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Background & Aims: microRNAs (miRNAs) are deregulated in 

non-alcoholic fatty liver disease (NAFLD) and have been pro- 

posed as useful markers for the diagnosis and stratification of 

disease severity. We conducted a meta-analysis to identify the 

potential  usefulness  of  miRNA  biomarkers  in  the  diagnosis and 

stratification of NAFLD severity. 

Methods: After a systematic review, circulating miRNA expres- 

sion consistency and mean fold-changes were analysed using a 

vote-counting strategy. The sensitivity, specificity, positive and 

negative likelihood ratios, diagnostic odds ratio and area under 

the curve (AUC) for the diagnosis of NAFLD or non-alcoholic 

steatohepatitis (NASH) were pooled using a bivariate meta- 

analysis. Deeks’ funnel plot was used to assess the publication 

bias. 

Results: Thirty-seven studies of miRNA expression profiles and six 

studies of diagnostic accuracy were  ultimately  included  in the 

quantitative analysis. miRNA-122 and miRNA-192 showed 

consistent upregulation. miRNA-122 was upregulated in every 

scenario used to distinguish NAFLD severity. The miRNA expres- 

sion correlation between the serum and liver tissue was incon- 

sistent across studies. miRNA-122 distinguished NAFLD from 

healthy controls with an AUC of 0.82 (95% CI 0.75–0.89), and 

miRNA-34a distinguished non-alcoholic steatohepatitis (NASH) 

from non-alcoholic fatty liver  (NAFL)  with  an  AUC  of  0.78 (95% 

CI 0.67–0.88). 

Conclusion: miRNA-34a, miRNA-122 and miRNA-192 were 

identified as potential diagnostic markers to segregate  NAFL from 

NASH. Both miRNA-122, in distinguishing NAFLD from healthy 

controls, and miRNA-34a, in distinguishing NASH from NAFL, 

showed moderate diagnostic accuracy. miRNA-122 was 

upregulated in every scenario of NAFL, NASH and fibrosis. 

Lay summary: microRNAs  are  deregulated  in  non-alcoholic fatty 

liver disease.  The  microRNAs,  miRNA-34a,  miRNA-122 and 

miRNA-192, were identified as potential biomarkers of non-

alcoholic fatty liver and non-alcoholic steatohepatitis, at different 

stages of disease severity. The correlation between miRNA 

expression in the serum and in liver tissue was inconsis- tent, or 

even inverse. 
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Introduction 
Non-alcoholic fatty liver disease (NAFLD) is characterised by 

excessive fat accumulation without a history of excessive  alco- hol 

intake, and the absence of other known liver diseases, such as 

hepatitis B and hepatitis C virus infection.1–3 NAFLD has been 

described as the hepatic manifestation of metabolic syndrome, 

associated with insulin resistance and genetic susceptibility. 

NAFLD affects 30% to 40% of the United States population,4 2% to 

44% of the European population,5 and 15% to 45% of the Asian 

population,6 while the Hispanic population is the most suscep- 

tible, as up to 45% of this population suffers from NAFLD.7 

Sedentary behaviour, low physical activity and poor diet have 

been defined as  the  ‘‘triple-hit  behavioural  phenotype”,  which is 

associated with cardio-metabolic health, NAFLD and overall 

mortality.8 Moreover, the prevalence of NAFLD in children is 

increasing and was estimated to be approximately 10%.9 NAFLD 

encompasses a wide spectrum of liver damage, ranging from non-

alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis 

(NASH). NAFL is defined as the presence of hepatocyte steatosis 

without evidence of inflammation. It is usually non-progressive, 

while NASH (steatosis with the concomitant presence of inflam- 

mation and ballooning) is often progressive, eventually advanc- 

ing to cirrhosis and hepatocellular carcinoma (HCC).10 

Approximately 2–3% of the general population is affected by 

NASH; this incidence is increased to 20%–30% among obese or 

diabetic individuals.11,12 NASH is the second most common 

indication for  liver  transplantation  in  the  United  States13  and 

is associated with an increased mortality with excess 

cardiovascular-, liver-, and cancer-related deaths.14 Thus, 

improved detection of NASH is urgently needed. Moreover, dis- 

tinguishing both NASH from NAFL and fibrosis from advanced 

fibrosis (>F3) are important goals.1,15,16 

Liver biopsy remains the gold standard for the diagnosis of 

NASH. A common scoring system to distinguish NAFL and NASH 

is the NAFLD activity score, which is defined by the sum score of 

steatosis, ballooning,  and  lobular  inflammation.17  More recently, 

a new scoring system based on the degree of steatosis (S), the 

grade of necro-inflammatory activity (A) and fibrosis (F), also 

known as the SAF score, appears to help distinguish NAFL from 

NASH.18 However, the potential risks of liver  biopsy together with 

sampling and interpretation variability make it 
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unsuitable for screening in the populations at risk. Biomarker 

discovery remains a big challenge because no reliable non- 

invasive disease biomarker can accurately distinguish mild from 

severe histological disease stages. 

