1	Ctenophthalmus baeticus boisseauorum (Beaucournu, 1968) and Ctenophthalmus
2	apertus allani (Smit, 1955) (Siphonaptera: Ctenophthalmidae) as synonymous taxa.
3	Morphometric, phylogenetic and molecular characterization.
4	
5	ANTONIO ZURITA ¹ , ÁNGELA MARÍA GARCÍA-SÁNCHEZ ¹ & CRISTINA
6	CUTILLAS ¹
7	¹ Department of Microbiology and Parasitology. Faculty of Pharmacy. University of
8	Seville. Profesor García González 2, 41012 Seville, Spain.
9	
10	
11	* Corresponding author:
12	Dr. Cristina Cutillas
13	Department of Microbiology and Parasitology. Faculty of Pharmacy. University of
14	Seville. Prof. García González 2, 41012 Seville, Spain.
15	Phone: +34954556773
16	e-mail: <u>cutillas@us.es</u>
17	
18	
19	
20	
21	
22	
23	
24 25	
26	

27 Abstract

The family Ctenophthalmidae (Order Siphonaptera) has been considered as a ``catchall´´ 28 for a wide range of divergent taxa showing a paraphyletic origin. In turn, *Ctenophthalmus* 29 30 sp. (Ctenophthalmidae) includes 300 valid described taxa. Within this genus, males are easily distinguishable basing on the size, shape and chaetotaxy of their genitalia; however, 31 32 females show slight morphological differences each other. The main objective of this 33 work was to carry out a comparative morphometric, phylogenetic and molecular study of two different subspecies: Ctenophthalmus baeticus boisseauorum and Ctenophthalmus 34 apertus allani in order to clarify and discuss its taxonomic status. From a morphological 35 36 and biometrical point of view we found clear differences between modified abdominal segments of males of both subspecies and slight differences in the margin of sternum VII 37 of all female specimens which did not correspond with molecular and phylogenetic results 38 39 based on four different molecular markers (Internal Transcribed Spacer 1 and 2 of ribosomal DNA, and the partial cytochrome c oxidase subunit 1 and cytochrome b of 40 41 mitochondrial DNA). Thus, we observed a phenotypic plasticity between both subspecies, which did not correspond with a real genotypic variability nor different 42 environmental or ecological conditions. Basing on these results we could consider that 43 44 there are no solid arguments to consider these two "morphosubspecies" as two different taxa. We propose that C. b. boisseauorum should be considered as a junior synonym of 45 46 C. a. allani.

47 Introduction

48 In the last years, the number of taxonomic studies of fleas based on molecular and phylogenetical data is increasing; however, most genera, species and subspecies have 49 50 been described just using morphological criteria. Ctenophthalmidae family has been considered as a ``catchall'' for a wide range of divergent taxa showing a paraphyletic 51 52 origin (Whiting et al., 2008). The family Ctenophthalmidae (sensu Lewis, 1993) consists 53 of nine subfamilies and 17 described tribes, with 42 genera and 664 species (Whiting et al., 2008). This high number of species corresponds approximately with one-quarter of 54 flea species described up until now. 55

56 Morphological identification of fleas is essentially based on the shape and structure of their complex genitalia and the distribution of setae, spines and ctenidia (Beaucournu & 57 Launay, 1990). The modifications of the terminal abdominal segments of the male are 58 59 much more complicated than in females. From a taxonomic point of view, the most important organ of male genitalia is the aedeagus. It is an extremely complex structure of 60 61 obscure derivation and is seldom used in identification. Furthermore, associated structures derived from the terminal tergites and sternites are used too for taxonomic 62 discrimination (Lewis, 1993). Sternum VIII of males, although it can be reduced in some 63 64 species, have a great importance in terms of specific identification due to it encloses the remaining genital structures and it may bear modifications that are useful in identification, 65 such as spicules and a characteristic chaetotaxy (Lewis, 1993). On the other hand, in 66 females, sternum VII and VIII are usually well developed covering most if not all the 67 terminal portion of the abdomen (Linardi, 2000). In most cases, the configuration, shape 68 69 and chaetotaxy of the sternum VII caudal margin can be useful in taxonomic 70 discrimination. Together with sternum VII, the spermatheca of females is considered the most important taxonomic character in order to identify and classify female fleas at 71

different taxonomical levels (Lewis, 1993; Beaucournu & Launay, 1990). The 72 73 spermatheca is usually placed within sternum VII and is divided into a heavily sclerotized bulga and a less sclerotized finger-like projection, the hilla (Linardi, 2000). From a 74 75 taxonomical point of view, in recent years, some species of the Ctenophthalmidae family have been studied mainly based on the morphological features mentioned above (Sanchez 76 77 & Lareschi, 2014; Acosta & Hastriter, 2017; Keskin, 2019; Keskin & Beaucournu, 2019a) 78 including the descriptions of two new species and a new subspecies of the genus Ctenophthalmus (Keskin & Beaucournu, 2019b) 79

Despite using these morphological structures as useful taxonomical tools, there are many 80 81 cases where the specific identification of females can be more complicated, especially when they are isolated without males to compare them to. This is the case of the genus 82 83 *Ctenophthalmus* whose males are easily distinguishable basing on the size, shape and 84 chaetotaxy of their genitalia; however, females show slight morphological differences each other (Beaucournu & Launay, 1998). Therefore, the specific and subspecific 85 determination within the genus Ctenophthalmus has been exclusively based on the male 86 morphological characters due to the lack of morphological differences among females. 87 These morphological differences of most species were so small and intraspecific variation 88 89 so great that it seemed useless to attempt to make a taxonomical key for this sex (Lewis, 1993; Beaucournu & Launay, 1990). 90

91 Due to the inability of systematists to homologize characters adequately across fleas and 92 outgroup taxa, different taxonomic studies have revealed the necessity to carry out an 93 exhaustive revision in flea taxonomy combining morphological, molecular and 94 phylogenetic data specially focused to species and subspecies level (Whiting *et al.*, 2008; 95 Zurita *et al.*, 2018a, 2018b). This necessity is due to the fact that fleas show a high degree 96 of morphological specializations associated with ectoparasitism. Therefore, fleas appear

to have many instances of parallel evolution of morphology, probably associated with 97 98 multiple invasions of similar hosts, which further obscures homology (Holland 1964). This fact has been observed in different flea taxa in the last years, Marrugal et al. (2013) 99 100 noticed that *Ctenocephalides felis* showed a certain degree of phenotypic plasticity which did not correspond with molecular differences. Recently, Zurita et al. (2018a) found that 101 102 some morphological diagnostic characters historically used to discriminate between two 103 congeneric species (Nosopsyllus fasciatus and Nosopsyllus barbarus) should be revised. 104 Based on these precedents, the main objective of this work was to carry out a comparative morphometric, phylogenetic and molecular study of two different subspecies belonging 105 106 to genus Ctenophthalmus: Ctenophthalmus baeticus boisseauorum (Beaucournu, 1968) and Ctenophthalmus apertus allani (Smit, 1955) in order to clarify the taxonomic status 107 of these two subspecies. These species were chosen due to their morphological 108 109 similarities as well as the fact that their shared the same host and were collected from the 110 same geographical area. In order to carry out this work, Internal Transcribed Spacer (ITS) 111 1 and ITS2 of ribosomal DNA (rDNA) and the partial cytochrome c oxidase subunit 1 112 (cox1) and cytochrome b (cytb) of mitochondrial DNA (mtDNA) genes were sequenced and assessed. 113

114 Material and methods

115 *Collection of samples*

A total of eighty fleas were collected from rodents *Arvicola scherman* (Arvicolinae) from
Asturias (North of Spain) (43°20′00″N 6°00′00″O) (Table 1). These fleas were obtained
and previously classified with the assistance of colleagues (see Acknowledgements).
Fleas obtained were kept in Eppendorf tubes with 70% ethanol for subsequent
identification and DNA extraction.

121 Morphological identification and biometrical study

For morphological analysis, whole specimens were examined and photographed under an 122 123 optical microscope. Subsequently, thirty fleas were put away for molecular purposes, whereas the rest of samples (fifty fleas) were cleared with 10% KOH, prepared and 124 125 mounted on glass slides using conventional procedures with EUKITT mounting medium 126 (O. Kindler GmbH & Co., Freiburg, Germany) (Lewis, 1993). Once mounted, they were examined and photographed again for a deeper morphological analysis using a CX21 127 128 microscope (Olympus, Tokyo, Japan). Diagnostic morphological characters of all the 129 samples were studied by comparison with figures, keys and descriptions reported by Hopkins & Rothschild (1953) and Beaucournu & Launay (1990). After morphological 130 131 identification thirty males and twenty females were measured according to 16 different parameters for males and 12 different parameters for females (Tables 2 and 3). 132 Descriptive univariate statistics (arithmetic means, standard deviation and coefficient of 133 variation) for all parameters were determined using SPSS program version 24 (IBM 134 Corp., Armonk, NY, U.S.A.) (Pardo & Ruiz, 2002). Furthermore, to assess phenotypic 135 variations among the samples, morphometric data were explored using multivariate 136 analysis in 9 measurements (LDBS9, WDBS9, WDPB, WVPB, DSETDPB, TL 137 (Excluding PROTW, MESOW, METW), PROTW, MESOW, METW) in males (see 138

140 HL, HW, PROTW, MESOW, METW) in females (see Table 3) by principal component

141 analysis (PCA), consisting in a method for summarizing most of the variations in a

142 multivariate dataset in few dimensions (Dujardin & Le Pont, 2004). Phenotypic analyses

143 were conducted using BAC v.2 software (Dujardin, 2002; Valero et al., 2009; García-

144 Sánchez *et al.*, 2019).

145 *Molecular study*

A total of thirty fleas were molecularly analyzed. We previously selected ten males of
each subspecies (*C. b. boisseauorum* and *C. a. allani*) and ten females previously
classified as *Ctenophthalmus* sp.

