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OPTIMAL DIVISIONS OF A CONVEX BODY

ANTONIO CAÑETE ∗ , ISABEL FERNÁNDEZ AND ALBERTO MÁRQUEZ

(Communicated by M. A. Hernández Cifre)

Abstract. For a convex body C in R
d and a division of C into convex subsets C1, . . . ,Cn , we can

consider max{F(C1), . . . ,F(Cn)} (respectively, min{F(C1), . . . ,F(Cn)} ), where F represents
one of these classical geometric magnitudes: the diameter, the minimal width, or the inradius. In
this work we study the divisions of C minimizing (respectively, maximizing) the previous value,
as well as other related questions.

1. Introduction

Finding the best division of a given set, from a geometric point of view, is an
interesting non-trivial question deeply studied in different settings, specially in the last
decades, which may yield striking results in some situations.

In this line, Conway’s fried potato problem ([8, Problem C1]) looks for the division
of a convex body C in R

d into n subsets (under the additional restriction of using
n− 1 successive hyperplane cuts) minimizing the largest inradius of the subsets. This
problem was solved by A. Bezdek and K. Bezdek in 1995, proving that a minimizing
division is given by means of n− 1 parallel hyperplane cuts, equally spaced between
hyperplanes providing the minimal width of a certain rounded body associated to C . We
note that this construction is implicit, and the optimal value associated to this problem
is determined theoretically [2, Th. 1].

A similar question for the diameter magnitude has been also considered in the
planar setting in several joint works by one of the authors: for the family of centrally-
symmetric planar convex bodies and arbitrary divisions into two subsets, necessary and
sufficient conditions for being a minimizing division can be found in [6] (see also [13]).
Moreover, for a k -rotationally symmetric planar convex body C , where k ∈N , k � 3, a
minimizing k -partition (which is a particular type of division into k subsets, by means
of k curves meeting at an interior point of C ) is described in [5, Th. 4.5] for any k � 3,
as well as a minimizing general division (without restrictions) into k subsets when
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k � 6 [5, Th. 4.6]. Additionally, a related approach for general planar convex bodies
has been treated in [4].

These two previous questions can be regarded as particular cases of the following
min-Max and Max-min type problems:

PROBLEM. Given a geometric magnitude F and a convex body C ⊂ R
d , which

are the divisions of C , if any, minimizing (resp., maximizing) the largest (resp., the
smallest) value of F on the subsets of the division?

The present work is devoted to study this problem when F is the diameter, the
minimal width and the inradius. Following the original statement of Conway’s fried
potato problem, we will consider divisions determined by successive hyperplane cuts
(see Section 2 or [2, §. 2] for a more precise description). We will address the question
of the existence of an optimal division, as well as its balancing behaviour (in the sense
that all the subsets in those divisions have the same value for the considered magnitude,
see Section 2). We will also give the optimal value of the magnitude F when possible,
or upper and lower bounds when not. Moreover, for the family of convex polygons,
we will provide an algorithm for computing the optimal value (and consequently, an
optimal division) for the min-Max problem for the inradius (Conway’s fried potato
problem), for which the solution was known only theoretically, as explained above.
This algorithm is of quadratic order with respect to the number of sides of the polygon,
see Subsection 3.3.1.

Our main results can be summarized as follows:

THEOREM A. (min-Max type problems) Let C be a convex body in R
d , F one

of the following magnitudes: diameter (D), width (w), inradius (I ), and n � 2 . Then,
there exists a division of C into n subsets (given by n−1 successive hyperplane cuts)
minimizing the largest value of F on the subsets. This optimal division can be chosen
to be balanced. Moreover:

i) If F = D, lower and upper bounds for the optimal value are given by Equation
(3).

ii) If F = w, any optimal division is balanced and the optimal value is w(C)/n.

iii) If F = I , the optimal value is given in terms of the width of some rounded body
associated to C ([2, Th. 1]), although an explicit sharp lower bound is given by
Equation (6).

In the last two cases, optimal divisions for convex polygons can be found by means
of algorithms of linear and quadratic order with respect to the number of sides of the
polygon, respectively.

THEOREM B. (Max-min type problems) Let C be a convex body in R
d , F one

of the following magnitudes: diameter (D), width (w), inradius (I ), and n � 2 . Then,
there exists a division of C into n subsets (given by n−1 successive hyperplane cuts)
maximizing the smallest value of F on the subsets (except possibly when d = 2 and
F = D). This optimal division can be chosen to be balanced. Moreover:



OPTIMAL DIVISIONS OF A CONVEX BODY 317

i) If F = D, any optimal division is balanced and the optimal value is D(C) .

ii) If F = w, sharp lower and upper bounds for the optimal value are given by
Equation (10).

iii) If F = I , a lower bound for the optimal value is given by Equation (11).

For the Max-min type problems, we also remark that any optimal division when
F = w is balanced for n = 2, and that the optimal value when F = I can be expressed
in an analogous way as in [2] (that is, in terms of the optimal value for the Max-min
problem for the width for a certain rounded body associated to C , see Theorem 12).

The paper is organized as follows. Section 2 establishes the definitions and nota-
tion needed throughout the work. In Section 3 we consider the min-Max type problems,
proving the results in Theorem A, whereas Section 4 is devoted to the corresponding
Max-min type problems, proving Theorem B. Finally, Section 5 contains some related
questions.

2. General setting and preliminaries

From now on, C will denote a convex body (compact convex set with non-empty
interior) in R

d , d � 2. We denote by ∂C and int(C) the boundary and the interior of
C respectively.

Following [2] (see also [15, Subsec. 2.2]), we consider the following definition.

DEFINITION 1. An n-division of a convex body C ⊂ R
d is a decomposition of C

into n closed subsets C1, . . . ,Cn , all of them with non-empty interior, given by n− 1
successive hyperplane cuts: along the division process, only one subset is divided into
two by each hyperplane cut (see Figure 1). In particular, all the subsets of an n -division
are convex, and the intersection between two adjacent subsets is always a piece of
hyperplane.
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Figure 1: Two 5-divisions of an ellipse, provided by four hyperplane cuts.

REMARK 1. If C, C̃ ⊂ R
d are close enough (with respect to the Hausdorff dis-

tance) convex subsets, then any n -division P of C induces an n -division P̃ of C̃ ob-
tained by the successive divisions given by the same hyperplanes, and in the same order,
as in P (see Figure 2).
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Figure 2: A 6-division of a triangle C (on the left) and the induced 6-division of a triangle C̃
close to C (on the right)

Let F denote one of these three classical geometric magnitudes, defined for any
compact set in R

d :

– the diameter D , which is the largest distance between two points in the set,

– the (minimal) width w , which is the smallest distance between two parallel sup-
porting hyperplanes of the set, and

– the inradius I , which is the largest radius of a ball entirely contained in the set.

Associated to the magnitude F , we consider the following min-Max type problem:
determine the n -divisions P of C that provide the minimal possible value for

F(P) := max{F(C1), . . . ,F(Cn)},
where C1, . . . ,Cn are the subsets given by P , as well as finding that value:

Fn(C) = inf{F(P) : P is an n-division of C}. (1)

The dual Max-min type problem seeks for the n -divisions P of C for which

F̃(P) := min{F(C1), . . . ,F(Cn)}
agrees with

F̃n(C) = sup{F̃(P) : P is an n-division of C}. (2)

Any n -division P of C satisfying that F(P) = Fn(C) or F̃(P) = F̃n(C) will be
called an optimal n-division of C , and the values Fn(C) and F̃n(C) will be referred
to as the optimal values of the considered problems. Additionally, we will say that an
n -division of C into subsets C1, . . . ,Cn is balanced if F(C1) = . . . = F(Cn) .

