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Abstract. The general goal of this work is to obtain upper and lower bounds

for the L2-norm of biorthogonal families to complex exponential functions as-
sociated to sequences {Λk}k≥1 ⊂ C which satisfy appropriate assumptions

but without imposing a gap condition on the elements of the sequence. As

a consequence, we also present new results on the cost of the boundary null
controllability of two parabolic systems at time T > 0: a phase-field system

and a parabolic system whose generator has eigenvalues that accumulate. In

the latter case, the behavior of the control cost when T goes to zero depends
strongly on the accumulation parameter of the eigenvalue sequence.

1. Introduction and main results. In the last years, an increasing number of
authors have addressed the problem of the null controllability of coupled parabolic
systems with less controls than equations (see [3], [19], [4], [31],...). One of the most
important problems in this framework is obtaining necessary and sufficient condi-
tions that allow the system to be controlled with a reduced number of distributed
or boundary controls.

Another important problem is the study of the dependence of the so-called control
cost with respect to the final observation time T > 0, when T is small enough and
the corresponding null controllability result holds at any time T > 0. Regarding this
latter problem, we highlight the works [17], [18], [40], [23], [24], [20], [33], [43], [7],
[15], [30], [13], [14], [12], etc., where the authors study an estimate of the control cost
K(T ) (for the definition, see (9)) in the case of scalar parabolic problems (problems
that, under general assumptions, are null controllable for any T > 0). Most of the
previous works use the moment method to obtain an estimate of the control cost.
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1

http://dx.doi.org/10.3934/xx.xxxxxxx
mailto:manoloburgos@us.es
mailto:ouaili.lydia@gmail.com
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In order to solve both problems, a classical tool in Control Theory is the use of
biorthogonal families to appropriate sequences of exponentials in L2(0, T ;C) and,
to be precise, sharp estimates on the L2-norm of the elements of the biorthogonal
family. We will provide more details in what follows.

Given {Λk}k≥1 ⊂ C, a complex sequence of pairwise distinct elements, we will
use the following notation:

ek(t) = e−Λkt, ∀t ∈ (0, T ), (1)

where T > 0 is fixed. With this notation, we define

Definition 1.1. Let Λ = {Λk}k≥1 ⊂ C be a complex sequence and T > 0. We say
that the family of functions {qk}k≥1 ⊂ L2(0, T ;C) is a biorthogonal family to the
sequence of complex exponentials {ek}k≥1 in L2(0, T ;C), if for every k, n ∈ N, one
has ∫ T

0

ek(t) qn(t) dt = δkn,

where the function ek is given in (1).

1.1. State of the art. In what follows we will give a non-exhaustive state of the art
on conditions of the sequence Λ that ensure the existence of biorthogonal families
to the corresponding complex exponential sequence.

1.1.1. Existence of biorthogonal families and bounds without explicit dependence
on T . The existence of biorthogonal families {qk}k≥1 to sequences of exponentials

{ek}k≥1 (ek is the function given in (1)) strongly depends on the properties of the

sequence Λ = {Λk}k≥1. When Λ = {Λk}k≥1 is a positive real sequence, it is well
known (see [39]) that the existence of a biorthogonal family to the exponentials
{ek}k≥1 in L2(0, T ) is equivalent to the condition∑

k≥1

1

Λk
<∞.

Let us provide some general properties for real or complex sequences Λ appearing
in the literature which imply the existence of sequences {qk}k≥1 biorthogonal to

{ek}k≥1 in L2(0, T ;C) (T > 0) satisfying appropriate estimates.

The first results on existence and estimates of families {qk}k≥1 biorthogonal to

sequences of exponentials {ek}k≥1 was proved in [17], [18] and [23] (see also [27], [41],

[33], [42], [28] and [29]) for increasing real sequences that satisfy

Λk ∈ (0,∞), Λk = A(k + ω)2 + o(k), ∀k ≥ 1, (2)

with A > 0 and ω ∈ R.
The previous results has been extended to the complex case in [24], [4], [5] and [7].

In [5], the authors prove the existence of biorthogonal sequences {qk}k≥1 under gen-

eral assumptions on the sequence Λ and prove appropriate estimates of ‖qk‖L2(0,T ;C).
Assume that the sequence Λ = {Λk}k≥1 ⊂ C satisfies

Λi 6= Λk, ∀i, k ∈ N with i 6= k,

< (Λk) ≥ δ |Λk| > 0, ∀k ≥ 1, and
∑
k≥1

1

|Λk|
<∞, (3)
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for a positive constant δ. Then, the family of exponentials {ek}k≥1 is minimal1 in

L2(0, T ;C) for any T > 0 and, therefore, there exists a biorthogonal family {q̃k}k≥1

to {ek}k≥1 in L2(0, T ;C) (see for instance [39], [37], [4], Theorem 4.1 in [5],...). In

addition, in [5], the authors prove that there exist two positive constants C1 and
C2 (only depending on Λ and T ) such that

C1
|1 + Λk|2

|Λk|
Wk ≤ ‖q̃k‖L2(0,T ;C) ≤ C2

|1 + Λk|2

|Λk|
Wk, (4)

where C1 and C2 are positive constants depending on T and Wk is the infinite
Blaschke product given by

Wk =
1

2<(λk)

∏
n≥1
n6=k

∣∣∣∣Λn + Λk
Λn − Λk

∣∣∣∣ .
Nevertheless, the authors do not provide an explicit dependence of the constants C1

and C2 in (4) with respect to the final time T > 0. This is due to the method used by
the authors to prove (4): these inequalities are first obtained in L2(0,∞;C) (T =∞)
and, then, proved in L2(0, T ;C) (T ∈ (0,∞)) after a contradiction argument (see [5]
for the details).

Observe that, in general, a sequence Λ satisfying (3) does not fulfill the so-called
gap condition:

inf
k,n≥1:k 6=n

|Λk − Λn| > 0, (5)

and, therefore, the elements of Λ could condensate.
From inequality (4), among other properties, in [5], the authors prove a general

result of null controllability for abstract parabolic problems that develop a minimal
time T0 ∈ [0,∞] of controllability: the system is null-controllable at any time T > T0

and not null-controllable for T < T0. This minimal time is related to the Bernstein’s
condensation index of the sequence of eigenvalues Λ = {Λk}k≥1 of the generator of

the semigroup (see [5] and [8] for further details).

1.1.2. Existence of biorthogonal families and bounds with explicit dependence on
T . In [17] the authors provide an approach that allows to construct biorthogonal
families {qk}k≥1 to the sequence {ek}k≥1 in L2(0, T ) (T > 0) with explicit bounds

of the L2-norm of qk with respect to the final time T . To be precise, for increasing
sequences Λ = {Λk}k≥1 ⊂ R satisfying (2), with A > 0 and ω ∈ R, there exist
C0, τ0 ∈ (0,∞) and a family {qk}k≥1 biorthogonal to {ek}k≥1 in L2(0, T ) such that

‖qk‖L2(0,T ) ≤ C0e
C0(
√

Λk+ 1
T ), ∀T ∈ (0, τ0), ∀k ≥ 1, (6)

(see for instance [17] and [33]).
Estimate (6) is known to be optimal with respect the factor exp (C/T ) thanks to

the work [23]: under assumption (2), there exists a positive constant C1 such that
for any sequence {qk}k≥1 ⊂ L2(0, T ) biorthogonal to {ek}k≥1 in L2(0, T ), one has

‖qk‖L2(0,T ) ≥
M(k)√
T
e
C1
T , ∀T > 0, ∀k ≥ 1, (7)

where M(k) is a positive constant only depending on k and L.

1A sequence {xk}k≥1 in a Hilbert space H is said to be minimal if it satisfies xn 6∈ span {xk :

k 6= n} for any n ≥ 1.
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The existence of biorthogonal families to real exponentials that satisfy (6) and (7)
has been also treated by some authors with assumptions on the sequence Λ different
from (2) but always under assumptions on Λ that imply the gap condition (5)
(see [13], [14] and [15]). We will analyse these assumptions in Subsection 2.3.

It is also interesting to remark that in [12] the authors also obtain an upper
bound of the L2-norm of biorthogonal families to real exponentials with explicit
time dependence when the corresponding real sequence does not satisfy the gap
condition (5). In [2], the authors prove similar results when the sequence does not
satisfy (5) but without proving an explicit dependence of the constants on T .

Inequality (6) has also been generalized to the case of complex sequences. Let us
describe the result on existence and estimates of biorthogonal families to complex
exponentials proved in [7]. One has:

Theorem 1.2 ([7]). Let Λ = {Λk}k≥1 ⊂ C be a sequence satisfying assump-

tions (H1)–(H5), in Definition 1.4, the gap condition (5) and∣∣p√r −N (r)
∣∣ ≤ α, ∀r > 0,

(N is the counting function associated with the sequence Λ, defined in (21)), for
some parameters β ∈ [0,∞), ρ, p, α ∈ (0,∞) and q ∈ N. Then, there exists T0 > 0
such that for every T ∈ (0, T0), there exists a sequence of C-valued functions

{qk}k≥1 ⊂ L2(0, T ;C)

biorthogonal to the exponentials {ek}k≥1 in L2(0, T ;C), ek given in (1), which, in
addition, satisfies (6) for a positive constant C0 independent of k and T .

To the best of our knowledge, Theorem 1.2 is the most general result that provides
existence of biorthogonal families {qk}k≥1 to complex exponentials with explicit

estimates of ‖qk‖L2(0,T ;C) with respect to k and T . It is interesting to note that the

sequences under the hypotheses of Theorem 1.2 fulfill assumptions in (3) (see [7])
and, of course, the gap condition (5).

1.1.3. The cost of fast controls. Biorthogonal families play a crucial role in the
moment method. This method was developed by Fattorini and Russell (see [17]
and [18]) to study the boundary null controllability of one-dimensional scalar par-
abolic problems with second order elliptic self adjoint generator. This method uses
in a key way the existence and estimates of biorthogonal families to {ek}k≥1. As a

consequence of inequality (6), in [17], the authors prove that the one-dimensional
heat equation 

∂ty − ∂xxy = 0 in (0, T )× (0, L),

y(·, 0) = v, y(·, L) = 0 on (0, T ),

y(0, ·) = y0 in (0, L),

(8)

(L > 0) is null controllable in H−1(0, L) at any time T > 0 with controls v ∈
L2(0, T ). In fact, they prove the existence of a constant C0 (only depending on L)
such that for any y0 ∈ H−1(0, L) there exists a control v ∈ L2(0, T ) satisfying

‖v‖L2(0,T ) ≤ C0e
C0
T ‖y0‖H−1(0,L) ,

and such that the solution to (8) satisfies y(T, ·) = 0 in (0, L). Thus, the set

CT (y0) :=
{
v ∈ L2(0, T ) : y(T, ·) = 0 in (0, L), y solution of (8)

}
,
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is non empty and we can define the so-called control cost of system (8) at time T :

K(T ) := sup
‖y0‖H−1=1

inf
v∈CT (y0)

‖v‖L2(0,T ). (9)

Therefore, for system (8), one has

K(T ) ≤ C0e
C0
T , ∀T > 0, (10)

for a positive constant C0 only depending on L.
Again, estimate (10) is optimal with respect to the factor exp(C/T ) thanks to

the work [23]: inequality (7) implies the existence of new positive constants C1 and
τ1 (only depending on L) such that the control cost for system (8) satisfies

K(T ) ≥ C1e
C1
T , ∀T ∈ (0, τ1). (11)

Observe that the assumptions on the sequence Λ in Theorem 1.2 are more general
than condition (2). Therefore, Theorem 1.2 can be applied to a large range of
scalar and coupled parabolic problems. In particular, it assures that the system
under consideration is null controllable at any time T > 0 (thanks to the gap
condition (5)). In addition, Theorem 1.2 provides the inequality (10) for the control
cost K(T ) as in the case of scalar parabolic problems (C0 is a positive constant).

In the framework of N -dimensional scalar parabolic problems, [40] and [20] give
an estimate of the cost K(T ) similar to (10) using different approaches: In [40] the
authors use the exact controllability of the wave equation to prove inequality (10)
for the null-controllability of the heat equation. In [20], inequality (10) is deduced
from appropriate global Carleman inequalities for general parabolic operators.

The work [30] is of special relevance because in it, the author studies the cost
of the controllability of the one-dimensional heat equation with a pointwise control
at point x0 and, in this framework, there might exist a positive minimal time of
null-controllability T0 ∈ [0,∞] (which depends on x0 and could take any arbitrary
value in [0,∞], see [16]). In this work the eigenvalues satisfy (5) and the minimal
time comes from the action of the control. In particular, the author proves that, if
T0 > 0, the cost of the controllability at time T > T0 when T is close to T0, may
explode in any arbitrary way.

1.2. Three examples of sequences of eigenvalues without gap condition.
In the framework of the controllability of non-scalar parabolic problems, new phe-
nomena associated with the vectorial nature of the problem arise (hyperbolic phe-
nomena): minimal time of null controllability and dependence of the controllability
result on the position of the control domain (see [5], [6], [38], [34],...). This mini-
mal time may come from the control action itself (as in [16] and [30]) or from the
condensation index of the sequence of eigenvalues of the generator of the semigroup
associated to the system (see [5]). In this latter case, the sequence Λ, in general,
does not satisfy the gap condition (5). Let us provide more details in the case
of systems with a minimal time which comes from the condensation index of the
sequence.

We consider a boundary controllability problem for the generic 2× 2 system
∂ty + Ly = 0 in (0, T )× (0, π),

y(·, 0) = Bv, y(·, π) = 0 on (0, T ),

y(0, ·) = y0 in (0, π),

(12)
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where L is a second order elliptic operator, with domain D(L) = H2(0, π;R2) ∩
H1

0 (0, π;R2), y0 ∈ H−1
(
0, π;R2

)
is the initial datum, B ∈ R2 is the control vector

and v ∈ L2(0, T ) is a scalar control.
The null controllability properties of the first example has been analyzed in [5].

