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Abstract
As localization represents the main core of various wireless sensor network applications, several localization algorithms

have been suggested in wireless sensor network research. In this article, we put forward an iterative bounding box

algorithm enhanced by a Kalman filter to refine the unknown node’s estimated position. In fact, several research efforts are

currently in progress to extend the 2D positioning algorithm in WSNs to 3D that reflects reality and the most practical

applications. Subsequently, we replace a large number of GPS-equipped anchors with a single mobile anchor. In our

studies, we consider the type of range-free sensor network exploiting the wireless sensors connectivity. We assess the

performance of our algorithm using exhaustive experiments on several isotropic and anisotropic topologies. Our proposed

algorithm can fulfill the joint goals of algorithm transparency and accuracy for various scenarios by evaluating parameters

such as localization accuracy whilst changing other simulation parameters such as the effect of communication range,

mobile anchor node position and sensor node deployment topology. It has been proven by the results of the experiments

that the proposed algorithm effectively reduces the location error without requiring more equipment or increasing the

communication cost.
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1 Introduction

The wireless sensor network is composed essentially of

sensors capable to collect and transmit data autonomously.

The sensors can be deployed randomly in a defined area to

detect a phenomenon. The applications of this particular

ad-hoc network, wireless sensor network (WSN), are

invading many fields such as the IoT, IIOT, e-health,

e-logistics, e-agriculture, etc. Some of these applications

have potential, such as surveillance of natural parks,

surveillance of nuclear power plants, forest fire detection,

etc. The main purpose of almost all the applications in

WSN is to determine when and where a marked event

occurs which is considered an identifier of that occurrence.

Some of the nodes constituting a WSN environment are

considered anchors that have a stable source of location

information via the global positioning system (GPS). For

computational processing scenarios, we consider the

advancement of power management strategies for better

solutions in particular for low-power WSN using an

alternative method than using several GPS devices for a

low cost and computational effort. In this work, our main

goal is to find an efficient algorithm to achieve highly

accurate data and higher localizable nodes with lower

computational effort, memory size and energy. We are

concerned with the strategy of a mobile anchor node to

reduce hardware costs. Our proposal is based on the

bounding box approach to identify the possible location

area of the unknown node. Also, the proposed approach
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researchers have utilized a range of techniques including

machine learning and neural networks [1–3]. Various types

of fields deployed in WSNs require localization techniques

to be used in different applications. Some applications such

as healthcare treatment, environmental monitoring, and

agricultural management require the deployment of nodes

in three-dimensional (3D) irregularly shaped fields. The

localization of sensor nodes in different types of fields is a

challenge [4]. In 3D fields, network connectivity can be

more diverse compared to the 2D scenarios and WSN

boundary conditions become more important [5]. Range-

free localization algorithms are most appropriate for large-

scale WSNs since they do not require any additional

hardware on the sensor nodes to be used to measure the

radio signal characteristics. The most well-known of these

algorithms are techniques based on hops [6]. These types of

algorithms use only the connectivity between nodes to

determine the minimum number of hops and subsequently

to estimate the distance [7]. Hop-based techniques use the

length of hops between sensor nodes and reference nodes

for the estimation of the location. Also, mobile localization

techniques do not need additional hardware and estimate

the node site area sequentially. The localization with a

mobile beacon in WSN was proposed in various research

works in literature as a solution for sensor nodes to com-

pute their positions in real time. In fact, the unknown nodes

receive three or more signals from the same beacon node

from different locations and calculate their locations by

applying a trilateration or multilateration algorithm [8]. In

this way, we are defining some of the popular range-free

methods employed for localization for WSN with the

presence of mobility. We can mention the most well-

known method Monte Carlo localization (MCL) algorithm

proposed by Lingxuan Hu et al. [9]. Using one mobile

anchor [10], the authors presented the mobile anchor cen-

troid localization (MACL) algorithm for localization in

WSNs. The described algorithm is based on radio fre-

quency connectivity and the centroid method for prelimi-

nary localization via the single mobile anchor. The

considered path planning for the localization process is

spiral trajectory. The former algorithm produced accept-

able results for some WSN deployment scenarios, but due

to the filtering operation, integrated into the algorithm, it is

possible to reject the effect of some anchor positions to

improve the localization accuracy. In [11], the mobile

anchor assisted localization algorithm based on regular

hexagon (MAALRH) is presented. This method is designed

based on the regular hexagon in 2D-WSNs which maxi-

mizes the ratio of localized nodes and minimizes the

average localization errors. Moreover, for overcoming the

irregularity of the communication range and the co-lin-

earity problem, a boundary compensation method (BCM)

