
Regular Articles

Rotational elliptic Weingarten surfaces in S2 ×R and the Hopf
problem ✩

Isabel Fernández
Departamento de Matemática Aplicada I, Instituto de Matemáticas IMUS, Universidad de Sevilla, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 February 2023
Available online 28 March 2023
Submitted by J. Galvez

Keywords:
Weingarten surfaces
Phase space analysis
Rotational surfaces
Hopf theorem
Product spaces
Homogeneous spaces

We prove that, up to congruence, there exists only one immersed sphere satisfying 
a given uniformly elliptic Weingarten equation in S2 × R, and it is a rotational 
surface. This is obtained by showing that rotational uniformly elliptic Weingarten 
surfaces in S2 × R have bounded second fundamental form together with a Hopf 
type result by J. A. Gálvez and P. Mira.
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1. Introduction

An immersed oriented surface Σ in a Riemannian 3-manifold M is called a Weingarten surface if its
principal curvatures κ1, κ2 satisfy a smooth relation

W (κ1, κ2) = 0, (1.1)

for some W ∈ C1(R2) symmetric (i.e., W (x, y) = W (y, x)). The relation (1.1) defines a fully nonlinear PDE
when we view Σ as a local graph, and we say that the Weingarten equation (1.1) is elliptic if this equation 
is elliptic. In terms of the function W , this means that

∂W

∂k1

∂W

∂k2
> 0 on W−1(0). (1.2)

This class of surfaces is often also referred to as special Weingarten surfaces. The Weingarten equation 
(1.1) is said to be uniformly elliptic if there exist positive constants M1, M2 ∈ R such that
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0 < M1 <
∂W

∂k1

∂W

∂k2
< M2 on W−1(0). (1.3)

The most well-known elliptic Weingarten surfaces are constant mean curvature (CMC) surfaces, and 
minimal surfaces in particular, for which the underlying PDE is quasilinear. In this sense, elliptic Weingarten 
surfaces represent the natural fully nonlinear extension of CMC surface theory, and an interesting problem 
in this setting is to explore which global results of CMC surface theory extend to the general case of elliptic 
Weingarten surfaces.

Regarding the ambient manifold, the most studied case is, of course, when M is a space of constant 
curvature. In particular, the celebrated Hopf theorem was extended to Weingarten surfaces by Hopf [10], 
Chern [4], Hartman and Wintner [9] (see also [3]) and Gálvez and Mira [7], showing that any immersed 
elliptic Weingarten sphere (i.e., compact surface with genus 0) in R3, S3 or H3 is a totally umbilical sphere.

After the spaces of constant curvature, a natural family of ambient spaces to consider are the product 
spaces S2 × R and H2 × R, which belong to the class of simply connected homogeneous 3-manifolds with
a 4-dimensional isometry group, also called E3(κ, τ) spaces. The Hopf problem for CMC surfaces in this 
setting was solved by Abresch and Rosenberg in [1,2], showing that any immersed CMC sphere in a E3(κ, τ)
space must be rotational and congruent to a unique rotational surface.

The extension of this result for elliptic Weingarten surfaces was studied by Gálvez and Mira in [8], 
where they show that the Hopf problem can be solved in the affirmative (i.e., there exists a unique elliptic 
Weingarten immersed sphere in E3(κ, τ) and it must be rotational) if a certain rotational surface (the
canonical example) has bounded second fundamental form (see Section 3 for a more precise statement). 
As the authors prove, this is the case when the ambient space is H2 × R, but not in S2 × R, since the
canonical example in S2 ×R for an arbitrary elliptic Weingarten equation can have singularities, as showed
in Example 8.6 in [8].

Let us point out here that a remarkable difference between (general) elliptic Weingarten surfaces and 
CMC surfaces is that the first ones admit singularities, even in the euclidean case, which is not possible 
in the case of CMC surfaces. In a recent work, Mira and the author [6] classified all the rotational elliptic 
Weingarten surfaces in R3, extending the previous classification by Sa Earp and Toubiana [13,14] of complete 
surfaces to the singular case. When the Weingarten equation is of minimal type (i.e., its umbilical constant 
is zero, see Section 2) complete rotational elliptic surfaces in S2 × R and H2 × R were classified in [11], 
where some examples with singularities are also exhibited.