The following inequalities are almost straightforward from the previous defini-
tions:

LEMMA 1. Let C be a convex body in R
d . Then, 0 < Fn(C) � Fm(C) � F(C)

and 0 < F̃n(C) � F(C) , for any n � m � 2 .
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Proof. The second chain of inequalities is trivial. For the first one, suppose that
Fn(C) = 0. As Fn(C) is defined as an infimum, this implies that there exists a se-
quence {Pk}k∈N of n -divisions of C such that {F(Pk)}k∈N tends to zero. Let Ck

1, . . . ,C
k
n

be the subsets of C given by Pk . Without loss of generality, we can assume that
F(Pk) = F(Ck

1) for any k ∈ N . We can apply successively Blaschke selection theo-
rem [16, Th. 1.8.7] to the sequences {Ck

1}k∈N, . . . ,{Ck
n}k∈N in order to obtain convex

bodies E1, . . . ,En such that C = E1 ∪ . . .∪En . Since F(E1) = 0 by continuity and,
consequently, F(Ei) = 0, it follows that Ei has empty interior, for i = 1, . . . ,n , which
yields a contradiction because C has non-empty interior. Finally, for m � n , let Qm

be an arbitrary m-division of C with subsets C1, . . . ,Cm . Without loss of general-
ity, we can assume that F(Qm) = F(C1) . By dividing the subset Cm into n−m + 1
subsets by successive hyperplane cuts, we will obtain an n -division Qn of C with
subsets C1, . . . ,Cm−1,C′

m, . . . ,C′
n , for which F(Qm) = F(Qn) � Fn(C) , and therefore

Fm(C) � Fn(C) . �

3. min-Max type problems

In this section we shall treat the min-Max type problems for the diameter, the
width and the inradius. Recall that the optimal value for each of these problems will be
denoted by Fn(C) , where F stands for the considered magnitude.

3.1. min-Max problem for the diameter

For this problem, Theorem 2 provides lower and upper bounds for the correspond-
ing optimal value. Moreover, we will see that the existence of balanced optimal divi-
sions is always assured (see Theorem 1), but not all optimal divisions are balanced, as
shown in Example 1.

LEMMA 2. Let n � 2 . Assume that for any convex body E ⊂ R
d there exists an

optimal n-division for the min-Max problem for the diameter. Then, the map E �→
Dn(E) is continuous with respect to the Hausdorff distance.

Proof. Let {Ek}k∈N be a sequence of convex bodies converging to a fixed convex
body E . Label P , Qk the optimal n -divisions for E , Ek , respectively. Let Ek

1 , . . . ,E
k
n

be the subsets given by the division Qk , for any k ∈ N . Consider the n -division Q̃k of
E induced by Qk , for k ∈ N large enough (see Remark 1), with subsets Ẽk

1 , . . . , Ẽ
k
n .

By applying successively Blaschke selection theorem [16, Th. 1.8.7], we have that
{Ẽk

j}k∈N will converge (up to a subsequence) to a convex body (maybe with empty inte-

rior) E0
j , j = 1, . . . ,n . Subdividing conveniently if necessary, as in the proof of Lemma

1, we can assume that these sets provide an n -division Q of E with {D(Q̃k)}k∈N

converging to D(Q) . Consequently, {D(Qk)}k∈N also converges to D(Q) � D(P) =
Dn(E) . In order to finish the proof, it suffices to check that D(Q) = D(P) , since
D(Qk) = Dn(Ek) for any k ∈ N .
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Suppose that D(Q) > D(P) . Let Pk be the n -division of Ek induced by P (see
Remark 1), for k ∈N large enough. Since {D(Pk)}k∈N converges to D(P) , we can find
k′ ∈N such that Dn(Ek′) = D(Qk′) > D(Pk′) , which is impossible. Thus, {Dn(Ek)}k∈N

converges to D(Q) = D(P) = Dn(E) , which yields the statement. �

THEOREM 1. Let C be a convex body in R
d . Then, there exists a balanced opti-

mal n-division of C for the min-Max problem for the diameter.

Proof. Let us first prove the existence of optimal divisions. As the optimal value
Dn(C) is defined as an infimum, let {Pk}k∈N be a sequence of n -divisions of C such
that lim

k→∞
D(Pk) = Dn(C) . Let Ck

1, . . . ,C
k
n be the subsets provided by Pk , for any k ∈ N ,

and assume that D(Pk) = D(Ck
1) (consequently, D(Ck

1) � D(Ck
j ) , for j = 2, . . . ,n ,

and Dn(C) = lim
k→∞

D(Ck
1) ). By applying successively Blaschke selection theorem [16,

Th. 1.8.7] for each j∈{1, . . . ,n} , we have that (a subsequence of) the sequence {Ck
j}k∈N

will converge to a convex body C∞
j , which could have empty interior in some cases.

Therefore, C∞
1 , . . . ,C∞

n will provide, in fact, an m-division P∞ of C , with m � n , satis-
fying D(P∞) = D(C∞

1 ) = lim
k→∞

D(Ck
1) = Dn(C) by construction, and so D(P∞)= Dn(C) .

If m = n , then P∞ is an optimal n -division of C , and if m < n , we can proceed as in
the proof of Lemma 1 to obtain an n -division of C (by dividing properly the subset
C∞

m ) such that D(P) = D(C∞
1 ) = Dn(C) , thus being optimal.

We will now prove that we can find a balanced optimal n -division of C by induc-
tion on the number n of subsets. For n = 2, let P be an optimal 2-division, which will
be determined by just one hyperplane H , with subsets C1,C2 . Assume that P is not
balanced, say D(P) = D(C2) > D(C1) . Without loss of generality, we can also assume
that H is not parallel to any flat piece of ∂C (if needed, we can consider another opti-
mal division determined by a hyperplane H̃ close (and non parallel) to H , with subsets
C̃1,C̃2 , satisfying that C̃2 ⊂C2 and D(C̃1) < D(C̃2)). Let Ht be the hyperplane parallel
to H at distance t � 0 from C1 , which will yield a new 2-division Pt of C into subsets
Ct

1 , Ct
2 , satisfying that C1 ⊆Ct

1 , Ct
2 ⊆C2 . Let t1 > 0 be the value for which Ht1 ∩C

reduces to a single point. Then we have

D(C0
1) = D(C1) < D(C2) = D(C0

2)

and
D(Ct1

1 ) = D(C) > D(Ct1
2 ) = 0.

By continuity, there exists t0 ∈ (0,t1) such that D(Ct0
1 ) = D(Ct0

2 ) . Then Pt0 is balanced
and we have

D(Pt0) = D(Ct0
1 ) = D(Ct0

2 ) � D(C2) = D(P).

Note that the strict inequality above would contradict the optimality of P , so it follows
that D(Pt0) = D(P) and Pt0 is also optimal. This proves the case n = 2.

Assume now n > 2 and let Q be a non-balanced optimal n -division of C . Con-
sider a hyperplane cut H from Q dividing C into two different convex regions E1 ,
E2 , and label Qi as the division of Ei into ni subsets induced by Q , i = 1,2, with
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n1 + n2 = n . By induction, there exists a balanced optimal ni -division Q′
i of Ei ,

i = 1,2. Without loss of generality, we will distinguish three cases here:

• D(Q1) < D(Q2) . We proceed similarly as in the case n = 2. First, let us see that
we can assume that H is not parallel to any flat piece of ∂C : indeed, if this is
not the case, let H̃ be a hyperplane close enough to H (but not parallel to H )
dividing C into two subsets Ẽ1, Ẽ2 with Ẽ2 ⊂ E2 and E1 ⊂ Ẽ1 . We can now
consider the n -division Q̃ of C given by H̃ together with Q̃1 and Q̃2 , where Q̃i

is the ni -division of Ẽi induced by Qi (see Remark 1), i = 1,2. Moreover, we
can assume that Q̃ satisfies

D(Q1) � D(Q̃1) < D(Q̃2) � D(Q2),

from where we infer that Q̃ is also optimal.

Thus, assume that H is not parallel to any flat piece of ∂C and consider the op-
timal balanced divisions Q′

1,Q
′
2 defined above. If D(Q′

1) = D(Q′
2) , then Q′

1 ,
Q′

2 yield a optimal balanced n -division Q′ of C and we are done. If (say)
D(Q′

1) < D(Q′
2) , let Ht be the hyperplane parallel to H at distance t � 0 from

E1 dividing C into two convex regions Et
1 , Et

2 , with E1 ⊆ Et
1 and Et

2 ⊆ E2 . For
each t � 0 we can consider a balanced optimal ni -division Qt

i of Et
i , i = 1,2. By

continuity (observe that Lemma 2 holds, since the existence of optimal divisions
has been already proved), there exists t0 > 0 such that D(Qt0

1 ) = D(Qt0
2 ) . These

two divisions Qt0
1 , Qt0

2 will yield a balanced n -division Qt0 of C that satisfies

D(Qt0) = D(Qt0
2 ) = Dn2(E

t0
2 ) � Dn2(E2) = D(Q′

2) � D(Q2) = D(Q).