MicroRNAs (miRNAs) are non-coding small RNAs capable of 

controlling translation and modulating gene expression at the 

post-transcriptional level. Their impact on gene expression pro- 

files can modify a variety  of biological functions, such  as lipid and 

glucose metabolism and thyroid, adipose tissue, stomach, muscle 

and liver function.19 The miRNAs are very stable because they are 

resistant to degradation by ribonucleases.20 Thus, cir- culating 

miRNAs, i.e., miRNAs detected in serum or plasma, have been 

proposed as attractive diagnostic tools.21 The scope of 

applications associated with miRNAs is becoming broader 

because they are used in different clinical settings, such as early 

disease detection, disease prediction, monitoring of disease pro- 

gression and response to treatment for a wide range of disor- 

ders.22 miRNAs can also  be  found  in  extracellular  vesicles (EVs), 

which are broadly divided into three types: microvesicles, 

apoptotic bodies and exosomes.23,24 

To date, the miRNA expression profiling studies published in 

patients with NAFLD have reported inconsistent results. 

Potentially useful miRNA biomarkers need to be screened and 

identified. Moreover,  no  systematic  review  or  meta-analysis has 

reported the diagnostic accuracy of miRNAs in distinguish- ing 

healthy people and individuals with NAFLD, NAFL, NASH or 

fibrosis. The present study aimed to identify potential biomark- 

ers by analysing miRNA expression profiles and to demonstrate 

the diagnostic accuracy of miRNAs in patients with NAFLD. 

 
 

Materials and methods 
Study identification and selection 

Seven investigators (CHL, JA, AGG, RMV, AR, RMH and RGD) 

worked as three teams and independently searched the 

 
MEDLINE (using PUBMED as the search engine), EMBASE and 

Cochrane databases. Databases were used to identify suitable 

studies that were published up to 2 February 2018. MeSH terms 

and keywords were used, and the search terms were as follows: 

miR, miRNA, microRNA, NAFLD, NASH, fatty liver, steatosis, and 

a combination of those MeSH terms. The searches were limited 

to English-language publications  with  human  subjects.  A manual 

search was conducted by using the references  listed in the original 

articles and review articles retrieved. Oral presentations, 

abstracts and posters from liver disease confer- ences were also 

manually searched to collect all  studies  with both negative and 

positive results. The seven investigators collected all results 

separately. The inclusion criteria were as follows: a) studies that 

obtained miRNA expression profiles in patients with NAFLD or 

NASH; b) studies that reported miRNA diagnostic accuracy for 

NAFLD or NASH; and c) studies that used liver tissue, serum, 

plasma, blood, microvesicle, apoptotic body and/or exosome as 

the samples. The exclusion criteria were as follows: i) duplicate  

reports;  ii)  studies  conducted  in  animals or cell lines; iii) case 

reports, comments and letters  to  the editors; and iv)  systematic  

reviews  or  meta-analyses.  This study was performed according 

to the PRISMA statement (supplementary information).25 

 
Data extraction and quality assessment 

From the full text and corresponding supplemental information, 

seven investigators (CHL, JA, AGG, RMV, AR, RMH and RGD) 

independently extracted miRNAs according to number, type of 

samples (liver tissue, serum, plasma, blood, microvesicle, apop- 

totic body and/or exosome), name of study and year, direction 

of expression difference (up- or downregulated),  sample  size, and 

fold-change from miRNA expression profile studies, as well as 

data from two-by-two tables, cut-off value, sensitivity, speci- ficity, 

AUC, and methodological quality (e.g., patient selection, index test, 

reference standard, flow and timing, patient selection 
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Fig. 1. Flow chart of the current study. NAFL, non-alcoholic fatty liver; NAFLD, NAFL disease; NASH, non-alcoholic steatohepatitis. 
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for the applicable concerns, index text for  the  applicable concerns 

and reference standards for the applicable concerns) from the 

diagnostic accuracy studies. If a  certain  study  used both 

microarray platform, high-throughput sequencing (RNA- seq) and 

quantitative reverse transcription-PCR (RT-qPCR), the fold-

changes were extrapolated from the RT-qPCR results because RT-

qPCR is the most frequently used approach for validation of 

circulating miRNAs and  has  superior  sensitivity and specificity. 

When the same population was published in several journals, we 

retained  only the most  informative  article or complete study to 

avoid duplication. We extracted data from the graphical plots to 

calculate fold-changes, sensitivity and specificity by using 

WebPlotDigitizer (version 4.0.0). According to the Cochrane book,  

the  extracted  median  from  box  plots was directly used as  the  

mean  in  our  meta-analysis  because the median is very similar 

to the mean when the distribution of the data is symmetric.26 The 

extracted data, such as copy number, that could not be converted 

to  fold-changes  are reported as ‘‘not available”. If two 

investigators  disagreed,  a third author (MRG) was consulted. Two 

reviewers (CHL and RMV) independently assessed  the  qualities  

of  eligible  studies by using the Quality Assessment for Studies of 

Diagnostic Accuracy (QUADAS-2) tool.27 

 
Data synthesis 

The present study is reported separately in two main parts, 

namely, the expression profile and the diagnostic accuracy 

performance (Fig. 1). All extracted information was divided 

according to fibrosis severity, NAFLD vs. healthy control, NAFL 

vs. healthy control, NASH vs. NAFL and NASH vs. healthy control. 