In the present paper, we will show that uniformly elliptic rotational Weingarten surfaces in S2 × R do 
not admit singularities and have bounded second fundamental form (see Theorem 4.1). As a byproduct of 
this fact together with [8] we solve the Hopf problem in S2 × R for uniformly elliptic Weingarten surfaces 
(see Theorem 4.2):

Theorem. There exists only one (up to congruence) immersed sphere satisfying a given uniformly elliptic 
Weingarten equation in S2 ×R. Moreover, this unique surface is rotational.

The paper is organized as follows: in Section 2 we rewrite the Weingarten equation (1.1) in a more 
convenient way for our purposes. Section 3 is devoted to study of the phase space associated to the elliptic 
Weingarten equation for rotational surfaces in S2 × R, following the spirit of [6]. Finally, in Section 4 we
prove Theorems 4.1 and 4.2.

The author is grateful to Pablo Mira for many valuable discussions during the preparation of this paper.

2. The elliptic Weingarten equation

Let Σ be an oriented surface in a Riemannian 3-manifold whose principal curvatures κ1 ≥ κ2 are related
by an elliptic Weingarten equation (1.1), with W ∈ C1(R2) symmetric and satisfying (1.2).
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Each connected component of W−1(0) gives rise to a different elliptic theory, see [5] for a more detailed 
discussion. By (1.2), any such component of W−1(0) can be rewritten as a proper curve in R2 given by a
graph

κ2 = g(κ1), g′ < 0, (2.1)

where g is C1 in some interval of R. In particular, there exists a unique value α ∈ R (which we call the 
umbilical constant of the equation) such that g(α) = α.

Recall that we are assuming κ1 ≥ κ2. Thus, g is a monotonic bijection from an interval Ig ⊂ [α, ∞), with
α ∈ Ig, to Jg := g(Ig) ⊂ (−∞, α]. By the monotonicity and properness of g, there are two possibilities for
the intervals Ig and Jg:

(1) Ig = [α, ∞). In this case, Jg = (b, α], where b ∈ (−∞, α) ∪ {−∞} is given by b = g(∞) = limx→∞ g(x),
(2) Ig = [α, b), b ∈ R. In this case limx→b− g(x) = −∞ and Jg = (−∞, α].

A change in the orientation of Σ produces a surface satisfying a different elliptic Weingarten equation
(2.1), according to the following correspondence:

(κ1, κ2, g(x), Ig, Jg, α) �→ (−κ2,−κ1,−g−1(−x),−Jg,−Ig,−α). (2.2)

In particular, up to a change of orientation on the surface Σ, we can assume that the Weingarten equation 
(2.1) on Σ satisfies

Ig = [α,∞). (2.3)

Let us point out that when Ig = [α, ∞) and Jg = (−∞, α], condition (2.3) is preserved by a change of
orientation. However, for Ig = [α, b) or Jg = (b, α], with b ∈ R, the choice (2.3) actually fixes an orientation
on the surface.

Taking into account the previous discussion, throughout this paper we regard elliptic Weingarten surfaces 
as follows:

Definition 2.1. An elliptic Weingarten surface is an oriented surface Σ immersed in a Riemannian 3-manifold 
whose principal curvatures κ1 ≥ κ2 satisfy at every point the relation (2.1) for some C1 map g : Ig → Jg,
where Ig = [α, ∞) and g(α) = α for some α ∈ R. We also denote b := g(∞) ∈ [−∞, α).

We let Wg denote the class of all (oriented) elliptic Weingarten surfaces in S2 ×R associated to a given
function g in these conditions.

We point out here that an alternative way of defining Weingarten surfaces is by means of the condition 
F (H, Ke) = 0, where H, Ke are the mean and extrinsic curvatures, and F ∈ C∞(R2). In the elliptic case,
on any connected component of F−1(0) we can write

H = φ(H2 −Ke), φ(t) ∈ C∞([0,∞)), 4tφ′(t)2 < 1. (2.4)

For example, this is the formulation used by Sa Earp and Toubiana in [13,14] for surfaces in R3, Morabito
and Rodríguez in [11] for surfaces in S2 × R and H2 × R, and Gálvez and Mira in [8] for surfaces in the
homogeneous spaces E3(κ, τ).