is described. Furthermore, different path planning for a

uses an infinite impulse response filter which is a Kalman 
filter that approximates the states of a dynamic system from 
a set of noisy or incomplete information. For wireless 
sensor network localization problem, the KF algorithm 
iteratively refines the positions determined by the bounding 
box algorithm (BBX) in order to improve the accuracy of 
the undetermined node positions. Actually, KF uses the 
dynamic model of the geolocation system, modeled by 
state equations and onboard sensor measurements, to 
obtain an estimate of the state vector that minimizes the 
covariance error. In effect, an important interest oriented to 
mobility that has a major role in such networks. The 
combination of mobile systems and WSNs creates what we 
will be working on, the mobile wireless sensor networks 
(MWSNs). In a large-scale network, the cost value is 
important for the application’s deployment. MWSNs help 
to solve this problem by decreasing the number of anchors 
which costs more than normal nodes. Therefore, every 
localization process needs an anchor node to provide 
information and references to unknown nodes. Conse-
quently, using the range-free method, specifically, the 
connectivity process of all nodes estimates their inter-dis-
tance via the calculation of the lowest number of hops. 
Thus, MWSN is capable of deploying a single anchor in the 
network and determining the positions of unknown nodes 
based on information about the number of hops and the 
path of the anchor. The mobile anchor node trajectory 
could be random or has a predetermined path planning. The 
purpose is to calculate the connectivity information and 
then try to compute the positions of unknown nodes using 
an iterative bounding box. Besides, using a highly utilized 
filter, Kalman Filter, to refine the localization process and 
improve localization accuracy. The rest of the paper is 
organized as follows: After the introduction in Sect. 1, the 
related works will be presented in detail in Sect. 2. As an  
introduction to our algorithm, we represent in Sect. 3 the 
basics of the Kalman filter in general. Section 4 is about 
the proposed algorithm. In Sect. 5, a comparative study 
between the experimental results has been presented and 
analyzed. Finally, we discuss this work and conclude this 
paper and we put forward the future work in Sect. 6.

2 Related works

Wireless sensor networks (WSNs) have become increas-
ingly prevalent in the Internet of Things (IoT) and Indus-
trial Internet of Things (IIoT) due to their ability to exploit 
the capabilities of 5 G networks. Many research efforts 
have been focused on addressing various challenges related 
to WSNs, including location tracking, routing, task allo-
cation, spectral optimization, energy optimization, and 
more. To improve the performance of these networks,



mobile anchor is presented like HILBERT, CIRCLE and

S-CURVE. The research work in [12] presents a mobile

anchor node for localization using the trilateration method

and path planning choice with two objective functions such

as the reduction of localization errors and minimizing the

energy consumption for WSNs. Moreover, the inter-dis-

tance between the mobile anchor and the unknown nodes is

estimated with the RSSI indicator. In addition, the local-

ization errors are analyzed for five trajectories for mobile

anchors like SPIRAL, SCAN, DOUBLE SCAN and HIL-

BERT path. The authors of the paper [13] proposed a

collaborative localization algorithm with bounding

restrictions for wireless mobile networks. The proposed

technique implies trajectory prediction using Newton’s

polynomial interpolation and bounding box. Earlier, most

localization techniques were based on numerical compu-

tation of many network parameters such as transmitter or

receiver power, network connectivity information, trans-

mission range, transmission and reception time, etc. These

parameters have many restrictions, such as environmental

conditions and complications related to the environment.

The Monte Carlo boxed (MCB) [14] localization method

has been proposed by Baggio Aline and Koen Langendoen

where the samples are defined by constructing a box on the

basis of MCL. This algorithm accelerates the design of

position samples, which improves localization accuracy.

Many improvements of MCB are presented in the litera-

ture, such as RSSI-MCB [15], IMCB [16] and MCB-PSO

[17]. Specifically, in range-based cases, many localization

techniques in the literature have concentrated on mini-

mizing localization errors during the localization operation.