Only the miRNAs of expression profile studies from the system- 

atic review that had at least one validation study were included 

in the meta-analysis. The vote-counting strategy, a method of 

ranking potential molecular biomarkers developed by Griffith 

et al.28 and Chan et al.,29 was used in our meta-analysis. Accord- 

ing to this vote-counting strategy,28,29 miRNAs were ranked as 

potential biomarkers based on the following criteria, in order 

of importance: i) the number of studies reporting an miRNA 

as differentially expressed in the same direction; ii) total sample 

size for comparison in agreement; and iii) the mean fold-change 

from all the studies reporting on differential expression that 

were in agreement and reported the fold-change data. The total 

sample size was considered more important than the average 

fold-change because many studies do not report fold-change. 

Moreover, a three-step mean fold-change estimation and 

calculation were performed to increase the reliability and make 

comparisons between steps (Fig. 1). If the results were very 

different between the second and third steps, the second step, 

in which the mean fold-changes were calculated with the 

histograms, was considered more reliable than the third step, 

in which the mean fold-changes were estimated and calculated 

with the box plots and scatter plots. 

The  diagnostic  accuracy  meta-analysis  included   studies only 

if the miRNA was included in three or more published 
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Fig. 2. Flow chart summarizing the selection of eligible studies. NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis. 
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Table 1. Database search for studies that reporting miRNA expression profiles in patients with NAFLD. 

Studies reporting miRNA expression profiles (part A) 
 

miRNA Number and reference miRNA Number and reference miRNA Number and reference 

miRNA-10b 144 miRNA-30b-5p 158 miRNA-125 222,41 

 
miRNA-16 240,41 miRNA-33b* 156 miRNA-127 186 

miRNA-22-3p 188 miRNA-34a-5p 238,47 miRNA-132 189 

miRNA-24-2-5p 188 miRNA-99a-5p 142 miRNA-139-5p 258,83 

miRNA-27b-3p 142 miRNA-101 136 miRNA-144 185 

miRNA-29a-3p 188 miRNA-122 1522,33,37,39–41,43,44,51,53–56,58,83 miRNA-146b 533,38,41,44,83 

Studies reporting miRNA expression profiles (continue, part B) 

miRNA Number and reference miRNA Number and reference miRNA Number and reference 

miRNA-150 246,83 miRNA-224 234,55 miRNA-451 233,54 

miRNA-181b 194 miRNA-296-5p 195 miRNA-572 143 

miRNA-192 322,41,51 miRNA-331-3p 183 miRNA-575 143 

miRNA-197 144 miRNA-375 222,47 miRNA-642 183 

miRNA-200a 197 miRNA-379 186 miRNA-1290 142 

miRNA-200c 190,97 miRNA-411 186 

NAFLD, non-alcoholic fatty liver disease. 

 
 

studies. The heterogeneity among these studies was measured 

by the Q test and Higgins’s inconsistency index (I2). A p value of 

more than 0.05 and I2 value more than 50% indicated sig- 

nificant heterogeneity.30 A subgroup analysis was performed to 

explore the heterogeneity. A bivariate regression approach was 

used to estimate the overall sensitivity and  specificity with 95% 

CIs and a summary receiver operating characteristic (sROC) 

curve approach by using Meta-DiSc v1.4 (Clinical Biostatistics 

Unit, Ramón y  Cajal  Hospital,  Madrid,  Spain). We also 

calculated the positive and negative likelihood ratios and the 

diagnostic odds ratio (DOR).31 We assessed the poten- tial 

publication bias by using Deeks’ funnel plot asymmetry test, in 

which p <0.10 indicated statistical significance.32 We used 

STATA version 14 (Stata Corp; College Station, TX) with the 

program ‘‘Midas” for Deeks’ funnel plot.  All  statistical tests 

were two-sided, with p values ≤0.05 denoting statistical 

significance. 

For further  details regarding  the methods used, please refer 

to the CTAT table and supplementary information. 

 
 

Results 
Research results and data extraction 

The manual search of conference abstracts was from the year 

2008 to 2018 because the first original article33 on the current 

topic was published earlier in 2008. As seen in the flow diagram of 

article selection, a total of 702 studies were excluded. Thirty- 

seven original articles and six conference abstracts containing 

expression profile studies were included in the  systematic review, 

and 20 studies were ultimately included in the meta- 

 
 

analysis. Five studies that utilised miRNA expression profiles to 

distinguish fibrosis stage and 12 studies that performed diag- 

nostic accuracy experiments were included in the systematic 

review, with six studies ultimately included in the meta- 

analysis. (Fig. 2) Four clinical setting scenarios were used, and 

the patients were divided as follows: NAFLD vs. healthy controls 

(833 total patients), NAFL vs. healthy controls (358 total 

patients), NASH vs. NAFL (406 total patients) and NASH vs. 

