.e., the generalized consistent mean for each linear manifold

(in red), is computed. Using the exponential map, these projections on the linear manifolds

are translated to the respective manifolds (A, B and C) obtaining a new point in each manifold

(A1, B1 and C1 = C0). The process is repeated until convergence.
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2.3. Introducing physical laws: weighting strategy

Here we introduce the weighting strategy. Let us consider a system defined

in terms of a physical manifold M and a set of measure manifolds Nj , j =

1, · · · , N . The starting point from which we want to derive the state of the

system is another measure, that is, another manifold N that could be, for340

instance, boundary conditions for a given problem. The fundamental idea is

to compute the manifolds Mj = Nj ∩ N ∩M = Nj ∩ P where P = N ∩M
and to perform the unsupervised learning strategy for this reduced space. This

strategy has two direct consequences:

• Physical consequence: Since we are only learning second order statistics345

of physically admissible manifolds, the result will have a more physical

sense.

• Numerical consequence: Projections are performed in a smaller space

so the computational cost will be lower.

In that case, we are looking for a physically admissible (incomplete) data350

point measure that has the lowest uncertainty. However, this strategy can dra-

matically fail for few data with non-negligible uncertainty. For example, a mea-

sure manifold Nj may be close to the manifold P but P∩Nj = ∅ so this measure

will not be used for the system learning, even though it is very close to the real

state.355

An intermediate solution is using an activation function in the learning step,

depending on the distance to the manifold P, d = d(P,Nj). That is, a func-

tion φ : R+ → [0; 1] so that if z = 0, φ(z) = 1 and eventually if z → +∞,

φ(z) → 0. Given Nj ⊂ Rn, defining uj = u(Nj) = d(Nj ,P), it is possible to

define wj = φ(uj) in the learning process. In other words, the nearer the con-360

sidered data set to P, the higher the weight should be in the minimization of

the optimal distance. Some possible activation functions are the step function

φ(u) = χ[0;a](u), where χA is the characteristic function of the set A and a ≥ 0,

radial basis functions (RBF), φ(u) = exp
(
− u2

2ς2

)
with ς > 0, homographic
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functions, φ(u) =
(

a
a+bu

)k
, with a, b, k > 0, or generalized ramp functions365

φ(u) =
(

1−
(
u
a

)k)
χ[0;a](u), with a, k > 0. Figure 3 illustrates the geometric

idea under the presented filling method when combined with the physics of the

problem.
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Figure 3: Geometric idea of the learning phase for data completion of the incomplete measure

N1 and its corresponding uncertainty. Blue manifolds Nj , j = 1, · · · , 5. represent measure-

ments (all incomplete except N5, which is a point). These measurements may correspond

to states far from the current state of the system, that should belong to the orange physical

manifold P =M∩N that corresponds to the intersection of the points satisfying the govern-

ing equations of the problem (equilibrium, thermodynamics, Maxwell’s equations etc.) and

knowledge about the system state, e.g. boundary conditions or measured control variables.

Each of the measure manifolds is at a certain distance uj from the physical manifold. In

particular, in the figure case, u1 = 0 and u3 = 0 because N1 ∩M 6= ∅ and N3 ∩M 6= ∅.
Note that this situation is frequent in a three-dimensional state-space, but it is less and less

probable when the dimension of the total space becomes very high. From these distances, the

weights are calculated by wj = φ(uj), so that if u = 0, φ(u) = 1 and if u → ∞, φ(u) → 0.

Thus, if x ∈ R3, the distance D2(x) =
∑5

j=1 wjd
2
j (x) =

∑5
j=1 φ(uj)d2(x,Nj) is minimized

(generalized mean) and the solution point P (in red) is projected onto the measure manifolds

(consistent mean) obtaining the measure completion, as illustrated in Figure 1. Likewise,

depending on the ”spread” of the sets, an ellipsoid of three-dimensional uncertainty (in red),

is obtained, related to the generalized variance. This ellipsoid is projected in each of the

manifolds, obtaining ellipsoids related to the associated consistent variance (in green). Note

that if the red ellipsoid is very slender in the direction orthogonal to the measure manifold

that we are completing, this would have no impact on the projected green ellipsoid. The point

P1, is then the generalized consistent mean associated to incomplete measure N1 weighted by

the neighborhood to the problem physics. 21



2.4. Looking for the nearest measure to a given point: solving the data-driven

problem370

2.4.1. Preliminary mathematical results

LetM⊂ Rn be an embedded manifold of the Euclidean space of dimension

n with associated probability distribution ρ, that accounts for the probability

distribution of a given random point x belonging to M. For instance, in the

case of linear manifolds, M can be described as M = p + 〈v1,v2, · · · ,vm〉,375

where 〈v1,v2, · · · ,vm〉 is the linear span generated by v1, · · · ,vm. That is

R = {p; v1,v2, · · · ,vm} is a basis of M and m = dim(M).