In [18], the uncentered Kalman filter (UKF) and particle

filter (PF) were presented based on the Kalman filter (KF)

for localization. The published localization technique can

be used for any kind of wireless sensor network problem

and in particular for Autonomous robot localization.

3 The basics of Kalman-filter

The Kalman filter is a method to estimate parameters of a

system that evolves in time from noisy measurements. This

filter can be found in many fields related to signal pro-

cessing, radar, image processing, etc. An example of the

use of this filter could be the determination of the position

and speed of a vehicle from GPS data provided by several

satellites. The power of this filter is its capability to fix

errors and forecast parameters, both from the sensors and

from the actual model. In fact, in order to implement a

Kalman filter, the system of which we want to estimate its

parameters must be modeled in a linear way. Variants of

the Kalman filter exist to take into account non-linear

models. In a conventional approach for estimation, such as

the least squares method, a single error in the modeling of

the system necessarily leads to an error in the estimation.

The strength of the Kalman filter is that it integrates an

inaccuracy element on the actual model, making it possible

to obtain correct estimations in spite of modeling errors (as

long as these errors remain reasonable). Another strength

of the algorithm is its capacity to determine the average

error of its estimate. Indeed, the Kalman tool provides a

matrix of the estimated parameters, as well as a covariance

matrix of the error. This provides information about the

accuracy of the estimate, which might be valuable in many

different purposes. Another advantage of the Kalman filter

is that the convergence of this error is guaranteed. The

Kalman filter process can be divided into two steps. The

first step of prediction is according to the model of the

system. For this, the Kalman filter uses the previous esti-

mation of values for the system’s parameters and errors and

predicts the new parameters and errors based on the system

model. The second step will update this prediction with the

new measurements. These measurements will allow

obtaining an estimate of the parameters and the error from

the prediction model. The whole process is illustrated in

Fig. 1.

If the model contains errors, this stage of the update will

make it possible to correct them.

4 The proposed algorithm

Kalman filter is generally widely used with range-based

methods for filtering the Received Signal Strength Indica-

tion ‘RSSI’ signal to properly estimate distances. Indeed, in

our case, it is important to carefully consider features of the

hop-based methods such as network coverage, node

mobility and communication range, in order to ensure that

the range-free mobile anchor sensor network is able to

effectively cover and monitor the large scale domain, as

well as achieve accurate nodes location in different sce-

narios. In fact, we propose a novel localization strategy for

wireless sensor networks with a mobile anchor node, uti-

lizing a combination of a Kalman filter and bounding box

localization algorithm (BBLA-KF). Our approach utilizes

connectivity measurement and the nonlinear bounding box

techniques to identify the bounded possible location zone

for the unknown nodes, and then applies the kalman filter

to minimize uncertainty in the connectivity process and

achieve high levels of accuracy in determining the boun-

ded-boxes. This innovative approach holds the potential to

significantly improve localization accuracy in wireless

sensor networks in isotropic and anisotropic 3-Dimensional

fields.



4.1 Mobility method

The WSN exploits one mobile anchor that moves in any

direction following a planned path in the deployment area.

The mobile anchor node can be a vehicle, a robot or a

drone, etc., which is equipped with GPS. As in our case as

illustrated in Fig. 2, the mobile anchor try to detect the

occurrence of target events inside the region of interest and

then assess the positions of the target events.

The mobile anchor node is able to tackle the problem of

the low density of anchors. Communication in a mobile

network does not cost much because only one anchor

communicates its position information. Subsequently, the

rest of the nodes assess their positions using the informa-

tion provided by the mobile anchor. At each position k of

the mobile anchor, as it travels through the network, the

anchor node transmits a packet to its neighboring nodes to

inform them of its current position (xMk, yMk, zMk) and the

minimum hop-count Hk, where k ¼ 1; 2; . . .N. Figure 3 is a

model illustrating an example that calculates the hop count

of the unknown node UN6.