healthy controls (462 total patients). Studies that did not report 

the specific experimental design were not included in this meta- 

analysis.34–39 In the diagnostic accuracy meta-analysis, three 

studies reported miRNA-122, and three studies addressed 

miRNA-34a. With regard to data extraction, six studies22,40–44 

directly reported the fold-changes in the original papers, we 

extracted the fold-changes from the histograms of eight 

studies,41,45–50 the fold-changes from the box plots of two stud- 

ies,51,52 and the fold-changes from the scatter plot of one 

study.53 

 
Data analyses: meta-analysis of miRNA expression profiles 

Thirty-seven studies reporting miRNA expression profiles were 

analysed (Table 1). Twenty studies with miRNAs that had been 

included in validation studies in each subcategory of the differ- 

ent clinical scenarios were included in the meta-analysis 

(Table 2). The correct method of extracting data from the 

graphical plots was confirmed by our results, because the mean 

fold-changes in the third step were very similar to those in the 

second step. Therefore, all the fold-changes were interpreted 

along with the mean fold-changes determined in the third step 

(if available) to combine the greatest number of published 

 

  

      

      

      

      

      

      

      

      

      

      

      

    

    

      



Table 2. Meta-analysis of expression profile studies that had at least one validation study. 
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Orange, fold-change already reported in original papers. Green, fold-change directly extracted and calculated with reported box plot (mean ± standard deviation). Yellow, fold-change extracted, estimated, calculated with reported 

histogram (median ± interquartile). Red, fold-change extracted, estimated and calculated with reported scatter plot. By using the vote-counting strategy, the total sample size was considered more important than the average fold- change. 

Three steps of combining mean fold-change were used. First step: studies reported fold-change directly; second step: studies together with fold-change extracted with box plot; third step: studies together with fold-change extracted with 

histogram and scatter plot. 

NAFL, non-alcoholic fatty liver; NAFLD, NAFL disease; NASH, non-alcoholic steatohepatitis. 

 



  
 
 

studies, which included eight studies on miRNA-34a and 11 

studies on miRNA-122. Thus, the results on those two miRNAs 

were considered more reliable because they were  included  in the 

greatest numbers of reported studies. miRNA-122 had the most 

consistent upregulation in every scenario used to distin- guish 

different clinical settings, such as NAFLD vs. healthy con- trols 

with a total sample size of 605 and a mean fold-change of 

6.73 (range 5.10–7.90), NAFL vs. healthy controls with a total 

sample size of 202 and a mean fold-change of 4.31 (range 2.72–

5.70), NASH vs. NAFL with a total sample size of 336 and a mean 

fold-change of 2.61 (range 2.00–3.10) and NASH vs. healthy 

controls with a total sample size of 410 and a mean fold-change of 

7.28 (range 3.04–10.87). miRNA-34a demon- strated a consistent 

upregulation in scenarios of NAFLD vs. healthy controls, with a 

total sample size of 605 and a mean fold-change of 4.42 (range 

2.80–6.04). The upregulation of miRNA-192 showed consistency 

and usefulness in distinguish- ing NASH from NAFL, with a total 

sample size of 262 and a mean fold-change of 2.10 (range: 1.93–

2.27). The upregulated miRNA- 21 could be used to distinguish 

NASH  from  healthy  controls with both serum samples (a total 

sample size of 216 and a mean fold-change of 1.85 [range 1.46–

2.23]) and liver samples (a total sample size of 23 and a mean fold-

change of 4.43 [range 4.31– 4.51]). Notably, there was almost 

always an inconsistent or even inverse correlation between the 

direction of miRNA expression in the serum and in the liver. For 

example, serum miRNA-122 was always upregulated in NAFLD vs.  

healthy  controls40,41,53,54 but was unchanged in liver tissue,55 and 

miRNA-122 was upreg- ulated in NASH vs. NAFL in  

serum22,40,41,51,56  and  downregu- lated in liver samples.22 

 
Systematic review of miRNAs used to distinguish fibrosis 
stage, diagnostic accuracy of studies and quality assessment 
of meta-analysis 

Five studies that reported miRNAs to distinguish fibrosis stage 

(Table 3) and 12 studies that reported diagnostic accuracy 

 
(Table 4) were included in the systematic review. Quality 

assessment was performed in accordance with the modified 

QUADAS-2 criteria (Table 5). Details of the quality  assessment are 

also reported (supplementary information).  The  major biases 

identified in the studies were in ‘‘patient selec- tion”40,53,56,57 and 

‘‘flow and timing”.40,41,56 None of the studies reported the interval 

between the index text and reference stan- dard because 

diagnostic performance tests were not the main objective of those 

studies.40,41,53,56–58 

 
Data analyses: meta-analysis of diagnostic accuracy 

miRNA-122 showed an AUC of 0.82 (95% CI 0.75–0.89) and DOR 

of 9.1 (95% CI 4.63–17.96) in the diagnosis of NAFLD vs. healthy 

controls. (Fig. 3A) miRNA-34a showed an AUC of 0.78 (95% CI 

0.67–0.88) and a DOR of 6.248 (95% CI 2.69–15.34) for the diag- 

nosis of NASH vs. NAFL. (Fig. 3B). There was no heterogeneity. 

 
Publication bias 

The Deeks’ funnel plots32 failed to reveal any publication bias 

for miRNA-122 (p = 0.53) or miRNA-34a (p = 0.95) (Fig. 3C and 

3D). 