4 I. Fernández / J. Math. Anal. Appl. 526 (2023) 127268
3. Rotational elliptic Weingarten surfaces in S2 × R

We will regard S2 as the unit ball in R3, so S2 ×R will be seen as

S2 ×R = {(x1, x2, x3, t) ∈ R4 : x2
1 + x2

2 + x2
3 = 1}.

Let Σ be a rotational surface in S2×R. Up to an isometry, we can assume that Σ is given by the rotation 
of the curve γ : I ⊂ R → S2 ×R

γ(s) = (sin(x(s)), 0, cos(x(s)), t(s)), x(s) ∈ [0, π], t(s) ∈ R, (3.1)

around the axis {(0, 0, 1)} ×R. That is, we parameterize the surface as

Σ = {(sin x(s) cos θ, sin x(s) sin θ, cosx(s), t(s)) : s ∈ I, θ ∈ [0, 2π]}.

We will also assume that the curve γ is parameterized by arc length: x′(s)2 + t′(s)2 = 1.
Observe that any rotational surface in S2 × R is actually invariant by rotations around two axes. In

this case, Σ is also invariant under rotations around the antipodal axis {(0, 0, −1)} × R. The points where 
cosx = 1 (resp. cosx = −1) correspond to the points where the surface meets the fixed rotation axis (resp. 
the antipodal rotation axis).

Up to reversing the orientation of γ, we can assume that the normal vector N along γ(s) is given by 
N(γ(s)) = (−t′(s) cosx(s), 0, t′(s) sin x(s), x′(s)). The principal curvatures of Σ are then given by:

λ(s) = t′(s) cot(x(s)), μ(s) = t′′(s)x′(s) − t′(s)x′′(s) = t′′(s)
x′(s) = −x′′(s)

t′(s) . (3.2)

Assume now that Σ is an elliptic Weingarten surface in Wg (see Definition 2.1). Then Σ satisfies κ2 =
g(κ1), where κ1 ≥ κ2 are the principal curvatures. Write Σ = Σ1 ∪Σ2, where Σi = {p ∈ Σ : κi(p) = λ(p)},
i = 1, 2. Then μ = g(λ) on Σ1 and λ = g(μ) on Σ2, so we can write

μ = f(λ) (3.3)

on Σ, where f : If → If , If := Ig ∪ Jg, is defined as

f |Ig = g f |Jg
= g−1. (3.4)

By virtue of (2.3), If is of the form If = (b, ∞), where b = g(∞). The function f is C1(If ), and strictly
decreasing, with f ◦ f = Id.

As a consequence of (3.2) we have

λ′ = x′ cot(x)
(
f(λ) − λ(1 + tan2(x))

)
. (3.5)

The above differential equation is singular when x ∈ {0, π} and when x = π/2. The first situation happens 
when the generating curve γ reaches any of the two rotation axes, {(0, 0, 1)} × R and its antipodal axis, 
{(0, 0, −1)} ×R; the second one corresponds to the case where γ meets the axis {(1, 0, 0)} ×R.

In particular, (x(s), λ(s)) is a solution to the following nonlinear autonomous system on any open interval 
where x′(s) 
= 0 and x(s) ∈ (0, π), x(s) 
= π/2:

{
x′ = ε

√
1 − λ2 tan2(x),

λ′ = ε
√

1 − λ2 tan2(x) cot(x)
(
f(λ) − λ(1 + tan2(x))

)
,

(3.6)
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Fig. 3.1. Phase space of (3.6) and the curve Υ (here α > 0 > b > −∞).

where ε = sign(x′) = ±1. This process can be reversed, so that any solution to (3.6) with x(s) ∈ (0, π), 
x(s) 
= π/2, determines a rotational surface Σ of the Weingarten class Wg. Thus, the orbits of (3.6) will be
identified with the profile curves of rotational surfaces in Wg on open sets where x′(s) 
= 0 and x(s) ∈ (0, π),
x(s) 
= π/2.