We consider system (12) with L = L1 = − (D1∂xx +A1), with domain D(L1) =
H2(0, π;R2) ∩H1

0 (0, π;R2), and

D1 := diag (1, d), d > 0, d 6= 1, and A1 :=

(
0 1
0 0

)
,

(see system (48)). Observe that the sequence of eigenvalues associated to the oper-

ator L1 is Λ(1) =
{
k2
}
k≥1
∪
{
dk2
}
k≥1

. If
√
d 6∈ Q (and this condition is necessary

for the approximate controllability at time T > 0 of the system (12) with the pre-
vious data, i.e., system (48)), the sequence Λ(1) can be rearranged as an increasing

sequence Λ(1) =
{

Λ
(1)
k

}
k≥1
⊂ R that fulfills property (3). It is clear that Λ(1) does

not satisfy, in general, the gap condition (5). As a consequence, system (48) has

a minimal time T0 = T0(d) ∈ [0,∞] which, for some d, with
√
d 6∈ Q, is positive.

Therefore, the system is not null controllable at time T when T < T0 (see [5] for
the details).

The controllability properties of our second example has been analyzed in [34].
Let us consider system (12) with

L = L2 :=

(
−∂xx 0

0 −∂xx +Q

)
, D(L2) = H2(0, π;R2) ∩H1

0 (0, π;R2), (13)

with Q ∈ L2(0, π). In this case, the sequence of eigenvalues of the vectorial operator

L2 is given by Λ(2) =
{
k2
}
k≥1
∪
{
λ

(2)
k

}
k≥1
⊂ R, where

{
λ

(2)
k

}
k≥1

is the sequence

of eigenvalues of the operator −∂xx + Q with domain H2(0, π) ∩ H1
0 (0, π). When

Q ∈ L2(0, π) satisfies ∫ π

0

Q(x) dx = 0, (14)

then

λ
(2)
k = k2 + εk, ∀k ≥ 1,

with {εk}k≥1 ∈ `2. In particular, lim εk = 0 and Λ(2) does not fulfill the gap con-

dition (5). Assume that λ
(2)
k 6= n2 for any k, n ≥ 1 (that, in fact, is a necessary

condition for the approximate controllability of system (12) with L = L2, see [34]
and Section 5). In this case, the sequence Λ(2) satisfies property (3). Again, sys-
tem (12) has a minimal time T0 = T0(Q) ∈ [0,∞] and there exists coefficients
Q ∈ L2(0, π) such that T0(Q) > 0. Thus, the system is not null controllable at time
T when T < T0 (see [34] and Section 5 for the details).

Let us consider a third example of non-scalar parabolic system. In [22] the
authors study the boundary null controllability of a phase field system of Caginalp
type which is a model describing the transition between the solid and liquid phases
in solidification/melting processes of a material occupying the interval (0, π). For
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that purpose, they consider the nonlinear system

θt − ξθxx +
1

2
ρξφxx +

ρ

τ
θ = f(φ) in (0, T )× (0, π),

φt − ξφxx −
2

τ
θ = −2

ρ
f(φ) in (0, T )× (0, π),

θ(·, 0) = v, φ(·, 0) = c, θ(·, π) = 0, φ(·, π) = c on (0, T ),

θ(0, ·) = θ0, φ(0, ·) = φ0 in (0, π),

(15)

where: θ = θ(t, x) is the temperature of the material; φ = φ(t, x) is the phase-field
function used to identify the solidification level of the material; c ∈ {−1, 0, 1}; f is
the nonlinear term which comes from the derivative of the classical regular double-
well potential W :

f(φ) = − ρ

4τ

(
φ− φ3

)
.

On the other hand, ρ > 0, τ > 0 and ξ > 0 are, resp., the latent heat, a relaxation
time and the thermal diffusivity. Finally, v ∈ L2(0, T ) is the control function, and
θ0, φ0 are the initial data.

The null controllability property of the nonlinear system (15) depends on the
coefficients ρ, τ and ξ. This property is obtained from the corresponding one of
the linear version of (15) around the constant trajectory (0, c) (see [22] for more
details). This linear system is as system (12) with y = (θ, φ) and L = L3 given by

L = L3 := −D2∂xx +A2, with

D = D2 :=

 ξ −1

2
ρξ

0 ξ

 , A = A2 :=


ρ

τ
− ρ

2τ

−2

τ

1

τ

 , B =

(
1
0

)
.

(16)
In this case the sequence of eigenvalues of the operator L3, with domain D(L3) =

H2(0, π;R2) ∩H1
0 (0, π;R2), is given by Λ(3) =

{
λ

(3,1)
k , λ

(3,2)
k

}
k≥1

with

λ
(3,1)
k = ξk2 +

ρ+ 1

2τ
− rk, λ

(3,2)
k = ξk2 +

ρ+ 1

2τ
+ rk, ∀k ≥ 1, (17)

where rk is given by

rk :=

√
ξρ

τ
k2 +

(
ρ+ 1

2τ

)2

, ∀k ≥ 1. (18)

If λ
(3,1)
k 6= λ

(3,2)
n for any k, n ≥ 1 (which in fact is a condition equivalent to the

approximate controllability of the linear system (12) with L = L3), the sequence Λ(3)

can be rearranged in such a way that Λ(3) =
{

Λ
(3)
k

}
k≥1

is an increasing sequence

that satisfies (3) for δ = 1. However, if for some integer j ≥ 1 one has

ξ =
1

j2

ρ

τ
, (19)

then, the eigenvalues of L3 concentrate and one has

inf
k≥1

(
Λ

(3)
k+1 − Λ

(3)
k

)
= 0,

and condition (5) does not hold (see [22] and Section 5 for the details). Therefore, we
have another system where the associated sequence of eigenvalues does not satisfy
the gap condition (5).
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Remark 1.3. The objective of the work [22] is to study the exact boundary con-
trollability to constant trajectories at time T , T > 0 arbitrary, of the nonlinear
system (15). To this end, the authors follow a technique developed in [32]. This
methodology consists of obtaining a null controllability result at time T for sys-
tem (12), with L = L3, and an estimate of the cost of fast controls like (10). In
order to obtain inequality (10) for the linear version of system (15), the authors
assume the condition

ξ 6= 1

j2

ρ

τ
, ∀j ∈ N.

This condition is crucial in [22] because it assures that the sequence Λ(3) satisfies (5)
and the conditions in Theorem 1.2. Thus, system (12), with L = L3, is null control-
lable at time T for any T > 0 and the control cost K(T ) satisfies (10) for a positive
constant C0 only depending on ρ, τ and ξ. �

1.3. Objective. We have seen three examples of sequences of eigenvalues satis-
fying (3) and for which the gap condition (5) fails. The corresponding parabolic
systems could have a positive minimal time of null controllability T0 and the system
would not be null controllable at time T when T ∈ (0, T0). Even if T0 = 0, it is
not clear that the control cost of the associated system fulfills inequality (10) or
inequality (11) and this is an open problem.

In order to obtain sharp estimates of the control cost K(T ) associated to non-
scalar parabolic systems, it is very important to prove sharp estimates for biorthog-
onal families to the exponentials associated to the corresponding sequence of ei-
genvalues of the generator when this sequence does not satisfy a gap condition.
This is the objective of this work: Given a complex sequence Λ = {Λk}k≥1 satisfy-

ing appropriate assumptions and such that inequality (5) does not hold, is there a
biorthogonal family {qk}k≥0 to {ek}k≥1 in L2(0, T ;C) (ek is given in (1)) satisfying

an appropriate estimate for ‖qk‖L2(0,T ;C) which, in particular, provides an estimate

of the control cost K(T )? Understanding the behavior of the control cost K(T )
for general systems as (12) would allow us to extend the null controllability result
in the one-dimensional case to some parabolic systems in any dimension (see for
instance [7, 1]) and to some nonlinear parabolic equations using the method of Liu,
Takahashi and Tucsnak introduced in [32] (see for instance, [22] and [35]).

Summarizing, in this paper we will consider a class of complex sequences Λ =
{Λk}k≥1 ⊂ C that satisfy (3) and for which condition (5) fails. To this class of
sequences we have as our main objective to prove the existence of families {qk}k≥1

biorthogonal to {ek}k≥1 in L2(0, T ;C) that satisfy sharp and explicit estimates of

‖qk‖L2(0,T ;C) with respect to T , Λk and some appropriate parameters associated to

the class of sequences under consideration. As a second objective, we will apply
the previous results to system (12) when L = L2 (see (13)) and L = L3 (see (16))
in order to obtain new results on the cost of the boundary null controllability of
these systems at time T > 0. In this sense, we will see that the accumulation of
the eigenvalues of the operator L2 implies that the corresponding control cost K(T )
has a more explosive behavior when T → 0 than in the scalar parabolic case.

1.4. Main results. Let us now present the main results of this work. To this aim,
let us first introduce the class of complex sequences we will work with throughout
this work:
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Definition 1.4. Let Λ = {Λk}k≥1 be a complex sequence and let us fix constants

β ∈ [0,∞), ρ, p0, p1, p2, α ∈ (0,∞) and q ∈ N. (20)

We say that the sequence Λ is in the class L(β, ρ, q, p0, p1, p2, α), if the following
properties hold:

(H1) Λk 6= Λn for all n, k ∈ N∗ with n 6= k;
(H2) <(Λn) > 0 for every n ≥ 1;

(H3) |=(Λn)| ≤ β
√
<(Λn), for any n ≥ 1;

(H4) {Λn}n≥1 is nondecreasing in modulus, i.e., |Λn| ≤ |Λn+1|, for any n ≥ 1;
(H5) ρ

∣∣k2 − n2
∣∣ ≤ |Λk − Λn| for any n, k ≥ 1 : |k − n| ≥ q;

(H6) p1, p2 ≥ p0 and one has

−α+ p1

√
r ≤ N (r) ≤ α+ p2

√
r, ∀r > 0,

where N is the counting function associated with the sequence Λ, defined by

N (r) = # {k : |Λk| ≤ r} , ∀r > 0. (21)

Remark 1.5. Observe that from the definition of the counting functionN (see (21))
associated with the sequence Λ = {Λk}k≥ ∈ L(β, ρ, q, p0, p1, p2, α) (the parameters

are given and satisfy (20)), we deduce the following properties:

1. For any r > 0, one has

N (r) = k ⇐⇒ |Λk| ≤ r and |Λk+1| > r.

2. If for some k1, k2 ≥ 1 and r1, r2 > 0 one has |Λk1 | ≤ r1 and |Λk2 | > r2, then

k1 ≤ N (r1) and k2 ≥ N (r2) + 1.

We will use these properties throughout this work. �

Remark 1.6. The parameter q ∈ N in Definition 1.4 plays an important role in this
paper. Observe that in this work we are dealing with sequences Λ that, in general, do
not satisfy condition (5) and whose terms could condense. With condition (H5) and
the parameter q we “measure” the maximal cardinal of the condensation groupings
of the sequence Λ, that is to say, the maximal number of elements in Λ around the
term Λk that do not satisfy (H5) and could condense. In fact, the parameter q plays
an important role even in the case of increasing real sequences that satisfy (5). At
the end of Section 2 we will see an example of real sequence Λ that satisfies the gap
condition (5) and for which the parameters p1 and p2 increasingly depend on q.

Sequences not satisfying the gap condition (5) have also been considered in [8]
in the real case. Motivated by extending previous results to sequences satisfy-
ing (H5), the authors introduce the so-called block-moment method. In particular
this method introduces block-biorthogonal families using a similar approach as in [5].
As a consequence, the authors do not obtain the explicit dependence with respect
to T of the L2-norm of the elements of the biorthogonal sequence. �

We will see in Section 2 that the class L(β, ρ, q, p0, p1, p2, α) includes sequences
Λ = {Λk}k≥1 satisfying (5) (e.g., sequences satisfying condition (2)), and also se-

quences where the gap condition (5) fails (for instance, Λ =
{
k2
}
k≥1
∪
{
dk2
}
k≥1

,

with
√
d 6∈ Q, or Λ =

{
k2
}
∪
{
k2 + εk

}
, with {εk}k≥1 ∈ `2, or the sequence consid-

ered in [22], see Remark 1.3).
We are now in a position to establish the first main result of this work. It reads

as follows:
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Theorem 1.7. Let Λ = {Λk}k≥ ∈ L(β, ρ, q, p0, p1, p2, α) be a complex sequence

with parameters satisfying (20). Then, given T > 0, there exists a family of complex
functions {qk}k≥1 ⊂ L2(0, T ;C), biorthogonal to {ek}k≥1 in L2(0, T ;C) (ek is given
in (1)) which, in addition, satisfies

‖qk‖L2(0,T ;C) ≤ H1 exp

[
C

(
1 +H2

√
|Λk|+

(1 + p2)
2

T

)]
Pk, (22)

for every k ≥ 1. In (22), C is a positive constant only depending on |Λ1|, β,
p0 and α (increasing with respect to α), and Pk, H1 = H1(ρ, q, p1, p2) and H2 =
H2(ρ, q, p1, p2, T ) are respectively given by

Pk :=
∏

{n≥1: 1≤|k−n|<q}

|Λk − Λn|−1
, ∀k ≥ 1, if q ≥ 2, (23)

Pk := 1, for every k ≥ 1, if q = 1,
H1(ρ, q, p1, p2) =

(
1 + ρp2

2 + q2

ρ2p4
1

)2q−2

,

H1(ρ, q, p1, p2) =

(
1 + ρp2

2

ρ2p4
1

)2q−2

, when Λ is real

(24)

and 
H2(ρ, q, p1, p2, T ) = 1 + q +

√
T +

1 + q

ρ2p2
1

+ p2,

H2(ρ, q, p1, p2, T ) = 1 + q +
√
T +

1

ρ2p2
1

+ p2, when Λ is real.
(25)

Remark 1.8. It is clear that if Λ = {Λk}k≥1 is a sequence satisfying the assump-

tions in Theorem 1.2 for some parameters β ∈ [0,∞), ρ, p, α ∈ (0,∞) and q ∈ N,
then Λ belongs to L(β, ρ, q, p, p, p, α), and satisfies

|Λk − Λn| ≥ γ > 0, ∀k, n ≥ 1 : k 6= n,

for a positive constant γ. As a consequence, we can apply Theorem 1.7 and de-
duce the existence of {qk}k≥1 ⊂ L2(0, T ;C), a biorthogonal family to {ek}k≥1 in
L2(0, T ;C), satisfying (22). Thanks to the previous gap condition, we get Pk = 1,
if q = 1, or

Pk ≤ γ2−2q, ∀k ≥ 1, if q ≥ 2.