For DNA amplification each specimen (only those isolated for molecular purposes) were 149 transferred to a 1.5 mL tube containing 180 µL of G2 lysis buffer (Qiagen, Hilden, 150 151 Germany), and 20 µL of proteinase K (Qiagen, Hilden, Germany), and incubated at 56° 152 C overnight. DNA extraction was performed with an EZ1 DNA Tissue Kit (Qiagen, 153 Hilden, Germany) according to manufacturer recommendations. Flea DNAs were then 154 eluted in 100 µL of Tris EDTA buffer using the DNA extracting EZ1 Advanced XL Robot (Qiagen, Hilden, Germany). The DNA was either immediately used or stored at -20° C 155 until molecular analysis. The DNA extracting EZI Advanced XL Robot was disinfected 156 after each batch of extraction as per the manufacturer's recommendations, to avoid cross-157 contamination. All molecular markers sequenced in the present study (ITS1 and ITS2 158 rDNA, *cox1* and *cytb* mtDNA) were amplified by a polymerase chain reaction (PCR) 159 160 using a thermal cycler (Eppendorf AG; Eppendorf, Hamburg, Germany). PCR mix, PCR conditions and PCR primers are summarized in the Supporting information (Table S1). 161 In the case of *cox1*, we initially tried to obtain a 658 bp fragment of this marker, the so-162 called barcoding fragment which can serve as the core of a global bioidentification system 163

¹³⁹ Table 2) and 11 measurements (BULGAL, BULGAW, APEHILL, DBMV, PS7L, TW,

164 for animals (Hebert *et al.*, 2003). For this purpose, we initially used the generic 165 invertebrate amplification primers LCO1490 and HC02198 (Folmer *et al.*, 1994); 166 however, we did not obtain reliable results owing to co-amplification of nonspecific 167 products. For that reason, we finally used Kmt6 primer (Zhu *et al.*, 2015) as a forward to 168 amplify the *cox1* partial gene (453 pb) whereas, HC02198 remained as reverse primer for 169 this partial gene. The ITS1, ITS2, *cox1* and *cytb* partial gene sequences obtained from all 170 specimens analysed were deposited in the GenBank database (Table 1).

The PCR products were checked on SYBR Safe stained 2% Tris-borate-171 ethylenediaminetetraacetic acid agarose gels. Bands were eluted and purified from the 172 173 agarose gel using the QWizard SV Gel and PCR Clean-Up System Kit (Promega, Madison, WI, U.S.A.). Once purified, the products were sequenced by Stab Vida (Lisbon, 174 175 Portugal). To obtain a nucleotide sequence alignment file, the MUSCLE alignment 176 method (Edgar, 2004) was used in MEGA, version 5.2 (Tamura et al., 2011). To assess 177 the similarity among all marker sequences of all specimens analysed in the present study 178 and other flea species, the number of base differences per sequence with respect to the 179 sequences under investigation was assessed using the number of differences method of MEGA, version 5.2 (Tamura et al., 2011). 180

181 Phylogenetic trees were inferred using nucleotide data and performed using two methods: Maximum Likelihood (ML) and Bayesian Inferences (BI). Maximum Likelihood trees 182 were generated using the PHYML package from Guindon & Gascuel (2003), whereas 183 Bayesian Inferences were generated using MRBAYES, version 3.2.6 (Ronquist & 184 185 Huelsenbeck, 2003). JMODELTEST (Posada, 2008) was used to determinate the best-fit substitution model for the parasite data (ITS2, cox1 and cytb). Models of evolution were 186 chosen for subsequent analyses according to the Akaike information criterion 187 (Huelsenbeck & Rannala, 1997; Posada & Buckley, 2004). To investigate the dataset 188

containing the concatenation of three markers (ITS2, cox1 and cytb), analyses based on 189 190 BI were partitioned by gene and models for individual genes within partitions were those selected by JMODELTEST. For ML inference, best-fit nucleotide substitution models 191 192 included a general time-reversible model with gamma-distributed rate variation GTR+G (ITS2) and a Tamura-Nei model with gamma-distributed rate variation and a proportion 193 of invariable sites, TrN+I+G (cox1 and cytb). Support for the topology was examined 194 195 using bootstrapping (heuristic option) (Felsenstein, 1985) over 1000 replications to assess 196 the relative reliability of clades. The commands used in MRBAYES, version 3.2.6 for Bayesian inference were *nst* =6 with gamma rates (ITS2) and *nst* =6 with invgamma rates 197 198 (cox1 and cytb). For BI, the standard deviation of split frequencies was used to determine whether the number of generations completed was sufficient; the chain was sampled 199 every 500 generations and each dataset was run for 10 million generations. Adequacy of 200 201 sampling and run convergence were assessed using the effective sample size diagnostic 202 in tracer, version 1.6 (Rambaut & Drummond, 2007). Trees from the first million 203 generations were discarded based on an assessment of convergence. Burn-in was 204 determined empirically by examination of the log likelihood values of the chains. The Bayesian posterior probabilities (BPP) comprise the percentage converted. 205

The phylogenetic analyses, based on ITS2, cox1 and cytb sequences were carried out 206 207 using our sequences and those obtained from GenBank database (see Table S2). 208 Phylogenetic trees based on concatenated sequences of ITS2, cox1 and cytb were rooted 209 including Panorpa meridionalis (Mecoptera: Panorpidae) as outgroup. This choice was 210 based on the combination of morphological and molecular data obtained in previous studies, which provided compelling evidence for a sister group relationship between 211 Mecoptera and Siphonaptera (Whiting, 2002; Whiting et al., 2008). The ITS1 sequence 212 213 of *P. meridionalis* or other species of Mecoptera was not available either by amplification

of different individuals or in any public database. Thus, no phylogenetic tree with other Siphonaptera species based on ITS1 sequences was constructed, and this molecular marker was also discarded for the concatenated dataset. The selection of flea taxa for the concatenated phylogenetic tree was limited to flea species whose ITS2, *cox1* and *cytb* sequences were available in the GenBank database.

- 219 **Results**
- 220 Morphological and biometrical results 221 All the specimens studied in this work showed morphological characteristics expected for 222 the genera *Ctenophthalmus* sp: Labial palp with no more than four segments. 223 • • Presence of pronotal ctenidia (Fig. 1A). 224 • Antennae with nine well visible segments. Basal segments of the antennae not 225 226 fused (Fig. 1B). 227 • Genal ctenidia with three cone-shaped setae horizontally inserted with a sharped 228 apex (Fig. 1B). 229 Males could be easily discriminated between the two subspecies (C. b. boisseauorum and C. a. allani). 230 231 Males of C. b. boisseauorum showed different specific morphological characters: • Apex of the distal branch of IX sternum without an apical slot (Fig. 1C). 232 233 • Distal branch of IX sternum with parallel margins (Fig. 1C). • Dorsal processus basimere significantly longer than it is wide with two long setae 234 235 showing different length each other (Fig. 1D). Ventral processus basimere significantly longer than it is wide showing an apical 236 237 slot (Fig. 1D). Males of C. a. allani showed different specific morphological characters: 238 239 Apex of the distal branch of IX sternum with a small apical slot (Fig. 1E). • Apical part of distal branch of IX sternum with parallel margins (Fig. 1E). 240 241 • Dorsal processus basimere significantly longer than it is wide with two long setae with the same length each other (Fig. 1F). 242

243

244

• Ventral processus basimere cone-shaped or digitiform without any slot on the apex (Fig. 1F).

Since there are no criteria to discriminate females belonging to *Ctenophtahlmus* sp., we 245 246 considered all the females as two main groups: The first group included females isolated together with C. b. boisseauorum males from the same host, whereas, the second group 247 248 included females isolated together with C. a. allani males from the same host. In spite of the non-existence of discriminative taxonomical characters, the spermatheca and the 249 chaetotaxy and shape of the margin of the sternum VII in females have remained as the 250 most reliable and variable characters in order to carry out a specific classification within 251 252 Order Siphonaptera. For this reason, we focused on these regions in a deeper way. The 253 spermatheca appeared very similar in all females' specimens assessed without any 254 morphological discriminative pattern between both groups (Fig. 2). Thus, the spermatheca always showed a hilla shorter and narrower than bulga. Furthermore, we 255 256 could notice a small prominence at the end of the bulga in some specimens from both 257 female groups (Fig. 2D and 2F) which sometimes could appear less prominent (Fig. 2B and 2C). Likewise, morphological analysis based on the spermatheca, our results did not 258 show any morphological specific pattern in order to discriminate among all the female 259 260 specimens analyzed based on the chaetotaxy and shape of the sternum VII. Thus, we noticed aleatory appearances and shapes for the margin of sternum VII in females (Fig. 261 3). Some females of both groups showed two well developed apical lobes of variable size 262 263 which subtended two little sinus of variable size on the posterior margin of VII sternum (Fig. 3A-3G), whereas other females from both groups showed only one well developed 264 apical lobe (Fig. 3H-3K) together with a deep sinus (Fig. 3I-3K). According to 265 266 chaetotaxy, no significant differences were observed between both females' groups. Therefore, all specimens assessed showed the presence of six setae with different degree 267

of development (Fig. 4). The distribution of these setae changed among all the specimens analyzed; however, it was common the presence of three strong setae, longest than the other ones, which appeared very close each other (Fig. 4A-4F). With all these variable morphological results, we were not able to set up any taxonomical key or similar for female discrimination.

Biometrical results showed significant differences between males of both subspecies (C. 273 274 b. boisseauorum and C. a. allani) based on different parameters such as TL, LDBS9, WDBS9, WDPB, WVPB, DSETDPB, MESOW, METW (see Table 2). Males of C. b. 275 boisseauorum showed a wider distal branch of the IX sternum, a wider ventral processus 276 277 basimere and more distance between the two setae present on the dorsal processus basimere than C. a. allani males. According to sex differentiation, females generally 278 appeared longer and with a wider head than males (Table 3). Only MESOW (width of 279 280 mesothorax) appeared as a differential significant statistic value between both female groups; although in some individuals this parameter overlapped between these groups 281 282 (Table 3). Additionally, these data were compared with the results obtained by PCA consisting in the regression of each character separately on the within group first principal 283 component (PC1). Therefore, male variables significantly correlated with PC1, 284 285 contributing 73 % to the overall variation. Both male populations appeared separated from each other, with no overlapping areas between C. b. boisseauorum and C. a. allani 286 (Fig. 5A). The factor map (Fig. 5A) clearly showed a bigger global size in the male 287 288 population of C. a. allani.