Let x ∈ M and ρ : M → R+, be the probability distribution describing

the position of x. Then we define the square distance random variable D2 =

d2(p,X), with p (deterministic) and X (random) defined by their coordinates380

p, X in a (global) reference frame, as

D2 = ||p−X||2 (22)

It is possible to define (under some integrability conditions) the expected

value E[D2] =
∫
M d2(p,X)ρ dV , or, using the point coordinates x (note that

X is a random vector while x the vector point coordinates), E[D2] =
∫
M ||p−

x||2ρ(x) dV (x). More important than the explicit computation of the expected385

value of D2 in terms of a given parametrization are the following results for

linear manifolds, proven in Appendix A, and relating the moments of D2 to

the moments of X. As usual, the random variable X and the point p are

identified with their coordinates description X, and p. If µ is the expected

value of the random vector X (µi = E[Xi]), Σ its variance-covariance matrix390

(Σij = E[XiXj ]− E[Xi]E[Xj ]) and Υ its fourth order moment tensor (Υijkl =

E[XiXjXkXl]), then:

E[D2] = ||p− πM(p)||2 + ||πM(p)− µ||2 + Tr(Σ) (23)

Var[D2] = I : Υ : I−
(
Tr(Σ) + (πM(p)− µ)T (πM(p)− µ)

)
(24)
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Here, I is the second order identity tensor. Finally, under normality con-

ditions, D2 follows a noncentral χ2 distribution with m = dim(M) degrees of

freedom and non-centrality parameter λ = (πM(p)− µ)T (Σ)−1(πM(p)− µ).395

2.4.2. The closest point in a stochastic sense

Let us go back now to the methodology and tools introduced in section

2.2. Once the constrained minimization problem is solved for each incomplete

measurement Mi and all filled data points xi are derived, it is possible to

compute how far is a state p ∈ Rn of the system from a given data-point i.400

Moreover, we can define for each p ∈ Rn which is the closest measure, and from

this to define a tessellation of the state space in terms of the measurements.

One could consider the deterministic distance di = d(p, xi) but this distance

would not have into consideration the accuracy of the filling step and the effect

on physical weights on uncertainty. It is more natural to consider a stochastic405

distance. Indeed, considering again the random variable D2
i defined at Section

2.4.1 associated with the manifoldMi, we may define, denoting s2Mi
by s2i and

πMi
by πi:

d2i = E[D2
i ] = d2(p, πi(p)) + d2(πi(p), xi) + s2i (25)

The manifold Mi verifying that d2i is minimal is the closest manifold in

the statistical sense to the point p. Besides, each term in d2i has its own410

interpretation:

• Ti,1 = d2(p, πi(p)) is the statistical error due to finite measurements of

the sample. It is related to the lack of knowledge about the system, since

the information is obtained by means of a given finite data-set. The more

measurements are added, the lower the error usually is.415

• Ti,2 = d2(πi(p), xi) is inherent to the manifold and depends on the mani-

fold selection. It is unavoidable to some extent.

• Ti,3 = s2i is the term associated with the uncertainty and is characteristic

of the self-learning process: the worse the manifold learning, the higher
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this term. Locating properly the real point in a manifold, even though it420

actually belongs to that manifold, is less accurate when this term increases.

Moreover, if measurement uncertainty is taken into consideration, it is pos-

sible to state Ti,3 = s2i + s′2i where s′2i is the quadratic uncertainty of the i-th

measurement and, therefore, orthogonal to the uncertainty associated to the

filling procedure. This uncertainty, nevertheless, is not being considered in the425

applications presented in this work.

The geometric idea behind these considerations is illustrated in Figure 4.

Once the learning step is finished, the data-driven problem may be solved

as usual [15, 17], provided the uncertainty of the completion is considered, as

just explained. Figure 5 illustrates the geometric idea.430
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Figure 4: Stochastic distances to different measurements. Manifolds A, B, C, D and E, associ-

ated to incomplete measurements, have been completed using the procedure described above.

Completed measurements are represented by the points A, B, C, D and E as well as their

associated uncertainty ellipsoids (including terms Tj,2 and Tj,3). Measurement uncertainty is

illustrated in yellow and is taken into account in distance computations. Even if the completed

measure associated to the manifold C is the closest in a deterministic sense, the one associated

to the manifold A is the closest in stochastic sense and the one associated to the manifold D
the farthest

.
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Figure 5: Geometric idea of the problem solving stage starting from complete measures given

by points Pi, i = 1, · · · , 5, and associated quadratic uncertainties (consistent generalized

variances) s2i , i = 1, · · · , 5. Suppose that the previous process has been repeated for all the

measure manifolds and that we have associated complete expected points with their associated

uncertainty. Now, the algorithm looks for the complete point closest to the physical manifold,

including both the deterministic and the stochastic parts of the squared distance (as shown in