4.2 Mobile 3D bounding box algorithm 3D-
MBBX

The bounding box algorithm makes reference to the con-

struction of a Monte Carlo box (MCB) with a range of

k hops considered. Using a mobile anchor for the local-

ization process is a good alternative to the use of multiple

anchor nodes and reduces the complexity of the wireless

Fig. 1 The Kalman-filter

algorithm

Fig. 2 Localization provided by

mobile anchor node



sensor network. Each time the anchor node travels in the

network, it distributes its information to the connected

unknown nodes. With repeated occurrences of a moving

anchor, unknown nodes recursively approximate their

detection area with a rectangular bounding box and

enhance location accuracy over time. The bounding box

proposed in our algorithm uses cubes to make an estimate

of the locations of the unknown node extended over the 3D

structure of the sensor nodes. Figure 4 shows the principle

of the moving bounding box algorithm.

We notice that each unknown node possesses its own

unique search area computed by the anchor in its trans-

mission range. The purpose of using the bounding box is to

determine the search space of the unknown node, which is

intended to minimize the complexity along with the com-

putation time compared to the trilateration method. Let us

regard a connectivity-based wireless sensor network com-

posed of Nn nodes that are distributed randomly in the area

of interest. The communication range of each sensor node

is set equal to R and the connected sensor nodes are all

networked. As with the original DV-Hop algorithm, the

minimum number of hops between the nodes and the

mobile anchor node is estimated. The 3D bounding box

method searches the possible area where the unknown node

can be placed. Network connectivity measurement and

bounding box localization method are used to identify the

bounded possible location zone. The 3D bounding box

method algorithm exploits cubic shapes as an alternative to

spherical shapes. The 3D-MBBX limits the possible area of

a node’s location. In Fig. 4, we differentiate between the

MQk anchor boxes and the QN bounding box. For each

position of the moving anchor Mk, an anchor box MQk is

set as a cube whose center lies at the position of the anchor

node (xMk,yMk,zMk), with edges of size 2� hMk � R where

hMk is the minimum number of hops between the mobile

node Mk at each position k ¼ 1; 2; 3. . .Na and the unknown

nodes.

The coordinates of the anchor box MQk are defined by

the following system of equations:

x�MK ¼ xMK � hMK � R

xþMK ¼ xMK þ hMK � R

y�MK ¼ yMK � hMK � R

yþMK ¼ yMK þ hMK � R

z�MK ¼ zMK � hMK � R

zþMK ¼ zMK þ hMK � R

8
>>>>>>>><

>>>>>>>>:

ð1Þ

For each anchor node MK , we define the box range MQk

which defines the location of the unknown node as follows:

MQk ¼
x�Mk xþMk

y�Mk yþMk

z�Mk zþMk

2

6
4

3

7
5 ð2Þ

The bounding box Qk determines the intersection of all

Fig. 3 Flooding phase and hop-count values

Fig. 4 3D bounding box

localization method for 3D-

WSN



anchor boxes MQk via the Max-Min algorithm as men-

tioned in the following form:

Qk ¼
maxðx�MKÞ minðxþMkÞ
maxðy�MKÞ minðyþMkÞ
maxðz�MKÞ minðzþMkÞ

2

6
4

3

7
5 ð3Þ

So let Qk be the bounding box of an unknown node UNi

where i is between 1...Nn. Subsequently, the node will

upgrade its bounding box using the constraint set by the

anchor Mk when the anchor moves to Mkþ1 at position

(xMkþ1, yMkþ1,zMkþ1). The recursive rules for updating the

bounding box are given by:

Qk ¼ MQ1 \MQ2. . .MQk�1 \MQk; 8k ¼ 1. . .Na

¼ Qk�1 \MQk

ð4Þ

then,

Qk ¼
x�k xþk
y�k yþk
z�k zþk

2

6
4

3

7
5 ð5Þ

The final location of the unknown node UNi is then cal-

culated as the centroid of the resulting Qk bounding box.