Furthermore, female variables significantly correlated with PC1, contributing 67 % to the overall variation. In this case, the factor map (Fig. 5B) showed an overlapping area without remarkable global size differences between both female groups.

292 Molecular results

293 ITS1 and ITS2 analysis

The length of the ITS1 sequences of all the *Ctenophthalmus* specimens ranged from 888 base pairs (bp) (*C. a. allani* males) to 889 bp (*C. b. boisseauorum* males and *Ctenophthalmus* sp. females) (Table 1), whereas, the length of the ITS2 fragment was 492 bp for all the specimens. The intrageneric similarity ranged from 99.9 % to 100 %. The ITS2 sequences showed a intrageneric similarity ranged from 99.6 % to 100 % with a maximum of two different base pairs among all the sequences analyzed.

The phylogenetic tree inferred from ITS2 sequences of *C. b. boisseauorum* and *C. a. allani* and other ITS2 sequences retrieved from GenBank (see Table S2) showed all the *Ctenophthalmus* species and subspecies clustered together in polytomy with high bootstrap and BPP values (100/100) without any specific phylogenetic pattern of distribution. Furthermore, this genus appeared close related with *Tunga penetrans* (Tungidae) sharing clade with other species of Ctenophthalmidae (Fig. S1).

306 *Partial* cox1 *mtDNA* gene analysis

307 The partial gene cox1 mtDNA sequences of C. b. boisseauorum and C. a. allani males 308 and *Ctenophthalmus* sp. females were 453 bp in length (Table 1). The similarity observed among cox1 sequences of C. a. allani ranged from 98.7 % to 100 %, whereas this value 309 310 ranged from 99.3 % to 100 % for C. b. boisseauorum (Table 4). Similar values were observed when we calculated the similarity between males from both subspecies and 311 312 *Ctenophthalmus* sp. females, thus we noticed overlapped percentages between them with 313 a minimum value of 98.2 % (Ctenophthalmus sp. females - C. a. allani males) and with 314 a maximum value of 100 % (Ctenophthalmus sp. females - C. b. boisseauorum males; C. b. boisseauorum males - C. a. allani males) (Table 4). In contrast to that, these similarity 315 percentage values were considerably lower when we compared these sequences with 316 317 partial gene *cox1* sequences from other congeneric species. Therefore, these percentage

values ranged from 86.5 % (*Ctenophthalmus* sp. females - *Ctenophthalmus cryptotis*) to
90.3 % (*Ctenophthalmus* sp. females - *Ctenophthalmus dolichus dolichus*). On the other
hand, the lowest value of similarity was observed between *C. dolichus dolichus* and *Ctenophthalmus calceatus cabirus* (85.0 %) (Table 4).

Phylogenetic tree topology revealed a clade (BPP and bootstrap values: 67/87) clustering
all *Ctenophthalmus* species, excluding one *Ctenophthalmus* sp. sequence (AN:
KM891003). Within this clade, we observed a highly supported subclade (92/89 - BPP
and bootstrap values) corresponding to our sequences appearing in polytomy.
Furthermore, Ctenophthalmidae family appeared in polytomy with other flea families
(Fig. S2).

328 *Partial* cytb *mtDNA* gene analysis

The length of the *cvtb* mtDNA sequences of the all *Ctenophthalmus* sp. specimens 329 330 obtained in this study was 374 (Table 1). The similarity observed among the partial *cytb* sequences of males of both subspecies (C. b. boisseauorum and C. a. allani) ranged from 331 332 98.7 % to 100 %, whereas the percentage of similarity obtained when we compared all 333 the Ctenophthalmus sp. females cytb sequences each other ranged from 98.4 % to 100 % (Table 5). Similar results were observed when we obtained the similarity between males 334 of both subspecies together with Ctenophthalmus sp. females, thus these values ranged 335 from 98.4 % (*Ctenophthalmus* sp. females - *C. a. allani* males - *C. b. boisseauorum* males) 336 to 100 % (Ctenophthalmus sp. females - C. a. allani males; C. b. boisseauorum males -337 C. a. allani males) (Table 5). Additionally, we also calculated the interspecific similarity 338 339 between the *cytb* sequences obtained in this study and those from other species belonging to the same genus (C. cryptotis, Ctenophthalmus congeneroides congeneroides and 340 Ctenophthalmus sanborni). Our analysis revealed lower values out of which none 341

exceeded 86.6 %, with a minimum percentage value of 84.8 %(*C. b. boisseauorum* males
- *C. sanborni*).

The phylogenetic tree inferred from partial *cytb* gene sequences revealed a well supported 344 clade (100/88 - BPP and bootstrap values) comprising all the species belonging to 345 Ctenophthalmus genus (Fig. S3). Within this clade, we noticed a highly supported 346 subclade (100/95 - BPP and bootstrap values) clustering all the partial cytb mtDNA 347 sequences of C. b. boisseauorum and C. a. allani males and Ctenophthalmus sp. females 348 349 without any specific phylogenetic pattern of distribution (Fig. S3). On the other hand, all the different flea families appeared in polytomy in the same clade (Pulicidae, 350 351 Ctenophthalmidae, Ceratophyllidae, Stephanocircidae, Pygiopsyllidae, Stivaliidae and Stenoponiidae) (Fig. S3). 352

The concatenated dataset of ITS2, partial cytb and cox1 gene sequences included 1,405 353 354 aligned sites and 55 taxa, including outgroups. Phylogenetic analyses of the concatenated 355 dataset yielded a tree with branches that were strongly supported (Fig. 6). The analysis 356 based on the concatenated dataset showed all species belonging to Ctenophthalmus 357 genera obtained in this work presenting a monophyletic origin and clustering together in a highly supported clade not showing any specific phylogenetic pattern of distribution 358 (Fig. 6). In addition, differente families such as Ceratophyllidae, Pulicidae and 359 Stenoponiidae appeared separated from Ctenophthalmidae (Fig. 6). 360

361 **Discussion**

362 Morphological data combined with the modern molecular approaches have become a major source for phylogenetic inference in taxonomical studies (Bybee et al., 2010). 363 364 Nevertheless, probably due to the high level of morphological diversity observed in the Order Siphonaptera the number of combined analyses of molecular and morphological 365 366 data are still unusual in this Order. This work constitutes the first study that provides a 367 combination of morphological, biometrical, molecular and phylogenetic comparative data of two subspecies (C. b. boisseauorum and C. a. allani) belonging to Ctenophthalmus 368 genus in order to assess their taxonomic and phylogenetic relationships. It should be 369 370 highlighted that genus Ctenophthalmus includes aproximately 300 valid taxa (Beaucournu & Lorvelec, 2014) representing the most abundant flea genus in Europe 371 372 (Beaucournu & Launay, 1990).

373 Gómez et al. (2003) reported some notes about the morphological variability of 374 Ctenophthalmus sp. in Spain. These authors argued that even seven different subspecies 375 of Ctenophthalmus (C.) apertus had been described in Spain: C. (C.) apertus apertus, C. 376 (C.) apertus allani, C. (C.) apertus azevedoi, C. (C.) apertus gilcolladoi, C. (C.) apertus gosalhezi, C. (C.) apertus meylani and C. (C.) apertus personatus, having each of these 377 378 species their own geographic distribution. Therefore, they placed C. a. allani in the north of Spain at the cities of León, Oviedo, Santander and Zamora (Beaucournu & Launay 379 1990; Gómez et al., 2003). These locations agree with our results since our specimens 380 classified as C. a. allani were isolated from Asturias (north of Spain). In addition, 381 382 previous authors (Beaucournu & Launay 1990; Beaucournu & Lorvelec 2014) have just placed C. b. boisseauorum in different geographical areas of the north of Spain. The 383 morphological analysis carried out by Hopkins & Rothschild (1966) and Beaucournu & 384 Launay (1978, 1990) reported that several specimens of each "apertus" subspecies 385

evidenced great variability in male modified abdominal segments as well as in female 386 387 sternum VII; however, these authors only provided a taxonomical keys for males. Beaucournu & Launay (1978, 1990) speculated about the possibility that this 388 389 morphological variability was possibly due to interbreeding of two subspecies which have sympatric distribution, but finally, they supported that this fact were just different 390 morphotypes as a consequence of the wide morphological intraspecific "apertus" 391 392 variations. The higher degree of morphological variation observed in males could be 393 explained because in temporary parasites, males mostly have a shorter life period and are more active in terms of looking for new hosts. Thus, males leave earlier from their hosts 394 395 (Marshall, 1981), whereas, females need blood to produce their eggs, leaving their hosts later (Dryden, 1993). Attending to our morphological results we could discriminate 396 between males of C. b. boisseauorum and C. a. allani generally based on the width of the 397 398 ventral processus basimere and in the total distance between the two setae present on the 399 dorsal processus basimere which showed different length in C. b. boisseauorum. Unlike 400 males, females showed an aleatory high degree of polymorphism based on the shape of 401 margin of the sternum VII. These characters did not correspond with any subspecific morphological pattern between the two groups of Ctenophthalmus females analysed in 402 403 this study. Márquez & Soringuer (1987) observed a great variability in the margin of sternum VII in females of C. a. meylani noticing that some specimens showed 404 405 morphological characteristic similar to the subspecies C. a. queirozi. These authors 406 argued that in each population could exist a great morphological variability in females 407 associated with different ecological traits which would be responsible to the selection of one specific morphotype. Nevertheless, in our study the variability observed in the shape 408 409 of the margin of the sternum VII was similar in both female groups isolated from the same host and from the same geographical origin. 410

In spite of that, Marquez & Soringuer (1987) found some differences in this region in 411 412 terms of number of setae from one population of C. a. meylani isolated from Granada, 413 Córdoba and Jaén (Spain). Nevertheless, most specimens analyzed by these authors 414 showed six main setae in sternum VII agreeing on our results. In this sense, the chaetotaxy of sternum VII of females was assessed in our study in order to find new possible 415 morphological variations which allow us to discriminate between females of 416 417 *Ctenophthalmus* genus. Nevetheless, both characters appeared hardly identical (with slighty differences in spermatheca of some specimens) even between the two female 418 groups of this study. These results would be in agreement with Beaucournu & Launay 419 420 (1990) who did not find clear differences in this region in *Ctenophthalmus* genus. These taxonomical results were corroborated by PCA and biometrical analysis but were not in 421 422 concordance with molecular and phylogenetic results, specially based on male specimens 423 which showed a high degree of nucleotide similarity.