Since Q is optimal, we necessarily have that D(Qt0) = D(Q) , and so Qt0 is a
(balanced) optimal n -division of C , as claimed.

• D(Q1) = D(Q2) but at least one division, say Q1 , is not optimal. Let Q̂1 be an
optimal n1 -division of E1 . Then D(Q̂1) < D(Q1) and the (optimal) n -division
Q̂ of C obtained from Q̂1 and Q2 satisfies D(Q̂1) < D(Q1) = D(Q2) , and we
can proceed as in the previous case.

• D(Q1) = D(Q2) and both Q1 and Q2 are optimal divisions (that is, D(Qi) =
Dni(Ei) , i = 1,2). Then the divisions Q′

1 , Q′
2 satisfy D(Q′

1) = D(Q′
2) = D(Q)

and therefore they yield a balanced optimal n -division Q′ of C . �

The following example shows that not all optimal divisions for this problem are
necessarily balanced.

EXAMPLE 1. For a given ball B in R
d , it is clear that any division P of B into

two subsets satisfies that D(P) = D(C) . Thus, D2(B) = D(B) and any 2-division of B
is optimal (in particular, any non-balanced 2-division will be optimal in this case).

We will now focus on the computation of lower and upper bounds for Dn(C) .
First, let us introduce the notion of orthogonal widths associated to a given convex
body.
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DEFINITION 2. Let C be a convex body in R
d . The orthogonal widths associated

to C , w1 � . . . � wd , are defined recursively as follows:

• w1 is the width of C1 := C measured in Π1 := R
d .

• For i ∈ {2, . . . ,d} , let Πi be a supporting (d − i + 1)-plane in Πi−1 of Ci−1

determining its width (measured in Πi−1 ), and let πi : Πi−1 → Πi be the asso-
ciated orthogonal projection. Then, wi is defined as the width of Ci := πi(Ci−1)
measured in Πi .

As a consequence of the previous definition, any convex body C in R
d with

orthogonal widths w1, . . . ,wd is contained in a d -orthotope HC with edge lengths
w1, . . . ,wd (see Figure 3).

w
1

w
2

Figure 3: Associated 2-orthotope given by the orthogonal widths of an ellipse

THEOREM 2. Let C be a convex body in R
d with orthogonal widths w1, . . . ,wd ,

and let n ∈ N , n � 2 . Then,

1
n

D(C) < Dn(C) � min

{
D(C),

√
w2

1

a2
1

+
w2

2

a2
2

+ . . .+
w2

d

a2
d

}
, (3)

for any a1 � . . . � ad natural numbers such that n � a1 · . . . ·ad .

Proof. For the left-hand side of (3), let P be a balanced optimal n -division of C
with subsets C1, . . . ,Cn , in view of Theorem 1. Then Dn(C) = D(P) = D(Ci) for all
i = 1, . . . ,n . Fix a segment s in C with �(s) = D(C) , where � represents the Euclidean
length. If s is contained in a subset Cj , then Dn(C) = D(Cj) = D(C) and the statement
trivially holds. Assume now that P divides s into m segments s1, . . . ,sm , with 2 �
m � n , and si ⊂Ci , i = 1, . . . ,m .

• If m < n , we have that

D(C) = �(s) =
m

∑
i=1

�(si) �
m

∑
i=1

D(Ci) <
n

∑
i=1

D(Ci) = nD(P) = nDn(C).



OPTIMAL DIVISIONS OF A CONVEX BODY 323

• If m = n , then

D(C) = �(s) =
n

∑
i=1

�(si) <
n

∑
i=1

D(Ci) = nD(P) = nDn(C),

where the strict inequality holds since s will be necessarily divided by the n−1
hyperplane cuts from P , and so �(s j) < D(Cj) , for some j ∈ {1, . . . ,n} : indeed,
if we label si = pi−1 pi , for i = 1, . . . ,n , it is possible to find a point p∈C (close
to p1 ) in the orthogonal line to s at p1 such that either p ∈ C1 and d(p, p0) >
�(s1) (and so D(C1) > �(s1)), or p ∈C2 and d(p, p2) > �(s2) (and so D(C2) >
�(s2)).

Both situations above yield Dn(C) > D(C)/n , as desired.
For the right-hand side of (3), let HC be the d -orthotope containing C associated

to the orthogonal widths w1, . . . ,wd of C . The facets of HC are then determined by
the boundary of d slabs, B1, . . . ,Bd . Fix ai ∈ N , i = 1, . . . ,d , with a1 � . . . � ad and
such that a1 · . . . · ad � n . Then, for each i ∈ {1, . . . ,d} , consider ai − 1 hyperplanes
equally spaced between the two hyperplanes in ∂Bi (that is, hyperplanes parallel to ∂Bi

and dividing the slab Bi into ai slabs of the same width). These hyperplanes yield a
mesh-type division P of HC into r = a1 · . . . ·ad subsets G1, . . . ,Gr (which can be seen
as an r -division of HC given by r−1 successive hyperplane cuts), where each Gi is a
d -orthotope with edge lengths w1/a1 , w2/a2, . . . ,wd/ad . Then,

D(P) = D(Gi) =

√
w2

1

a2
1

+
w2

2

a2
2

+ . . .+
w2

d

a2
d

,

which constitutes an upper bound for Dn(C) in view of Lemma 1 (since P will induce
an m-division of C , with m � r � n , by hypothesis). The proof finishes taking into
account that Dn(C) � D(C) , again by Lemma 1. �

REMARK 2. The lower bound from Theorem 2 can be considered sharp in the
following sense: for any n � 2 and any ε > 0 small enough, there exists a convex body
C in R

d such that Dn(C) < D(C)/n+ε (it suffices to take C as an orthotope of lengths
1, ε, . . . ,ε ).

REMARK 3. The upper bound in Theorem 2 is obtained by means of a certain
r -division of the d -orthotope containing C given by its orthogonal widths, where r =
a1 · . . . ·ad � n . Let us remark that a choice with r = n does not always provide the best
upper bound in Theorem 2, as can be observed in Table 1.

Moreover, in order to obtain the best upper bound using this result, the choice of
the natural numbers a1, . . . ,ad will depend on the convex body C . Numerical simu-
lations indicate that if C is, for example, a hypercube, then the right-hand side of (3)
is attained for ai = �n1/d� , i = 1, . . . ,d , whereas for a long and narrow orthotope the
minimum is given for a1 = . . . = ad−1 = 1, ad = n (see Table 1 for some examples in
the planar case).
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C = [0,1]× [0,M] (a1,a2)

n = 4
0 < M � 2 (2,2)

2 � M (1,4)

n = 9
0 < M � 2

√
5√
7

(3,3)

2
√

5√
7

� M � 18
√

3√
65

(2,4)

18
√

3√
65

� M (1,9)

n = 16

0 < M � 5
√

7
9 (4,4)

5
√

7
9 � M � 20

√
5

3
√

39
(3,5)

20
√

5
3
√

39
� M � 8 (2,8)

8 � M (1,16)

Table 1: Values of a1 , a2 providing the best upper bound in Theorem 2 in the case of a rectangle
C

3.2. min-Max problem for the width

For this problem, we stress that the corresponding optimal value wn(C) for a given
convex body C can be computed: we will see in Theorem 3 that such a value equals
w(C)/n (extending [4, Le. 4.1]), and we will obtain the existence of optimal divisions.
Moreover, it also shows that all optimal divisions are balanced in this setting (which
improves [4, Le. 2.3]). We will finish this subsection with some comments on the
algorithm for determining the optimal value (and so an optimal division).

We start by recalling the following well-known result due to T. Bang [1].

LEMMA 3. ([1]) Let C be a convex body in R
d . Assume that C ⊂ B1 ∪ . . .∪Bm ,

where Bi is a slab delimited by two parallel hyperplanes in R
d , for i = 1, . . . ,m. Then,

w(C) � w(B1)+ . . .+w(Bm) .