Combining this inequality and (22) we deduce (6) for a positive constant C0 inde-
pendent of k and T . Therefore, Theorem 1.7 is a generalization of Theorem 1.2 to
the case of complex sequences that do not satisfy the gap condition (5).

We will also see in Section 2 that Theorem 1.7 generalizes the results on bounds
of biorthogonal families to exponentials proved in [17], [33], [15], [13] and [14]. �

The quantity Pk in Theorem 1.7 provides a measure of the condensation of the
sequence Λ. When condition (5) holds, then, there exists a constant C > 0 such that
|Pk| ≤ C for any positive integer k. But in general, Pk could have any explosive
behavior with respect to k (see for instance Remark 5.8).

In the next result we will prove that inequality (22) is optimal with respect to
Pk. This is our second main result:



BIORTHOGONAL FAMILIES TO COMPLEX EXPONENTIALS 11

Theorem 1.9. Let Λ = {Λk}k≥ ⊂ C be a complex sequence satisfying

|Λk − Λn| ≤ ν
∣∣k2 − n2

∣∣ , ∀k, n ≥ 1, (26)

for ν > 0, and Λ ∈ L(β, ρ, q, p0, p1, p2, α), for parameters satisfying (20). Then, for
any sequence {qk}k≥1 ⊂ L2(0, T ;C) biorthogonal to {ek}k≥1 in L2(0, T ;C) (ek is
given in (1)), one has

‖qk‖L2(0,T ;C) ≥ max

{
6

π2
Bk e

1
Tν

√
δ |Λ1|+

1

2T
, Ek

}
Pk, ∀k ≥ 3, (27)

where Pk is given in (23),

Bk =


νk+q−2 (q − 1)!

(q + 3)!
(k + q)!

(νT )
k+1

(1 + νT )
2k+q+1

(2k + q − 1)!

(2k + q + 1)!
, if k < q,

ν2(q−1) [(q − 1)!]
2

(q + 3)!

(k + q)!k

(2k − q)!
(νT )

k+1

(1 + νT )
2k+q+1

(2k + q − 1)!

(2k + q + 1)!
, if k ≥ q,

(28)

Ek =


(k + q − 2)!

T k+q−2

(
2(k + q)− 3

2T
+ δ |Λ1|

)1/2

, if 1 ≤ k < q,

(2q − 2)!

T 2(q−1)

(
4q − 3

2T
+ δ |Λk+1−q|

)1/2

, if k ≥ q,
(29)

and δ is a positive constant only depending on β (δ = 1 when β = 0).

Remark 1.10. It is important to note that the main estimates of ‖qk‖L2(0,T ;C) in

Theorems 1.7 and 1.9 are a combination of two phenomena. The first one comes
from the fact of having an infinite family of exponential functions associated to the
sequence Λ. This introduces the terms

H1(ρ, q, p1, p2) exp

[
C

(
1 +H2(ρ, q, p1, p2, T )

√
|Λk|+

(1 + p2)
2

T

)]
in inequality (22) of Theorem 1.7, and

max

{
6

π2
Bk e

1
Tν , Ek

}
in inequality (27) of Theorem 1.9. This kind of terms also appears in the case of
sequences satisfying the gap condition (5). The second phenomenon is new. It is the
contribution of the condensation of a finite number of elements of the sequence Λ.
This condensation introduces the factor Pk in inequalities (22) and (27). Of course,
this new term does not appear when the sequence Λ satisfies the gap condition (5)
(see Remark 1.8). Observe that even if this term involves a finite number of elements
of Λ, its contribution to the corresponding control cost K(T ) of the associated
parabolic control problem could be more explosive than the contribution of the first
one (see Remark 5.8). To our knowledge, this is the first time where this fact has
been highlighted. �

Remark 1.11. Theorem 1.9 generalizes the results proved in [23], [13] and [14] to
general complex sequences that might not satisfy the gap condition (5). �

Remark 1.12. In [11], the authors revisit the block moment method and obtain
similar results to those of Theorem 1.7 under similar conditions on the sequence Λ
using a different approach. To be precise, the authors use the Laplace transform
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and an explicit estimate of the norm of the restriction operator between the space
generated by the exponentials in L2(0,∞;C) and the space generated in L2(0, T ;C).
�

As an application of Theorems 1.7 and 1.9, we will study the cost of fast controls
K(T ) for system (12) in two situations in which condition (5) does not hold:

1. First, we will analyze system (12) when the operator L = L2 is given by (13)
with Q ∈ L2(0, π) such that the sequence of eigenvalues of L2 is given by

Λ(2) =
{
k2, k2 + e−k

2γ
}
k≥1

and γ ∈ (0, 1). In this example the minimal time associated to system (12)
with L = L2 is T0(Q) = 0. Observe that the sequence Λ(2) does not satisfy (5)
and, therefore, Theorem 1.2 cannot be applied. We will see that the sequence
Λ(2) fulfills the assumptions in Theorems 1.7 and 1.9 and, as a consequence,
we will obtain new estimates from above and from below for the control cost
K(T ) associated to system (12) for L = L2 (see Theorems 5.9 and 5.10). These
estimates show that the fast controls for system (12) with L = L2 are more
violent than those of the heat equation. This violent behavior comes from the
condensation of the eigenvalues of the elliptic operator L2.

2. We will also study system (12) with L = L3 (see (16)), and ρ, τ and ξ positive
constant satisfying (19) for an integer j ≥ 1. In this case we will check
that system (12) is null controllable for any T > 0 and the corresponding
control cost K(T ) satisfies (10) for a constant C0 = C0(ρ, τ, ξ) > 0. With this
example we generalize the null controllability result obtained in [22] for the
linear version of (15).

In a forthcoming paper (see [9]) we will carry out a more in-depth analysis of
the cost of fast controls K(T ) of parabolic systems with a positive minimal time T0

which comes from the condensation index associated to the sequence of eigenvalues
of the generator of the corresponding C0-semigroup.

1.5. Plan of the paper. The plan of the paper is the following: In Section 2, we
will study some general properties of the sequences Λ in L(β, ρ, q, p0, p1, p2, α), with
parameters satisfying (20). We will also provide in this section some examples of
sequences Λ in the literature that satisfy the conditions in Definition 1.4. Sections 3
and 4 will be respectively devoted to the proofs of the main results of this work,
namely, Theorem 1.7 and Theorem 1.9. Finally, in Section 5 we will apply the
results on general bounds of biorthogonal families to complex sequences that do not
satisfy the gap condition (5) to system (12) when L = L2 (see (13)) and

σ(L2) =
{
k2, k2 + e−k

2γ
}
k≥1

with γ ∈ (0, 1), and when L = L3 (see (16)) is such that ρ, τ, ξ ∈ (0,∞) sat-
isfy (19) for an integer j ≥ 1. Some results presented in this fifth section have been
announced in [21].

2. Some general properties of sequences under the assumptions of Defi-
nition 1.4. Some examples. We will devote this section to prove some general
properties of sequences Λ in the class of Definition 1.4. These properties will be
used in the proof of Theorems 1.7 and 1.9. We also complete this section with some
examples of sequences Λ that fulfill assumptions in Definition 1.4.
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2.1. Some relations between the conditions in Definition 1.4. Real se-
quences. Let us first analyze the conditions which appear in Definition 1.4 and
condition (26) because in some particular cases they are redundant. To be precise,
let us first check that the properties (H1)–(H5) and (26) imply property (H6) for
some p0, p1, p2 and α. One has:

Proposition 2.1. Let Λ = {Λk}k≥1 ⊂ C be a complex sequence. Then,

1. If Λ satisfies properties (H1), (H4), (H5) and (26) for some ρ, ν > 0 and
q ≥ 1, then, (H6) holds, with

p0 =
1√
ν
, p1 =

1√
ν
, p2 =

1
√
ρ
, α = max

{
q −

√
|Λ1|
ρ
,

√
|Λ1|
ρ

+ 1,

√
|Λ1|
ν

+ 1

}
.

2. Assume now that Λ fulfills (H1), (H4) and (H6) for some positive constants
p0, p1, p2. Then,
(a) If Λ satisfies property (H5), then

p1 ≤
1
√
ρ
. (30)

(b) If (26) holds, then
1√
ν
≤ p2.

Proof. Let us first assume that Λ = {Λk}k≥1 ⊂ C satisfies the assumption in item

1 of the proposition, and let us prove that (H6) holds for appropriate parameters
p0, p1, p2 and α.

From (H5) and (26), we have ρ
(
k2 − n2

)
≤ |Λk|+ |Λn|, for any k, n : k ≥ n+ q,

and |Λk| − |Λn| ≤ ν
(
k2 − n2

)
, for any k, n : k ≥ n. In particular,{

|Λk| ≥ ρ
(
k2 − 1

)
− |Λ1| , ∀k ≥ q + 1,

|Λk| ≤ ν
(
k2 − 1

)
+ |Λ1| , ∀k ≥ 1.

(31)

Let us consider r ≥ |Λq+1|. Taking into account the first item in Remark 1.5, if
N (r) = k, then k ≥ q + 1, |Λk| ≤ r and |Λk+1| > r. The first inequality in (31)
gives r ≥ ρ

(
k2 − 1

)
− |Λ1|, i.e.,

N (r) = k ≤

√
1

ρ
r +
|Λ1|
ρ

+ 1 ≤ 1
√
ρ

√
r +

√
|Λ1|
ρ

+ 1, ∀r ≥ |Λq+1| . (32)

On the other hand, the second inequality in (31) also provides r < ν
[
(k + 1)

2 − 1
]
+

|Λ1| and

N (r) = k > −1+

√
1

ν
r − |Λ1|

ν
+ 1 >

√
1

ν
r − |Λ1|

ν
−1 ≥ 1√

ν

√
r−
√
|Λ1|
ν
−1. (33)

Observe that this inequality is also valid when 0 < r < |Λq+1|. In the previous
reasoning we have used the inequalities{ √

a+ b ≤
√
a+
√
b, ∀a, b ∈ [0,∞),

√
a− b ≥

√
a−
√
b, ∀a, b ∈ [0,∞), a ≥ b.

(34)

Let us now take r such that |Λ1| ≤ r < |Λq+1|. In this case,

N (r) ≤ q ≤ 1
√
ρ

√
r + q − 1

√
ρ

√
|Λ1|.
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Finally, when r is such that 0 < r < |Λ1|, N (r) = 0 ≤
√
r/
√
ρ. We deduce then

that Λ satisfies (H6) with p0, p1, p2 and α given in the statement. This proves the
first item.

The second item in the statement can be deduced from (32) and (33). Indeed, if
Λ satisfies (H5) and (H6), one has (32) and p1

√
r − α ≤ N (r), for any r > 0. This

clearly implies (30). On the other hand, if the sequence Λ satisfies (26), then (33)
holds. Combining this inequality with the second inequality in (H6), we get the
second point in item. This proves the result.

Remark 2.2. Property (H5) does not imply, in general, (H6), even for increasing
positive real sequences. Indeed, Λ =

{
k3
}
k≥1

is an increasing positive real sequence

that satisfies (H5), with ρ = 1 and q = 1, and does not satisfy (H6).
Something similar can be said for property (26): Λ = {k}k≥1 is an increasing

positive real sequence that satisfies (26) with ν = 1 and does not satisfy (H6).
On the other hand, sequences Λ satisfying (H1)–(H5) and (26) for β ≥ 0, ρ, ν > 0

and q ≥ 1, also satisfy condition (H6) with parameters p0, p1, p2 and α given in the
statement of Proposition 2.1. In conclusion, Λ ∈ L(β, ρ, q, p0, p1, p2, α). �

Remark 2.3. Observe that, if Λ is a sequence under the conditions of item 2 in
Proposition 2.1, from inequality (30) we also deduce

0 < ρ ≤ 1

p2
0

, ρp2
1 ≤ 1, and ρp1 ≤

√
ρ ≤ 1

p0
. (35)

These estimates will be used later. �

Let us now analyze the case of increasing positive real sequences Λ = {Λk}k≥1 ⊂
(0,∞). This case is specially interesting because some assumptions in Definition 1.4
are direct. For instance, Λ satisfies (H1)–(H4) for β = 0. In addition, one has:

Proposition 2.4. Let Λ = {Λk}k≥1 be a positive real sequence satisfying (H1),

(H4) and (H6) for some p0, α ∈ (0,∞), with p1 = p2 = p ≥ p0. Then, Λ ∈
L(0, ρ, q, p0, p, p, α) and (26) holds, with

q = 3α, ρ =
1

3p2
and ν =

1

3

(
2 + α

p

)2

. (36)

Proof. Let us take Λ = {Λk}k≥1 ⊂ (0,∞), a sequence satisfying (H1), (H4) and (H6)

for some p0, α ∈ (0,∞), with p1 = p2 = p ≥ p0. It is clear that Λ satisfies (H2)
and (H3) for β = 0.