ITS1 and ITS2 have been reported as two useful markers in order to infer phylogenetic studies in flea taxonomy, being used with several purposes: molecular characterization of several flea species (Vobis *et al.*, 2004), molecular discrimination among congeneric species (Marrugal *et al.*, 2013; Zurita *et al.*, 2016), molecular characterization of different geographical lineages from the same species (Luchetti *et al.*, 2007; Ghavami *et al.*, 2018) or even molecular discrimination among possible cryptic species (Zurita *et al.*, 2019).

In our study, we observed a high similarity (99.6 % - 100 %) between *C. b. boisseauorum*and *C. a. allani* based on ITSs sequences analysis. These results did not correspond with
the morphological differences observed between both subspecies agreeing with Zurita *et al.* (2018a) who did not observe substantial nucleotide differences when they compared
ITS1 and ITS2 sequences of *N. barbarus* and *N. fasciatus* supporting the idea that *N. barbarus* should be considered a junior synonym of *N. fasciatus*.

Even in a longer way to ITSs sequences, mitochondrial markers have been widely used 436 for estimating molecular phylogenies in fleas in the last years (Lawrence et al., 2014; 437 Zurita et al., 2018a, b; Hornok et al., 2018). The cox1 gene has widely showed enough 438 439 interspecific nucleotide variability among different groups of arthropods in order to discriminate between species and subspecies, even, which they appeared morphologically 440 similar (Paz et al., 2011). Thus, sequencing this gen represents one of the best options for 441 442 phylogenetic study at these taxonomical level of any group of insects including fleas since it is generally considered the potential 'barcode' for insect identification (Hebert et al., 443 2003). Cytb partial gene has also been widely used in order to infer phylogenetic 444 445 relationships among different closed flea taxa (Dittmar & Whiting, 2003; Zurita et al., 2019). In the most recent published articles, flea DNA barcoding data have shown a 446 maximum of intraspecific and interspecific similarity ranging from 91.5 % to 97 % 447 448 (Zurita et al., 2019). Analyzing all these studies, it seems obvious that cytb and cox1 (likewise ITS1 and ITS2) are easily able to discriminate themselves between two close 449 450 related flea species, among different cryptic species or even to reveal the existence of 451 different geographical lineages within the same species. Nevertheless, we noticed a high degree of similarity between C. b. boisseauorum and C. a. allani based on mitochondrial 452 453 DNA markers (98.2 % - 100 %), whereas *cytb* and *cox1* were able to discriminate between this two subspecies and other congeneric ones such as C. cryptotis, C. c. congeneroides, 454 C. sanborni or C. d. dolichus (84.8 % - 90.3 %). Likewise ITS analysis, morphological 455 differences observed between males from both subspecies did not correspond with 456 substantial nucleotide differences in cox1 and cytb sequences. These results could suggest 457 the idea that C. b. boisseauorum and C. a. allani were the same taxon or even consider C. 458 b. boisseauorum as a junior synonym of C. a. allani. 459

This idea, reinforce the results reported by concatenated phylogenetic tree and all trees 460 461 constructed on the basis of the single markers. Thus, in all of them we observed both subspecies clustering together in the same well supported clades without any specific 462 463 distribution pattern and separated from other Ctenophthalmus species suggesting that there are no phylogenetic reasons to consider these two morphosubspecies (C. b. 464 boisseauorum and C. a. allani) as two different taxa. In spite of these results, 465 466 complementary phylogenetic and molecular studies are necessary to confirm a case of synonymy between C. apertus and C. baeticus. Therefore, we should take into account 467 that several subspecies have been described for C. apertus and C. baeticus species which 468 469 should be molecularly studied before to confirm the existence of phenotypic differences which did not correspond with a real genotypic variability between both species. 470

471 In conclusion, for the first time, the present study provides comparative morphometric, 472 phylogenetic and molecular data for two Ctenophthalmus subspecies (C. b. boisseauorum 473 and C. a. allani). From a morphological point of view, we can conclude that the 474 spermatheca, the outline of VII sternum and the chaetotaxy of this region in females are 475 not useful tools in order to discriminate between both subspecies. This idea is in agreement with Beaucournu & Launay (1990) who considered the outline of VII sternum 476 477 as aleatory and not reliable for taxonomic studies within this genus whereas both spermatheca and chaetotaxy of sternum VII appeared hardly identical among all the 478 479 females belonging to these two subspecies. On the other hand, although males of both 480 subspecies could be differentiated based on morphological traits, these morphological 481 differences did not correspond with molecular and phylogenetic data. For that reason, this work brings to light by the first time, the necessity to carry out a progressive taxonomical 482 revision within not only Ctenophthalmus genus if not in the whole Ctenophthalmidae 483 family, which has remained as the ``catchall'' for a large number of divergent taxa 484

(Whiting *et al.*, 2008; Zurita *et al.*, 2015; Keskin, 2019; Keskin & Beaucournu, 2019b).
Within this family, a wide range of different taxa have been only described from a
morphological point of view, for that reason it would be necessary to complement these
classic taxonomical data with phylogenetic studies based on molecular data in order to
clarify the complex taxonomy of the Ctenophthalmidae family.

In addition, it is known that phenotypic polymorphism is generally due to genetic and environmental sources of variation (Fusco & Minelli, 2010). In this sense, complementary data and rigorous and statistical analysis related to ecological conditions and intrinsic characteristics of the host would be needed. These extra data would help us to confirm possible cases of phenotypic plasticity within *Ctenophthalmus* genus especially referring to modified abdominal segments of males and the outline of VII sternum in females.

496

497 Acknowledgement

The present work was supported by a grant of the V Plan Propio de Investigación of the University of Seville, Spain. The authors thank Dr. Carlos Feliu (University of Barcelona) for providing samples from Asturias (Spain) and Dr. Philippe Parola (Institut Hospitalo-Universitaire Méditerranée Infection, Marseille) for lending support for the DNA extraction.

503 **References**

- 504 Acosta, R. & Hastriter, M.W. (2017) A review of the flea genus Phalacropsylla
- 505 Rothschild, 1915 (Siphonaptera, Ctenophthalmidae, Neopsyllinae, Phalacropsyllini) with
- new host and distributional records. *Zookeys* **18**, 27–43.
- 507 Beaucournu, J.C. (1968) Hystrichopsyllidae (Insecta: Siphonaptera) nouveaux pour la
- 508 faune espagnole. Description de Ctenophthalmus (C.) baeticus boisseaui. ssp. nova.
- 509 Bulletin de la Société scientifique de Bretagne **42**, 241–248.
- 510 Beaucournu, J.C. & Launay, H. (1990) Les Puces (Siphonaptera) de France et du Bassin
- 511 méditerranéen occidental. *Faune de France*, 76, Paris. Fedération Française des Sociétés
- 512 des Sciences Naturelles.
- 513 Beaucournu J.C. & Launay, H. (1978) Nouvelles captures de puces (Siphonaptera) en
- 514 Espagne et description de trois sousespèces nouvelles. Annales de la Société
 515 Entomologique de France 14, 281–292.
- 516 Beaucournu, J.C. & Loverlec, O. (2014) Mise à jour taxonomique et répartition des puces
- 517 du genre Ctenophthalmus Kolenati 1856 en region paléarctique occidentale (Insecta :
- 518 Siphonaptera : Ctenophthalmidae). *Annales de la Société entomologique de France* 50,
 519 219–247.
- 520 Bybee, S.M., Zaspel, J.M., Beucke, K.A., Scott, C.H., Smith, B.M. & Branham, M.A.
- 521 (2010) Are molecular data supplanting morphological data in modern phylogenetic
 522 studies? *Systematic Entomology* 35, 2–5.
- 523 Dittmar, K. & Whiting, M.F. (2003) Genetic and phylogeographic structure of
- 524 populations of *Pulex simulans* (Siphonaptera) in Peru inferred from two genes (*CytB* and
- 525 *CoII*). *Parasitology Research* **91**, 55–59.

- 526 Dryden, M.W. (1993) Biology of fleas of dogs and cats. *Compendium on Continuing*
- 527 *Education for the Practising Veterina* **15**, 569–579.
- 528 Dujardin, J.P. (2002) BAC software. Institut de Recherche pour le Développement (IRD,
- 529 France). Version 3. URL http://www.fsf.org/copyleft/gpl.html.
- 530 Dujardin, J.P. & Le Pont, F. (2004) Geographical variation of metric properties within
- the neotropical sandflies. *Infection Genetics and Evolution* **4**, 353–359.
- Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high
- throughput. *Nucleic Acids Research* **32**, 1792–1797.
- Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap.
- 535 *Evolution* **39**, 783–791.
- 536 Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for
- 537 amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan

538 invertebrates. *Molecular Marine Biology Biotechnology* **3**, 294–299.

- 539 Fusco, G. & Minelli, A. (2010) Phenotypic plasticity in development and evolution: facts
- 540 and concepts. Introduction. Philosophical Transactions of the Royal Society of London
- 541 *B: Biological Sciences* **365**, 547–566.
- 542 García-Sánchez, A.M., Rivero, J., Callejón, R., Zurita, A, Reguera-Gomez, M., Valero,
- 543 MA. & Cutillas, C. (2019) Differentiation of *Trichuris* species using a morphometric
- approach. International Journal of Parasitology: Parasites and Wildlife 9, 218–223.
- 545 Gasser, R.B., Nansen, P. & Guldberg, P. (1996) Fingerprinting sequence variation in
- ribosomal DNA of parasites by DGGE. *Molecular Cellular Probes* **10**, 99–105.