THEOREM 3. Let C be a convex body in R
d . Then, there exists an optimal n-

division for the min-Max problem for the width. Moreover,

wn(C) = w(C)/n, (4)

and any optimal n-division of C is balanced.

Proof. For any n -division P of C into subsets C1, . . . ,Cn , Lemma 3 gives that

w(C) �
n

∑
i=1

w(Ci) � nw(P),



OPTIMAL DIVISIONS OF A CONVEX BODY 325

which implies that wn(C) � w(C)/n . Let now B be a slab providing w(C) . We can
construct an n -division P0 of C by considering n− 1 parallel hyperplanes, equally
spaced between the two hyperplanes in ∂B , see Figure 4.

Figure 4: An optimal 4-division of an ellipse

It is clear that w(P0) = w(C)/n , which gives that P0 is optimal, as well as equal-
ity (4). Finally, let P be an optimal n -division of C dividing C into C1, . . . ,Cn . If P
is not balanced, we can assume without loss of generality that w(P) = w(C1) > w(C2) .
By applying Lemma 3, it follows that

w(C) �
n

∑
i=1

w(Ci) < nw(C1) = nw(P),

which implies that wn(C) = w(P) > w(C)/n . This contradicts (4), and so P must be
balanced. �

In view of Theorem 3, determining the width of a convex body C immediately
leads to the optimal value for the corresponding min-Max problem, as well as to an op-
timal n -division of C (given as in the proof of Theorem 3). The algorithms for search-
ing the width of a convex body are important components of modern algorithm theory,
the complexity of which is polynomial for a fixed dimension (and linear for polygons
in the planar case, see [18]). The main ideas of such algorithms were described in [9].

3.3. min-Max problem for the inradius

As pointed out in Section 1, the min-Max problem for the inradius is known as
Conway’s fried potato problem and has been deeply studied in [2] (see also [3]). In
that paper, the authors proved that the optimal value of a given convex body C for this
problem can be expressed in terms of the width of a certain rounded body associated
to C , describing moreover an optimal division [2, Th. 1]. These results are stated in
Theorem 4 for the sake of completeness (see also Definition 3). Our main contribution
in this setting is providing an algorithm, based on the notion of medial axis, which
leads to the optimal value for any convex polygon (see Subsection 3.3.1). We also give
a general sharp lower bound for the optimal value in Corollary 1.

DEFINITION 3. Let C be a convex body in R
d , and let 0 < ρ � I(C) . The ρ -

rounded body Cρ of C is the union of all the balls of radius ρ which are contained in
C . This construction can be extended to ρ = 0 by setting C0 = C .
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The notion of rounded body has been previously considered for different problems
in the literature, such as the isoperimetric and Cheeger problems (see for instance [17,
12]). It is also related to inner parallel bodies, since Cρ coincides with the Minkowski
addition of the inner parallel body C÷ρBd and ρBd , where Bd is the unit ball in R

d

(see [16] for a more detailed explanation and applications of this kind of constructions).

THEOREM 4. ([2, Th. 1]) Let C be a convex body in R
d . Then, In(C) is the

unique number ρ̃ such that
w(Cρ̃ ) = 2nρ̃. (5)

Moreover, an optimal balanced n-division of C is given by n−1 parallel hyperplanes,
equally spaced between the two hyperplanes delimiting a slab which provides w(Cρ̃) .

The reader can find two different balanced optimal 3-divisions of an equilateral
triangle for this problem in [2, Fig. 1] (which shows that, in general, the solution is
not unique). An intriguing open question in this setting is investigating whether any
optimal division is necessarily balanced, as it happens for the corresponding min-Max
type problem for the width (Theorem 3).

REMARK 4. As a consequence of Theorems 3 and 4, we have that

2ρ̃ = wn(Cρ̃),

for any convex body C (here, ρ̃ = In(C)). In particular, if C is rounded enough so that
C =Cρ̃ (equivalently, if ρ̃Bd is a summand of C , see [16, Lemma 3.1.11]), the optimal
values for the min-Max problems for the width and the inradius will coincide, up to
a constant. However, we point out that the optimal divisions in these two situations
will in general differ: for an equilateral triangle T , the aforementioned [2, Fig. 1(b)]
shows an optimal 3-division of T for the inradius (and so, also optimal for the I3(T )-
rounded body T I3(T ) of T ) , which is not optimal for T I3(T ) when considering the
width (in fact, such a 3-division of T I3(T ) is not even balanced for the width).

Corollary 1 gives an explicit lower bound for In(C) in terms of the inradius of the
considered convex body C , by using the following result due to V. Kadets (which was
originally stated in a general context).

LEMMA 4. ([11, Th. 2.1]) Let C be a convex body in R
d , and let P be an n-

division of C into subsets C1, . . . ,Cn . Then, I(C) �
n

∑
i=1

I(Ci).

COROLLARY 1. Let C be a convex body in R
d . Then,

In(C) � I(C)/n. (6)

REMARK 5. Inequality (6) turns into an equality, for instance, for any convex
body C whose inball B touches ∂C at exactly two points p,q . In that case, these two
points will be necessarily antipodal in B , and an optimal n -division can be constructed
by means of n− 1 hyperplanes orthogonal to the segment pq and dividing it into n
segments of the same length.
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3.3.1. Algorithm for the optimal value of convex polygons

We will now describe a constructive procedure which will lead us to the optimal
value for this problem when considering an arbitrary convex polygon (note that the
solution given in [2] is obtained theoretically). In the following, dist will stand for the
Euclidean planar distance.

DEFINITION 4. Given a convex polygon C and a side L of C , we will denote by
wL(C) the directional width of C with respect to L . That is, wL(C) is the width of C
when considering only slabs parallel to the direction determined by L . Analogously,
for ρ ∈ (0, I(C)] , we will denote by wL(Cρ ) the directional width of Cρ with respect
to L .

The following lemma allows us to discretize the search space of the slopes of the
slabs providing the width of any given rounded body associated to a polygon. As a
result, the size of that search space is linear with respect to the number of edges of the
polygon.

LEMMA 5. Let C be a convex polygon, and let 0 < ρ � I(C) . Then, there exists a
slab providing w(Cρ) , such that one side of C is contained in the boundary of the slab.
That is, there exists a side L in C such that w(Cρ) = wL(Cρ) .

Proof. In this case, the boundary of Cρ will be composed by circular arcs (of
radius ρ ) and, possibly, by some segments (which will be pieces of sides of C ). Note
that if ∂Cρ does not contain any segment, then Cρ will be necessarily a ball. This
immediately implies the statement. So we can assume that ∂Cρ contains, at least, one
segment.

Let B be a slab determining w(Cρ) , delimited by two parallel supporting lines h1 ,
h2 . Let xi ∈ hi∩Cρ , and assume that xi lies in an arc σi of Cρ , for i = 1,2 (otherwise,
the statement trivially follows).

Without loss of generality, we can assume that B is a horizontal slab. For any
t > 0, let ht

1 , ht
2 be the two supporting lines of Cρ with slope −t , and label Bt as the

slab bounded by them.
Assume first that dist(x1,x2) = w(Cρ ) . Since ρ � I(Cρ) � w(Cρ )/2, we will

discuss two possibilities.
On the one hand, if ρ = w(Cρ)/2, it follows that σ1 , σ2 will lie in the same

ball. Then, the slab Bt will also provide w(Cρ) , for t ∈ [0,t0] , where either ht0
1 or ht0

2
contains a segment of ∂Cρ , yielding the statement. On the other hand, if ρ < w(Cρ )/2,
it follows that the width of Bt will be smaller than w(Cρ ) , for t > 0 small, see Figure 5.
Since Bt contains Cρ , this gives a contradiction.

Finally, if dist(x1,x2) > w(Cρ ) , we can proceed similarly: the slab Bt , for t > 0
small, still contains Cρ , but its width will be smaller than w(Cρ ) , yielding a contradic-
tion again, see Figure 6.
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Figure 5: If ρ < w(Cρ )/2 , a rotational argument yields a slab containing Cρ , with width
strictly smaller than w(Cρ)
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Figure 6: If dist(x1,x2) = w(Cρ) , an analogous rotational argument leads to a slab containing
Cρ , whose width is strictly smaller than w(Cρ)

�

In view of Theorem 4 and Lemma 5, in order to obtain the optimal value of this
problem for a convex polygon C , it seems reasonable focusing on each side of C ,
finding the different values provided by Lemma 5. It follows that one of these values
will be the desired optimal one. This approach will require some new definitions.