Let us see that Λ also satisfies (H5) for appropriate constants ρ and q. Indeed,
using (H1) and (H4) we infer that Λ is an increasing positive real sequence. Thus,
N (Λk) = k, for any k ≥ 1, (see (21)) and, from (H6) (p1 = p2 = p), we deduce

k − α ≤ p
√

Λk ≤ k + α, ∀k ≥ 1. (37)

If k, n ∈ N are such that k − n ≥ 3α, then, k ≥ α and inequality (37) provides

p2 (Λk − Λn)

k2 − n2
≥ (k − α)

2 − (n+ α)
2

k2 − n2
=
k − n− 2α

k − n
= 1− 2α

k − n
≥ 1

3
.

Therefore, sequence Λ satisfies assumption (H5) for q and ρ as in the statement of
the proposition.
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Let us now check property (26). To this end, we will again use (37). Without
loss of generality, we can assume that α ≥ 1. Thus, if α < n < k, one has

p2 (Λk − Λn)

k2 − n2
≤ (k + α)

2 − (n− α)
2

k2 − n2
= 1 +

2α

k − n
≤ 1 + 2α ≤ 1

3
(2 + α)

2
.

On the other hand, if n ≤ α < k, i.e., if n ≤ bαc < bαc + 1 ≤ k (b·c is the floor
function: given x ∈ R, bxc is the greatest integer less than or equal to x), we also
deduce

p2 (Λk − Λn)

k2 − n2
≤ (k + α)

2

k2 − bαc2
≤ (bαc+ α+ 1)

2

2bαc+ 1
≤ 1

3
(2 + α)

2
.

In the previous inequality we have used that α ≥ 1.
Finally, let us assume that α ≥ 2 and take n < k ≤ α. We can write

p2 (Λk − Λn)

k2 − n2
≤ (k + α)

2

2k − 1
≤ 1

3
(2 + α)

2
.

Summarizing, property (H5) holds for ν given in (36). This ends the proof.

Remark 2.5. Let us consider Λ = {Λk}k≥1, an increasing positive sequence, sat-

isfying property (H6) with p1 = p2 = p > 0. In this case, this condition can be
written under the equivalent form

Λk =
1

p2
k2 +O(k), ∀k ≥ 1. (38)

Indeed, from (H6) with p1 = p2 = p, we infer (37), i.e., p
√

Λk = k + O(1) for any
k ≥ 1. So, (38) holds. On the other hand, from (38) we deduce

1

p2
k2 − α1k ≤ Λk ≤

1

p2
k2 + α1k, ∀k ≥ 1,

with α1 ≥ 0. Thus, given r > 0, if N (r) = k, then, (see Remark 1.5) we also have

1

p2
k2 − α1k ≤ Λk ≤ r and r < Λk+1 ≤

1

p2
(k + 1)

2
+ α1 (k + 1) ,

i.e., 
N (r) = k ≤ 1

2

(
p2α1 + p

√
p2α2

1 + 4r

)
≤ p
√
r + p2α1,

N (r) + 1 = k + 1 >
1

2

(
−p2α1 + p

√
p2α2

1 + 4r

)
> p
√
r − 1

2
p2α1.

Therefore, (H6) holds with p0 = p1 = p2 = p and

α = max

{
p2α1,

1

2
p2α1 + 1

}
.

Observe that, in particular, if Λ = {Λk}k≥1 is an increasing real sequence such

that (2) holds, then Λ also satisfies (H6) with A = 1/p2. Proposition 2.4 implies
that Λ = {Λk}k≥1 ∈ L(β, ρ, q, p0, p1, p2, α) and (26) holds for β = 0, p0 = p1 =

p2 = p = 1/
√
A, α ∈ (0,∞) and q, ρ and ν as in (36). Therefore, Theorems 1.7

and 1.9 generalize the results on estimates of biorthogonal families established in [17]
and [23]. �
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2.2. Some additional properties of sequences in the class L. Let us continue
showing some properties for sequences Λ in the class L(β, ρ, q, p0, p1, p2, α). One has:

Lemma 2.6. Let Λ = {Λk}k≥ ∈ L(β, ρ, q, p0, p1, p2, α) be a complex sequence with

parameters satisfying (20). Then,∑
k≥1

1

|Λk|
<∞ and |Λk| ≤ <(Λk) + β

√
<(Λk), ∀k ≥ 1. (39)

On the other hand, there exists a positive constant C, only depending on |Λ1|, β,
p0 and α (increasing with respect to α), such that

1

p2
(k − α) ≤

√
|Λk| ≤

1

p1
k +

C(1 + q)

ρp2
1

, ∀k ≥ 1. (40)

Proof. Let us take a sequence Λ = {Λk}k≥1 under assumptions of the lemma. From

items (H4) and (H6) of Definition 1.4, we have that:∑
k≥1

1

|Λk|
=

∫ ∞
|Λ1|

1

r
dN (r) =

∫ ∞
|Λ1|

1

r2
N (r) dr ≤

∫ ∞
|Λ1|

α+ p2
√
r

r2
dr

=
α

|Λ1|
+

2p2√
|Λ1|

<∞.

On the other hand, using assumption (H3), we deduce that

|Λk|2 = <(Λk)2 + =(Λk)2 ≤ <(Λk)2 + β2<(Λk) ≤
(
<(Λk) + β

√
<(Λk)

)2

.

Therefore, we have the proof of (39).
Let us now prove property (40). Let us first assume that Λ is a positive real

sequence in L(β, ρ, q, p0, p1, p2, α) (β = 0). We have that N (Λk) = k, for any k ≥ 1.
In particular, taking r = Λk in assumption (H6), we deduce

k − α
p2

≤
√

Λk ≤
k + α

p1
=

k

p1
+
α

p1
≤ k

p1
+
α

p0

1

ρp2
1

ρp2
1 ≤

k

p1
+
α

p0

1

ρp2
1

, ∀k ≥ 1.

In the previous inequality we have used (35). This shows inequality (40) in the real
case.

Let us now assume that the sequence Λ ∈ L(β, ρ, q, p0, p1, p2, α) is complex,
i.e., β > 0. As before, we are going to work with property (H6) with r = |Λk|
(k ≥ 1). From Remark 1.5, (H4) and (H6) (see Definition 1.4), we can write that,
if n = N (|Λk|), then k ≤ n, |Λk| = |Λn| and

−α+ n

p2
=
−α+N (|Λk|)

p2
≤
√
|Λk| ≤

α+N (|Λk|)
p1

=
α+ n

p1
, ∀k ≥ 1. (41)

In particular, k ≤ n and

−α+ k ≤ −α+ n ≤ p2

√
|Λk|, ∀k ≥ 1.

This proves the first inequality in (40) in the complex case.
In order to show the second inequality in (40), let us estimate n = N (|Λk|). As

|Λk| = |Λn|, using property (H3), we infer∣∣<(Λn)2 −<(Λk)2
∣∣ =

∣∣=(Λn)2 −=(Λk)2
∣∣ ≤ β2(<(Λk) + <(Λn)),

that is to say,

|<(Λk)−<(Λn)| ≤ β2.
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Again, assumption (H3) also provides the inequality

|Λk − Λn| ≤ |<(Λk)−<(Λn)|+ |=(Λk)−=(Λn)| ≤ β2 + 2β
√
|Λk|.

If |k − n| ≥ q, combining the previous inequality and assumption (H5) we obtain

ρ |k − n| (k + n) = ρ
∣∣k2 − n2

∣∣ ≤ |Λk − Λn| ≤ β2 + 2β
√
|Λk|.

Thus,

n− k = |k − n| ≤ max

{
q,
β2 + 2β

√
|Λk|

ρ (k + n)

}
,

i.e.,

n ≤ k + max

{
q,

β2 + 2β
√
|Λk|

ρ (k +N (|Λk|))

}
,

and, from (41)

p1

√
|Λk| ≤ α+ k + max

{
q,

β2 + 2β
√
|Λk|

ρ (k +N (|Λk|))

}
. (42)

If the maximum in (42) is q, in particular,

p1

√
|Λk| ≤ k + α+ q.

Taking into account inequalities (30) and (35), we also deduce

p1

√
|Λk| ≤ k +

α+ q

ρp1
ρp1 ≤ k +

(α+ q) /p0

ρp1
.

Thus, we get the second inequality in (40) for a positive constant C only depending
on α and p0 and increasing with respect to α.

Let us now assume that the maximum in (42) is given by the second term. Using
again (H6) and (35), for k ≥ α, we can write

p1

√
|Λk| ≤ k + α+

β2 + 2β
√
|Λk|

ρ (k +N (|Λk|))
≤ k + α+

β2 + 2β
√
|Λk|

ρ
(
k − α+ p1

√
|Λk|

)
≤ k +

α

ρp1

1

p0
+
β2 + 2β

√
|Λk|

ρp1

√
|Λk|

.

This inequality provides the second inequality in (40) when k ≥ α for a positive
constant C only depending on |Λ1|, β, p0 and α (of course, increasing with respect
to α).

Finally, let us consider the case k < α. Thus, there exists a positive constant C
(only depending on α and increasing with respect to α) such that√

|Λk| ≤ C ≤
k

p1
+

C

ρp2
1

.

In the previous inequality we have used (35). This ends the proof.

Remark 2.7. Analyzing the proof of Lemma 2.6 we deduce that, in fact, if the
sequence Λ is real, then the second inequality in (40) can be written as follows:
there exists a positive constant C, only depending on p0 and α (increasing with
respect to α) such that

1

p2
(k − α) ≤

√
|Λk| ≤

1

p1
k +

C

ρp2
1

, ∀k ≥ 1. (43)
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In particular the previous inequalities are independent of q. We will use this prop-
erty for real sequences Λ throughout the paper. �

Remark 2.8. From Lemma 2.6 we deduce that, if the sequence Λ = {Λk}k≥1 is in
the class L(β, ρ, q, p0, p1, p2, α), then one also has (3) for some δ > 0, only depending
on β (δ = 1 when β = 0). As said before, property (3) implies that the family of
exponentials {ek}k≥1, ek is given in (1), is minimal in L2(0, T ;C) for any T > 0.

Thus, there exists a biorthogonal family {q̃k}k≥1 to {ek}k≥1 in L2(0, T ;C) (see for

instance [39], [37], [4], Theorem 4.1 in [5],...). �

2.3. Some examples of sequences in L(β, ρ, q, p0, p1, p2, α). Let us complete
this section providing some examples of sequences Λ = {Λk}k≥1 such that Λ ∈
L(β, ρ, q, p0, p1, p2, α) for some parameters satisfying (20). In order to have a clearer
exposition, we will present the results and we will include the corresponding proofs
in an appendix, at the end of this paper.

In [13] and [14], the authors consider increasing real positive sequences Λ =
{Λk}k≥1 ⊂ R satisfying a “global gap condition”:

γ0 ≤
√

Λk+1 −
√

Λk ≤ γ1, ∀k ≥ 1, (44)

and an “asymptotic gap condition”:

γ?0 ≤
√

Λk+1 −
√

Λk ≤ γ?1 , ∀k ≥ N,

where N ≥ 1 and γ0, γ1, γ
?
0 , γ

?
1 ∈ (0,∞) are such that 0 < γ?1 − γ?0 < γ1− γ0. Under

these assumptions on Λ the authors obtain general and precise upper and lower
bounds for biorthogonal families as (6) or (7), paying attention to the dependence
of the constant C0 and C1 with respect to the parameters γ0, γ1, γ?0 and γ?1 .

One has:

Proposition 2.9. Let Λ = {Λk}k≥1 ⊂ (0,∞) be a real sequence satisfying (44) for

two constants γ0, γ1 > 0. Then, Λ ∈ L(0, ρ, q, p0, p1, p2, α) and (26) holds with
p0 = p1 =

1

γ1
, p2 =

1

γ0
, α = max

{
1−
√

Λ1

γ0
,

√
Λ1

γ1

}
,

q = 1, ρ = min

{
γ2

0 ,
1

3
γ2

0 +
2

3
γ0

√
Λ1

}
and ν = max

{
γ2

1 ,
1

3
γ2

1 +
2

3
γ1

√
Λ1

}
.

In particular, the gap condition (5) holds.

For the proof, see A.1.

Remark 2.10. Sequences Λ = {Λk}k≥1 ⊂ (0,∞) under the assumptions of Propo-
sition 2.9 satisfy the general assumptions in Theorem 1.7 and Theorem 1.9 with
parameters given in the statement of the proposition. Observe, in particular, that
q = 1 and Pk = 1. Thus, Theorems 1.7 and 1.9 cover the results in [13] and [14]. �

We continue our analysis of real sequences that fulfill general assumptions pre-
viously discussed in the literature. In [15], the authors consider a real increasing
sequence Λ = {Λk}k≥1 that is given as

Λ =
{
λ

(1)
k

}
k≥1
∪
{
λ

(2)
k

}
k≥1

,
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with
{
λ

(1)
k

}
k≥1

and
{
λ

(2)
k

}
k≥1

two increasing sequences of positive real numbers

satisfying 
∣∣∣∣λ(1)
k −

1

π2
1

k2

∣∣∣∣ ≤ c1k, ∣∣∣∣λ(2)
k −

1

π2
2

k2

∣∣∣∣ ≤ c1k, ∀k ≥ 1,

inf
n≥1

∣∣∣∣√λ(2)
k −

√
λ

(1)
n

∣∣∣∣ ≥ r

k
, ∀k ≥ 1,

(45)

and the strong gap condition√
λ

(1)
k+1 −

√
λ

(1)
k ≥ c2,

√
λ

(2)
k+1 −

√
λ

(2)
k ≥ c2, ∀k ≥ 1, (46)

for some positive constants π1, π2, c1, c2 and r. For this class of sequences, the
authors prove the existence of a sequence {qk}k≥1 ⊂ L2(0, T ) (T > 0 is given)

biorthogonal to {ek}k≥1 (ek given in (1)) in L2(0, T ) which satisfies (6) for a posi-
tive constant C0 independent of k and T and uniform for the class of sequences Λ
satisfying the previous assumptions.