- Ghavami, M.B., Mirzadeh, H., Mohammadi, J. & Fazaeli, A. (2018) Molecular survey of
 ITS1 spacer and *Rickettsia* infection in human flea, *Pulex irritans. Parasitology Rresearch* 117, 1433–1442.
- 550 Gómez, M.S., Fernández-Salvador, R. & Garcia, R. (2003) First report of Siphonaptera
- 551 infesting Microtus (Microtus) cabrerae (Rodentia-Muridae-Arvicolinae) in Cuenca,
- 552 Spain and notes about the morphologic variability of *Ctenophthalmus* (*Ctenophthalmus*)
- 553 *apertus personatus* (Insecta-Siphonaptera-Ctenophthalmidae). *Parasite* **10**, 127–131.
- Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large
 phylogenies by maximum likelihood. *Systematic Biology* 52, 696–704.
- 556 Hebert, P.D.N., Cywinska A, Ball, S.L. & De Waard, J.R. (2003) Biological
- identifications through DNA barcodes. *Proceedings of the Royal Society of London* 270,
- 558 313-321.
- Holland, G.P. (1964) Evolution, classification, and host relationships of Siphonaptera. *Annual Review of Entomology* 9, 123–146.
- 561 Hopkins, G.H.E. & Rothschild, M. (1953) An Illustrated Catalogue of the Rothschild
- 562 Collection of Fleas in the British Museum (Nat. Hist.). Vol. I. Tungidae and Pulicidae.
- 563 Cambridge University Press, Cambridge, UK.
- 564 Hopkins G.H.E. & Rothschild, M. (1966) An illustrated catalogue of the Rothschild
- collection of fleas (Siphonaptera) in the British Museum (Natural History). Vol IV.
- 566 Hystrichopsyllidae (Ctenophthalminae, Dinopsyllinae, Doratopsyllinae and
- Listropsyllinae). Trustees of the British Museum (Natural History), London, 1966, 549.
- 568 Hornok, S., Beck, R., Farkas, R., Grima, A., Otranto, D., Kontschán, J., Takács, N.,
- 569 Horváth, G., Szőke, K., Szekeres, S., Majoros, G., Juhász, A., Salant, H., Hofmann-

- 570 Lehmann, R., Stanko, M. & Baneth, G. (2018) High mitochondrial sequence divergence
- in synanthropic flea species (Insecta: Siphonaptera) from Europe and the Mediterranean.
- 572 *Parasites & Vectors* **11**, 221.
- 573 Huelsenbeck, J.P. & Rannala, B. (1997) Phylogenetic methods come of age: testing
- 574 hypotheses in an evolutionary context. *Science* **276**, 227–232.
- 575 Keskin, A. (2019) A New Flea Species of the Genus *Palaeopsylla* (Insecta: Siphonaptera:
- 576 Ctenophthalmidae) From Turkey. *Journal of Medical Entomology* pii: tjz165. doi:
 577 10.1093/jme/tjz165.
- 578 Keskin, A. & Beaucournu, J.C. (2019a) Palaeopsylla (Palaeopsylla) aysenurae n. sp., a
- new ctenophthalmid flea (Siphonaptera: Ctenophthalmidae) from Turkey. *Zootaxa* doi:
 10.11646/zootaxa.4613.2.10.
- 581 Keskin, A. & Beaucournu, J.C. (2019b) Descriptions of Two New Species and a New
- 582 Subspecies of the Genus *Ctenophthalmus* (Insecta: Siphonaptera: Ctenophthalmidae)
- from Turkey. *Journal of Medical Entomology* **56**, 1275–1282.
- Lawrence, A.L., Brown, G.K., Peters, B., Spielman, D.S., Morin-Adeline, M. & Slapeta,
- 585 J. (2014) High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two
- 586 mitochondrial DNA markers. *Medical and Veterinary Entomology* **28**, 330–336.
- 587 Lewis, R.E. (1993) Notes on the geographical distribution and host preferences in the
- order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current
- classification of the order. *Journal of Medical Entomology* **30**, 239-256.
- 590 Linardi, P.M. (2000) Sifonápteros do Brasil. Sao Paulo, Museu de Zoologia da
 591 Universidade de Sao Paulo, USAP/FAPESP, 200, 291p.

- 592 Luchetti, A., Trentini, M., Pampiglone, S., Fiorawanti, M.L. & Mantovani, B. (2007)
- 593 Genetic variability of *Tunga penetrans* (Siphonaptera, Tungidae) and fleas across South
- 594 America and Africa. *Parasitology Research* **100**, 593–598.
- 595 Márquez, F.J. & Soringuer, R.C. (1987) Variación intrapoblacional en las hembras de
- 596 Ctenophthalmus apertus meylani Beaucournu, Gilot et Vericard, 1973 (Siphonaptera:
- 597 Hystrichopsyllidae). *Revista Ibérica de Parasitología* **47**, 419–424.
- Marrugal, A., Callejón, R., de Rojas, M., Halajian, A. & Cutillas, C. (2013)
 Morphological, biometrical and molecular characterization of *Ctenocephalides felis* and *Ctenocephalides canis* isolated from dogs from different geographical regions.
- 601 *Parasitology Research* **112**, 2289–2298.
- Marshall, A.G. (1981) Sex ratio in ectoparasitic insects. *Ecological Entomology* 6, 155–
 174.
- Pardo, A. & Ruiz, M.A. (2002) SPSS 11. Guía para el análisis de datos. Madrid, McGrawHill. 714.
- Paz, A., González, M. & Crawford, A.J. (2011) Códigos de barras de la vida: introducción
 y perspectiva. *Acta Biológica Colombiana* 16, 161-175.
- Posada, D. & Buckley, T.R. (2004) Model selection and model averaging in
 phylogenetics: advantages of Akaike information criterion and Bayesian approaches over
 likelihood ratio tests. *Systematic Biology* 53, 793–808.
- 611 Posada, D. (2008) Jmodeltest: phylogenetic model averaging. Molecular Biology and
- 612 *Evolution* **25**, 1253–1256.
- Rambaut, A. & Drummond, A. (2007) Tracer v1.6. Available online at
 http://beast.bio.ed.ac.uk/.

- Ronquist, F. & Huelsenbeck, J.P. (2003) MrBAYES 3: Bayesian phylogenetic inference
- under mixed models. *Bioinformatics* **19**, 1572–1574.
- 617 Sanchez, J. & Lareschi, M. (2014) Two new species of *Neotyphloceras* (Siphonaptera:
- 618 Ctenophthalmidae) from Argentinean Patagonia. *Zootaxa* 27, 159-170.
- 619 Smit, F.G.A.M. (1955) A new *Ctenophthalmus* (Siphonaptera: Hystrichopsyllidae) from
- 620 France and Spain. *The Entomology Monthly Magazine* **91**, 145–147.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5:
- 622 molecular evolutionary genetics analysis using maximum likelihood, evolutionary
- distance, and maximum parsimony methods. *Molecular Biology and Evolution* 28, 2731–
- **624** 2739.
- 625 Valero, M.A., Perez-Crespo, I., Periago, M.V., Khoubbane, M. & Mas-Coma, S. (2009)
- Fluke egg characteristics for the diagnosis of human and animal fascioliasis by *Fasciola hepatica* and *F. gigantica*. *Acta Tropica* **111**, 150–159.
- 628 Vobis, M., D'Haese, J., Mehlhorn, H., Mencke, N., Blagburn, B.L., Bond, R., Denholm,
- 629 I., Dryden, M.W., Payne, P., Rust, M.K., Schroeder, I., Vaughn, M.B. & Bledsoe, D.
- 630 (2004) Molecular phylogeny of isolates of *Ctenocephalides felis* and related species based
- on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding
- 632 primers. *Parasitology Research* **94**, 219–226.
- 633 Whiting, M.F. (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of
- 634 Mecoptera and Siphonaptera. *Zoologica Scripta* **31**, 93–104.
- 635 Whiting, M.F., Whiting, A.S., Hastriter, M.W. & Dittmar, K. (2008) A molecular
- phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. *Cladistics* 24,
 637 677–707.

- Zhu, Q., Hastriter, M.W., Whiting, M.F. & Dittmar, K. (2015) Fleas (Siphonaptera) are
 Cretaceous, and evolved with Theria. *Molecular Phylogenetics and Evolution* 90, 129–
 139.
- Zurita, A., Callejón, R., De Rojas, M., Gómez-López, M.S. & Cutillas, C. (2015)
 Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae:
 Stenoponiinae) from the Canary Islands: taxonomy and phylogeny. *Bulletin of Entomological Research* 104, 704–711.
- 645 Zurita, A., Callejón, R., de Rojas, M., Halajian, A. & Cutillas, C. (2016) Ctenocephalides
- *felis* and *Ctenocephalides canis*: introgressive hybridization?. *Systematic Entomology* 41,
 567–579.
- 648 Zurita, A., Callejón, R., de Rojas, M. & Cutillas, C. (2018a) Morphological and molecular
- 649 study of the genus Nosopsyllus (Siphonaptera: Ceratophyllidae). Nosopsyllus barbarus
- 650 (Jordan & Rothschild 1912) as a junior synonym of *Nosopsyllus fasciatus* (Bosc, d'Antic

651 1800). *Insect Systematic and Evolution* **49**, 81–101.