Figure 4). Then the point associated to the complete measure closest to the physical manifold

(in this case it would be the measure associated with the manifold N1) is selected and its

projection over the physical manifold M is the solution to the problem. In this case, Q1 is

the solution point.
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3. Applications

Next, we analyze three applications of the presented method. The first cor-

responds to a standard regression problem. Several model-free missing data

techniques will be compared with the one proposed in this work. The second

is a physically based example illustrating how the method can be seen as a435

physically-based mean generalization, including constraints based on the prob-

lem discretization. Finally, the third one illustrates how the described method-

ology is particularly suitable for general (eventually time-dependent) problems

based on a physical frame, where some physical underlying knowledge is specified

explicitly by means of specific governing equations but some physical knowledge440

(such as empirical constitutive equations) is not known.

3.1. Standard data-science problem

Let us consider different concrete material specimens. Each of them is char-

acterized in terms of the mass fraction of their constituents: cement, slag, fly

ash, water, superplasticizer, coarse aggregate and fine aggregate (in kg/m3).445

For each sample, the compression strength at the 28th day is tested. Assum-

ing a linear relationship between the compression strength, that is the response

variable Y , and the water content, that is the explanatory variable X, we set-up

a linear regression model, Y = aX + b. The goal is to obtain an estimate of

the strength for X = 100. This can be easily obtained using the standard least450

squares technique.

One the full data analysis is performed, we define the following data loss

process from the complete data-set, depending on a threshold parameter 0 ≤
p ≤ 1

• For data having a water content lower than the 1 − p/2 quantile and455

higher than the p/2, the water content is removed. This represents a loss

of the 100p% of the data due to, for example, experimental difficulties for

characterizing high and low water contents.
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• For data having a cement content higher than the 1 − p quantile, the

strength is removed. This represents a loss of the 100p% of the data due460

to, for example, loss of the data for a given batch of experimental trials.

Note that the described loss process is MNAR so that we are in a context

where the filling data method should be fine enough to not include bias and

then, error in the predicted value.

As the presented method is non-parametric, it is compared to other non-465

parametric standard methods: Listwise Deletion, and four interpolation tech-

niques (linear interpolation, nearest point interpolation, piece-wise cubic spline

interpolation and shape-preserving piecewise cubic interpolation). The error of

the method is defined as

ε =
|Y − Yc|
Yc

(26)

where Y is the prediction of the incomplete data, following the filling data470

procedure described before and performing linear regression as if it was the

complete data-set and Yc is the target value.

In that case, incomplete measurements are the canonical manifolds defined

as follows. If X is the matrix of data where each row represents a specimen and

each column a variable (cement, slag, fly ash, water, superplasticizer, coarse475

aggregate and fine aggregate content) a missing data value is described by some

specimen i where the j field value is lost. We may then define a missing value

matrix M where Mij = 1 if the data at i − j slot is missed, and Mij = 0

otherwise. Suppose that we have N specimens, N −K of them have the n = 7

values fully reported while the rest K have incomplete data vectors. For each480

of the I = 1, · · · ,K, incomplete data, the missing value matrix is completed

such that i = I and for each row, some j values are removed, so Mij = 1. Let

us suppose we have for the first incomplete vector I = 1, i = 24 and j = 1, 4, 6.

This incomplete data point is then associated with the manifold that may be
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described using a parametric equation:485

M1 = {(λ,X24,2, X24,3, µ,X24,5, ν,X24,7)|(λ, µ, ν) ∈ R3} (27)

Note that our method could define missing values in a much more sophisti-

cated framework (oblique linear manifolds or even nonlinear manifolds, where

we know a relationship between some variables but not the variable itself) using

the general expression.

MI = {(x1, x2, x3, x4, x5, x6, x7)|ΦI(x1, x2, x3, x4, x5, x6, x7) = 0} (28)

Since we are interested in the estimate of Y for X = 100 kg/m3, we introduce490

here the physical or target manifold:

M = {(µ1, µ2, µ3, 100, µ4, µ5, µ6)|(µ1, µ2, µ3, µ4, µ5, µ6) ∈ R6}

= {(x1, x2, x3, x4, x5, x6, x7) ∈ R7|x4 = 100} (29)

The presented methodology is then used with the manifoldsMI , I = 1, · · · ,K
and M defined by the equations (27) and (29). The RBF function φ(u) =

exp
(
− u2

2ς2

)
with ς = 20 kg/m3 is selected as weighting function.

The number of incomplete data, K, is dependent on the parameter p. For the495

present example, we deal with N = 103 specimens and our method is compared

to the other ones for different values of p. The results are shown in Figure 6

in terms of the fraction of missing data with respect to the complete data-set

F = K
N .