Remark 3.1. The systems (3.6) for ε = 1 and ε = −1 are actually equivalent, since they have the same 
orbits. Indeed, if (x(s), λ(s)) is a solution for ε = 1, then (x(−s), λ(−s)) is a solution for ε = −1.

Remark 3.2. Notice also that if (x(s), λ(s)) is a solution of (3.6), then (π − x(s), λ(s)) is also a solution. 
The corresponding rotational surfaces differ by an isometry of S2 × R interchanging the rotational axes
{(0, 0, 1)} ×R and {(0, 0, −1)} ×R.

The phase space of (3.6) is the set R = R0 ∪R∗
0, where

R0 = {(x, λ) ∈ R2 : x ∈ (0, π/2), λ > b, |λ tan(x)| < 1}

R∗
0 = {(x, λ) ∈ R2 : x ∈ (π/2, π), λ > b, |λ tan(x)| < 1}.

We also denote by Γ = Γ0 ∪ Γ∗
0 the boundary curves given by

Γ0 := {(x, λ) : 0 < x < π/2, λ > b, |λ tan(x)| = 1} (3.7)

Γ∗
0 := {(x, λ) : π/2 < x < π, λ > b, |λ tan(x)| = 1} (3.8)

(see Fig. 3.1).

Remark 3.3. Γ corresponds to the points where the generating curve γ(s) ≡ (x(s), t(s)) of Σ does not 
intersect the axis {1, 0, 0} × R and has vertical tangent vector. By Remark 3.1, if γ(s) has a point s0 ∈ R

with x(s0) 
= π/2 and vertical tangent vector, its associated orbit (x(s), λ(s)) in (3.6) hits Γ at s = s0, and
then bounces back, following the same trajectory in the opposite sense, but with the sign of ε reversed. Thus, 
γ(s) extends smoothly across s0, with the sign of x′(s) changing at s0, and Σ is symmetric with respect to
the horizontal section passing through γ(s0).

Moreover, any orbit (x(s), λ(s)) hits Γ at most at two points. In particular, x′(s) 
= 0 except at these 
points, and (x(s), λ(s)) is a graph in R over the x-axis.
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We now describe some properties regarding the behavior of the orbits of (3.6) that will be useful in our 
study. In the sequel, we will denote by Υ the curve in the (x, λ)-plane given by the equation

f(λ) = λ(1 + tan2(x)), x ∈ (0, π), λ > b, (3.9)

where f is as in (3.4). Since f is strictly decreasing with f(α) = α and f ◦ f = Id, it follows that if the 
umbilical constant α is positive, Υ lies in the band λ ∈ [0, α], whereas for α < 0 the curve Υ lies in λ ∈ [α, 0], 
and if α = 0 then Υ is given by {λ = 0}. Moreover, on Υ we have

(
f ′(λ) − 1 − tan2(x)

)
dλ =

(
2λ tan(x)(1 + tan2(x))

)
dx,

and therefore Υ is the graph of a function h(x) defined on (0, π), symmetric with respect to x = π/2, with 
h(0) = h(π) = α. When α > 0 (resp. α < 0), h(x) is strictly decreasing (resp. increasing) on (0, π/2) and 
strictly increasing (resp. decreasing) on (π/2, π). At x = π/2, we have h(π/2) = max{0, b}. Indeed, by (3.9)
we have f(h(x))/h(x) → ∞ when x → π/2. Thus, either h(x) → 0 and b < 0 (observe that f(λ) is only 
defined for λ > b), or h(x) → b (and therefore f(h(x)) → ∞) and b > 0. Finally, notice that the restriction 
of Υ to the phase space R may or may not be connected (see Fig. 3.1).

The curve Υ determines the monotonicity regions of the phase space R, as stated in the following lemma.

Lemma 3.4. Any orbit of (3.6) is a graph in R over the x-axis of a function that is strictly decreasing (resp. 
increasing) whenever the orbit lies above (resp. below) Υ ∩R0, and is strictly increasing (reap. decreasing)
whenever it lies above (resp. below) Υ ∩R∗

0. In particular, any orbit in R0 (resp. in R∗
0) intersects transversely

Υ at most once, unless α = 0 and the orbit is given by λ ≡ 0, that coincides with Υ.