- 652 Zurita, A., Callejón, R., de Rojas, M. & Cutillas, C. (2018b) Morphological, biometrical
- and molecular characterization of Archaeopsylla erinacei (Bouché, 1835). Bulletin of
- 654 *Entomological Research* 22, 1–13.
- 655 Zurita, A., Callejón, R., García-Sánchez, Á.M., Urdapilleta, M., Lareschi, M., Cutillas,
- 656 C. (2019) Origin, evolution, phylogeny and taxonomy of *Pulex irritans. Medical and*
- 657 *Veterinary Entomology* **33**, 296–311.
- 658 **Figure captions**
- 659 Figure 1: Morphological characteristics of *Ctenophthalmus* sp, *Ctenophthalmus baeticus*
- 660 boisseauorum and Ctenophthalmus apertus allani. A- Pronotal ctenidia (black arrow) of
- 661 Ctenophthalmus sp.; B- Head with antennae (black arrow) and genal ctenidia of

662 *Ctenophthalmus* sp (blue arrow); C- Male distal branch of IX sternum (black arrow) of

663 *C. b. boisseauorum*; D- Dorsal processus basimere (black arrow) and ventral processus

basimere (blue arrow) of males of C. b. boisseauorum; E- Male distal branch of IX

- sternum (black arrow) of *C. a. allani*; F- Dorsal processus basimere (black arrow) and
- ventral processus basimere (blue arrow) of males of *C. a. allani*.
- Figure 2: Spermatheca of females of *Ctenophthalmus* sp. analyzed in this study. A small
- prominence at the end of the bulga is arrowed in figures 2D and 2F.
- Figure 3: Variability observed in the shape of the margin of sternum VII of*Ctenophthalmus* sp. females.

Figure 4: Variability observed in chaetotaxy of sternum VII of females belonging to*Ctenophthalmus* sp. assessed in this study.

Figure 5: A. Factor map corresponding to adult *C. b. boisseauorum* (CBBM) and *C. a.*

674 *allani* (CAAM) males from Asturias (Spain). Samples are projected onto the first (PC1,

73%) and second (PC2, 9%) principal components. Each group is represented by its
perimeter. B. Factor map corresponding to adult *Ctenophthalmus* sp. females from

Asturias (Spain). Samples are projected onto the first (PC1, 67%) and second (PC2, 18%)

678 principal components. Each group is represented by its perimeter. CTH1: Females of

679 *Ctenophthalmus* sp. isolated together with *C. b. boisseauorum* males from the same host;

680 CTH2: Females of *Ctenophthalmus* sp. isolated together with *C. a. allani* males from the 681 same host.

Figure 6: Phylogenetic tree of *Ctenophthalmus sp., Ctenophthalmus baeticus boisseauorum* and *Ctenophthalmus apertus allani* assessed in this study (see Table 1) based on concatenated Internal Transcribed Spacer 2 (ITS2), partial cytochrome coxidase subunit 1 (*cox1*) and cytochrome b (*cytb*) gene of mitochondrial DNA inferred using the Bayesian Inference (BI) and Maximum Likelihood (ML) methods and Bayesian topology. The percentage of replicate trees in which the associated taxa clustered together
in the bootstrap test (1,000 replicates) is shown on the branches. The Bayesian Posterior
Probabilities (BPP) are percentage converted.

Figure S1: Phylogenetic tree of *Ctenophthalmus* sp., *Ctenophthalmus baeticus boisseauorum* and *Ctenophthalmus apertus allani* assessed in this study (see Table 1) based on the Internal Transcribed Spacer 2 (ITS2) sequences using the Bayesian Inference (BI) and Maximum Likelihood (ML) methods and Bayesian topology. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown on the branches (B/ML). Bootstrap values lower than 60% are not shown. The Bayesian Posterior Probabilities (BPP) is percentage converted.

Figure S2: Phylogenetic tree of Ctenophthalmus sp., Ctenophthalmus baeticus 697 boisseauorum and Ctenophthalmus apertus allani assessed in this study (see Table 1) 698 based on partial cytochrome c-oxidase 1 (cox1) gene of mitochondrial DNA sequences 699 700 using the Bayesian Inference (BI) and Maximum Likelihood (ML) methods and Bayesian 701 topology. The percentage of replicate trees in which the associated taxa clustered together 702 in the bootstrap test (1,000 replicates) is shown on the branches (B/ML). Bootstrap values lower than 60% are not shown. The Bayesian Posterior Probabilities (BPP) is percentage 703 704 converted.

Figure S3: Phylogenetic tree of *Ctenophthalmus* sp., *Ctenophthalmus baeticus boisseauorum* and *Ctenophthalmus apertus allani* assessed in this study (see Table 1) based on partial cytochrome b (*cytb*) gene of mitochondrial DNA using the Bayesian Inference (BI) and Maximum Likelihood (ML) methods and Bayesian topology. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown on the branches (B/ML). Bootstrap values lower

- than 60% are not shown. The Bayesian Posterior Probabilities (BPP) is percentage
- 712 converted.

713

Table 1. GenBank accession numbers of ITS1, ITS2 and partial *cytb*, *cox1* gene sequencesof individuals of *Ctenophthalmus* sp. (CT), *C. baeticus boisseauorum* (CBB) and *C. apertusallani* (CAA) obtained in this study.

ITS1								
Species/Gender	Sample ID	Host	Number of fleas	Base pairs (bp)	Accession number			
C. a. allani/male	CAA17,76,77	Arvicola scherman	3	888	LR594427			
C. a. allani/male	CAA8, 33, 5-7, 13, 16	Arvicola scherman	7	888	LR594428			
C. b. boisseauorum/male	CBB26, 32, 34	Arvicola scherman	3	889	LR594429			
C. b. boisseauorum/male	CBB 9, 23-24, 28-29, 31, 33	Arvicola scherman	7	889	LR594430			
Ctenophthalmus sp./female	CT24, 30-32	Arvicola scherman	4	889	LR594431			
<i>Ctenophthalmus</i> sp./female	CT23, 25-29	Arvicola scherman	6	889	LR594432			
		TS2						
C. a. allani/male	CAA1, 3, 5-8, 16-17, 76-77	Arvicola scherman	10	492	LR594433			
C. b. boisseauorum/male	CBB26, 28, 32, 34	Arvicola scherman	4	492	LR594434			
C. b. boisseauorum/male	CBB9, 23	Arvicola scherman	2	492	LR594435			
C. b. boisseauorum/male	CBB24, 29, 31, 33	Arvicola scherman	4	492	LR594436			
Ctenophthalmus sp./female	CT23	Arvicola scherman	1	492	LR594437			
Ctenophthalmus sp./female	CT24, 27	Arvicola scherman	2	492	LR594438			
Ctenophthalmus sp./female	CT25, 26, 28-32	Arvicola scherman	7	492	LR594439			
A	(Cox1						
C. a. allani/male	CAA1	Arvicola scherman	1	453	LR594440			
C. a. allani/male	CAA3	Arvicola scherman	1	453	LR594441			
C. a. allani/male	CAA5	Arvicola scherman	1	453	LR594442			
C. a. allani/male	CAA16	Arvicola scherman	1	453	LR594443			
C. a. allani/male	CAA17, 76	Arvicola scherman	2	453	LR594444			
C. a. allani/male	CAA77	Arvicola scherman	1	453	LR594445			
C. a. allani/male	CAA6-8	Arvicola scherman	3	453	LR594446			
C. b. boisseauorum/male	CBB24	Arvicola scherman	1	453	LR594447			
C. b. boisseauorum/male	CBB26	Arvicola scherman	1	453	LR594448			
C. b. boisseauorum/male	CBB28	Arvicola scherman	1	453	LR594449			
C. b. boisseauorum/male	CBB29	Arvicola scherman	1	453	LR594450			
C. b. boisseauorum/male	CBB34	Arvicola scherman	1	453	LR594451			
C. b. boisseauorum/male	CBB8, 23, 31-33	Arvicola scherman	5	453	LR594456			
Ctenophthalmus sp./female	CT23-24	Arvicola scherman	2	453	LR594452			
Ctenophthalmus sp./female	CT25	Arvicola scherman	1	453	LR594453			
Ctenophthalmus sp./female	CT26	Arvicola scherman	1	453	LR594454			
Ctenophthalmus sp./female	CT27	Arvicola scherman	1	453	LR594455			
Ctenophthalmus sp./female	CT28	Arvicola scherman	1	453	LR594457			
Ctenophthalmus sp./female	CT29	Arvicola scherman	1	453	LR594458			
Ctenophthalmus sp./female	CT30-32	Arvicola scherman	3	453	LR594459			
^		Cytb						
C. a. allani/male	CAA5	Arvicola scherman	1	374	LR594464			
C. a. allani/male	CAA3	Arvicola scherman	1	374	LR594465			
C. a. allani/male	CAA16	Arvicola scherman	1	374	LR594466			
C. a. allani/male	CAA1, 6-8, 17, 76-77	Arvicola scherman	7	374	LR594467			
C. b. boisseauorum/male	CBB9	Arvicola scherman	1	374	LR594468			
C. b. boisseauorum/male	CBB26	Arvicola scherman	1	374	LR594469			
C. b. boisseauorum/male	CBB29	Arvicola scherman	1	374	LR594470			
C. b. boisseauorum/male	CBB31	Arvicola scherman	1	374	LR594471			
C. b. boisseauorum/male	CBB23	Arvicola scherman	1	374	LR594472			
C. b. boisseauorum/male	CBB24	Arvicola scherman	1	374	LR594473			
C. b. boisseauorum/male	CBB28	Arvicola scherman	1	374	LR594474			
C. b. boisseauorum/male	CBB32	Arvicola scherman	1	374	LR594475			
C. b. boisseauorum/male	CBB33	Arvicola scherman	1	374	LR594476			
C. b. boisseauorum/male	CBB34	Arvicola scherman	1	374	LR594477			
Ctenophthalmus sp./female	CT25	Arvicola scherman	1	374	LR594478			
Ctenophthalmus sp./female	CT30, 32	Arvicola scherman	2	374	LR594479			
Ctenophthalmus sp./female	CT23-24	Arvicola scherman	2	374	LR594480			
Ctenophthalmus sp./female	CT28, 31	Arvicola scherman	2	374	LR594481			
Ctenophthalmus sp./female	CT26-27, 29	Arvicola scherman	3	374	LR594482			