Afterwards, the measured location Xmes ¼
ðxmes; ymes; zmesÞ of the unknown node UNi is yielded by the

centroid of the bounding box of Qk.:

Xmes ¼ 1

2

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

2

6
4

3

7
5 �

xþ

x�

yþ

y�

zþ

z�

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð6Þ

4.3 Kalman filter refinement process

The Kalman filter represents an optimal algorithm to pre-

dict the location of the unknown nodes in the presence of

noisy measurements. The Kalman Filter is then used to

minimize uncertainty produced by the connectivity pro-

cess. Indeed, through time, for each anchor node position,

the Kalman filter refines the measured coordinate of the

unknown node position Xmes
k which is determined by the

mobile bounding box localization approach with the anchor

positionsMk and the covariance of the perceived noise. The

Kalman filter recursively approximates the unknown node

position Xk through the discrete-time equation of state:

Xk ¼ AXk�1 þ wk ð7Þ

wherein Xk ¼ ðxk; yk; zkÞT is the approximate position of

the unknown node when the anchor is at station k, the

vector of process noise wk considers the perturbations on

the position of the unknown node. Similarly, the noise of

the process adopts a Gaussian distribution modeled by a

random noise vector of mean zero and a covariance matrix

Nk. In this scenario, we consider the position of the

unknown node as fixed and unaltered during the localiza-

tion process, so the value of wk is null. The transition

matrix A3�3 = Identity Matrix. For this system, the mea-

surement equation is visualized as follows:

Zmes
k ¼ HXmes

k þ vk ð8Þ

vk�Nð0;RkÞ where Xmes
k ¼ ðxmes; ymes; zmesÞT is the mea-

surement vector given by the moving bounding box process

Qk ¼ Qk�1 \MQk which estimates the measurements at

position k of the anchor in which Xmes
k is the centroid of Qk.

This step is posterior to the flooding phase where the hop-

counts between anchor Mk and unknown nodes are found.

H is the observation matrix with H3�3 = Identity Matrix

and vk is the vector of observation noise supposed to be a

normally distributed vector of random variables with zero

average and covariance matrix R. Considering the two

models the prediction equation and the update equation, the

Kalman filter algorithm iteratively follows the evolution of

the state via the following flowchart (Fig. 5).

5 Simulation results and discussion

The performance evaluation of our BBLA-KF algorithm is

performed by studies in the case of a 3D-WSN for an

isotropic shape and in the case of a 3D-C form for an

anisotropic shape. The impact of the change of the 3D-

WSN properties on the results of the localization is ana-

lyzed by evaluating the average localization error (ALE)

that is presented by the next expression:

ALE ¼
PN

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxk;mes � xkÞ2 þ ðyk;mes � ykÞ2 þ ðzk;mes � zkÞ2
q

R� N

ð9Þ

This section presents some metrics that compare our pro-

posed method’s performance with other methods in dif-

ferent situations. Performance measures are produced by

simulation through the MATLAB software, the results are

compared to other algorithms of localization like RRBL

[19], OIDVHop [20], PERLA [21], I3D-DVLAIN [22] and

DV-Hop-3D [23]. These algorithms are selected as a

combination of the classical and the latest hop-based

methods. Consequently, we evaluated the reported BBLA-

KF localization algorithm at different isotropic conditions

and node densities, following a similar simulation

methodology, albeit with more in-depth analysis, to that

used in [24] for a simpler two-dimensional protocol. In all



our experiments, we consider that 400 sensor nodes are

uniformly and randomly distributed in a detection area of

100 m�100 m�100 m where there are no obstacles and

considering always a communication range error between

0–10%. A mobile anchor node is set up to handle the

location of unknown nodes. The trajectory of the mobile

anchor node is considered a random waypoint (RWP). In

our simulation case, the positions of the mobile anchor are

considered as a set of virtually fixed anchors.

5.1 Experimental analysis of positioning

We use MATLAB to build our sensing area, in order to

follow up on the point that all nodes are able to be located.

We distribute 340 unknown nodes and 60 anchor nodes

randomly and uniformly in the deployment zone.

Nodes distribution is shown in Fig. 6, where yellow

stars represent anchor node positions, and red (*) represent

unknown nodes. We examine our method in the environ-

ment shown in Fig. 6. Then, we get the result of MATLAB

simulation shown in Fig. 7, where (*) is the true node

location and (o) the estimated location.

From the graph, we can see that the BBLA-KF method

can locate the unknown nodes very well, and give a higher

precision. Figure 8 is the result obtained after conducting a

number of tests for evaluating the convergence of the

BBLA-KF algorithm towards the real positions. From the

figure, we can see the efficiency of our proposed algorithm

to converge.

Figure 9 give the convergence of ALE over the number

of iterations. This behavior may be due to the use of the

Kalman filter in position adjustment, which utilizes a set of

observed measurements through time, including statistical

noise and other imprecisions, and generates estimates of

unknown variables that tend to be more precise.