It is clear from Figure 6 that the presented methodology yields better results500

than the rest of standard filling methods. This is due to the fact that the bias

induced by the missing process is here corrected since the filling procedure takes

into account how far the data points used are from the target manifold. This

local counterpart of the presented methodology makes the method more robust

with respect to the missing data fraction in comparison with other interpolation505
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Figure 6: Error of the different model-free filling data procedures for the estimation of Y for

X = 100 and different missing data fractions F (LD: Listwise deletion, L: Linear interpola-

tion, N: Nearest neighbor interpolation, S: Piecewise cubic spline interpolation, SPS: Shape

preserving cubic spline interpolation, UL: Unsupervised learning).
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methods. Note that the error of the presented method (UL) does not increase

with the amount of lost data. This is due to the fact that the performance of

the method depends on how far are the missed data points and not on their

number, i.e. data quality and not data quantity. On the other hand, standard

interpolation techniques are rather dependent on the distance of the missing510

data from the true solution than in the volume of missing data itself.

Moreover, low order interpolation techniques (nearest or linear interpola-

tion) are sometimes unable to reproduce the underlying data structure, whereas

high order interpolation techniques (cubic splines) performance is strongly de-

pendent on data sampling [44]. Shape preserving interpolation, for example,515

was conceived as a compromise solution to these problems, but is still strongly

dependent on the missing data process as has been demonstrated [45]. List-

wise deletion is the most robust method with respect to missing data fraction,

but has statistical power and the bias problems for MNAR data as reported in

literature [27], [23]. The proposed method shows a more robust behavior with520

respect to the missing data fraction.
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3.2. Model-based data-driven problem

The performance of the method is now illustrated in a classical problem

of strength of materials. Let us consider a two-end clamped beam of length

L under bending by a linearly distributed load q = q(x), 0 ≤ x ≤ L. In the525

Euler-Bernoulli framework, and supposing the beam composed of a linear elastic

material with Young modulus E = E(x), 0 ≤ x ≤ L, and a section with moment

of inertia I = I(x), the vertical beam displacement u = u(x), 0 ≤ x ≤ L, may

be computed solving the linear differential equation:

d2

dx2

(
EI

d2u

dx2

)
= q (30)

with boundary conditions:530

u(0) =
du

dx

∣∣∣∣
x=0

= 0

u(L) =
du

dx

∣∣∣∣
x=L

= 0

(31)

Equation (30) with boundary conditions (31) may be solved numerically

using any standard numerical procedure (e.g. Finite Elements or Finite Differ-

ences). Once the problem is discretized using a mesh of characteristic size h

and the boundary conditions are applied, the nodal displacements uh are ob-

tained solving the linear system (it is important to note that this equation is535

characteristic of a broad family of linear discretized problems in Physics and

Engineering, not only the Euler-Bernoulli bending beam):

Khuh = fh (32)

In order to test our method, we may proceed by considering the equation (32)

as a physical constraint to a data-set of measurements E = {uh′
i , i = 1, · · · , N}

equally spaced h′. Note that this approach makes sense when h′ << h (this540

may be the case when equation (32) is computationally expensive to solve with
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very fine meshes while measurements are easy to obtain). In this case, we deal

with complete measurements, but they are subjected to error (bias and noise for

example due to experimental reasons). The presented method is able to detect

how far a given measure is from the physics of the problem in terms of the545

distance to the manifold defined by equation (32). The different measurements

will be weighted differently depending on their distance to the manifold. Recall

that a standard procedure of averaging all measurements may induce an error if

there is a systematic bias in the measurements, which is a well-known problem

of mean imputation [25]. The weighting strategy considered associates the bias550

in the estimation to data quality in a physical sense.

In order to illustrate the application of the methodology, let us solve the

defined problem for q(x) = 10 kN/m, L = 10 m, E(x)I(x) = 1 · 106 kN ·m2. In

that case, the analytical solution is given by u(x) = − qL4

24EI

(
x
L − x2

L2

)2
.

The measurements are randomly generated from the analytical solution sam-555

pled in a mesh of size h′ = 1
m−1 , uk ∼ N (u(x = k Lh′ ) + b, σ), where b = αū is

a bias, α ∼ N (0.03, 0.03), σ = βū, β = 0.002 and ū = 1
30
qL4

EI is the mean value

of the analytical solution. For this example, m = 100 points are considered

along the beam length and N = 6 samples are evaluated. The six families of

points are shown in Figure 7. Also, and in the same figure, the results computed560

for different spacings h used to establish the physical constraint are shown. In

particular, the mean of the samples is represented by the bold orange color line

and the true analytical solution is represented by the continuous bold blue line.

The RBF function φ(u) = exp
(
− u2

2ς2

)
with ς = 5 · 10−4 m was selected as the

weighting function.565

As pointed out above, the method here described corrects partially the bias

of the measurements. This correction is done automatically by computing the

distance of each measure sample to the physical manifold defined by the dis-

cretized equilibrium equation and boundary conditions, and transforming this

distance using the RBF function. A finer mesh in the discretized physical prob-570

lem (lower h) takes into account more points to compute the distance from the

measure to the physics of the problem, while this physics is more accurate. It
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Figure 7: Comparison of the solutions obtained using the presented method for different mesh

sizes h to define the physical constraint.
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is clear, however, that the accuracy of the estimation in cases as this one with

a systematic positive bias will never be better than the best measure.