716	Ctenophthalmus baeticus boisseauorum /males				Ctenophthalmus apertus allani/males						
717		MIN	MAX	Mean	SD	VC	MIN	MAX	Mean	SD	VC
718	TL(mm)†	1.7	2.2	2.0	0.2	10	1.4	2.0	1.8	0.2	11
719	TW(mm)	0.5	0.7	0.6	0.1	16	0.5	0.7	0.6	0.1	16
720	HL(µm)	234	316	291	20	7	246	311	284	19	7
721	HW(µm)	176	205	188	6	3	170	199	183	9	5
722	LDBS9(µm)†	165	204	187	11	6	197	216	208	7	3
723	WDBS9(µm)†	31	66	42	8	19	16	28	23	4	17
724	LPBS9(µm)	61	204 85	186 75	11 7	6 9	63	85	75	19 6	8
725	WDPB(µm)†	33	47	40	4	10	26	42	35	5	14
726	LVPB(µm)	68	89	79	7	9	73	89	85	5	6
727	WVPB(µm)†	31	47	41	5	12	19	26	22	2	9
727	DSETDPB(µm)†	21	42	28	5	18	12	21	17	3	18
728	WBB(µm)	75	106	85	8	9	68	92	79	6	8
729	PROTW(µm)	71	101	87	8	9	78	94	82	4	5
730	MESOW(µm)†	85	200	162	26	16	122	200	161	23	14
731	METW(µm)†	87	118	107	8	7	78	99	89	6	7

Table 2. Biometrical data of males of *Ctenophthalmus baeticus boisseauorum* and *Ctenophthalmus apertus allani* analyzed in this study.

TL = total length, TW = total width, HL = total length of the head, HW = total width of the head, LDBS9 = total length of the distal branch of the IX sternum, WDBS9 = total width of the distal branch of the IX sternum, LPBS9
a = total length of the proximal branch of the IX sternum, LDPB = total length of the dorsal processus basimere, WDPB = total width of the dorsal processus basimere, LVPB = total length of the ventral processus basimere, WVPB = total width of the ventral processus basimere, DSETDPB = Distance between the two setae of the dorsal processus basimere, WBB = total width of the basimere basis, PROTW= total width of the prothorax, MESOW = total width of the mesothorax, METW = total width of the metathorax, MAX = maximum, MIN = minimum, SD = standard deviation, Mean = arithmetic mean, VC = coefficient of variation (percentage converted), † = Significant differences between *C. b. boisseauorum* and *C. a. allani* males (P<0.005).

739

740

⁷³²

	Ctenophthalmus sp./females (isolated together with C. b. boisseauorum males from the same bost)				<i>Ctenophthalmus</i> sp./females (isolated together with <i>C. a. allani</i> males from the same host)					
	MIN	MAX	Mean	SD	VC	MIN	MAX	Mean	SD	VC
TL(mm)	2.1	2.6	2.4	0.1	4	1.8	2.7	2.1	0.3	14
TW(mm)	0.7	0.8	0.8	0.1	13	0.6	0.8	0.7	0.1	14
HL(µm)	251	281	270	11	4	251	293	275	14	5
HW(µm)	199	246	225	18	8	234	287	246	17	7
BULGAL(µm)	63	89	79	9	11	71	96	78	9	11
BULGAW(µm)	42	61	50	6	12	45	59	52	5	10
APEHILL(µm)	35	59	46	6	13	40	52	46	5	11
DBMV(µm)	94	235	159	38	24	85	188	148	36	24
PS7L(µm)	12	94	56	26	46	35	141	69	43	62
PROTW(µm)	89	118	102	8	8	82	110	97	9	9
MESOW(µm)†	153	223	195	22	11	118	216	182	31	17
METW(µm)	94	129	117	12	10	99	118	107	6	6

TL = total length, TW = total width, HL = total length of the head, HW = total width of the head, BULGAL = total length of the bulga, BULGAW = total width of the bulga, APEHILL = total length of the apex of the hilla, DBMV =
distance from bulga to ventral margin of the body, PS7L = total length of the VII sternum prominence, PROTW= total width of the prothorax, MESOW = total width of the mesothorax, METW = total width of the metathorax, MAX = maximum, MIN = minimum, SD = standard deviation, Mean = arithmetic mean, VC = coefficient of variation (percentage converted), † = Significant differences between the two groups of females (P<0.005).

COX1	<i>C. a.</i> <i>allani/</i> males LR594440- LR594446	C. b. boisseauorum/males LR594447- LR594451, LR594456	Ctenophthalmus sp./females LR594452- LR594459	C. calceatus cabirus MH142441	C. cryptotis KM890939	C. congeneroides congeneroides KM890918	C. dolichus dolichus MF000657
<i>C. a. allani</i> /males LR594440- LR594446	98.7-100						
C. b. boisseauorum/males LR594447- LR594451, LR594456	98.7-100	99.3-100					
<i>Ctenophthalmus</i> sp./females LR594452- LR594459	98.2-99.8	98.9-100	98.7-100				
C. calceatus cabirus MH142441	85.7-86.3	86.1-86.3	85.4-86.3	-			
C. cryptotis KM890939	89.4-90.1	89.6-90.1	86.5-87.4	85.9	-		
C. congeneroides congeneroides KM890918	88.1-88.5	88.1-88.5	87.9-88.5	87.7	88.1	-	
C. dolichus dolichus MF000657	86.8-87.4	86.8-87.4	89.4-90.3	85.0	90.1	87.4	-

Table 4. Similarity observed among all the partial *cox1* mtDNA gene sequences of different species belonging to *Ctenophthalmus* sp. obtained in this work and retreived from Genbank database. Values are given in percentages.

СҮТВ	<i>C. a.</i> <i>allani/</i> males LR594464- LR594467	C. b. boisseauorum/males LR594468- LR594477	Ctenophthalmus sp./females LR594478- LR594482	C. cryptotis KM890672	C. congeneroides congeneroides KM890651	C. sanborni KM890607
<i>C. a. allani</i> /males LR594464- LR594467	98.7-100					
C. b. boisseauorum/males LR594468- LR594477	98.4-100	98.7-100				
<i>Ctenophthalmus</i> sp./females LR594478- LR594482	98.4-100	98.4-99.7	98.4-100			
C. cryptotis KM890672	86.1-86.4	86.1-86.6	86.1-86.4	-		
C. congeneroides congeneroides KM890651	85.3-86.1	85.3-85.8	85.6-86.1	85.6	-	
C. sanborni KM890607	85.0-85.3	84.8-85.6	85.0-85.6	88.2	85.0	-

Table 5. Similarity observed amog all the partial *cytb* mtDNA gene sequences of different species belonging to *Ctenophthalmus* sp. obtained in this work and retreived from Genbank database. Values are given in percentages.

	ITS1	ITS2	Cytb	cox1				
		PCR Mix						
Forward Primer (10 µM)	5 µl	5 µl	5 µl	5 µl				
Reverse Primer (10 µM)	5 µl	5 µl	5 µl	5 µl				
Template DNA	5 µl	5 µl	5 µl	5 µl				
<i>goTaq</i> G2 Green Master Mix DNA polymerase	25 µl	25 µl	25 µl	25 µl				
Autoclaved distilled water to	50 µ1	50 µl	50 µl	50 µl				
	PCR Primers							
Econyord Drimor	NC5 (Gasser et al.,	senITS2 (Vobis et	CytbF (Dittmar &	Kmt6 (Zhu et al.,				
Forward Fillier	1996)	al., 2004)	Whiting, 2003)	2015)				
Povorso Primor	ITS1rev (Marrugal et	ITS2R (Luchetti et	A5F (Dittmar &	HCO2198 (Folmer et				
Reverse Filmer	al., 2013)	al., 2007)	Whiting, 2003)	al., 1994)				
		PCR Conditions						
Initial Denaturing	94 °C for 5´	94 °C for 5´	95 °C for 12	96 °C for 2´				
Number of cycles	35	35	30	40				
Denaturing	94 °C for 30 ~	94 °C for 60 ~~	95 °C for 30''	94 °C for 30 ~~				
Annealing	58 °C for 30 ~	55 °C for 60 ~~	40 °C for 30 ~~	50 °C for 30''				
Primer extension	72 °C for 90	72 °C for 60 ~~	68 °C for 2´	72 °C for 60				
Final extension	72 °C for 5´	72 °C for 10′	68 °C for 7'	72 °C for 7′				

Table S1. PCR mix, primers and conditions used for each molecular marker sequenced in this study.

Table S2. List of taxa used in the analysis, including GenBank accession numbers and host information.