Proof. The fact that (x(s), λ(s)) is a graph over the x-axis was discussed in Remark 3.3. The monotonic 
character of this graph follows from a careful but direct analysis of (3.5). In particular, this monotonicity 
behavior shows that if (x(s), λ(s)) intersects Υ transversely at some point (x0, λ0) ∈ R0, the orbit must lie
below Υ for x → x−

0 , and above Υ for x → x+
0 in the case α > 0 (recall that, for α > 0 and x ∈ (0, π/2), 

Υ is given by the graph of a strictly decreasing function); whereas if α < 0 the orbit must lie above Υ for 
x → x−

0 and below Υ for x → x+
0 . In particular, this shows that (x(s), λ(s)) intersects transversely the curve 

Υ in R0 at most once. The case of R∗
0 is similar. �

Lemma 3.5. Let (x(s), λ(s)) be an orbit of (3.6) where f is as in (3.4) with b 
= −∞. Assume that the orbit 
meets ∂R at a point (x0, b). Then x0 /∈ {0, π}.

Proof. Arguing by contradiction, assume (x(s), λ(s)) approaches to the point (0, b) as s → s0 (the case (π, b)
is analogous, see Remark 3.2). Since b ∈ R, λ(s) = t′(s) cot(x(s)) is bounded as s → s0 and, in particular,
t′(s) → 0 as s → s0. The profile curve γ(s) ≡ (x(s), t(s)) of the rotational elliptic Weingarten surface Σ
associated to the orbit can then be reparameterized, for x close to 0, as the graph of a function h(x) with 
h′(x) → 0 as x → 0. The principal curvatures of Σ are given as

λ = ±h′(x)(1 + h′(x)2)−1/2 cot(x), μ = f(λ) = (1 + h′(x)2)−1h′′(x),

where the ± sign is given by the sign of x′(s) as s → s0. In particular, limx→0 h
′′(x) = limλ→b f(λ) = ∞,

which contradicts that limx→0
h′(x)
sin(x) = ±b. �

3.1. The canonical example

In [8] it is proved that, given an elliptic Weingarten class Wg of surfaces in S2 ×R (and more generally,
in any E3(κ, τ) space), there exists a unique extensible, regular rotational surface Σ0 meeting orthogonally
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the rotation axis. This surface will be referred to as the canonical example of the Weingarten class Wg. As
pointed out in [8, Example 8.6], the canonical example in S2 ×R can have singularities (this situation does 
not happen in R3, where the canonical example corresponds to a totally umbilical sphere/plane of principal
curvatures equal to α).

When the canonical example has bounded second fundamental form, the following result regarding the 
classification of Weingarten (topological) spheres in the E3(κ, τ) spaces is obtained:

Theorem 3.6. [8, Theorem 1.6] Let Wg be the class of elliptic Weingarten surfaces in S2 ×R given by (2.1).
Assume that the canonical example Σ0 in Wg has bounded second fundamental form. Then, any immersed
topological sphere Σ in Wg is a rotational sphere. More specifically, if Σ0 is compact, then Σ is congruent
to Σ0. If Σ0 is not compact, then Σ does not exist.

Observe that, since any point lying on the rotational axis of a (regular) rotational surface in S2×R must
be umbilical, the associated orbit of the canonical example Σ0 reaches the boundary of the phase space at
x = 0, λ = α. Moreover, if α = 0 then Σ0 is the slice S2 ×{0} corresponding to the orbit λ ≡ 0, whereas for
α 
= 0, the corresponding orbit is above the curve Υ given by (3.9) (see Lemma 3.4).

3.2. Singularities for rotational surfaces in Wg

Let Σ be a rotational surface in Wg given by the rotation of an arc-length parameterized curve γ(s) as
in (3.1) and defined in some interval I ⊂ R. Let a ∈ R be one of the endpoints of I and assume that Σ has 
a singularity at s = a. That is, Σ cannot be extended to a regular surface on I ∪ {a}.

The following lemma characterizes the behavior of the singularities in terms of the corresponding orbit 
for the system (3.6).