Figure 10 shows the location error of all unknown

nodes. It can be seen that the biggest error does not exceed

7 m equivalent to 40% of R, communication range. The

error range is acceptable for mobile WSN Localization.

5.2 Comparison of the localization accuracy
of different localization techniques

Following, we present some simulation results that com-

pare the localization accuracy performance of our proposed

algorithm BBLA-KF versus RRBL, OIDVHop, PERLA,

I3D-DVLAIN and DV-Hop-3D. We perform simulations

to compare the performance in the same scenario set in

Sect. 3. The I3DDVLAIN, OIDV-Hop, PERLA, and DV-

Hop-3D algorithms were run for one hundred aleatory

displays and the percentage of localization error for all

trials is shown in Table 1. Compared to other existing

algorithms, the results of our algorithm are better. When

we look at the average value at the end of 100 trials, we

find that BBLA-KF has an average of 23% while I3D-

DVLAIN has an average LE of about 25%, DV-Hop has

about 37%, OIDV-Hop has about 39%, and PERLA has

about 35%. The resulting localization error of BBLA-KF is

the lowest among the five techniques compared. This

shows that our newly proposed algorithm is much more

accurate than the other algorithms. We may justify this

with the fact that our proposed algorithm is built on both

the bounding box method and the Kalman filter to match

the estimated position. Therefore, BBLA-KF performs

better in terms of localization accuracy.

Fig. 5 The proposed BBLA-KF

algorithm



5.3 Influence of the variation of the number
of nodes

We notice that the ALE for BBLA-KF is smaller than

that of I3D-DVLAIN, OIDV-Hop, PERLA and DV-Hop-

3D for the same value of the total number of nodes. The

ALE for DV-Hop-3D, OIDV-Hop, and PERLA decreases

slowly as compared to BBLA-KF. The grade in ALE is

very significant from 100 to 300 nodes for BBLA-KF,

which means that the rate of ALE improvement was ele-

vated at lower node densities and the variation in ALE was

decreased at greater node densities. Also, there is a fall of

around 40% in ALE for BBLA-KF as compared to DV-

Hop-3D and a fall of 20% with respect to I3D-DVLAIN, as

Fig. 6 3D-WSN nodes

distribution

Fig. 7 Localization results of

our proposed algorithm

The performance of the presented algorithms is evaluated 
for various node densities in 3D fields. The number of 
nodes (anchor nodes and unknown nodes) is increased from 
100 to 800 and the ratio of reference nodes is kept at 15%
with a communication range of 18 m. The simulation 
parameters are presented in Table 2.

The simulation results of the influence of the number of 
nodes are illustrated in Fig. 11.



seen in Fig. 11. Figure 12 gives the cumulative distribution

functions (CDFs) of the average localization error for dif-

ferent WSN densities. For example, in this figure, we

notice that for 100 nodes, 14% of the unknown nodes are

localized with an error less than 0.25 of the communication

range ‘‘R’’, while for 200 nodes, only 42% of the unknown

nodes are localized with an error inferior to 0.25R. How-

ever, for 400 nodes the localization error is 91% and for

800 nodes, all the unknown nodes are localized with an

error less than the previous error range. Next, Table 3

resume the CDFs of localization error for different number

of nodes.

We can interpret from the Table 3 that for the case of

100 nodes, there are some nodes non-localizable which is

explained by the fact that the localization error is greater

than the communication range. We also find that as the

number of nodes decreases, the CDFs tend to decrease.

This may be due to the growth in network connectivity,

which is intended to give an accurate estimate of the dis-

tance between nodes in large-scale WSNs. In conclusion,

we can say that increasing the density of nodes improves

the performance of the algorithm by improving the

accuracy.

Fig. 8 Convergence of BBLA-

KF algorithm towards the real

positions

Fig. 9 Average localization

error of unknown nodes over the

number of iterations



comparison of the localization error of the algorithms I3D-

DVLAIN, DV-Hop-3D, OIDV-Hop, PERLA and BBLA-

KF. It can be clearly seen that as the ratio of anchor node

positions increases, the localization error of the different

algorithms decreases because the unknown nodes receive

more accurate information due to the multiple anchor node

positions. Similarly, for various values of anchor node

position ratio, the localization error of BBLA-KF is always

lower than that of other algorithms due to the position

correction applied by the Kalman filter for unknown nodes

(Fig. 13).