One has:

Proposition 2.11. Let us consider two increasing sequences of positive real num-

bers Λ1 =
{
λ

(1)
k

}
k≥1

and Λ2 =
{
λ

(2)
k

}
k≥1

satisfying (45) and

λ
(1)
k+1 − λ

(1)
k ≥ c0 and λ

(2)
k+1 − λ

(2)
k ≥ c0, ∀k ≥ 1, (47)

for some positive constants π1, π2, c0, c1 and r. Then, the sequence Λ = Λ1 ∪ Λ2

can be rearranged as an increasing sequence Λ = {Λk}k≥1 satisfying the gap con-

dition (5), Λ ∈ L(β, ρ, q, p0, p1, p2, α) and (26), with β = 0, p0 = min{π1, π2},
p1 = p2 = p = π1 + π2,

α = max

{
2 +

1

2
c1
(
π2

1 + π2
2

)
, c1
(
π2

1 + π2
2

)}
and q, ρ and ν given in (36).

The proof of this result can be seen in A.2.

Remark 2.12. Observe that the sequences
{
λ

(1)
k

}
k≥1

and
{
λ

(2)
k

}
k≥1

satisfying

(45), for some positive constants π1, π2, c1 and r, and the strong gap condition (46),
with c2 a positive constant, in particular, fulfill assumptions (45) and (47) in Propo-
sition 2.11 (and, therefore, the general hypotheses imposed to general complex se-
quences {Λk}k≥1 in [7]; see Theorem 1.2). Thus, the results on existence and sharp

estimates of biorthogonal families established in [15] can be deduced from the corre-
sponding results proved in [7]. Of course, Theorem 1.7 generalizes the results in [15]
and [7] to complex sequences that do not satisfy the gap condition (5). �

In [5] the authors prove the existence of a minimal time of controllability for
some parabolic problems. This minimal time is related to the condensation index
of the sequence of eigenvalues of the corresponding operator. In order to illustrate
the existence of this minimal time, the authors consider the system

∂ty − (D1∂xx +A1)y = 0 in (0, T )× (0, π),

y(·, 0) = Bv, y(·, π) = 0 on (0, T ),

y(0, ·) = y0 in (0, π),

(48)
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where B ∈ R2, v ∈ L2(0, T ) is the control,

D1 := diag (1, d), d > 0, d 6= 1, and A1 :=

(
0 1
0 0

)
.

The sequence of eigenvalues associated to the operator L1 = −(D1∂xx + A1), with
domain D(L1) = H2(0, π;R2)∩H1

0 (0, π;R2), is given by Λ =
{
k2
}
k≥1
∪
{
dk2
}
k≥1

.

Recall that the condition
√
d 6∈ Q is necessary for the approximate controllability

of the system (48) at time T > 0. On the other hand, under this assumption,
there exists a minimal time T0 = T0(d) ∈ [0,∞] such that the system is not null
controllable at time T when T < T0 (see [5] for the details). In our second example
we will consider the sequence of eigenvalues associated to this system:

Proposition 2.13. Let us consider d ∈ (0,∞) such that
√
d 6∈ Q. Then, the

sequence Λ =
{
k2
}
k≥1
∪
{
dk2
}
k≥1

can be rearranged as an increasing sequence

Λ = {Λk}k≥1 satisfying Λ ∈ L(β, ρ, q, p0, p1, p2, α) and condition (26) with β = 0,
p0 = 1,

p1 = p2 = p = 1 +
1√
d
, α = 2, q = 2, ρ =

5

8

1

p2
and ν =

8

3

1

p2
. (49)

The proof of Proposition 2.13 can be found in A.3.

Let us now analyze a fourth example of sequence Λ which satisfies (26) and the
general conditions appearing in Definition 1.4. With this example we cover the kind
of sequences associated to some parabolic problems studied in [34]:

Proposition 2.14. Let us consider two real positive sequences Λ1 =
{
λ

(1)
k

}
k≥1

and

Λ2 =
{
λ

(2)
k

}
k≥1

=
{
λ

(1)
k + εk

}
k≥1

where {εk}k≥1 is a real bounded sequence. As-

sume that Λ1 satisfies Λ1 ∈ L(0, ρ1, 1, π0, π1, π2, α1), for ρ1, π0, π1, π2, α1 ∈ (0,∞),
and (26), for ν = ν1 ∈ (0,∞). On the other hand, assume

λ
(2)
k 6= λ(2)

n , ∀k, n ≥ 1, with k 6= n, and λ
(1)
k 6= λ(2)

n , ∀k, n ≥ 1.

Let us take ε0 = supk≥1 |εk|. Then, the sequence{
λ

(1)
k

}
k≥1
∪
{
λ

(2)
k

}
k≥1

can be rearranged as a positive increasing sequence Λ = {Λk}k≥1 satisfying Λ ∈
L(0, ρ, q, π0, p1, p2, α) and (26), with β = 0, p1 = 2π1, p2 = 2π2, α = π2

√
ε0 + 2α1,

q = 2 and ρ and ν positive constants only depending, resp., on ρ1 and ε0 and on
ρ1, ν1 and ε0.

For the proof, see A.4.

Remark 2.15. Proposition 2.14 covers the sequence of eigenvalues of operator L
in system (12) when L = L2 (see (13)). We will use this proposition in Section 5.
�

Remark 2.16. Under assumptions of Proposition 2.14, observe that the sequence
Λ satisfies the gap condition (5) if and only if

lim inf |εk| > 0.

On the other hand, analyzing the proof of Proposition 2.14, it is possible to pro-
vide some additional information about parameters ρ and α in Proposition 2.14
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when the sequence {εk}k≥1 satisfies appropriate properties. Indeed, when the

bounded sequence {εk}k≥1 is such that ε0 = supk≥1 |εk| satisfies

|εk| ≤ ε0 ≤
ρ1

4
, ∀k ≥ 1,

then, the sequence Λ can be explicitly defined by (see (133)):

Λk =


min

{
λ

(1)
` , λ

(1)
` + ε`

}
, if k = 2`− 1,

max
{
λ

(1)
` , λ

(1)
` + ε`

}
, if k = 2`,

(50)

for any k ≥ 1. In addition, from the proof of Proposition 2.14, we can deduce Λk − Λn ≥
ρ1

16

(
k2 − n2

)
, ∀k, n ∈ N : k ≥ n+ 2,

Λk − Λn ≤
ν1 + ε0

2

(
k2 − n2

)
, ∀k, n ∈ N,

i.e., we can take ρ = ρ1/16 and ν = (ν1 + ε0) /2 in Proposition 2.14. We will use
this observation in the proof of Proposition 5.6. �

As said in Remark 1.6, let us finalize this section with an academic example of
a positive sequence Λ in the class L(0, ρ, q, p0, p1, p2, α) with a parameter q which
can be chosen as large as we want. With this example will see that the parameters
p1 and p2 are increasing with respect to q. To this end, let us fix a positive integer
m ≥ 2 and define

Λ =

{
k2 +

`− 1

m
: k ≥ 1, 1 ≤ ` ≤ m

}
. (51)

It is clear that the set Λ can be written as an increasing positive sequence Λ =
{Λk}k≥1 that satisfies the gap condition (5). Let us see that it also satisfies Λ ∈
L(0, ρ, q, p0, p1, p2, α), for appropriate parameters, and condition (26), for ν > 0.
One has:

Proposition 2.17. Let us take a positive integer m ≥ 2 and consider the sequence
Λ defined in (51). Then,

1. Λ ∈ L(0, ρ, q, p0, p1, p2, α), with q = m, p0 = 2, p1 = p2 = m, α = m and

ρ =
2

(2m− 1)(2m+ 1)
.

In fact, property (H5) does not hold if q ≤ m− 1.
2. The sequence Λ satisfies (26) with

ν =
4m− 1

m (2m+ 1)
.

Proof. If m ≥ 2, it is clear that the sequence Λ is an increasing sequence that
satisfies items (H1)–(H4), with β = 0. Let us check (H5), (H6) and condition (26):

(a) Let us prove item (H6) for the sequence Λ. To be precise, let us see

−m+m
√
r < N (r) ≤ m

√
r, ∀r > 0, (52)

where N (r) is defined in (21). First, if r ∈ (0, 1), N (r) = 0 and it is clear that (52)
holds.
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When r ≥ 1 the function N (r) is given by

N (r) =

m∑
`=1

#

{
k : k2 +

`− 1

m
≤ r
}

=

m∑
`=1

⌊√
r − `− 1

m

⌋
≤

m∑
`=1

⌊√
r
⌋

= m
√
r.

On the other hand, we can explicitly calculate N (r): Given r ≥ 1, there exists
an integer k ≥ 1 such that r ∈

[
k2, (k + 1)2

)
. In this case,

N (r) =

 mk −m+ ˜̀, if r ∈

[
k2 +

˜̀− 1

m
, k2 +

˜̀
m

)
, with 1 ≤ ˜̀≤ m,

mk, if r ∈
[
k2 + 1, (k + 1)2

)
.

(53)

Indeed, if r ∈
[
k2 +

˜̀−1
m , k2 +

˜̀
m

)
, with ˜̀∈ N : ˜̀≤ m, then, for any ` : 1 ≤ ` ≤ ˜̀,

r − `− 1

m
∈

[
k2 +

˜̀− `
m

, k2 +
˜̀− `+ 1

m

)
⊂
[
k2, (k + 1)2

)
,

and

⌊√
r − `−1

m

⌋
= k = b

√
rc. Also, if ` : ˜̀+ 1 ≤ ` ≤ m, one has

r − `− 1

m
∈

[
k2 − `− ˜̀

m
, k2 − `− ˜̀− 1

m

)
⊂
[
(k − 1)2, k2

)
,

and

⌊√
r − `−1

m

⌋
= k − 1. We deduce in this case

N (r) =

m∑
`=1

⌊√
r − `− 1

m

⌋
= mk −m+ ˜̀= mb

√
rc −m+ ˜̀,

and the first equality in (53).
Now, if r ∈

[
k2 + 1, (k + 1)2

)
, we can apply the same reasoning as before and

deduce the second equality of (53).
Let us now prove the first inequality in (52) for r ≥ 1 (the second one is a

direct consequence of (53)). As before, assume r ∈
[
k2, (k + 1)2

)
with k ≥ 1 an

appropriate integer. Thus, if r ∈
[
k2 +

˜̀−1
m , k2 +

˜̀
m

)
, with ˜̀∈ N : ˜̀≤ m, then

N (r) +m−m
√
r = mk + ˜̀−m√r > mk −m

√
k2 +

˜̀
m

+ ˜̀
=

(
mk + ˜̀)2

−
(
m2k2 +m˜̀)

mk + ˜̀+m

√
k2 +

˜̀
m

=
˜̀2 +m˜̀(2k − 1)

mk + ˜̀+m

√
k2 +

˜̀
m

> 0.

Finally, if r ∈
[
k2 + 1, (k + 1)2

)
, we can write

N (r) = mk > m
(√
r − 1

)
.

This proves (52) and property (H6) for the sequence Λ with p0 = 2, p1 = p2 = m
and α = m.

(b) Let us now see that property (H5) holds for q = m (and an appropriate
parameter ρ > 0) and is not valid if q < m. To this end, let us first provide the
expression of the terms of the sequence Λ. It is not difficult to see that, given an
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integer k ≥ 1, this can be written as k = mk̃ + `, with k̃ ≥ 0 and ` ∈ N with
1 ≤ ` ≤ m. Thus,

Λk =
(
k̃ + 1

)2

+
`− 1

m
.

Negative part: Fix q ∈ N, with 1 ≤ q ≤ m − 1, and take n = mk̃ + 1 and

k = mk̃+ q+ 1, with k̃ ≥ 0, an arbitrary integer. It is clear that k−n = q ≤ m− 1
and

Λk − Λn
k2 − n2

=

(
k̃ + 1

)2

+ q
m −

(
k̃ + 1

)2

(
mk̃ + q + 1

)2

−
(
mk̃ + 1

)2 =
1

m
(

2mk̃ + 2 + q
) → 0, when k̃ →∞.

We deduce that property (H5) is not valid when q ≤ m− 1.
Positive part: Let us take q = m and n, k ≥ 1 with k − n ≥ q. In this case,

k = mk̃ + `2, n = mñ+ `1, with ñ, `1, k̃, `2 ∈ Z, 1 ≤ `1, `2 ≤ m and k̃, ñ ≥ 0.

Observe that, using k − n ≥ q = m, we can conclude k̃ − ñ ≥ 1. So,

Λk − Λn
k2 − n2

=

(
k̃ − ñ

)(
k̃ + ñ+ 1

)
+
(
k̃ − ñ

)
+ `2−`1

m(
mk̃ + `2

)2

− (mñ+ `1)
2

≥

(
k̃ − ñ

)(
k̃ + ñ+ 1

)
+ k̃ − ñ− 1 + 1

m(
mk̃ +m

)2

− (mñ+ 1)
2

>
k̃ − ñ

m
(
k̃ − ñ

)
+m− 1

· k̃ + ñ+ 1

m
(
k̃ + ñ+ 1

)
+ 1
≥ 1

2m− 1
· 2

2m+ 1
.