Lemma 3.7. Let Σ be a rotational surface in Wg and (x(s), λ(s)) its associated orbit in R for (3.6). Then,
Σ has a singularity at s = a if and only if one of the following two conditions holds:

i) (x(s), λ(s)) → (x0, ±∞) as s → a, with x0 ∈ {0, π} (the case λ(s) → −∞ can only happen if b =
g(∞) = −∞), or

ii) (x(s), λ(s)) → (x0, b) as s → a, with x0 ∈ (0, π) and b 
= −∞.

The first case corresponds to an isolated singularity created as the surface touches one of its two rotational 
axes. In the second one, the surface is singular along a compact curve.

Proof. If the associated orbit to Σ satisfies i) or ii) above it is clear that the second fundamental form of 
Σ is not bounded as s → a ∈ R, and so the surface has a singularity.

Conversely, assume that Σ has a singularity at s = a ∈ R, and therefore its associated orbit (x(s), λ(s))
approaches the boundary of the phase space R. Moreover, since the orbit is a graph over the x-axis, x(s)
has a well-defined limit x0 ∈ [0, π] as s → a. As discussed in Remark 3.3, Σ can be smoothly extended if
(x(s), λ(s)) approaches Γ. Thus, have the following possibilities:

a) x(s) converges to x0 = π/2 as s → a. By the first equation in (3.2) we have that 0 ∈ If and λ(s) → 0
as s → a. If 0 ∈ If then μ(s) → f(0) ∈ R and by the second equation in (3.2) the profile curve
γ(s) ≡ (x(s), t(s)) of Σ would have bounded second derivatives as s → a. In particular, the mean value
theorem implies that γ′(s) and γ(s) have well defined limits (x′

0, t
′
0) and (x0, t0) as s → a, and γ(s) can

be extended across s = a as the (unique) solution to the Cauchy problem:

x′′(s) = −t′(s) f(t′(s) cotx(s))
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t′′(s) = x′(s) f(t′(s) cotx(s))

with initial conditions (x(a), t(a)) = (x0, t0), (x′(a), t′(a)) = (x′
0, t

′
0), contradicting that Σ has a singu-

larity at s = a. Therefore, λ(s) → 0 = b, as we wanted to prove.
b) The orbit (x(s), λ(s)) approaches {x = 0} ∪ {x = π}. In this case, it remains to prove that λ(s) → ±∞.

By (3.5) and Lemma 3.4, λ(s) is monotonic as x(s) → x0 ∈ {0, π} and so it has a well defined limit λ0 as
s → a. The case λ0 = b 
= −∞ is impossible by Lemma 3.5. If λ0 
= ±∞, the mean curvature of Σ would
extend continuously to the (isolated) singularity with the value 1/2(λ0 + f(λ0)), which is impossible by
[12]. Thus, λ0 = ±∞ and we are done.

c) The orbit (x(s), λ(s)) approaches {λ = b} in R (when b 
= −∞). In this case, Lemma 3.5 shows that
x0 /∈ {0, π}, finishing the proof. �

4. The uniformly elliptic case

Let Wg be the Weingarten class given by (2.1). The uniform ellipticity condition (1.3) can be rephrased
in terms of g as

κ2 = g(κ1), Λ1 < g′ < Λ2 < 0 (4.1)

for some constants Λ1, Λ2 < 0 (see e.g. [5,6]). In particular, b = g(∞) = −∞. Our previous analysis
in Section 3 can be used to prove that rotational, uniformly elliptic Weingarten surfaces do not present 
singularities:

Theorem 4.1. Let Σ be a rotational uniformly elliptic Weingarten surface in S2 ×R. Then, Σ has bounded
second fundamental form and it cannot have singularities.

Proof. Let (x(s), λ(s)) in R be the solution of (3.6) associated to the surface Σ. By Lemma 3.4, the orbit 
is a graph over the x-axis (x, λ(x)) satisfying (3.5).

Assume that the second fundamental form of Σ is not bounded. Taking into account that in the uniformly 
elliptic case we have b = g(∞) = −∞, this can only occur if λ → ±∞ and therefore x → 0 or x → π. More 
specifically, we have | tan(x)λ(x)| < 1 as x → 0 or x → π, with |λ(x)| → ∞. By Remark 3.2, it suffices 
to check the case where x → 0. We will also assume that λ(x) → ∞ as x → 0 (the case λ(x) → −∞ is 
analogous).