In order to have a deeper understanding of the method, it is worth to make575

a physical interpretation of this example. For a fixed h, equation (32) is a

constraint relating n = 1/h + 1 variables of the m-dimensional space. The

manifold Ph ' Rn of dimension n � m defined by these n coordinates is the

manifold where the relevant physics of the problem is evaluated. It is easy to

figure up what the method does by considering only the projections of the points580

in Rm on Ph. In Ph, the physical manifold (that is, the constraint) is given

by a single point p: the numerical solution obtained solving the equation (32).

Therefore, the distances of the different samples to the physical manifold may

be interpreted as Euclidean distances in Ph ' Rn between sample projections

on Ph (i.e. the consideration of the n coordinates related to the mesh with585

h spacing) and point P , di = ||πPh(ui) − uh||. We could have defined the

distance in a more general framework, such as Hilbert spaces, using the Finite

Element approximation, but a simpler and more interpretable norm was selected

for illustration purposes. The weighted mean is then computed by using the

solution uh as the reference point in the weights computations, wi = φ(di).590

The physics of the problem is inferred outside the manifold Ph, that is, in

(Ph)⊥. In Figure 8 all described geometric elements are shown for h = 1/10:

projections over manifold Ph of m-dimensional samples, numerical solution uh

and associated generalized mean and variance. The analytical solution is also

plotted even though it does not appear in the computation.595
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Figure 8: Projections over the manifold Ph of all geometric elements used in computations

for h = 1/10. The dotted magenta line represents the generalized mean (in this case it is

equivalent to the weighted mean with complete measurements). The error bands correspond to

the projections over the different coordinates lines (manifolds of dimension 1) of the generalized

variance ellipsoid (in orange in Figure 1 or Figure 3). Green ellipsoids represented in these

figures collapse in the data samples points because samples are complete so the measure

manifolds are points.
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3.3. Model-free data-driven problem

The final application lays within the framework in which the method has

been conceived: model-free data-driven problems. The objective is now to solve

a real physically-based problem, formulated in terms of a set of governing equa-

tions encoding the physical information, and some empirical knowledge, formu-600

lated in terms of a given data-set.

The main objective of this example, despite its simplicity, is to illustrate

the performance and some of the properties and capabilities of the technique

proposed in DDSBES rather than comparing it with other filling data methods,

as in the previous examples. With this aim, the problem is first formulated in605

a classical framework approach, where no data-set is considered and the entire

physics of the problem is supposed to be known and parametrized. Secondly,

the problem is reformulated in the data-driven framework, where only the sound

physics is postulated and the rest of the physical structure is built from data.

Let us suppose two reservoirs connected by a channel with section S, hy-610

draulic diameter D and length L as illustrated in Figure 9. A fluid flows from

one reservoir to the other depending on the water level in each of them, y1 for

the reservoir 1 and y2 for the reservoir 2. The section of each reservoir is defined

for each height yi by a function Si = Si(yi), i = 1, 2, being clear that the volume

occupied by the fluid at reservoir i for a height yi is Vi(yi) =
∫ yi
0
Si(u) du.615

When considering the physics of the problem, two sound laws are invoked:

conservation of mass (1) and conservation of energy (2). The first one is equiv-

alent to impose (under the assumption of fluid incompressibility) zero net flow,

Qnet = 0. That writes:

dV1
dt

+
dV2
dt

= 0 (33)

Using the expression of Vi in terms of yi we get:620

S1(y1)ẏ1 + S2(y2)ẏ2 = 0 (34)

The second considers the energy loss due to viscous dissipation, unless we
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Figure 9: Schematic diagram of the fluidic device used to validate the presented methodology.

consider an inviscid fluid. Using Bernoulli energy conservation statement in

terms of water height, conservation of energy writes

y1 − y2 = IL (35)

where I is the hydraulic head loss slope, I = I(Q) = fD
1
2g

Q2

S2D and Q =

S1(y1)ẏ1. In order to close the system of equations (34) and (35), it is necessary625

to define the Darcy friction factor fD or at least to express it in terms of the

state space variables y1, y2, ẏ1 and ẏ2, which is the critical step in classical

approaches. In general, either one additional hypothesis is assumed (for example

laminar regime), carry out simulations with complex fluid flow models or use

a semi-empirical equation such as Kármán -Prandtl resistance equation for the630

smooth turbulent regime, [46], [47], the well-known Colebrook-White equation

[48] or other more recent equations for the transition from a smooth pipe to a

rough pipe flow [49], [50], [51]. One way or another, these approaches complete

the physics based on the particular hypothesis stated a priori.