This shows property (H5) for the sequence Λ with q = m and ρ given in the
statement.

(c) In order to finish the proof of this result, let us show property (26). Again,

let us take k, n ∈ N with k > n. As before, k = mk̃ + `2 and n = mñ + `1, with

ñ, `1, k̃, `2 ∈ Z, 1 ≤ `1, `2 ≤ m, and k̃, ñ ≥ 0 with k̃ ≥ ñ ≥ 0.

Let us first analyze the case k̃ = ñ = k̂ ≥ 0 and, of course, 1 ≤ `1 < `2 ≤ m. We
deduce,

Λk − Λn
k2 − n2

=

(
k̂ + 1

)2

+ `2−1
m −

(
k̂ + 1

)2

− `1−1
m(

mk̂ + `2

)2

−
(
mk̂ + `1

)2 =
1

m

1

2mk̂ + `2 + `1
≤ 1

3m
.

Now, if k̃ > ñ and 1 ≤ `1, `2 ≤ m, one gets

Λk − Λn
k2 − n2

=

(
k̃ − ñ

)(
k̃ + ñ+ 2

)
+ `2−`1

m(
mk̃ + `2

)2

− (mñ+ `1)
2
≤

(
k̃ − ñ

)(
k̃ + ñ+ 2

)
+ 1− 1

m(
mk̃ + 1

)2

− (mñ+m)
2

=
k̃ − ñ

m
(
k̃ − ñ

)
+ 1−m

· k̃ + ñ+ 2

m
(
k̃ + ñ+ 1

)
+ 1

+
1− 1

m(
mk̃ + 1

)2

− (mñ+m)
2

≤ 3

2m+ 1
+

m− 1

m (2m+ 1)
=

4m− 1

m (2m+ 1)
.
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Taking into account that m ≥ 2, we can infer that

1

3m
≤ 4m− 1

m (2m+ 1)

and, therefore, the sequence Λ fulfills inequality (26) with ν given in the statement.
This ends the proof of the proposition.

Remark 2.18. It is interesting to point out that, thanks to Proposition 2.4, once
property (H6) is proved for the sequence Λ with p0 = 2, p1 = p2 = m and α = m,
we can conclude that Λ ∈ L(0, ρ̃, q̃, 2,m,m,m) and (26) holds, with (see (36))

q̃ = 3m, ρ̃ =
1

3m2
and ν̃ =

1

3

(
2 +m

m

)2

.

The parameters provided by Proposition 2.17 are better than the previous values.
Indeed, taking into account that m ≥ 2, it is clear that q = m < q̃ = 3m,

ρ =
2

(2m− 1)(2m+ 1)
> ρ̃ =

1

3m2
and ν =

4m− 1

m (2m+ 1)
< ν̃ =

1

3

(
2 +m

m

)2

.

�

Remark 2.19. We can apply Theorems 1.7 and 1.9 to the sequence Λ given by (51)
and conclude the existence of a sequence {qk}k≥1 ⊂ L2(0, T ), biorthogonal to
{ek}k≥1 in L2(0, T ;C) (ek is given in (1)), which satisfies (22) and (27). If we
make use of Proposition 2.17, these two inequalities can be written under the form

A(1)
k (m)Pk ≤ ‖qk‖L2(0,T ) ≤ A

(2)
k (m)Pk, ∀k ≥ 3, (54)

where A(1)
k (m) := Ek (see (29)) and

A(2)
k (m) := H1(ρ, q, p1, p2) exp

[
C

(
1 +H2(ρ, q, p1, p2, T )

√
|Λk|+

(1 + p2)
2

T

)]
,

(see (24) and (25) in the real case) with ρ, q, p1, p2 and ν given in Proposition 2.17
(recall that the parameter m is the maximal cardinal of the condensation groupings
of the sequence Λ, that is to say the maximal number of elements in Λ that do not
satisfy (H5)).

Observe that, taking into account Remark 2.5, the elements of the sequence Λ
satisfy

Λk =
1

m2
k2 +O(k), ∀k ≥ 1

and, therefore, one has

lim
m→∞

S(m) =∞ where S(m) =
∑
k≥1

1

Λk
, ∀m ≥ 2.

In some sense, the family of exponentials {ek}k≥1 (ek given in (1)) “loses” its

property of minimality in L2(0, T ) when m tends to infinity. Thus, it is natural

that the constants A(1)
k (m) and A(2)

k (m) in (54) satisfy

lim
m→∞

A(1)
k (m) = lim

m→∞
A(2)
k (m) =∞, ∀k ≥ 1. (55)

Let us see that (55) holds. To this end, we will analyze the asymptotic behavior

of A(1)
k (m) and A(2)

k (m) when m→∞. In what follows, we will provide an explicit
expression of these constants when 3 ≤ k ≤ m.
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1. Let us first analyze A(1)
k (m). From the expression of Ek for 3 ≤ k ≤ m

(see (29)) and Proposition 2.17, we can write

A(1)
k (m) := Ek =

(m+ k − 2)!

Tm+k−2

(
2(m+ k)− 3

2T
+ 1

)1/2

.

Observe that Stirling’s formula implies the existence of a positive constant
c0 > 0 such that

n! ≥ c0
√

2πn
(n
e

)n
, ∀n ∈ N.

In particular, for a new positive constant c (independent of m), we deduce

A(1)
k (m) ≥ c

√
(m+ k − 2)

[
2(m+ k)− 3

2T
+ 1

](
m+ k − 2

eT

)m+k−2

,

which is valid for any m ≥ 2 and any k : 3 ≤ k ≤ m. One has the first equality
in (55).

2. We continue with the analysis of A(2)
k (m). Let us start with H1(ρ, q, p1, p2)

(see (24) in the real case). From Proposition 2.17, this constant only depends
on m and has the expression:

H1(ρ, q, p1, p2) ≡ H1(m) =

[(
6m2 − 1

) (
4m2 − 1

)
4m4

]2(m−1)

, ∀m ≥ 2.

It is not difficult to see that

lim
m→∞

H1(m)

62(m−1)
= 1,

and, then

c162(m−1) ≤ H1(m) ≤ c262(m−1), ∀m ≥ 2.

for two positive constants c1 and c2, independent of m.
On the other hand, from the expression of H2(ρ, q, p1, p2) (see (25) in the

real case), we can write

H2(ρ, q, p1, p2, T ) ≡ H2(m,T ) = 4m2 + 2m− 1 +
1

4m2
+
√
T .

Observe that in our case α = m. We can conclude that A(2)
k (m) is given

by

A(2)
k (m) := H1(m) exp

[
C(m)

(
1 +H2(m,T )

√
Λk +

(1 +m)
2

T

)]
, m ≥ 2,

with C(m) a positive constant only depending on m and increasing with re-

spect tom (see Theorem 1.7 with α = m). Clearly, A(1)
k (m) has an exponential

behavior with respect to m and we can write

A(2)
k (m) ≥ exp

[
C

(
1 +m2

(√
Λk +

1

T

)
+
√
TΛk

)]
, ∀m ≥ 2, ∀k : 3 ≤ k ≤ m.

We can conclude that A(2)
k (m) has an exponential behavior with respect to

m and saisfies the second equality in (55). �
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3. Proof of the first main result. This section is devoted to prove Theorem 1.7.
To this end, we have to take into account the lack of the gap condition (5) for the
sequence Λ and the fact that we cannot assume that T is small (see [5] and [34]).
As we will see, this introduces new difficulties.

We will use the Fourier transform together with the Paley-Wiener Theorem:

Theorem 3.1. Let f be an entire function such that

|f(z)| ≤ BeA|z|, ∀z ∈ C,
for two positive constants A,B, and ‖f‖L2(R) < ∞. Then, there exists a function

φ ∈ L2(−A,A;C) such that

f(z) =
1√
2π

∫ A

−A
φ(t)eizt dt.

Moreover, the Plancherel theorem gives

‖φ‖L2(−A,A;C) = ‖f‖L2(R) .

For the proof of Theorem 3.1 we refer to [44, Theorem 18. p. 101].

Remark 3.2. In what follows, C will denote a positive constant independent of
T , k ∈ N, ρ, q, p1 and p2, which may change from one line to another (C may
depend on |Λ1|, β, p0 and α, and is increasing with respect to α). In this work,
the dependence of the constants with respect to the parameters ρ, q, p1 and p2 (see
assumptions (H5) and (H6)) will be explicitly given. �

Let us begin with a result of existence of entire functions satisfying appropriate
properties. Our first main result will be a consequence of this theorem. One has:

Theorem 3.3. Let Λ = {Λk}k≥1 ∈ L(β, ρ, q, p0, p1, p2, α) be a complex sequence

with parameters satisfying (20). Then, for all T > 0, there exists a sequence of
entire functions {Gk}k≥1, with the following properties:

1. For any k ≥ 1 and ε > 0, there exists a positive constant C ′T,k,ε such that∣∣∣e−iz T2 Gk(z)
∣∣∣ ≤ C ′T,k,εe(T2 +ε)|z|, ∀z ∈ C; (56)

2. Gk(iΛn) =
1√
2π
δkn, for all k, n ≥ 1;

3. Gk belongs to L2(R), for any k ≥ 1, and there exists a positive constant C > 0,
only depending on |Λ1|, β, p0 and α (increasing with respect to α), such that

‖Gk‖L2(R) ≤ H1 exp

[
C

(
1 +H2

√
|Λk|+

(1 + p2)
2

T

)]
Pk, (57)

for any k ≥ 1, where Pk, H1 = H1(ρ, q, p1, p2) and H2 = H2(ρ, q, p1, p2, T )
are respectively given in (23), (24) and (25).

Theorem 1.7 is a direct consequence of Theorem 3.3. Therefore, before providing
the proof of the technical result established in Theorem 3.3, we will complete the
proof of Theorem 1.7.

Proof of Theorem 1.7. Let us consider Λ = {Λk}k≥ ∈ L(β, ρ, q, p0, p1, p2, α) with

parameters satisfying (20). On the other hand, let us fix T > 0. With the previous
data, let us consider the function

Fk(z) := Gk(z)e−iz
T
2 , z ∈ C, k ≥ 1,
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where {Gk}k≥1 is the sequence provided by Theorem 3.3. Let us see some properties
of the function Fk. First, Fk is, for any k ≥ 1, an entire function over C. In fact,
Fk ∈ L2(R) with ‖Fk‖L2(R) = ‖Gk‖L2(R) for any k ≥ 1.

Secondly, for any ε > 0 and k ≥ 1, Fk is an entire function of exponential type
T/2 + ε (see (56)). So, we can apply Payley-Wiener Theorem (see Theorem 3.1)
and deduce that there exists ψk ∈ L2(−T/2− ε, T/2 + ε;C) such that

Fk(z) = e−iz
T
2 Gk(z) =

1√
2π

∫ ∞
−∞

ψk(t) eizt dt, ∀z ∈ C, ∀k ≥ 1.

Observe that the support of the function ψk is contained in [−T/2− ε, T/2 + ε],
for any k ≥ 1 and ε > 0. We conclude that, in fact, ψk ∈ L2(−T/2, T/2;C) and

Fk(z) = e−iz
T
2 Gk(z) =

1√
2π

∫ T
2

−T2
ψk(t) eizt dt, ∀z ∈ C, ∀k ≥ 1. (58)

Let us now consider the function

qk(t) := ψk

(
t− T

2

)
, t ∈ [0, T ], k ≥ 1. (59)

It is clear that qk is well defined and qk ∈ L2(0, T ;C) for any k ≥ 1. The objective
now is to prove that the sequence {qk}k≥1 ⊂ L2(0, T ;C) satisfies Theorem 1.7. Let
us first see that {qk}k≥1 is biorthogonal to {e−Λkt}k≥1 in L2(0, T ;C). Indeed, for
any k, n ≥ 1 and thanks to (58) and item 2 in Theorem 3.3, we can write,∫ T

0

qk(t)e−Λnt dt =

∫ T

0

ψk

(
t− T

2

)
e−Λnt dt = e−Λn

T
2

∫ T
2

−T2
ψk (t) e−Λnt dt

= e−Λn
T
2

√
2πeΛn

T
2 G(iΛn) = δkn.

Let us now estimate ‖qk‖L2(0,T ). To this aim, we will use Plancherel Theorem
and estimate (57). From the expression of qk (see (59)), one has

‖qk‖L2(0,T ;C) = ‖ψk‖L2(−T2 ,
T
2 ;C) = ‖Fk‖L2(R) = ‖Gk‖L2(R).

Combining the previous inequality and inequality (57) we deduce (22). This com-
pletes the proof of Theorem 1.7.

Once Theorem 1.7 is proved, our next objective will be to show Theorem 3.3.
The proof of this result is very technical. In order to make it clearer, we will divide
it in two subsections:

1. In the first subsection (see Subsection 3.1) we will introduce an entire function
fk(z) (k ≥ 1) with simple zeros at Λn with n ≥ 1 and n 6= k. To this end, we
will use the natural infinite product that satisfies the condition fk(Λn) = 0 for
any n 6= k. We will show some properties of this function that, in particular,
will imply item 2 in Theorem 3.3.

2. In the second subsection (see Subsection 3.2) we will introduce a “mollifier”
function that we will use in the definition of the entire function Gk (k ≥ 1)
in Theorem 3.3. We will prove some properties of this function (which, in
particular, will provide the property of item 3 in Theorem 3.3) and we will
complete the proof of Theorem 3.3.