5.5 Effect of communication range

Next, we analyze the effect of varying communication

range on the average location error (ALE). The commu-

nication range of sensor nodes varies from 15 to 45 m. The

total number of nodes has been kept to 400 which contains

15% of anchor node positions. Figure 14 presents the effect

of the variation in the communication range on the local-

ization accuracy by comparing with I3D-DVLAIN, DV-

Hop-3D, OIDV-Hop and PERLA algorithms. The ALE of

BBLA-KF is lower than that of I3D-DVLAIN, DV-Hop-

3D, OIDV-Hop and PERLA for each value in the com-

munication range. The decrease in ALE is more severe in

the 15–25 m communication range than in the 35–45 m

range, where the ALE value almost normalizes. There is an

approximately 40% decrease in overall ALE for BBLA-KF

compared to the I3D-DVLAIN algorithm. The effect of

varying communication range on the ALE for our algo-

rithm is also smaller compared to other algorithms. Based

Fig. 10 The error given by each

unknown node

Table 1 Localization error results of hundred trials

Localization erorr

Localization algorithms Max Min Mean

BBLA-KF 0.25 0.10 0.23

I3D-DVLAIN 0.37 0.04 0.25

PERLA 0.38 0.27 0.35

OIDV-Hop 0.45 0.35 0.39

DV-HOP-3D 0.42 0.25 0.37

Table 2 Simulation parameters of nodes number variation

Parameter Value

Sensing field 100 m � 100 m � 100 m

Communication range 18 m

Node amount 100, 200, 300, 400, 500, 600, 700, 800

Anchor ratio 15 %

5.4 Influence of anchor node positions ratio

The communication range of the sensor nodes has been set 
to 18 m with an error ranging from 0 to 10%. The total 
number of sensors in the network is set to 400. Therefore, 
we vary the anchor node positions ratio from 5 to 35%
from the total number of nodes and analyze the result with 
respect to its localization error. Figure 11 shows a



Fig. 11 Average localization

error versus the total number of

sensor nodes

Fig. 12 Cumulative distribution

function (CDF) plots of

different number of sensor

nodes



on these results, we are able to confirm that our algorithm

performs better than other algorithms.

5.6 Effect of anisotropy

BBLA-KF is evaluated in 3D fields. The impact of aniso-

tropy is evaluated by studying the localization results in

anisotropic fields with isotropic fields. Thus, The results of

localization of 3D cubic field and 3D C-shaped field are

compared for our proposed algorithm. Using the MATLAB

simulation experiment, we obtain the experimental results

in Figs. 15 and 16, where the red lines represent the

location error, the blue circles are the reel positions of the

unknown nodes and the red circles are the estimated

positions of the unknown nodes by our algorithm. Fig-

ure 16, the C-shaped anisotropic field and Fig. 15 the

isotropic field give a good ALE which means a good

localization accuracy. The BBLA-KF shows good results

in both isotropy and anisotropic fields, as mentioned in

Table 4, which proves the efficiency of our algorithm.

6 Conclusion

The precision of localization algorithms is a problem,

especially in irregular areas. The majority of existing

algorithms in the literature have been developed for

locating nodes in regular fields, whereas the real-world

applications of WSNs are in irregular fields. In order to

help overcome this gap, we proposed a localization algo-

rithm called BBLA-KF. This hop-based algorithm uses

properties of the Bounding-Box and Kalman-Filter meth-

ods to enhance localization accuracy in a variety of field

types. The results of this algorithm show better localization

accuracy in various 3D fields of different shapes compared

to its counterparts recently published. In future work, we

are planning to implement this algorithm on an actual WSN

to solve the localization problem. Also, We are planning to

Table 3 Localization error CDF’s for different number of nodes

Localization erorr

Number of nodes 0.25R 0.5R R

800 100% 100% 100%

400 91% 100% 100%

200 42% 78% 100%

100 14% 57% 95%

Fig. 13 Localization error

versus percentage of anchor

nodes



Fig. 14 Localization error

versus percentage of

communication range

Fig. 15 Location results for

unknown nodes in 3D cubic

field



indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.
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