Let C be a convex polygon. The medial axis M(C) of C is defined as the set
of points of C having more than one closest side on the boundary of C , see Figure 7.
Equivalently, M(C) is the boundary of the Voronoi diagram associated to ∂C [10, §. 4],
and so it will be composed by line segments (it is, in fact, a tree-like graph), see [14, 7].
From the computational point of view, it is known that M(C) can be computed in linear
time with respect to the number of sides of C [7, Co. 4.5].

Given a side L in the boundary of C , let L′ be the supporting line of C , parallel
to L , bounding the slab which provides wL(C) . Any vertex of C contained in L′
will be called an antipodal vertex to the side L . Notice that any side has at most two
antipodal vertices. Each point in any segment s of M(C) is equidistant to two sides in
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Figure 7: The medial axis of a rectangle

the boundary of C , that will be referred to as the associated sides to s . We will say that
a segment s in M(C) is an antipodal segment to L if each one of its associated sides
contains an antipodal vertex to L , see Figure 8. Thus, each side will have at most three
antipodal segments.

v v

s

L L

L’ L’

s

w

s

s1 2

3

Figure 8: Left-hand side: v is the antipodal vertex to the side L , and s is the antipodal segment
to L . Right-hand side: v , w are the antipodal vertices to L , and s1 , s2 , s3 are the antipodal
segments to L

We can now prove the following results on the directional width of a rounded body
associated to a convex polygon.

LEMMA 6. Let C be a convex polygon and n � 2 . Then, for any side L of C there
exists a unique value ρL > 0 , that can be computed in linear time with respect to the
number of sides of C , such that wL(CρL) = 2nρL .

Proof. The existence and uniqueness of ρL can be proved by similar arguments
as in [2, § 2], using the monotonic character of the continuous functions ρ �→ 2nρ and
ρ �→ wL(Cρ) . To finish the proof, it suffices to show that the function ρ �→ wL(Cρ) , for
ρ ∈ [0, I(C)] , can be computed in linear time with respect to the number of sides of C .
This will follow from the fact that ρ �→ wL(Cρ) is piecewise affine and its expression
can be obtained by means of an iterative process involving a certain subset of segments
of the medial axis M(C) , that can be computed in linear time.

Consider an antipodal vertex O to L , and label L1 , L2 as the two sides in C
containing O , and let s = OR ∈ M(C) be the corresponding antipodal segment. Set
ρ1 := dist(R,L1) = dist(R,L2) > 0. For each ρ ∈ [0,ρ1] , label Aρ as the unique point
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on s with ρ = dist(Aρ ,L1) . Then wL(Cρ) = dist(L,Lρ) , where Lρ is the line parallel
to L which is tangent to the circular arc of radius ρ centered at Aρ (see Figure 9). If L
has two antipodal vertices, then Lρ is the extension of the side in C joining these two
vertices, and therefore wL(Cρ) = wL(C) is constant for ρ ∈ [0,ρ1] . Assume now that
O is the unique antipodal vertex to L .

A’’

L

L
1

L
2

O

L�

A

A’
s

O’

�

�

�

B’

B

B’’

R

Figure 9: Computing wL(Cρ) , where ρ = dist(Aρ ,A′
ρ)

Fix a point B in s , B �= Aρ . Call A′
ρ the point in L1 such that ρ = dist(Aρ ,L1) =

dist(Aρ ,A′
ρ) , and call A′′

ρ the point in L such that dist(Aρ ,L) = dist(Aρ ,A′′
ρ) , as Fig-

ure 9 shows. Define B′ and B′′ analogously. Then,

wL(Cρ) = dist(A′′
ρ ,Lρ ) = dist(Aρ ,A′′

ρ)+ ρ = dist(Aρ ,A′′
ρ)+dist(Aρ ,A′

ρ). (7)

Let O′ be the intersection of the extensions of s and L . By considering the corre-
sponding equivalent triangles we have

dist(O,Aρ)
dist(O,B)

=
dist(O,A′

ρ)
dist(O,B′)

=
dist(Aρ ,A′

ρ)
dist(B,B′)

and
dist(O′,Aρ)
dist(O′,B)

=
dist(O′,A′′

ρ)
dist(O′,B′′)

=
dist(Aρ ,A′′

ρ)
dist(B,B′′)

.

Therefore,

dist(Aρ ,A′′
ρ) = λ (dist(O,O′)−dist(O,Aρ)),

ρ = dist(Aρ ,A′
ρ) = μ dist(O,Aρ)

where λ := dist(B,B′′)/dist(O′,B) and μ := dist(B,B′)/dist(O,B) are independent
from ρ . This implies that

wL(Cρ) = dist(Aρ ,A′′
ρ)+dist(Aρ ,A′

ρ) = (μ −λ )dist(O,Aρ)+ λ dist(O,O′)

= (1−λ/μ)ρ + λ dist(O,O′).
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Since dist(O,O′) is independent of ρ , this gives an affine expression of the function
ρ �→ wL(Cρ) for ρ ∈ [0,ρ1] .

The computation of wL(Cρ) for larger ρ can be done with an analogous approach,
by means of an iterative proccess considering the segments of M(C) adjacent to s (and
possibly the subsequent ones), until ρ reaches I(C) . Each one of these segments gives
an affine expression for wL(Cρ) on a suitable interval. �

Our Theorem 5 follows from the previous results and establishes that the optimal
value for this problem can be found in quadratic time with respect to the number of
sides of the polygon.

THEOREM 5. Let C be a convex polygon and let n � 2 . Consider the family C =
{ρL : L is a side of C} given by Lemma 6. Then, the optimal value for the corresponding
Conway’s fried potato problem, which is given by (5), coincides with minC and can
be computed in quadratic time with respect to the number of sides of C .

Proof. Observe that, as a consequence of Lemma 6, the family C can be obtained
in quadratic time with respect to the number of sides of C . This family will necessarily
contain the desired optimal value, taking into account Theorem 4 and Lemma 5. We
will now prove that the optimal value is ρ1 := minC (note that such a minimum can
be determined in linear time). Label L1 as the side in C satisfying wL1(C

ρ1) = 2nρ1 .
Let L be the side in C given by Lemma 5 for ρ = ρ1 . Since ρ1 � ρL , then CρL ⊆Cρ1 ,
and therefore

w(Cρ1) = wL(Cρ1) � wL(CρL) = 2nρL � 2nρ1 = wL1(C
ρ1).

As we trivially have w(Cρ1) � wL1(C
ρ1) , we conclude that w(Cρ1) = wL1(C

ρ1) = 2nρ1 ,
and so ρ1 is the optimal value, by the uniqueness property from Theorem 4. �

4. Max-min type problems

In this Section we will treat the corresponding Max-min type problems for the
diameter D , the width w and the inradius I . We recall that the optimal value for these
problems will be denoted by F̃n(C) , where F stands for the considered magnitude (see
Equation (2)).

4.1. Max-min problem for the diameter

For this problem, we will prove that the optimal value can be explicitly computed,
being equal to the diameter of the considered convex body, and also that any optimal
division must be balanced (Theorem 6). A remarkable fact is that the existence of opti-
mal divisions is not assured in the planar setting (see Theorem 8 and Example 2), since
it strongly depends on the location of the diameter segments of the set, see Definition 5
below.
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DEFINITION 5. Let C be a convex body in R
d . Any segment s in C with length

equal to D(C) will be called a diameter segment of C . If s is contained in ∂C we
will say that s is a boundary diameter segment of C , and an interior diameter segment
otherwise.

THEOREM 6. Let C be a convex body in R
d . Then,

D̃n(C) = D(C).

Therefore, any optimal n-division of C for the Max-min problem for the diameter, if
exists, is balanced.

Proof. Let s be a diameter segment of C and H1 a hyperplane in R
d containing s .