Remark 3.4. Let us remark that, if Λ = {Λk}k≥1 ∈ L(β, ρ, q, p0, p1, p2, α), with
parameters satisfying (20) (see Definition 1.4), then

Λ := {Λk}k≥1 ∈ L(β, ρ, q, p0, p1, p2, α).
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We will prove Theorem 3.3 for the sequence Λ instead of Λ. �

3.1. An infinite product. In this section we will consider again a complex se-
quence Λ = {Λk}k≥1 in Λ ∈ L(β, ρ, q, p0, p1, p2, α) (the parameters satisfy (20)).
Thus, for each k ≥ 1 and z ∈ C, we define

fk(z) :=
∏
n≥1

n 6=k

(
1− z

Λn

)
, z ∈ C. (60)

The objective of this section is to prove some interesting properties satisfied by the
function fk.

First, observe that, by property (39), the previous product is uniformly conver-
gent on compact sets of C. Therefore, fk is, for any k ≥ 1, an entire function over
C (see for instance [25, p. 457]). Moreover, fk(Λn) = 0, for any n 6= k. In fact,
the zeros of fk are exactly the elements of the sequence {Λn}n≥1, n 6=k and they are
zeros of multiplicity 1.

We have the following property of function fk:

Lemma 3.5 ([7]). Let Λ = {Λk}k≥ ∈ L(β, ρ, q, p0, p1, p2, α) be a complex sequence,

with parameters satisfying (20). Then, for every z ∈ C and k ≥ 1, we have

log |fk(z)| ≤ (p2π + 1)
√
|z|+ C, (61)

where p2 is given in assumption (H6) and C is a positive constant only depending
on α and |Λ1| and increasing with respect to α. �

The proof of this result can be found in [7].
Recall that our objective is to construct a sequence {Gk}k≥1 of entire functions

over C satisfying items 1–3 in Theorem 3.3. This construction will use the function
fk(z) and an estimate from below of the non-zero quantity |fk(Λk)|. This is one of
the key points of this work and is established in the next

Lemma 3.6. Let Λ = {Λk}k≥ ∈ L(β, ρ, q, p0, p1, p2, α) be a complex sequence, with

parameters satisfying (20). Then,

|fk(Λk)| ≥ H1(ρ, q, p1, p2)−1e−CH3(ρ,q,p1,p2)
√
|Λk| P−1

k , ∀k ≥ 1, (62)

where C is a positive constant, only depending on |Λ1|, β, p0 and α (increasing
with respect to α), H1(ρ, q, p1, p2), fk and Pk are respectively given in (24), (60)
and (23), and H3 is defined by

H3(ρ, q, p1, p2) = 1 + q +
1 + q

ρ2p2
1

+ p2,

H3(ρ, q, p1, p2) = 1 + q +
1

ρ2p2
1

+ p2, when Λ is real.

Proof. As said before, if Λ = {Λk}k≥ ∈ Λ ∈ L(β, ρ, q, p0, p1, p2, α), then fk (see (60))

is an entire function over C with simple zeros at the points {Λn}n≥1,n6=k. Moreover,

from assumption (H1), we have

|fk(Λk)| =
∏
n≥1

n6=k

∣∣∣∣Λn − Λk
Λn

∣∣∣∣ 6= 0.
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In order to obtain lower estimates of |fk(Λk)| let us decompose the set {n ≥ 1 :
n 6= k} into the following sets:

S1(k) := {n ≥ 1 : 1 ≤ |n− k| < q} ,
S2(k) := {n ≥ 1 : |n− k| ≥ q, |Λn| ≤ 2|Λk|} ,
S3(k) := {n ≥ 1 : |n− k| ≥ q, |Λn| > 2|Λk|} .

Then,

|fk(Λk)| =
∏

n∈S1(k)

∣∣∣∣1− Λk
Λn

∣∣∣∣ ∏
n∈S2(k)

∣∣∣∣1− Λk
Λn

∣∣∣∣ ∏
n∈S3(k)

∣∣∣∣1− Λk
Λn

∣∣∣∣ :=

3∏
i=1

P
(k)
i . (63)

Let us estimate each term in (63) and, to this aim, let us take n ∈ S1(k). In
particular, n < k + q and, from (H4) and (40) (or (43) in the real case), we deduce

|Λn| ≤ |Λk+q| ≤
2

p2
1

|k + q|2 +
2C(1 + q)2

ρ2p4
1

≤ 2

p2
1

∣∣∣p2

√
|Λk|+ α+ q

∣∣∣2 +
2C(1 + q)2

ρ2p4
1

≤ 4
p2

2

p2
1

|Λk|+
2C(1 + q)2

p2
1

+
2C(1 + q)2

ρ2p4
1

:= 4
p2

2

p2
1

|Λk|+A, ∀n ∈ S1(k),

(or

|Λn| ≤ 4
p2

2

p2
1

|Λk|+
2C

p2
1

+
2C

ρ2p4
1

:= 4
p2

2

p2
1

|Λk|+A, ∀n ∈ S1(k),

when Λ is a real sequence). In the previous inequalities, C is a positive constant
independent of ρ, q, p1 and p2.

If x ≥ |Λ1|, one has

log

(
4
p2

2

p2
1

x+A

)
= log(x) + log

(
4
p2

2

p2
1

+
A

x

)
≤
√
x+ log

(
4
p2

2

p2
1

+
A

|Λ1|

)
.

On the other hand, thanks to (30) and (35), we also deduce

4
p2

2

p2
1

+
A

|Λ1|
= 4

p2
2

p2
1

+
C(1 + q2)

|Λ1|

(
1

p2
1

+
1

ρ2p4
1

)
=

4 |Λ1| ρ2p2
1p

2
2 + C(1 + q2)

(
ρ2p2

1 + 1
)

|Λ1| ρ2p4
1

≤
C
(
1 + ρp2

2 + q2
)

ρ2p4
1

,

(or 4
p22
p21

+ A
|Λ1| ≤

C(1+ρp22)
ρ2p41

when Λ is real).

Thus,

P
(k)
1 =

∏
n∈S1(k)

|Λn − Λk|
|Λn|

≥
∏

n∈S1(k)

|Λn − Λk|
4p22
p21
|Λk|+A

=
P−1
k(

4p22
p21
|Λk|+A

)2q−2

≥ e−(2q−2)
√
|Λk|(

4p22
p21

+ A
|Λ1|

)2q−2 P
−1
k ≥ C

(
ρ2p4

1

1 + ρp2
2 + q2

)2q−2

e−(2q−2)
√
|Λk| P−1

k ,

(64)

where Pk is given in (23) and C is a new a positive constant independent of ρ, q,

p1 and p2. In the real case, we deduce the following inequality for P
(k)
1 :

P
(k)
1 ≥ C

(
ρ2p4

1

1 + ρp2
2

)2q−2

e−(2q−2)
√
|Λk| P−1

k . (65)
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Let us now estimate the product P
(k)
2 . At this point we will use the gap condition

assumed in hypothesis (H5) when |n− k| ≥ q. We will follow some ideas from [7].
Using again Lemma 2.6 (or inequality (43) in the real case), we deduce

k + n√
|Λk|

≥ k
k
p1

+ C(1+q)
ρp21

=
ρp2

1k

ρp1k + C(1 + q)
≥ ρp2

1

ρp1 + C(1 + q)
:= B, ∀n, k ≥ 1.

(66)
(or

k + n√
|Λk|

≥ k
k
p1

+ C
ρp21

=
ρp2

1k

ρp1k + C
≥ ρp2

1

ρp1 + C
:= B, ∀n, k ≥ 1. (67)

when Λ is real). Then, if n ∈ S2(k),

P
(k)
2 =

∏
n∈S2(k)

∣∣∣∣Λn − Λk
Λn

∣∣∣∣ ≥ ∏
n∈S2(k)

ρ

2

|k − n||k + n|
|Λk|

≥
∏

n∈S2(k)

Bρ

2

|k − n|√
|Λk|

,

where B is given in (66) (or (67) in the real case).
Let rk := # {n ∈ S2(k) : n ≤ k − q} and sk := # {n ∈ S2(k) : n ≥ q + k}. Then,

from the previous estimate, one has

P
(k)
2 ≥ rk!

(
Bρ

2
√
|Λk|

)rk
sk!

(
Bρ

2
√
|Λk|

)sk
:= P

(k)
2,1 P

(k)
2,2 .

Observe that Stirling’s formula implies the existence of a positive constant c0 > 0
such that

n! ≥ c0
√

2πn
(n
e

)n
, ∀n ∈ N.

On the other hand, for c1 = e−1 one has

x log x ≥ −c1, ∀x ∈ (0,∞).

Thus,

P
(k)
2,1 = rk!

(
Bρ

2
√
|Λk|

)rk
≥ c0

(
Bρrk

2 e
√
|Λk|

)rk

= c0 exp

(
2e
√

Λk
Bρ

Bρrk

2e
√
|Λk|

log

(
Bρrk

2e
√
|Λk|

))
≥ c0 exp

(
−2c1e

Bρ

√
|Λk|

)
.

Taking into account the expression of B (see (66), resp., (67) in the real case)
and inequalities (30) and (35), we can conclude the existence of positive constant
C1 and C2 (independent of ρ, q, p1, p2 and T ) such that

−C1(1 + q)

ρ2p2
1

≤ −1

Bρ
≤ −C2(1 + q)

ρ2p2
1

, (resp.,
−C1

ρ2p2
1

≤ −1

Bρ
≤ −C2

ρ2p2
1

, in the real case).

Therefore, P
(k)
2,1 ≥ C exp

(
−C(1+q)
ρ2p21

√
|Λk|

)
, (resp., P

(k)
2,1 ≥ C exp

(
−C
ρ2p21

√
|Λk|

)
, in

the real case).

A similar reasoning can be applied to P
(k)
2,2 . Therefore, we have proved:

P
(k)
2 ≥ C exp

(
−C(1+q)
ρ2p21

√
|Λk|

)
,

(resp., P
(k)
2 ≥ C exp

(
−C
ρ2p2

1

√
|Λk|

)
, in the real case),

(68)

for any k ≥ 1. Again, C is a positive constant independent of ρ, q, p1, p2 and T .



BIORTHOGONAL FAMILIES TO COMPLEX EXPONENTIALS 31

In order to finish, let us analyze the third product in (63). To this aim, we will
use the inequalities

log(1− x) ≥ −2x, ∀x ∈
[
0,

1

2

]
, and

|Λk|
|Λn|

<
1

2
, ∀n ∈ S3(k).

From these inequalities and (H6), we can write N (r) ≤ α + p2
√
r, for any r > 0,

and

logP
(k)
3 ≥

∑
n∈S3(k)

log

(
1− |Λk|
|Λn|

)
≥ −2|Λk|

∑
n∈S3(k)

1

|Λn|
≥ −2|Λk|

∫ ∞
2|Λk|

1

r
dN (r)

= −2|Λk|

(
−N (2|Λk|)

2|Λk|
+

∫ ∞
2|Λk|

N (r)

r2
dr

)
≥ −2|Λk|

∫ ∞
2|Λk|

N (r)

r2
dr

≥ −2|Λk|
∫ ∞

2|Λk|

α+ p2
√
r

r2
dr = −2|Λk|

(
α

2|Λk|
+

2p2√
2|Λk|

)
= −α− 2

√
2p2

√
|Λk|.

Coming back to (63) and putting together the previous inequality and inequali-
ties (64) (or (65) in the real case) and (68), we conclude that inequality (62) holds.
This ends the proof.

3.2. Additional properties and proof of Theorem 3.3. In this paragraph we
will prove some additional properties that we will use in the proof of Theorem 3.3.
To this end, we will introduce a “mollifier” function and we will construct the
entire function Gk (k ≥ 1) in Theorem 3.3 by means of this function and function
fk (see (60)). In order to construct this “mollifier” function, we follow the strategy
of [41, 14].

Let us take T > 0 and a sequence Λ = {Λk}k≥1 ∈ L(β, ρ, q, p0, p1, p2, α), with

parameters satisfying (20) (see Definition 1.4). With all these data, we fix an integer
N ≥ 2 and we define the sequence {ak}k≥1 ⊂ (0,∞) given by

ak :=
CN,T
k2

, where CN,T :=
T

2
∑
k≥N

1

k2

, (69)

in order to have ∑
k≥N

ak =
T

2
.

Observe that this choice implies

1

N
=

∫ ∞
N

1

y2
dy ≤

∑
k≥N

1

k2
≤
∫ +∞

N−1

1

y2
dy =

1

N − 1
,

and the estimate (
N − 1

2

)
T ≤ CN,T ≤

N

2
T. (70)

Consider now the function

PN,T (z) := eiz
T
2

∏
k≥N

cos (akz) , z ∈ C.

With the previous data, one has:
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Lemma 3.7. Under the previous conditions, the following properties hold:

1. The function PN,T is entire over C and satisfies
PN,T (0) = 1,

|PN,T (z)| ≤ 1, ∀z ∈ C such that =(z) ≥ 0,∣∣∣e−iz T2 PN,T (z)
∣∣∣ ≤ e|z|T2 , ∀z ∈ C.

2. There exist positive constants θ0 > 0 and θ1 > 0 (independent of T and N)
such that
(
CN,T
θ0

) 1
2 √
|x|+ 1 ≥ N =⇒ log |PN,T (x)| ≤ −θ1

23

(
CN,T
θ0

) 1
2 √
|x|,(

CN,T
θ0

) 1
2 √
|x|+ 1 ≤ N =⇒ log |PN,T (x)| ≤ −θ1

N3

(
CN,T
θ0

)2

|x|2 .
(71)

3. There exists a positive constant θ2 > 0 (independent of T and N) such that

PN,T (ix) ≥ e−θ2
√
CN,T x, ∀x ≥ 0. (72)

For the proof of Lemma 3.7, see [41, 13, 14].
We are ready to prove the fundamental result stated in Theorem 3.3.