 

Discussion 
In the present study, the potential biomarkers miRNA-122 and 

miRNA-192 were consistently upregulated in NASH vs. NAFL, 

fulfilling a principle requirement for use as biomarkers in clini- cal 

practice. miRNA-122 showed a consistent upregulation in all 

stages of disease severity, indicating that this miRNA should be 

further researched. An inconsistent or inverse correlation was 

found between circulating and  liver-expressed  miRNAs. Although 

a limited number of studies were included, the sROC curves 

showed a moderate diagnostic accuracy (0.7–0.9) of miRNA-122 

in distinguishing NAFLD vs. healthy control patients and of 

miRNA-34a in distinguishing NASH vs. NAFL patients. To our 

knowledge,  this is the first meta-analysis to report  either 

 
Table 3. Systematic review of miRNA expression profiling in patients with NAFLD with different fibrosis stages. 

miRNA Tissue type Patient Study and year Expression direction Fibrosis p values 

miRNA-34a Serum 36 Healthy controls/28 NAFLD Salvoza, 2016 G Healthy controls vs. F0 p = 0.01–0.05 

    G Healthy controls vs. F1 p = 0 0.01–0.05 
    G Healthy controls vs. F2 p = 0.01–0.05 

    ⟷ Healthy controls vs. F3 p = n.s. 
    ⟷ Healthy controls vs. F4 p = n.s. 

    G Healthy controls vs. F0-F2 p = 0.001–0.01 
    G Healthy controls vs. F3-F4 p <0.001 

  67 NAFLD Miyaaki, 2014 D F0-1 vs. F2-4 p = 0.0191 
  23 Healthy controls/50 NAFLD Muangpaisarn, 2017 ⟷ Healthy controls vs. F0-1 p = 0.07 

    G F0-1 vs. F2-4 p = 0.022 

miRNA-122 Serum 36 Healthy controls/28 NAFLD Salvoza, 2016 G Healthy controls vs. F0 p <0.001 

    G Healthy controls vs. F1 p <0.001 
    G Healthy controls vs. F2 p = 0.001–0.01 

    G Healthy controls vs. F3 p = 0.01–0.05 
    ⟷ Healthy controls vs. F4 p = n.s. 

    G Healthy controls vs. F0-F2 p = 0.001–0.01 
    G Healthy controls vs. F3-F4 p <0.001 

  19 Healthy controls/77 NAFLD Pirola, 2015 G F0-1 vs. F2-3 p <0.014 

miRNA-192 Serum 19 Healthy controls/77 NAFLD Pirola, 2015 ⟷ F0-1 vs. F2-3 p = n.s. 

miRNA-221 Liver 26 NASH Ogawa, 2012 G F1 vs. F4 p <0.01 

miRNA-222 Liver 26 NASH Ogawa, 2012 G F1 vs. F4 p <0.01 

miRNA 375 Serum 19 Healthy controls/77 NAFLD Pirola, 2015 ⟷ F0-1 vs. F2-3 p = n.s. 

NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; n.s., not significant. 

 

 

  



 

Table 4. Systematic review of the diagnostic performance of miRNAs in patients with NAFLD or NASH. 

Systematic review of the diagnostic performance of miRNA in patients with fibrosis, NAFLD and NASH (part A) 
 

Significant fibrosis (F ≥2) NAFLD vs. Healthy controls NAFL vs. Healthy controls 

miRNA Study Sample size (HC/P) AUC  miRNA Study Sample size (NAFLD/HC) AUC  miRNA Study Sample size (NAFL/HC) AUC 

miRNA-34a Liu, 2016 48/37 0.716  miRNA-21 Salvoza, 2016 28/36 0.697  miRNA-16 Cermelli, 2011 18/19 0.927 

miRNA-122 Pirola, 2015 77/19 0.666  miRNA-27b-3p Tan, 2014 152/90 0.693  miRNA-122 Cermelli, 2011 18/19 0.926 
 Miyaaki, 2014 67 total 0.82  miRNA-30b Latorre, 2017 41/19 0.71      

     miRNA-34a Salvoza, 2016 28/36 0.781      

     miRNA-99a-5p Tan, 2014 152/90 0.559      

     miRNA-122 Salvoza, 2016 28/36 0.858      

      Auguet, 2016 61/61 0.82      

      Latorre, 2017 41/19 0.68      

     miRNA-122-5p Tan, 2014 152/90 0.729      

     miRNA-125b Salvoza, 2016 28/36 0.661      

     miRNA-139-5p Latorre, 2017 41/19 0.74      

     miRNA-146b Latorre, 2017 41/19 0.67      

     miRNA-148a-3p Tan, 2014 152/90 0.54      

     miRNA-192-5p Tan, 2014 152/90 0.652      

     miRNA-442a Latorre, 2017 41/19 0.7      

     miRNA-1290 Tan, 2014 152/90 0.629      

Systematic review of the diagnostic performance of miRNA in patients with fibrosis, NAFLD and NASH (continue, part B) 

 NASH vs. NAFL     NASH vs. Healthy controls   

miRNA Study Sample size 

(NASH/NAFL) 

AUC  miRNA Study Sample size 

(NASH/HC) 