Assuming a laminar regime, fD = 64
Re = 64Sν

QD , with ν the kinematic viscosity635

and defining the initials conditions, the problem may be solved numerically

integrating the system of equations. For instance, we may fix y1(t = 0) = H,

y2(t = 0) = 0, ẏ1(t = 0) = 0 and ẏ2(t = 0) = 0 (reservoir 1 at level H and
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reservoir 2 empty, both at rest).

The data-driven approach is based on the use of a data-set that will com-640

plete implicitly the physics of the problem a posteriori. Using this approach,

only the conservation of mass (equation (34)) is taken into account while the

energy equation is replaced by a data-set sampled from the state-space M =

{(y1, y2, ẏ1, ẏ2)|S1(y1)ẏ1 + S2(y2)ẏ2 = 0}. We have therefore a data-set S =

{(yi1, yi2, ẏ1i, ẏ2i)| i = 1, · · · , N}. As we deal again with a missing data problem,645

we define the missing process as follows: due to experimental limitations, it is

impossible to measure the velocity of the free surface level when the free sur-

face is higher than a defined threshold h∗. This condition tries to reproduce a

realistic missing data process related to the experimental setup. We are clearly

in a MNAR situation. The presented method, which is local in a certain sense650

due to the weighting process, should be insensitive to the missing process.

In order to illustrate the methodology, let us solve the problem in a particular

case using both the classical approach assuming laminar regime and the data-

driven framework, using as data-set the solution in the laminar regime with

noise: for each variable xnoise = xexact + ε where ε ∼ N (0, pσ), being p = 1/10655

and σ the standard deviation of the exact values xexact. A truncated cone

geometry is assumed for both reservoirs with lower radii r = 1.33 mm and slope

s = 0.035. The density and dynamic viscosity of water are ρ = 1000 kg/m3

and µ = 1.006 · 10−3 Pa · s, ν = µ
ρ and g = 9.81 m/s2, respectively. The initial

level of the fluid is H = 5 cm and the channel has length L = 10 cm and a660

rectangular section of width w = 750 µm and height h = 200 µm. The laminar

solution in terms of the two heights and the flow is shown in Figure 10.

Our filling data strategy is tested by solving the data-driven problem with

a loss fraction of data defined by fixing the threshold h∗ as described before.

The components y1 and y2 of the complete data-set are shown in Figure 11a.665

Our aim is solving the problem when we observe a value of y1 = m, that is,

to obtain the other state variables y2, ẏ1 and ẏ2. In other words, to find the

closest point to our incomplete data-set satisfying mass conservation (physical

manifold M) and using as reference our initial set of observations (observation
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Figure 10: Classical solution of the problem solving the system of ordinary differential equa-

tions.

manifold N ). The manifold M is defined by the mass conservation equation670

(34) while the manifold N is defined by equation y1 − m = 0. Incomplete

data are filled using the methodology presented in this work. Completed data

are shown in Figure 11b for m = 42 mm and h∗ = 1.1 · m. As stated before,

an RBF function is chosen as weighting function with ς = 0.2 mm while, for

illustration purposes, weights are computed only in terms of the distance to the675

manifold N instead of N ∩M, which is nonlinear. Finally, the solution point is

chosen by solving the data-driven minimization problem suggested in [16, 17],

that is, by minimizing the distance to the (filled) data-set, provided the physical

constraint. The difference here is the fact that a stochastic distance is computed,

including the deterministic term (Ti,1 and Ti,2, related to the generalized mean)680

and the quadratic uncertainty term (Ti,3, related to the generalized variance),

both resulting from the filling procedure, as it is described in section 2.4.2.

Figure 11b depicts the solution of the problem in terms of intuitive plots

or state variables but does not illustrate the geometry behind. In order to
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Figure 11: Original complete data-set and data-set constructed from incomplete data using

unsupervised learning.
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illustrate the geometric idea of the method, Figure 12 represents the same as685

Figure 11b but including the complete measurements, the physical manifold and

the solution point in a three dimensional projection of the state space. Note

that the physical manifold is P = {(y1, y2, ẏ1, ẏ2) ∈ R4|S1(y1)ẏ1 + S2(y2)ẏ2 =

0, y1 = m} that lives in a four-dimensional space, whose projection in the three-

dimensional space ẏ1, ẏ2 and y2 is shown. The fourth dimension is illustrated690

using colors representing the distance to the manifold N . It is observed now

that the complete measurements own a more complex geometry in the state

space, being therefore this figure a clearer representation of the geometry of the

problem.