We can then consider hyperplanes H2, . . . ,Hn−1 parallel to H1 , and arbitrarily close to
it, yielding an n -division P of C with D̃(P) arbitrarily close to D(C) . Hence D̃n(C) �
D(C) , and therefore D̃n(C) = D(C) (see Lemma 1).

Now, let P be an optimal n -division of C with subsets C1, . . . ,Cn . Then D̃(P) =
D̃n(C) = D(C) , and so D(Ci) � D(C) , which immediately gives D(Ci) = D(C) , for
i = 1, . . . ,n , finishing the proof. �

As a consequence of Theorem 6 it is immediate to check that there is no optimal
n -division for this problem if, for example, C is a circle in R

2 and n > 2. In the
following results we study the existence of optimal divisions.

THEOREM 7. Let C be a convex body in R
d , where d � 3 . Then, there exists an

optimal n-division of C for the Max-min problem for the diameter.

Proof. Let s be a diameter segment of C . We can consider n−1 distinct hyper-
planes containing s , yielding an n -division P of C into subsets C1, . . . ,Cn . As each
subset Ci contains the segment s , it follows that D(Ci) = D(C) , for i = 1, . . . ,n . Then
D̃(P) = D(C) , and so P is optimal, in view of Theorem 6. �

In the planar case, observe that the proof of Theorem 7 cannot be applied, since
there is only one hyperplane containing any fixed segment in R

2 . In order to study the
existence of optimal divisions for a planar convex body C , we have to make some pre-
vious considerations. Theorem 6 states that all the subsets of an optimal division will
have diameter equal to D(C) , which implies that all of them will necessarily contain a
diameter segment of C . This suggests that enough diameter segments in C are needed
to construct an optimal division (otherwise, it will not be possible to partition C into
many subsets with diameter equal to D(C)). Therefore, in this planar setting, the exis-
tence of optimal divisions will strongly depend on the number of diameter segments of
C , and more precisely, on how they are placed in C . In general, in order to construct an
optimal division of C , each interior diameter segment of C will lead to two subsets of
C with diameter equal to D(C) , by means of appropriate cuts (some of these cuts will
be determined by the diameter segments, and the other ones will be done between the
previous cuts, see Figure 10).
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Figure 10: The cuts in an optimal division of C can be done in the following way: each interior
diameter segment determines a cut (in blue), and for any pair of consecutive interior diameter
segments, a new cut can be done between them (in orange). This will guarantee that all the
subsets have diameter equal to D(C)

Figure 11: In an optimal division, any boundary diameter segment will belong to a unique
subset (delimited by the dashed line) with diameter equal to D(C)

Besides, note that each boundary diameter segment of C can be only contained in
one subset with diameter equal to D(C) , see Figure 11.

In order to state the existence result, let us first introduce the following definition.
It is easy to check that any pair of diameter segments of a convex body C will neces-
sarily intersect at one point, and such an intersection point will be either an endpoint
of both segments or an interior point of both segments. In particular, for a set JC of
diameter segments of C with disjoint interiors, one of the following two possibilities
holds (see Figure 12):

i) JC consists on three diameter segments forming an equilateral triangle. In this
case, we will say that JC is triangle-type.

ii) All the diameter segments of JC share a common endpoint, and JC will be called
fan-type.

We note that a given convex body C may have different sets of diameter segments
with disjoint interiors, each of them of different type, see Figure 12.

All this taken into account, we have the following existence result in the planar
case.

THEOREM 8. Let C be a convex body in R
2 . Then, there exists an optimal n-

division of C for the Max-min problem for the diameter if and only if there exists a set
JC of diameter segments of C with disjoint interiors such that

n � 2a+b− δ , (8)
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Figure 12: A planar convex body with two different sets of diameter segments with disjoint
interiors

where a is the number of interior diameter segments of JC and b is the number of
boundary diameter segments of JC , and δ = 1 if JC is triangle-type, or δ = 0 if JC is
fan-type.

Proof. Assume firstly that (8) holds for some set JC of diameter segments of C
with disjoint interiors, and let us construct an optimal n -division. On the one hand, if JC

is fan-type, then b � 2 and we can proceed as follows: if a = 0, then necessarily b = 2,
which implies that n = 2 and any cut between the two boundary diameter segments
will provide an optimal 2-division of C . Otherwise, if a > 0, each interior diameter
segment of C will determine a cut, and each boundary diameter segment will give an
additional cut (placed between the boundary diameter segment and the adjacent interior
diameter segment). Finally, for each two consecutive interior ones, we can consider the
corresponding bisector as a new cut. This procedure gives 2a− 1+ b cuts, yielding a
division P of C into at most 2a+b subsets, all of them with diameter equal to D(C) .
Then, P is optimal. On the other hand, if JC is triangle-type, it follows that we can have
four different possibilities, depending on the number of interior diameter segments of
JC . For each possibility we can find an optimal division into at most 2a+b−1 subsets,
as shown in Figure 13.

a=0, b=3 a=1, b=2 a=2, b=1 a=3, b=0
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Figure 13: Optimal divisions of C into 2a+b−1 subsets when JC is triangle-type (the dashed
lines indicate the cuts for each division, being αi the interior diameter segments and βi the
boundary diameter segments, i = 1,2,3 )

Conversely, let P be an optimal n -division of C . By Theorem 6, each subset of
P must contain a diameter segment of C . Let JC be the set composed by one diameter
segment from each subset of P . The same reasoning as before yields that the maximum
number of subsets in P will be 2a+b− δ , which finishes the proof. �
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EXAMPLE 2. As an application of Theorem 8 it follows that, for example, for
the planar convex body of Figure 12 there are no optimal n -divisions for the Max-min
problem for the diameter for any n > 8.

4.2. Max-min problem for the width

For this problem, Theorem 9 below guarantees the existence of optimal divisions,
proving also that all optimal divisions into n = 2 subsets are balanced. We will also ob-
tain sharp lower and upper bounds for the corresponding optimal value in Theorem 10.
We start with the following auxiliary lemmas.

LEMMA 7. Let C be a convex body in R
d , and let P be a 2-division of C given

by a hyperplane H . Label C1 , C2 as the two subsets provided by P, and assume
w(C1) < w(C) . For any t > 0 , let Pt be the 2 -division of C into subsets Ct

1 , Ct
2 ,

given by the hyperplane Ht parallel to H at distance t such that C1 ⊂ Ct
1 . Then,

w(C1) < w(Ct
1) .

Proof. If w(Ct
1) = w(C) , the statement trivially holds. So we can assume that

w(Ct
1) < w(C) . Let B be a slab determining the width of Ct

1 . Then w(B) = w(Ct
1) <

w(C) , and so there necessarily exists a point q2 ∈ Ct
2 ⊂ C such that q2 /∈ B . Call H1

the hyperplane in ∂B which is closer to q2 (in particular, H1 ∩∂Ct
1 �= /0).

Let us show that H1 ∩ ∂Ct
1 ⊂ Ht . For any q1 ∈ H1 ∩ ∂Ct

1 , the segment q1q2 is
clearly contained in C and q1q2∩B = {q1} . As q1 ∈Ct

1 and q2 ∈Ct
2 , then there is a

point x ∈ q1q2∩Ht ⊂Ct
1 . If x �= q1 , the segment q1x−{q1} would be contained in Ct

1
by convexity but not in B , which gives a contradiction. Thus, q1 ∈ Ht .

Finally, if H1∩∂C1 �= /0 , then any intersection point q′1 would be also in ∂Ct
1 , and

the previous argument would imply that q′1 ∈ Ht , which is a contradiction. Therefore,
H1∩∂C1 = /0 and so there exists a slab B′ containing C1 which is strictly contained in
B . Then, w(C1) � w(B′) < w(B) = w(Ct

1) , as stated. �

LEMMA 8. Let n � 2 . Assume that for any convex body E ⊂ R
d there exists an

optimal n-division for the Max-min problem for the width. Then, the map E �→ w̃n(E)
is continuous with respect to the Hausdorff distance.

Proof. We can follow here a similar argument as in the proof of Lemma 2. The
only difference is the case in which Q is a m-division with m < n . If this holds, then
w̃(Qk) converges to zero (and not to w̃(Q) as happens if m = n ). Since w̃n(E) > 0 (see
Lemma 1), the contradiction follows in the same way as in Lemma 2. �

THEOREM 9. Let C be a convex body in R
d . Then, there exists a balanced op-

timal n-division of C for the Max-min problem for the width. Moreover, any optimal
2 -division is balanced.