AUC 

miRNA-34a Liu, 2016 31/13 0.811  miR-99a Celikbilek, 2014 20/20 0.76 
 Cermelli, 2011 16/18 0.764  miR-122 Zhang, 2012 20/34 0.8 
 Muangpaisarn, 2017 33/17 0.67  miR 146b Celikbilek, 2014 20/20 0.75 

miRNA-122 Pirola, 2015 47/30 0.635  miR-181d Celikbilek, 2014 20/20 0.86 
 Cermelli, 2011 16/18 0.698  miR-197 Celikbilek, 2014 20/20 0.77 

miRNA-192 Pirola, 2015 47/30 0.676  miR-572 Zhang, 2012 20/34 0.85 

miRNA-375 Pirola, 2015 47/30 0.72  miR-575 Zhang, 2012 20/34 0.9 

Combination Becker, 2015 87/50 0.81  miR-638 Zhang, 2012 20/34 0.87 
     miR-744 Zhang, 2012 20/34 0.96 

AUC, area under the curve; SF, significant fibrosis; HC, healthy controls; NAFL, non-alcoholic fatty liver; NAFLD, NAFL disease; NASH, non-alcoholic steatohepatitis; Combination: combination of miRNA-21, miRNA-122 and miRNA- 

192. 



 
 
 
 
 
 
 
 
 

Symmetric SROC 
AUC = 0.7783 

SE (AUC) = 0.0529 

Q* = 0.7171 

SE(Q*) = 0.0450 

 
 
 
 
 
 
 
 
 

Symmetric SROC 

AUC = 0.8174 

SE (AUC) = 0.0361 

Q* = 0.7513 
SE(Q*) = 0.0323 

  
 
 

Table 5. Quality assessment with QUADAS-2 criteria. 

Study Risk of bias Applicability concerns 
  

Patient selection Index test Reference standard Flow and timing Patient selection Index test Reference standard 

miRNA-122: NAFLD vs. Healthy controls  

Salvoza, 2016 unclear low risk low risk low risk low risk low risk low risk 

Auguet, 2016 high risk unclear low risk unclear high risk low risk low risk 

Latorre, 2017 low risk low risk low risk high risk low risk low risk low risk 

miRNA-34a: NASH vs. NAFL       

Cermelli, 2011 high risk high risk low risk unclear low risk high risk low risk 

Liu, 2016 low risk low risk low risk unclear low risk low risk low risk 

Muangpaisrn, 2014 high risk low risk high risk low risk high risk low risk high risk 

NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis. 
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B miRNA-34a diagnostic accuracy 
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C miRNA-122 Deeks’ funnel plot 

Deeks’ funnel asymmetry test 
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D miRNA-34a Deeks’ funnel plot 

Deeks’ funnel asymmetry test 
p value = 0.95 

Sensitivity SROC curve 
1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Sensitivity SROC curve 
1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.09 

 
0.10 

 
0.11 

 
0.12 

 
0.13 

 
0.15 

 
0.155 

 
0.16 

 
0.165 

 
0.17 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

0.0
 0.2 0.4 0.6 0.8 1.0 

0.14
1 10 100 1,000 1 10 100 1,000 

1-Specificity 
Se: 0.769 (95% CI: 0.687 - 0.839) (I2% = 53.3%; p = 0.117) 

Sp: 0.724 (95% CI: 0.633 - 0.803) (I2% = 0%; p = 0.67) 
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-LR: 0.326 (95% CI: 0.193 - 0.548) (I2% = 54.4%; p = 0.111) 

DOR: 9.122 (95% CI: 4.634 - 17.957) (I2% = 18.8%; p = 0.292) 
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Se: 0.646 (95% CI: 0.533 - 0.749) (I2% = 18.4%; p = 0.294) 

Sp: 0.761 (95% CI: 0.612 - 0.874) (I2% = 17.7%; p = 0.297) 

+LR: 2.56 (95% CI: 1.473 - 4.265) (I2% = 0%; p = 0.41) 

-LR: 0.465 (95% CI: 0.336 - 0.642) (I2% = 0%; p = 0.443) 

DOR: 6.428 95% CI: 2.693 - 15.344) (I2% = 0%; p = 0.591) 

Diagnostic odds ratio Diagnostic odds ratio 

 
Fig. 3.   Diagnostic accuracy of miRNAs. (A) miRNA-122 for NAFLD vs. healthy controls and (B) miRNA-34a for NASH vs. NAFL. Publication bias assessment by Deeks’ 

funnel plot. (C) miRNA-122 and (D) miRNA-34a. NAFL, non-alcoholic fatty liver; NAFLD, NAFL disease; NASH, non-alcoholic steatohepatitis. The heterogeneity 

among these studies was measured by Q test and Higgins’s inconsistency index (I2). A bivariate regression approach was used to estimate the sensitivtiy and 

specificity with 95% confidence intervals (CIs) and a summary receiver operating characteristic (sROC) curve. The publication b ias were assessed by using Deeks’ 

funnel plot asymmetry test, and A p value of 0.10 indicated statistical significance. (This figure appears in colour on the web.) 

 

miRNA expression profiles or diagnostic accuracy in  patients with 

NAFLD. We found consistency in each miRNA expression direction 

and demonstrated combined mean fold-changes according to 

disease severity. We also illustrated the diagnostic performance 

by  using sROC curves.  To avoid  publication bias, we also included 

conference abstracts and posters because negative results are not 

usually published in international jour- nals as original articles. 

The vote-counting strategy we  used helps to avoid publication 

bias by including studies with both negative and positive results. 