Species	Family	Host	Accession number	Gen Region	Sequence length
Ophthalmopsylla kiritschenkoi	Leptopsyllidae	Unknown	GQ161960	ITS2	474
Ophthalmopsylla extrema	Leptopsyllidae	Unknown	GQ161956	ITS2	466
Amphipsylla quadratoides auadratoides	Leptopsyllidae	Unknown	AY072642	ITS2	497
Leptopsylla sp.	Leptopsyllidae	Unknown	EF504221	ITS2	459
Leptopsylla sp.	Leptopsyllidae	Unknown	EF504223	ITS2	449
Neopsylla siboi	Ctenophthalmidae	Unknown	AF353113	ITS2	479
Neopsylla teratura	Ctenophthalmidae	Unknown	AF353122	ITS2	479
Neopsylla stevensi	Ctenophthalmidae	Unknown	AY337033	ITS2	479
Neopsylla specialis	Ctenophthalmidae	Unknown	AF353120	ITS2	479
Xenopsylla cheopis	Pulicidae	Rattus sp.	DQ295061	ITS2	356
Xenopsylla cheopis	Pulicidae	Rattus sp.	DQ295059	ITS2	356
Xenopsylla cheopis	Pulicidae	Rattus sp.	LT604121	ITS2	358
Ctenocephalides felis	Pulicidae	Canis lupus familiaris	LN827903	ITS2	327
Ctenocephalides felis	Pulicidae	Canis lupus familiaris	LT853876	ITS2	327
Ctenocephalides canis	Pulicidae	Canis lupus familiaris	LN827905	ITS2	327
Ctenocephalides canis	Pulicidae	Canis lupus familiaris	LN864485	ITS2	327
Archaeopsvlla erinacei	Pulicidae	Erinaceus europaeus	LT703438	ITS2	360
Archaeopsylla erinacei	Pulicidae	Erinaceus europaeus	LT604114	ITS2	361
Pulex irritans	Pulicidae	Lycalopex culpaeus	LT797451	ITS2	324
Pulex irritans	Pulicidae		LT797448	ITS2	322
Pulex irritans	Pulicidae	-	LT797449	ITS2	322
Tunga penetrans	Tungidae	Homo sapiens	DO844716	ITS2	471
Tunga penetrans	Tungidae	Homo sapiens	D0844724	ITS2	473
Tunga trimamillata	Tungidae	Unknown	AY425820	ITS2	470
Stenoponia tripectinata	Tungiduo				
tripectinata Stenoponia tripectinata	Stenoponiidae	Mus musculus	LK937042	ITS2	332
tripectinata Stenoponia tripectinata	Stenoponiidae	Mus musculus	LK937039	ITS2	332
tripectinata	Stenoponiidae	Mus musculus	LK937038	ITS2	332
dzetysuensis	Ceratophyllidae	Unknown	EU770316	ITS2	332
Citellophilus tesquorum altaicus	Ceratophyllidae	Unknown	EU770312	ITS2	332
Nospsyllus fasciatus	Ceratophyllidae	Apodemus sylvaticus	LT158059	ITS2	318
Nosopsyllus fasciatus	Ceratophyllidae	Muridae	LT158060	ITS2	318
Nosopsyllus barbarus	Ceratophyllidae	Rattus sp.	LN881537	ITS2	318
Panorpa meridionalis	Panorpidae	-	LT604124	ITS2	1,121
Echidnophaga gallinacea	Pulicidae	Oryctolagus cuniculus	JN008921	Cox1	650
Echidnophaga myrmecobii	Pulicidae	Oryctolagus cuniculus	JN008919	Cox1	649
Echidnophaga iberica	Pulicidae	Oryctolagus cuniculus	KF479239	Cox1	658
<i>Echidnophaga</i> sp.	Pulicidae	Mammal	JN008922	Cox1	654
Xenopsylla cunicularis	Pulicidae	Oryctolagus cuniculus	KF479238	Cox1	658
Pulex irritans	Pulicidae	Meles meles	KF479246	Cox1	658
Pulex irritans	Pulicidae	Homo sapiens	KF479247	Cox1	658
Pulex irritans	Pulicidae	Canis lupus familiaris	KY048351	Cox1	658
Pulex irritans	Pulicidae	Jackal	MG668627	Cox1	489
Pulex irritans	Pulicidae	Fox	MG668624	Cox1	489
Pulex irritans	Pulicidae	-	LT797468	Cox1	658
Pulex irritans	Pulicidae	-	LT797469	Cox1	658
Pulex irritans	Pulicidae	Lycalopex griseus	LT797466	Cox1	658
Pulex irritans	Pulicidae	Lycalopex culpaeus	LT797467	Cox1	658
Spilopsyllus cuniculi	Pulicidae	Orvetolagus cuniculus	KF479236	Cox1	658
Spilopsyllus cuniculi	Pulicidae	Orvctolagus cuniculus	KF479237	Cox1	658
Archaeopsylla erinacei	Pulicidae	Erinaceus europaeus	LT604116	Cox1	658
Archaeopsylla erinacei	Pulicidae	Erinaceus europaeus	LT604115	Coxl	658
Archaeopsylla erinacei	Pulicidae	Erinaceus europaeus	LT627349	Coxl	658
Archaeopsylla erinacei	Pulicidae	Erinaceus europaeus	LT703440	Cox1	658
Ctenocephalides felis	Pulicidae	Canis lupus familiaris	LN827896	Cox1	600
Ctenocephalides felis felis	Pulicidae	Felis catus	KF684891	Cox1	601
Ctenocephalides felis strongylus	Pulicidae	Canis lupus familiaris	KF684876	Cox1	601
Ctenocephalides orientis	Pulicidae	Canis lunus familiaris	KF684871	Corl	601
Ctenocenhalidas canis	Pulicidae	Canis lunus familiaris	KP684210	Corl	658
Ctenocephalides canis Stenoponia tripectinata	Pulicidae	Canis lupus familiaris	LN827901	Cox1	600
tripectinata	Stenoponiidae	Mus musculus	LK937072	Cox1	677

Stenoponia tripectinata tripectinata Stenoponia tripectinata tripectinata Nosopsyllus fasciatus Nosopsyllus fasciatus Nosopsyllus barbarus Nosopsyllus barbarus Coptopsylla lamellifer Coptopsylla lamellifer Neotyphloceras crassispina Chiliopsylla allophyla Corrodopsylla curvata curvata Corrodopsylla curvata curvata Ctenophthalmus sp. Ctenophthalmus calceatus cabirus Ctenophthalmus dolichus dolichus Ctenophthalmus congeneroides congeneroides Ctenophthalmus cryptotis Panorpa meridionalis Panorpa meridionalis Stenoponia tripectinata tripectinata Ctenocephalides felis Ctenocephalides felis felis Ctenocephalides canis Ctenocephalides felis Xenopsylla cheopis Archaeopsylla erinacei erinacei Archaeopsylla erinacei Archaeopsylla erinacei Archaeopsylla erinacei Pulex irritans Pulex irritans Pulex irritans Pulex irritans Nosopsyllus barbarus Nosopsyllus barbarus Nosopsyllus fasciatus Nosopsyllus fasciatus Nosopsyllus iranis theodori Nosopsyllus laeviceps ellobii Stephanocircus dasyuri Stephanocircus pectinipes Pygiopsylla hoplia Metastivalius mordax Parastivalius novaeguinae Neotyphloceras crassispina chilensis Neotyphloceras crassispina Chiliopsylla allophyla Ctenophthalmus congeneroides Ctenophthalmus cryptotis Ctenophthalmus sanborni Ctenophthalmus sp. Panorpa meridionalis Panorpa meridionalis

Stenoponiidae	Mus musculus	LK937071	Coxl	677
Stenoponiidae	Mus musculus	LK937073	Cox1	677
Ceratophyllidae	Crocidura russula	LT158040	Coxl	658
Ceratophyllidae	Apodemus sylvaticus	LT158041	Coxl	658
Ceratophyllidae	Rattus sp.	LN881549	Coxl	658
Ceratophyllidae	Rattus sp.	LN881550	Coxl	658
Contonsvillidae	Rodent	MG138322	Corl	658
Contonsvillidae	Podent	MG138320	Cox1	658
Ctononbthalmidea	Abrogoma honnotti	KM800044	Cox1	1 107
Ctenophthalmidae	Abrocoma bennetti	KW090944	Cox1	1,197
Ctenophthalmidae	Unknown	KN1891001	Coxi	1,244
Ctenophthainidae	UIIKIIOWII	KK142880	COXI	038
Ctenophthalmidae	Unknown	KM529504	Coxl	615
Ctenophthalmidae	Unknown	KM891003	Coxl	630
Ctenophthalmidae	Lemmniscomys striatus	MH142441	Coxl	659
Ctenophthalmidae	Rattus sp.	MF000657	Cox1	657
Ctenophthalmidae	Unknown	KM890918	Coxl	1,182
Ctenophthalmidae	Unknown	KM890939	Corl	1 218
Panornidae	Chikhowh	L T60/125	Coxl	658
Panorpidae	-	L1004125 LT604126	Cox1	658
	-	11004120	COXI	058
Stenoponiidae	Mus musculus	LN897473	Cytb	374
Pulicidae	Canis lupus familiaris	LN897470	Cytb	374
Pulicidae	Unknown	KM890759	Cytb	369
Pulicidae	Canis lupus familiaris	LN897471	Cytb	374
Pulicidae	Canis lupus familiaris	LT853878	Cytb	374
Pulicidae	Rattus sp.	LT604122	Cytb	374
Pulicidae	Unknown	KM890725	Cytb	369
Pulicidae	Erinaceus europaeus	LT604120	Cytb	374
Pulicidae	Erinaceus europaeus	LT604117	Cytb	374
Pulicidae	Erinaceus europaeus	LT627350	Cytb	374
Pulicidae	Lycalopex culpaeus	LT797476	Cytb	374
Pulicidae	Lycalopex griseus	LT797480	Cyth	374
Pulicidae	-	LT797473	Cyth	374
Pulicidae	_	LT797474	Cyth	374
Ceratophyllidae	Rattus sp	L N897460	Cyth	374
Ceratophyllidae	Rattus sp	LN897462	Cyth	374
Coratophyllidae	Muridaa	LT152040	Cyth	274
Ceretophyllidee	Anodomus subjetious	LT158049	Cyth	274
Ceratophyllidae	Carbillus damumus	L1130043	Cylb	260
Ceratophyllidae	Gerbinus aasyurus	KW1890005	Cylb	209
	Ulikliowi	KW1890720		209
Stephanocircidae	Unknown	KM890619	Cytb	369
Stephanocircidae	Unknown	KM890658	Cyth	369
Pygiopsyllidae	Unknown	KM890657	Cytb	369
Stivaliidae	Unknown	KM890628	Cytb	369
Stivaliidae	Unknown	KM890629	Cytb	369
Ctenophthalmidae	Unknown	KM890613	Cytb	369
Ctenophthalmidae	Unknown	KM890677	Cytb	369
Ctenophthalmidae	Unknown	KM890736	Cytb	369
Ctenophthalmidae	Unknown	KM890651	Cytb	369
Ctenophthalmidae	Unknown	KM890672	Cytb	369
Ctenophthalmidae	Unknown	KM890607	Cytb	330
Ctenophthalmidae	Unknown	KM890749	Cytb	369
Panorpidae	-	LT604127	Cytb	374
Panorpidae	-	LT604128	Cyth	374