Proof. Let us first prove the existence of an optimal n -division of C . Let {Pk}k∈N

be a sequence of n -divisions of C such that {w̃(Pk)}k∈N converges to w̃n(C) , and let
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Ck
1, . . . ,C

k
n be the subsets of C provided by Pk , k ∈ N . By applying Blaschke selection

theorem [16, Th. 1.8.7] successively, we can assume that, for each i = 1, . . . ,n , the se-
quence {Ck

i }k∈N converges to a subset C∞
i with non-empty interior: if C∞

j has empty in-

terior for some j ∈ {1, . . . ,n} , then 0 = w(C∞
j ) = lim

k→∞
w(Ck

j ) and so w̃n(C) = 0, which

contradicts Lemma 1. Thus, the subsets C∞
1 , . . . ,C∞

n yield a new n -division P∞ of C
with w̃(P∞) = lim

k→∞
w̃(Pk) = w̃n(C) , which implies that P∞ is optimal.

Let us now check that for n = 2 any optimal division is balanced. Let P be an
optimal 2-division of C into subsets C1 , C2 , and assume that P is not balanced, say
w(C1) < w(C2) . By Lemma 7 and the continuity of the width functional, we can find
a 2-division Pt of C with subsets Ct

1 , Ct
2 such that w(C1) < w(Ct

1) � w(Ct
2) . Then

w̃(Pt) = w(Ct
1) > w(C1) = w̃(P) , which contradicts the optimality of P . Therefore, P

must be balanced.
To finish the proof, we will now show the existence of a balanced optimal n -

division by induction on the number of subsets n � 2. If n = 2, it has been already
shown that any optimal 2-division is balanced. Fix now n > 2, and assume that for
any convex body in R

d , there exists a balanced optimal m-division for m < n . Let Q
be an optimal n -division of C , whose existence we have already shown. Let H be a
hyperplane cut from Q dividing C into two convex regions E1 , E2 , and let Qi be the
ni -division of Ei induced by Q , i = 1,2, with n = n1 + n2 . Taking into account the
induction hypothesis, there exists a balanced optimal ni -division Q′

i of Ei , i = 1,2.
Observe that w̃(Qi) � w̃(Q′

i) = w̃ni(Ei) , i = 1,2, and so

w̃n(C) = w̃(Q) = min{w̃(Q1), w̃(Q2)} � min{w̃(Q′
1), w̃(Q′

2)} = w̃(Q′), (9)

where Q′ is the n -division of C determined by Q′
1 , Q′

2 . Observe that (9) implies
that Q′ is also an optimal n -division of C . On the one hand, if w̃(Q′

1) = w̃(Q′
2) , then

Q′ is balanced by construction, and the statement holds. On the other hand, if (say)
w̃(Q′

1) > w̃(Q′
2) , let Ht be the hyperplane parallel to H at distance t � 0 from E2 , and

let Et
1 , Et

2 be the two convex regions into which Ht divides C (which satisfy E2 ⊂ Et
2 ,

Et
1 ⊂ E1 ). Observe that

w̃n1(E
0
1 ) = w̃n1(E1) = w̃(Q′

1) > w̃(Q′
2) = w̃n2(E2) = w̃n2(E

0
2 )

and
w̃n1(E

t1
1 ) = 0 < w̃n2(C) = w̃n2(E

t1
2 ),

for certain t1 > 0 large enough. From Lemma 8 and the existence of optimal divisions
previously proved, there is t0 > 0 such that w̃n1(E

t0
1 ) = w̃n2(E

t0
2 ) .

By considering a balanced optimal ni -division Qt0
i of Et0

i , which exists by the
induction hypothesis and satisfies w̃(Qt0

i ) = w̃ni(E
t0
i ) , i = 1,2, it follows that the n -

division Qt0 of C , determined by Qt0
1 , Qt0

2 , is balanced by construction, and also opti-
mal: since E2 ⊂ Et0

2 , we have

w̃(Q′) =min{w̃(Q′
1), w̃(Q′

2)} = w̃(Q′
2) = w̃n2(E2) � w̃n2(E

t0
2 )

= w̃(Qt0
2 ) = min{w̃(Qt0

1 ), w̃(Qt0
2 )} = w̃(Qt0),

and so equality above must hold to avoid a contradiction with the optimality of Q′ . �
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EXAMPLE 3. The optimal division of a given convex body for this problem is not
unique in general, as it can be seen with the following example. Consider an isosceles
triangle T of sides l1 , l2 , l3 (being l1 the shortest one), relatively close to be equilateral
(for instance, let the side lengths be 4,5,5), and let v2 be one of the endpoints of l1 ,
as shown in Figure 14. Let PT be the 2-division of T determined by the bisector of the
angle at the vertex v2 .

l
1

v
2

l
2

l
3

Figure 14: For the isosceles triangle T , the 2-division PT is optimal

Call p the intersection point of that bisector and the opposite side l2 . Then, PT

is balanced and w̃(PT ) = dist(p, l1) = dist(p, l3) . We claim that PT is also optimal.
Let P be an arbitrary 2-division of T into subsets C1 , C2 . It can be checked that one
of the subsets Ci (or its symmetral with respect to the bisector of the side l1 ) will be
contained in one of the two slabs providing w̃(PT ) . This implies that

w̃(P) = min{w(C1),w(C2)} � w(Ci) � w̃(PT ),

which yields the optimality of PT . Now, let q be the point on l3 with the same height
as p , see Figure 15.

l
1

v
2

l
2

l
3

q
p

Figure 15: Any 2-division of T given by a segment joining p and a point of qv2 is optimal

Then, any 2-division Q of T given by a segment joining p with a point of the
segment qv2 is also optimal, since w̃(Q) will coincide with w̃(PT ) by construction.

We will now focus on obtaining lower and upper bounds for the optimal value for
this problem.

THEOREM 10. Let C be a convex body in R
d . Then,

w(C)
n

� w̃n(C) � min

{
w(C),

D(C)
2

}
. (10)
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Proof. By Theorem 9, there exists a balanced optimal n -division P of C into sub-
sets C1, . . . ,Cn . By considering the slabs determining w(Ci) , i = 1, . . . ,n , and applying
Lemma 3, it follows that

w(C) �
n

∑
i=1

w(Ci) = nw̃n(C),

which gives the left-hand side inequality in (10). Let now H be a hyperplane cut from
P dividing C into two convex regions. Consider two hyperplanes H1 , H2 parallel to
H and tangent to ∂C . Let pi be a point from ∂C∩Hi , and let Bi be the slab delimited
by H and Hi , i = 1,2. Observe that any subset Ci will be contained in either B1 or in
B2 , and so we can assume, without loss of generality, that Ci ⊂ Bi , i = 1,2. Then,

D(C) � dist(p1, p2) � w(B1)+w(B2) � w(C1)+w(C2) = 2 w̃(P) = 2 w̃n(C).

As a consequence, w̃n(C) � D(C)/2, which together with Lemma 1 gives the right-
hand side inequality in (10). �

We point out that if n = 2, the equality in the left-hand side of (10) is attained
when C is a constant-width body. Sharpness of the right-hand side of (10) is shown in
Example 4.

EXAMPLE 4. Let C be a (sufficiently) long and narrow orthotope in R
d . It is

possible to construct a balanced n -division P of C , by using n−1 parallel hyperplanes,
such that the width of all the subsets given by P equals w(C) , see Figure 16. Thus,
Theorem 10 implies that P is optimal and w̃n(C) = w(C) . Additionally, let B be a
planar ball of radius r > 0, and let P be one of the (balanced) n -divisions of B from
Figure 17, for n = 2, 3, 4. Then w̃(P) = r , which in particular gives that P is optimal
and w̃n(B) = D(B)/2 (the analogous example holds for a ball in R

d and n � 2d ).