As a consequence of (4.1) there exist A1, A2 ∈ R, and M1, M2 < 0 such that

f1(r) < f(r) < f2(r), (4.2)

where fi(r) = Mir + Ai, i = 1, 2. Moreover, Ai = α(1 −Mi).
Let (x0, λ0) ∈ R0 be any point in the orbit (x, λ(x)) and label (x, λi(x)) as the corresponding orbits

of (3.6) for the Weingarten relations given by fi, i = 1, 2 and passing through (x0, λ0). Without loss of
generality, we can assume that the fixed point (x0, λ0) is not contained in the orbit associated to the
canonical example for the Weingarten relation given by f2.

Set y = tan x. Then (3.5) leads to

λ′(y) = 1
y

( f(λ)
1 + y2 − λ

)
. (4.3)

Equation (4.3) can be explicitly solved in the linear case, fi(r) = Mir + Ai, for which we have

λi(y) = 1(1 + y2)−Mi/2
( (

−y2)Mi−1
2 AiBi(−y2) + 2Ciy

Mi−1
)

(4.4)
2
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for suitable Ci ∈ R, i = 1, 2. Here Bi(r) denotes the incomplete beta function:

Bi(r) := B(r; ai, bi) =
r∫

0

sai−1(1 − s)bi−1ds

for ai = (1 −Mi)/2, bi = Mi/2. We remark here that Bi(r) satisfies

lim
r→0

r
Mi−1

2 Bi(r) = 2
1 −Mi

(4.5)

for i = 1, 2, which in particular implies C2 
= 0 (otherwise λ2(0) = α and, taking into account Lemma 3.7,
this would contradict the uniqueness of the canonical example).

From (4.2) and taking into account (4.3), and the corresponding analogous equations for λ′
i(y), i = 1, 2,

it follows that

λ′
1(y) < λ′(y) < λ′

2(y)

for y > 0. Since λi(y0) = λ(y0) = λ0, i = 1, 2, then

λ2(y) ≤ λ(y) ≤ λ1(y)

for any 0 < y ≤ y0. In particular, by (4.4) and (4.5) it follows from the above inequality that |yλ(y)| → ∞
as y → 0+, which gives that Σ cannot have unbounded second fundamental form as x → 0.

Finally, by Lemma 3.7 it follows that at a singularity, either λ(s) → ±∞ or λ(s) → b (and so, μ(s) =
f(λ(s)) → ∞). In particular, as the second fundamental form of Σ is bounded, the surface does not have 
singularities. �

As a particular case of the above theorem, if g is uniformly elliptic, the canonical example in Wg has
bounded second fundamental form. Thus, as a consequence of [8] (see Theorem 3.6) we have the following 
Hopf-type theorem for uniformly elliptic Weingarten surfaces in S2 ×R:

Theorem 4.2. For any given class Wg of uniformly elliptic Weingarten surfaces there exists only one (up to
congruence) immersed sphere in S2 ×R in Wg. Moreover, this unique surface is rotational.

Proof. By Theorems 3.6 and 4.1, it only remains to check that the canonical example Σ0 in Wg is compact.
Let (x, λ(x)) be the associated orbit. Since Σ0 has bounded second fundamental form, the orbit cannot
approach λ → ±∞. Thus either (x, λ(x)) → (π, α) or (x, λ(x)) → (x0, λ0) ∈ Γ. In the first case Σ0 is a
graph over the whole S2 section in S2 × R, and therefore is compact. In the second one, by Remark 3.3 it 
suffices to prove that (x(s), λ(s)) → (x0, λ0) as s → s0 with s0 ∈ R.

Assume, arguing by contradiction, that s0 = ∞. Then t′(s)2 → 1 and x′′(s) = −t′(s)f(λ(s)) → ±f(λ0).
On the other hand, since x(s) → x0 as s → ∞, by the mean value theorem x′(s) → 0 and subsequently
x′′(s) → 0. In particular, f(λ0) = 0. By the monotonicity of f , it is clear that |α| < |λ0|, which contradicts
the behavior of the orbits described in Lemma 3.4 and finishes the proof. �
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