Compared with traditional vote- counting strategy studies, we 

further  used  reliable  graphical data extraction software to  

reverse-engineer  raw  numerical data from images of data 

visualizations. The three-step compar- ison of the mean fold-

changes was used to maximise the sample size and further 

strengthened the power of the reliability. 

Most of the differences found in the miRNAs assessed in this 

study show biological plausibility according to the main patho- 

genic mechanisms for NAFLD. miRNAs are involved in the regu- 

lation of lipid metabolism, generation  of  reactive  oxygen species, 

cell differentiation and also in controlling cell inflam- mation, 

proliferation, apoptosis  and  fibrosis,  which  were  all key events 

in the pathogenesis of NASH.23,33,59 To date, miRNA-34a and 

miRNA-122 have been the most investigated miRNAs in patients 

with NAFLD. miRNA-34a expression showed an association with 

susceptibility to NAFLD in mice fed a high- 

fat diet.60 Anti-sense inhibition of miRNA-34a in obese mice 

improved metabolic gene expression and metabolic outcome.61 

miRNA-34a were upregulated in serum samples of patients with 

NAFLD,40,41,53,54 and its levels of expression were associated 

with disease severity.48 miRNA-122 may play an essential role 

in the regulation of hepatocyte differentiation and liver devel- 

opment.62 Serum miRNA-122 was upregulated in patients with 

NAFLD.40,41,53 Its concentration was correlated with liver histo- 

logical stage, severity of liver steatosis,54,63 inflammation grade, 

and ALT activity.64,65 miRNA-122 was also associated with 

cholesterol- and lipid-metabolising enzymes,64 and it regulated 

metabolic pathways (including cholesterol biosynthesis).65,66 

Furthermore, serum-obtained miRNAs are more tissue-specific 

than tumour-specific,67 supporting our principle objective of 

NASH and fibrosis screening by using circulating miRNAs. 

However, downregulation of miRNA-122 has been observed in 

HCC, often in advanced tumours associated with a poor progno- 

sis.68 Boeri et al. found that a partially different set of miRNAs 

were dysregulated in plasma before and during the disease 

course, suggesting that genes and pathways necessary in the 

earlier phases of disease development are different from those 

required for tumour maintenance and progression.69 Interest- 

ingly, we found that several miRNAs had an inconsistent or 

inverse correlation between circulating and liver tissue expres- 

sion. Pirola et al. also described the same phenomenon with 

1
/r

o
o
t 
(E

E
S

) 

1
/r

o
o
t 
(E

E
S

) 

0.0 



 

1344 



 

miRNA-122 in patients with NAFLD, suggesting that the lower 

expression of miRNA-122 in the liver is a consequence of the 

dynamic regulation of the biological process  that  produces  a high 

rate of miRNA-122 release into the circulation, supporting our 

results.22 Furthermore, the same inverse correlation of EVs and 

liver sample were found by Povero et al.,70 suggesting that the 

miRNAs might have completely different functions and roles 

according to the compartment they are transported in. This new 

insight may enable the future refinement of miRNA in biomark- 

ers, where the miRNA in the different compartments, such  as EVs, 

are better than whole blood miRNA measurements. The same 

inverse correlation was also found for miRNA-101 expres- sion in 

patients with HCC71 and for miRNA-139-5p in patients with 

primary biliary cirrhosis.72 Moreover, Boeri  et  al.  found that 

miRNAs that were dysregulated in liver tissue specimens were 

rarely detected in plasma samples in patients with lung cancer, 

further strengthening the high tissue-specificity of miRNAs and 

suggesting a predictive role of plasma miRNAs independent of 

tissue specimens.69 Future studies need to investigate why this 

occurs and what mechanism is involved. However, a single miRNA 

can have many targets, potentially providing simultaneous 

regulation of many genes; furthermore, many different miRNAs 

can take action synergistically at multi- ple target sites of a single 

miRNA.73 Thus, the approach used in the current study cannot 

overcome this complication. Another investigatory method, such 

as the integrated analysis used  by Zhu et al.,74 may yield a better 

understanding of gene regulation and improve systems-level 

modelling. Moreover, if a single bio- marker is not sufficient to 

precisely distinguish  NASH  from NAFL, those miRNAs combined 

with clinical and laboratory composite scores and metabolomics 

could further improve the diagnostic and prognostic value. 

A problem associated with miRNA expression profiling stud- 

ies is that they lack agreement. The present study helped us to 

address and select potential biomarkers. However, the following 

concerns emerged. First, data normalization used to remove 

variation across samples can minimise systematic technical or 

experimental  variation  and  thus  inappropriate  normalization of 

the data can lead to incorrect conclusions. Several normaliza- tion 

methods have been proposed for miRNA  expression profiling 

analyses including the following: a) one or a few endogenous 

control miRNAs largely invariant in a given sample set (the most 

commonly used); b) global measure of the miRNA expression data 

as the normaliser for large-scale miRNA- profiling data sets; and 

c) spiked-in synthetic control  miRNAs that are introduced into the 

RNA sample at a range of known input amounts (more advanced  

and  rigorous  quality  control). To date, there is no consensus 

regarding the use of control microRNAs for either RT-qPCR, 

microarray, or RNA-seq; the studies that were included in the 

present meta-analysis used different housekeeping genes for 

normalization. Standard nor- malization methods for miRNA need 

to be established carefully and to be scrutinised in specific 

biological contexts. Second, the results of a single study may be 

influenced by variability in sample collection and processing, RNA 

isolation, the expression profiling platform (the inter-platform 

reproducibility is rela- tively low between different platforms)75 

and the method of detection.76 For example, Pirola et  al.22  used  

the  MIHS  106Z PCR array, which interrogates 84 miRNAs; 