Figure 12: Representation of different geometric elements in the space (ẏ1, ẏ2, y2) ∈ R3. Colors

represent the normalized distance (between 0 and maximum) of each of the plotted points to

the linear manifold N defined by y1 = m, that is not represented in this 3D representation. As

the weights have been computed using distances to the manifold N , all completed points are

close to N even if they do not belong to the manifoldM. The best measure should be then a

point close (in the described stochastic sense) to the surface represented in this 3D plot and to

the manifold N . The solution point is then computed by projecting the closest measure into

the physical manifold or in the nonlinear case, looking for the point of the physical manifold

closest to this measure.

The accuracy of the solution obtained with some fraction of data with respect695
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to the solution using the complete data is again evaluated by means of the error

defined in (26). Figure 13 shows the accuracy of the solution with respect to

the missing data fraction, that depends on the selected threshold h∗, indicated

on the figure. Note that the missing data fraction has only a statistical sense,

but the selected threshold has a physical meaning that can be related to the700

problem. As shown in 13, the accuracy of the method depends again primarily

on h∗, that is, on how far the missing data are from the observation manifold

than in the amount of missing data. Actually, when h∗ < m, the error of the

method increases: it is clear that there is no data sample close to the observation

manifold or the physical manifold, neither the presented method nor any other705

in a data-driven context could reconstruct the data structure at this region.

The presented method, however, link the data-driven solution to the physical

insights concerning the missing process, according to considerations pointed out

in [38]. In the same figure, in the dashed blue line, the error considering the

complete noisy data with respect to the laminar solution is highlighted. The710

accuracy of the presented method is of the order of this error, revealing that for

h∗ ≥ m, the error of our method is not a consequence of the filling process but

of the data-driven nature.

4. Conclusions

In this work, a new completion data method has been established, adapted715

to the data-driven simulation-based engineering and sciences framework. The

method can be seen as a generalization of the classical mean imputation. Indeed,

the presented method works when each of the data points is constrained to an

oblique or even nonlinear manifold, whereas the mean imputation considers the

points in the canonical coordinate manifolds. The presented method is based on720

the definition of a generalized weighted mean as the solution of the constrained

minimization problem:

min
x∈M

N∑

j=1

w(Mj)d
2(x,Mj) (36)
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Figure 13: Evaluation of the presented method for different missing data fractions and thresh-

olds.

Here, M is the manifold of points fulfilling a certain underlying (physical)

structure and Mj , j = 1, · · · , N represent the incomplete data-sets. When

M = Rn and Mj = {pj}, that is, points, we recover the usual definition of725

the mean. With this generalization, the mean can be defined in non-Euclidean

frameworks and the imputation of the missing values can be consistent with any

structure of the problem of interest to maintain.

However, the presented method is more than a simple imputation method.

The abstract framework in which it is formulated facilitates its use in combina-730

tion with a data-driven approach for the resolution of simulation-based problems

when the data used to feed the data-driven algorithm is incomplete. The phys-

ical interpretation of the data in terms of state variables belonging to a given

local structure (physical manifold) is compatible with the generalized defined

imputation. Moreover, if some global physical conditions must be fulfilled, that735

is, state variables are embedded in a more manageable space and/or the data

involve uncertainty, a weighting strategy is proposed in order to take all these

considerations into account.

It has been shown that the presented imputation method, though it is used
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in the usual framework (with the canonical coordinate manifolds), improves the740

classical imputation approaches when the desired prediction can be stated in

a framework including some constraints. The first example, of a pure data-

science nature, illustrates how the weighting strategy can be used to quantify

the admissibility of a point in the imputation method.

The second example illustrates how the presented methodology incorporates745

the physics of the problem to computations. It is pointed out that the method

may be used for any physical problem where some fundamental physical con-

straints are invoked in combination with experimental measurements. Here, the

method provides an alternative to highly demanding computational solutions

based on numerical procedures, when experimental measurements can be easily750

obtained. The presented algorithm takes into account the physical quality of

the data and, therefore, is more robust in problems with experimental bias.

The last example, much richer, illustrates the full power of the presented

method. Here, all features of the methodology are taken into account for the so-

lution of a model-free approach to a typical engineering problem involving fluid755

mechanics where the formulation of the problem should guarantee the fulfill-

ment of some fundamental physical laws (mass conservation) and the operation

condition. The results show a good agreement with a model-based approach to

the problem (using a laminar assumption for the flow) and demonstrate that

the accuracy does not depend on the missing data fraction, but on how far the760

missing data are from the operating conditions. This fact links the performance

of the model to physical considerations, more than statistical ones (that is, in

data quality more than in data quantity), as it would be desirable in data-driven

engineering problems.

The filling data methodology presented is conceptually simple, because it is765

based on the minimization problem (36). However, this constrained minimiza-

tion problem is in general nonlinear and not always smooth. In the present

work, a computational expression for the solution of (36) is derived in the lin-

ear case and an iterative algorithm is presented for nonlinear problems, based

on tangent linearization, the application of the linear solution and a standard770
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strategy for returning to the manifold. No mathematical results are presented

in this work about the convergence of the presented algorithm, which is crucial,

and depends on the geometry of the problem, particularly the convexity of the

data manifolds. Fortunately, the existence of extensive software for solving con-

strained optimization problems can save this inconvenience in many problems,775

but the selected solution method would be, also, context dependent.