Figure 16: An optimal 6 -division of a long and narrow rectangle (d = 2 )

Figure 17: Optimal n-divisions of a planar ball for n = 2,3,4
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4.3. Max-min problem for the inradius

The Max-min problem for the inradius shares several features with the Max-min
problem for the width from Subsection 4.2: Theorem 11 follows by using analogous
techniques as in the width case. Moreover, the optimal value for this problem when
considering divisions of a convex body C into n = 2 subsets can be expressed in terms
of the optimal value for the Max-min problem for the width of a certain rounded body of
C (see Theorem 12). We point out that several issues remain open for this problem, such
as refining the bounds for the optimal value or deciding whether any optimal division
is balanced.

THEOREM 11. Let C be a convex body in R
d . Then, there exists a balanced

optimal n-division of C for the Max-min problem for the inradius. Moreover,

Ĩn(C) � I(C)/n. (11)

Proof. For the existence of optimal divisions, it can be checked that the proof of
Theorem 9 still holds if we consider the inradius instead of the minimal width. Let us
see that we can always find a balanced optimal n -division by induction on the number
n of subsets.

For n = 2, let P be an optimal 2-division of C into subsets C1 , C2 , determined
by a hyperplane H . Assume that P is not balanced, say I(C1) < I(C2) . For each t � 0,
consider the hyperplane Ht parallel to H at distance t from C1 , and let Pt be the 2-
division of C into subsets Ct

1 , Ct
2 determined by Ht . Since I(C0

1) = I(C1) < I(C2) =
I(C0

2) , and I(Ct1
1 ) = I(C) > 0 = I(Ct1

2 ) , for certain large enough t1 > 0, it follows by
continuity that there exists t0 ∈ (0,t1) such that I(Ct0

1 ) = I(Ct0
2 ) . Thus, the 2-division

Pt0 of C is balanced and satisfies that Ĩ(Pt0) = I(Ct0
1 ) � I(C1) = Ĩ(P) , since C1 ⊂Ct0

1 .
This implies that Pt0 is also optimal, as desired. And for an arbitrary n > 2, we can
proceed as in the proof of Theorem 9 in order to obtain a balanced optimal n -division
of C .

Finally, let P be a balanced optimal n -division of C into subsets C1, . . . ,Cn .
Lemma 4 implies that

I(C) �
n

∑
i=1

I(Ci) =
n

∑
i=1

Ĩn(C) = n Ĩn(C),

which yields the statement. �
We will now focus on estimating the optimal value of a given convex body C

for this problem when considering divisions into n = 2 subsets. The two following
technical results will lead us to Theorem 12, which establishes implicitly the optimal
value for this problem when n = 2, following the same spirit as in [2, Th. 1] for the
min-Max problem for the inradius, see Subsection 3.3.

LEMMA 9. Let C be a convex body in R
d , and let P be a 2-division of C into

subsets C1 , C2 . Assume that C = Cρ , where ρ = I(C1) . Then, w(C1) = 2ρ .
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Proof. Recall that 2I(E) � w(E) holds for any convex set E in R
d . Thus, to

prove the statement it suffices to check that w(C1) � 2ρ .
Let Bρ be an inball of C1 and label H as the hyperplane providing the 2-division

P . If there are two points in Bρ ∩ ∂C1 which are antipodal in Bρ , then we are done.
Assume now the contrary: we cannot find a pair of antipodal points in Bρ ∩ ∂C1 . We
are going to see that this assumption yields a contradiction.

Denote by Sρ = ∂Bρ and let D = (∂C1 ∩ Sρ) \H ⊂ Sρ . We claim that D is a
convex subset of Sρ , that is, for any two points p1 , p2 ∈ D , the shortest great-circle
arc γ of Sρ joining p1 and p2 is contained in D .

Indeed, let p3 ∈ γ , and call Hpi the hyperplane tangent to Bρ at pi , i = 1,2,3.
Note that Hp1 , Hp2 are supporting hyperplanes of C . Since C = Cρ , if p3 ∈ int(C) ,
then there exists a ball B′

ρ ⊂C of radius ρ containing p3 as an interior point. But any
such ball must intersect Hp1 or Hp2 , which is impossible and proves that p3 ∈ ∂C . As
a consequence, Hp3 is also a supporting hyperplane of C . If p3 ∈ H , then Hp3 = H
contradicting the previous affirmation. Therefore p3 ∈ D and D is a convex subset of
Sρ containing no antipodal points.

In particular, D is contained in some open half-sphere S+
ρ ⊂ Sρ (see [10, Le. 3.4]1).

Since D ⊂ S+
ρ and Bρ is an inball of C1 , there necessarily exists p0 ∈ H ∩Sρ . By as-

sumption, p0 is not antipodal to any point in D . But this means that ∂C1 ∩ Sρ =
D∪ {p0} is contained in some open half-sphere of Sρ , contradicting that Bρ is an
inball of C1 . �

LEMMA 10. Let C be a convex body in R
d . Assume that C = Cρ , where ρ =

Ĩ2(C) . Then, w̃2(C) = 2ρ .

Proof. Let P be a balanced optimal 2-division of C for the Max-min problem for
the width, with subsets C1 , C2 , in view of Theorem 9. Then, Ĩ(P) � ρ , and so I(Ci) �
ρ for some i ∈ {1,2} . This implies that Cρ ⊆CI(Ci) , and since C = Cρ , it follows that
C = CI(Ci) . By using now Lemma 9, we conclude that w(Ci) = 2 I(Ci) � 2ρ , which
gives w̃2(C) = w̃(P) = w(Ci) � 2ρ = 2 Ĩ2(C) . The reverse inequality is an immediate
consequence of the general property 2 I(E) � w(E) , for any convex body E ⊂ R

d ,
which finishes the proof. �

THEOREM 12. Let C be a convex body in R
d . Then, Ĩ2(C) is the unique number

ρ̃ such that

2ρ̃ = w̃2(Cρ̃). (12)

Proof. The existence and uniqueness of ρ̃ can be proved as in [2, § 2], taking into
account the monotonic character of the continuous functions ρ �→ 2ρ and ρ �→ w̃2(Cρ) .

We will now check that Ĩ2(C) satisfies (12). Call τ := Ĩ2(C) for simplicity. On the
one hand, let P be a balanced optimal 2-division of C for the Max-min type problem
for the inradius, with subsets C1 , C2 (see Theorem 11). Observe that P will induce a

1Although the result in [10] is stated for d = 3 , the proof can be mimicked in any dimension
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2-division P′ of Cτ into subsets C′
1 , C′

2 . Moreover, it follows that I(C′
i) = I(Ci) = τ

for i = 1,2, and therefore
Ĩ2(Cτ) � Ĩ(P′) = τ.

Since 2I(E) � w(E) holds for any convex body E in R
d , then

2Ĩ2(Cτ) � w̃2(Cτ ).

The two above inequalities give that

2τ � w̃2(Cτ). (13)

On the other hand, Ĩ2(Cτ) � τ since Cτ ⊆ C , and so Cτ will coincide with its
associated Ĩ2(Cτ )-rounded body. Then, by applying Lemma 10 to Cτ we have that
w̃2(Cτ ) = 2 Ĩ2(Cτ ) � 2τ , which completes the proof, taking into account (13). �

5. Related problems

Apart from the questions which have not been completely solved in the previous
sections, the corresponding min-Max and Max-min type problems can be considered
with other magnitudes F , as the circumradius (which represents the smallest radius
of a ball containing the original convex body) or the perimeter. In this first case, it
can be proved for instance that not all optimal divisions for the Max-min type problem
are balanced. The second case, with the additional restriction that the subsets of the
divisions enclose a prescribed quantity of volume, is related to the isoperimetric tilings
problem [8, Problem C15].

A nice variant of the problems treated in this work is described in [2, Re. 3]: for an
n -division P of a convex body C into subsets C1, . . . ,Cn , we can consider the quantity
F(C1)+ . . .+ F(Cn) , where F is one fixed geometric magnitude. In this setting, the
question is determining the n -division of C minimizing (or maximizing) that quantity,
as well as the corresponding optimal value. Lemma 3 (by T. Bang) and Lemma 4 (by
V. Kadets) provide lower bounds for the optimal values in the case of the minimal width
and the inradius, respectively.

Finally, a possible generalization of our work can be posed by considering gen-
eral divisions, not necessarily determined by hyperplane cuts. In that case, the subsets
provided by those divisions may not be convex, yielding more complicated situations.
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