however, of  the twelve validated miRNAs in the previous study, 

only four (miR-17, miR-150,  miR-200a  and  miR-224)  were  

reproduced in the study performed by Leti et al.76 In terms of 

choosing 

the platforms, miRNA microarrays  are  less  expensive but  tend 

to have a lower sensitivity and dynamic range and are therefore 

best used as discovery tools; however, RT-qPCR generally has 

the widest dynamic range, highest accuracy and is the only method 

that can easily provide absolute miRNA quantification. Third, 

depending on the goals of miRNA-profiling experiments, 

measurement of different specimens  (liver  tissue,  serum, plasma, 

blood, microvesicle, apoptotic body and exosome, etc.) may also 

contribute to poor reproducibility due to completely different  

functions  and  roles  according  to  the  compartment the miRNA 

is transported in, which must be considered. For example, human 

blood plasma is a challenging specimen type because miRNA  

measurements  were  impacted  by  high  levels of endogenous 

RNase activity, centrifugation conditions, white blood cell counts 

and red blood cell  hemolysis.77  Fourth, although body mass index, 

age and diabetes are known to affect miRNA expression, none of 

the included studies used multivari- ate Cox logistic regression to 

adjust for potential confounders. Fifth, genetic, environmental and 

clinicopathological differences in donor samples were not 

considered. Sixth, most of  the included studies did not use or 

report a priori significant thresh- olds (e.g., cut-off ≥2 or cut-off 

≥2.5). Finally, although RT-qPCR is the gold standard of gene 

expression measurement, the pres- ence of inhibitors in serum 

samples may limit the ability to extract RNA or the ability to 

accurately measure serum miRNAs by RT-qPCR.78 Thus, future 

miRNA expression profiling experi- ments need to address those 

considerations and avoid those limitations. For a deeper 

discussion of miRNA characteristics, sample considerations, 

miRNA-profiling methods and  miRNA data analysis and 

interpretation, we point readers to a recent review77 by Pritchard 

et al. 

Fibrosis is a major risk factor for the development of HCC; 

however, we could not draw conclusions on  whether  miRNAs are 

useful diagnostic tools with which to distinguish fibrosis stages 

because of the limited number of published studies. Nev- 

ertheless, an accurate diagnostic tool based on miRNAs will not 

only aid in NASH diagnosis but will also help mitigate the 

healthcare burden and improve cost-effectiveness, as medical 

resources will be diverted  toward  ‘high-risk’  populations instead 

of whole populations to perform further investigations. More 

importantly, the screening of high-risk populations will ensure a 

high pre-test probability of identifying clinically signif- icant liver 

disease because a lower prevalence of the disease decreases the 

accuracy of the diagnostic methods.79 Moreover, experimental 

populations should be extended from tertiary referral centres to 

populations that attend primary care (better reflecting the 

populations at risk who need to be screened) to avoid selection 

bias.80 Finally, determination of potential miR- NAs to be used as 

biomarkers could facilitate the development of miRNA 

therapeutic target drugs. 

There were several limitations of the present study. First, 

miRNA expression profiling investigations involve several 

heterogeneities due to their use of different profiling platforms, 

qPCR normalization controls and various statistics and bio-

computational analysis methods. To resolve this problem, our 

use of the vote-counting strategy, a ranking system to explore 

candidate molecular biomarkers, and the inclusion of more 

than just statistical significance calculations helped us identify 

the consistencies in miRNA expression from all the findings and 

avoid bias. Second, a disadvantage of the vote- counting 

strategy is that weights of the studies’ contributions were 

ignored, as there were primary studies that did not report 

 

  
 



  
 
 

non-significant results. Even though the use of aggregated raw 

profiling datasets is considered the ideal method of analysing 

miRNA, it is usually unrealistic to accomplish due to the 

unavailability of raw datasets, the low concordance of inter- 

platform results and the large heterogeneity. Therefore, we still 

believe the vote-counting strategy is the best option for the 

meta-analysis of miRNA expression profiling studies. Third, the 

different diagnostic criteria were used to diagnostic NASH 

among the included studies and previous study81 clearly 

indicated the importance of reference standards, study designs 

and cut-off values on the results of diagnostic accuracy experi- 

ments. Finally, a relatively small number of patients were 

included in the individual studies, limiting the strength of the 

conclusions of our meta-analysis, but we hope our meta- 

analysis may have provided a basis for future studies. 

In conclusion,  miRNA-34a,  miRNA-122  and  miRNA-192 were 

identified as potential biomarkers with which to distin- guish 

NASH from NAFL. miRNA-122 demonstrated its  useful- ness  in  

every  scenario  in  distinguishing   disease   severity. Both miRNA-

122, in distinguishing patients with NAFLD from healthy controls, 

and miRNA-34a,  in  distinguishing  patients with NASH from 

those with NAFL, showed moderate diagnos- tic accuracy. 
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