To conclude, the presented imputation method is a starting point for a new

domain in Engineering, which responds to the need of data-driven simulation-

based engineering and sciences, that is, the adaptation of the classical statistical

tools to engineering problems where some physics defines the geometric struc-780

ture of the problem and has to be fulfilled. This domain, that could be named

as data-driven simulation-based statistics is no more than the meeting point

between Mathematical Physics, whose mathematical language is differential ge-

ometry and Statistics, whose mathematical language is measure theory.
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Appendix A. Mathematical proofs

Proposition Appendix A.1 (Expected value of the squared distance).

Let V a linear manifold and let πV the orthogonal projection on V, P ∈ Rn,

X ∈ V a random vector and D = d(P,X). We identify X with random vector795

X and point P with its coordinates p in a given reference frame. Let us suppose

that µ = E[X] and Σ = COV(X) are finite. Therefore:

E[D2] = ||p− πV(p)||2 + ||πV(p)− µ||2 + Tr(Σ) (Appendix A.1)

Proof:. Using Pythagoras theorem we have:

D2 = ||p−X||2

= ||p− πV(p)||2 + ||πV(p)−X||2 (Appendix A.2)

Therefore

E[D2] = E
[
||p− πV(p)||2 + ||πV(p)−X||2

]

= ||p− πV(p)||2 + E
[
||πV(p)−X||2

]

(Appendix A.3)

Now, we have800

E
[
||πV(p)−X||2

]
= Tr(Σ) + ||E[πV(p)−X]||2

= Tr(Σ) + ||πV(p)− E[X]||2 (Appendix A.4)

Combining equations Appendix A.3 and Appendix A.4 we obtain the result.

�
We may observe that when using a reference frame in V, rang(Σ) = dim(V)

and then Tr(Σ) has as many terms as the dimension of V.

An analogous result for the variance of D2 can be derived.805
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Proposition Appendix A.2 (Variance of the squared distance). Let V a

linear manifold and let πV the orthogonal projection on V, P ∈ Rn, X ∈ V a

random vector and D = d(P,X). We identify X with random vector X and

point P with its coordinates p in a given reference frame. Let us suppose that

µ = E[X], Σ = COV(X) and Υ = Υ(X) the centered tensor moment of order810

4 of X are finite. Therefore:

Var[D2] = I : Υ : I−
[
Tr(Σ) + (πV(p)− µ)

T
(πV(p)− µ)

]
(Appendix A.5)

Proof:. We have seen in previous proof that:

D2 = ||p− πV(p)||2 + ||πV(p)−X||2 (Appendix A.6)

Therefore:

Var[D2] = Var
(
||p− πV(p)||2 + ||πV(p)−X||2

)

= Var
(
||πV(p)−X||2

)

(Appendix A.7)

But we have,

Var
(
||πV(p)−X||2

)
= I : Υ : I−

(
Tr(Σ) + E[πV(p)−X]TE[πV(p)−X]

)

= I : Υ : I−
(
Tr(Σ) + (πV(p)− µ)T (πV(p)− µ)

)

(Appendix A.8)

Combining equations Appendix A.7 and Appendix A.8 we obtain the result.815

�
Under normality conditions, we have the following result:

Proposition Appendix A.3 (Squared distance distributional properties).

Let V a linear manifold and let πV the orthogonal projection on V, P ∈ Rn,

X ∈ V a random vector and D = d(P,X). We identify X with random vector820
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X and point P with its coordinates p in a given reference frame. Let us assume

that X follows a multivariate normal distribution with mean µ = E[X] and co-

variance matrix Σ = COV(X). Let χ2 = (p − X)T (Σ)−1(p − X). Then χ2

follows a non-central χ2 distribution with k = dim(V) degrees of freedom and

non-centrality parameter λ = (πV(p)− µ)T (Σ)−1(πV(p)− µ).825

Proof:. Let U = p−X. Therefore, U follow a multivariate normal distribution

with mean p−µ and covariance matrix Σ. Then, Σ−1/2U ∼ N (Σ−1/2(p−µ), I).

Using non-central χ2 distribution definition:

χ2 = UTΣ−1U = (Σ−1/2U)T (Σ−1/2U) ∼ χ2(n, λ) (Appendix A.9)

Where n = rang(Σ) = dim(V) and λ = (Σ−1/2(p− µ))T (Σ−1/2(p− µ)) =

(p− µ)TΣ−1(p− µ)).830

But we have, p − µ = (p − πV(p)) + (πV(p)) − µ). As p − πV(p) ∈
ker(Σ−1),then (p− µ)TΣ−1(p− µ) = (πV(p)− µ)TΣ−1(πV(p)− µ). �
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