Proof of Theorem 3.3. Recall that T > 0 is given and Λ = {Λk}k≥ is a complex

sequence in L(β, ρ, q, p0, p1, p2, α). Let us define the function

Gk(z) :=
1√
2π

fk(−iz)PN,T (z + =(Λk))

fk(Λk)PN,T (i<(Λk))
; (73)

(the function fk is given in (60)). From the properties of the functions PN,T (see
Lemma 3.7) and fk we deduce that the function Gk is well defined and is an entire
function over C. In addition,

Gk(iΛn) =
1√
2π
δkn, ∀k, n ≥ 1.

Observe that the function PN,T only has real zeros ({an}n≥1 is a real sequence)

and, then, the sequence {Λn}n≥1, n6=k are zeros of Gk of multiplicity 1. This proves
item 2 in Theorem 3.3.

Let us now see that e−iz
T
2 Gk satisfies inequality (56). From Lemmas 3.5 and 3.7,

one has∣∣∣e−iz T2 Gk(z)
∣∣∣ ≤ e(p2π+1)

√
|z|+Ce|z+=(Λk)|T2

√
2π |fk(Λk)| |PN,T (i<(Λk))|

≤ e|=(Λk)|T2 +(p2π+1)
√
|z|+C

√
2π |fk(Λk)| |PN,T (i<(Λk))|

e|z|
T
2 ,

for any k ≥ 1. If we combine the previous inequality with

(p2π + 1)
√
|z| ≤ 1

4ε
(p2π + 1)

2
+ ε|z|,

valid for any ε > 0, we conclude that there exists a positive constant C ′N,T,k,ε such

that one has (56). This proves item 1 in Theorem 3.3.
Let us prove that Gk belongs to L2(R) and satisfies estimate (57). To this end,

we will make the following choice of N :

2 + γ (p2π + 1)
2 1

T
≤ N ≤ 4 + γ (p2π + 1)

2 1

T
with γ =

27θ0

θ2
1

; (74)

(p2 is given in assumption (H6)).
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Using (61) and (71), we have that for |x| large enough one has

|Gk(x)| ≤ e
(p2π+1)

√
|x|+C− θ1

23

(
CN,T
θ0

) 1
2
√
|x+=(Λk)|

√
2π |fk(Λk)| |PN,T (i<(Λk))|

.

Observe that if

p2π + 1 <
θ1

23

(
CN,T
θ0

) 1
2

,

then Gk ∈ L2(R). In fact, thanks to assumption (74) the previous estimate is
satisfied. Indeed, recall that ak and CN,T are given in (69) and satisfy (70). So,
from (74)

θ1

23

(
CN,T
θ0

) 1
2

≥ θ1

23

(
(N − 1)T

2θ0

) 1
2

> p2π + 1.

This proves Gk ∈ L2(R).
In what follows, we will estimate ‖Gk‖L2(R). First, from the expression of Gk

(see (73)) and using (61), (70), (72) and (74), one has

‖Gk‖2L2(R) ≤
e2θ2
√
CN,T<(Λk)+2C

2π |fk(Λk)|2
∫ ∞
−∞

e2(p2π+1)
√
|x| |PN,T (x+ =(Λk))|2

≤ e
2θ2

√
[2T+γ(p2π+1)2/2]<(Λk)+2C

2π |fk(Λk)|2
∫ ∞
−∞

e2(p2π+1)
√
|x| |PN,T (x+ =(Λk))|2

:=
e

2θ2

√
[2T+γ(p2π+1)2/2]<(Λk)+2C

2π |fk(Λk)|2
I.

(75)

Denote

A1 := {x ∈ R : |x+ = (Λk)| < XN,T } , A2 := {x ∈ R : |x+ = (Λk)| ≥ XN,T } ,

where

XN,T :=
θ0(N − 1)2

CN,T
.

Let us first observe that, thanks to inequalities (70) and (74), it is not difficult to
see the property

1

2
θ0

(
1

T
+ γ

(p2π + 1)
2

T 2

)
≤ XN,T ≤ 18θ0

(
1

T
+ γ

(p2π + 1)
2

T 2

)
, (76)

with γ given in (74).
With the previous notations, we can write

I =

∫
A1

e2(p2π+1)
√
|x| |PN,T (x+ =(Λk))|2 dx

+

∫
A2

e2(p2π+1)
√
|x| |PN,T (x+ =(Λk))|2 dx := I1 + I2.
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The next objective is to provide an estimate of I1 and I2. To this end, we will
use property (71) of Lemma 3.7. Firstly, we estimate I1. We have:

I1 ≤ e2(p2π+1)
√
|=(Λk)|

∫
A1

e2(p2π+1)
√
|x+=(Λk)|e

−2θ1
N3

CN,T
θ0
|x+=(Λk)|2 dx

≤ e2(p2π+1)
(√
|=(Λk)|+

√
XN,T

) ∫
A1

e
−2θ1
N3

CN,T
θ0
|x+=(Λk)|2 dx

≤ e2(p2π+1)
(√
|=(Λk)|+

√
XN,T

)
|A1| = 2e

2(p2π+1)
(√
|=(Λk)|+

√
XN,T

)
XN,T .

(77)

Let us now estimate I2. If we denote

L :=
θ1

22

√
CN,T
θ0
− 2 (p2π + 1) ,

and we use again (75), we get

I2 ≤ e2(p2π+1)
√
|=(Λk)|

∫
A2

e2(p2π+1)
√
|x+=(Λk)| |PN,T (x+ =(Λk))|2 dx,

≤ e2(p2π+1)
√
|=(Λk)|

∫
A2

e−L
√
|x+=(Λk)| dx

≤ 2e2(p2π+1)
√
|=(Λk)|

∫ ∞
0

e−L
√
x dx = 4e2(p2π+1)

√
|=(Λk)| 1

L2
.

(78)

As before and in order to bound L, we use again (70) and (74). Thus,

L ≥

√
θ2

1

25θ0
(N − 1)T − 2 (p2π + 1) ≥

√
θ2

1T

25θ0
+ 22 (p2π + 1)

2 − 2 (p2π + 1)

=

θ21T
25θ0√

θ21T
25θ0

+ 22 (p2π + 1)
2

+ 2 (p2π + 1)
≥

θ21T
25θ0

2
√

θ21T
25θ0

+ 22 (p2π + 1)
2
> 0,

and
1

L2
≤ γ

(
1

T
+ γ (p2π + 1)

2 1

T 2

)
, (79)

with γ given in (74).
Coming back to (75) and taking into account the inequality

x ≤ e
√
x, ∀x ≥ 0,

assumption (H3), (77) and (78), with XN,T and L satisfying (76) and (79), we
deduce

‖G‖L2(R) ≤
e
C
(

1+
√

(1+T+p2)<(Λk)
)

|fk(Λk)|
e
C(1+p2)

(√
=(Λk)+

√
XN,T

)(
1

T
+

γ

T 2
(p2π + 1)

2

)

≤ e
C
(

1+
√

(1+T+p2)<(Λk)
)

|fk(Λk)|
e
C(1+p)

(
1+=(Λk)+ 1√

T
+
p2+1
T

)

≤ e
C
(

1+p2+
√

(1+T+p2)|Λk|
)

|fk(Λk)|
e
C(1+p2)

(√
|Λk|+

p2+1
T

)
.

Finally, the previous inequality and (62) provide estimate (57), for Gk(x). This
ends the proof.
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4. A lower bound for the norm of arbitrary biorthogonal families: Proof
of Theorem 1.9. This section will be devoted to prove the second main result,
Theorem 1.9, of this paper. Observe that in inequality (27) two important factors

appear. The first one, e
1
Tν (ν > 0), is due to the fact we are dealing with infinite

sequences. In order to obtain this factor, we will follow some ideas developed
by Güichal in [23] (see also [14]). The second factor, Pk (see (23)), comes from the
eventual condensation of the elements of the sequence Λ. The corresponding part
of the proof is completely new.

Let us consider a sequence Λ = {Λk}k≥1 ∈ L(β, ρ, q, p0, p1, p2, α) (the parameters

are given and satisfy (20)) such that property (26) holds, for ν > 0. On the other
hand, let us also consider {qk}k≥1 ⊂ L2(0, T ;C), a biorthogonal family to {ek}k≥1

in L2(0, T ;C) (ek is the function given by (1)).
Associated to the sequence Λ we introduce the spaces:

E(Λ, T ) := span {en : n ≥ 1}}
L2(0,T ;C)

,

Ek(Λ, T ) := span {en : n ≥ 1, n 6= k}}
L2(0,T ;C)

, ∀k ≥ 1.

With this notation, one has:

Lemma 4.1. Assume that Λ = {Λk}k≥1 ⊂ C is a complex sequence satisfying (3)

for a positive constant δ. Then, the closed space E(Λ, T ) is a proper subspace of
L2(0, T ;C). Moreover, the family of exponentials {ek}k≥1 is minimal in L2(0, T ;C),
that is to say, for every k ≥ 1, one has

ek /∈ Ek(Λ, T ).

The previous lemma is a well-known result for sequences that satisfy (3) (see for
instance [39], [37], [4], [5] and Remark 2.8).

As a consequence of Lemma 4.1, we can consider dT,k > 0, the distance between
the function ek and Ek(Λ, T ), i.e.,

d2
T,k = inf

p∈Ek(Λ,T )
‖ek − p‖2L2(0,T ;C) =

∫ T

0

∣∣e−Λkt − pk(t)
∣∣2 dt, ∀k ≥ 1,

where pk ∈ Ek(Λ, T ) is the orthogonal projection of the function ek(t) = e−Λkt on
Ek(Λ, T ). Observe that the function pk is characterized by: pk ∈ Ek(Λ, T ) and

(ek − pk, en)L2(0,T ;C) = 0, ∀n ≥ 1 : n 6= k.

Thus, if we consider the function sk given by

sk(t) :=
ek(t)− pk(t)

d2
T,k

=
e−Λkt − pk(t)

d2
T,k

, t ∈ (0, T ), ∀k ≥ 1,

we deduce that the sequence {sk}k≥1 ⊂ E(Λ, T ) is biorthogonal to {ek}k≥1 in

L2(0, T ;C). In fact, this family is the unique sequence biorthogonal to the expo-
nentials {ek}k≥1 whose elements belong to E(Λ, T ). Moreover, it is optimal in the

following sense: if we consider another biorthogonal family {q̃k}k≥1 to {ek}k≥1 in

L2(0, T ;C), then q̃k − sk ∈ E(Λ, T )⊥. Since sk ∈ E(Λ, T ), we deduce

‖q̃k‖2L2(0,T ;C) = ‖sk‖2L2(0,T ;C) + ‖q̃k − sk‖2L2(0,T ;C) ≥ ‖sk‖
2
L2(0,T ;C) =

1

d2
T,k

, ∀k ≥ 1.

In particular,

‖qk‖2L2(0,T ;C) ≥
1

d2
T,k

, ∀k ≥ 1.
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The goal now is to obtain an upper bound of dT,k, for any k ≥ 1. From the
definition of dT,k we clearly have

dT,k ≤ ‖ek − p‖L2(0,T ;C) , ∀p ∈ Ek(Λ, T ), ∀k ≥ 1.

Then,

‖qk‖L2(0,T ;C) ≥
1

dT,k
≥ 1

‖ek − p‖L2(0,T ;C)

, ∀p ∈ Ek(Λ, T ), ∀k ≥ 1. (80)

In order to obtain (27), we are going to apply the previous inequality to two
appropriate functions p ∈ Ek(Λ, T ). Inequality (27) will be a direct consequence of
inequality (80), written for these two functions.

4.1. A lower bound for the norm of arbitrary biorthogonal families. First
part. Let us prove that, for any k ≥ 3, one has

‖qk‖L2(0,T ;C) ≥
6

π2
Bk Pk e

1
Tν , (81)

where Pk and Bk are respectively given in (23) and (28).
Following [23], the idea is to construct a particular function p in Ek(Λ, T ). To

this end, let us fix a positive integer M ≥ q+k, where q is given in assumption (H5).
On the other hand, let us take

f1(t) :=

M+1∑
n=1

Anen(t) =

M+1∑
n=1

Ane
−Λnt, t ∈ (0, T ), (82)

with coefficients A1, A2, ..., AM+1 ∈ C. Observe that f1 ∈ Ek(Λ, T ) if and only if
Ak = 0 and, when Ak 6= 0 then

1

Ak
f1(t) = e−Λkt +

k−1∑
n=1

An
Ak

e−Λnt +

M+1∑
n=k+1

An
Ak

e−Λnt = ek(t)− p(t), t ∈ (0, T ).

Therefore,

dT,k ≤
∥∥∥∥ 1

Ak
f1

∥∥∥∥
L2(0,T ;C)

, ∀k ≥ 1. (83)

Let us consider the coefficients A1, A2, ..., AM+1 ∈ C given by

An :=

M+1∏
i=1
i 6=n

(Λi − Λn)
−1
, 1 ≤ n ≤M + 1. (84)

The next task will be to estimate ‖f1‖L2(0,T ;C), with f1 and An, 1 ≤ n ≤M + 1,

respectively given in (82) and (84). To this aim, we recall the following results:

Lemma 4.2. Let B := {an}1≤n≤r+1 ⊂ C be a set of distinct points, r ≥ 1, and let
us fix g an analytic function in a convex domain Ω ⊂ C such that B ⊂ Ω. Then,
there exists θ ∈ [−1, 1] and ξ ∈ Conv (B), the convex hull of B, such that

r+1∑
n=1

g(an)∏
ai∈B
i6=n

(an − ai)
=

θ

r!

∂rg

∂zr
(ξ).

Lemma 4.3. The following properties hold:

1.

∫ T

0

tNe−λt dt ≤ 2TN+1

N + 1 + λT
, for any N ≥ 1 and λ > 0.
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2.
1

N !

(
x

1 + x

)N
ex ≤

∞∑
n=N

xn

n!
, for any x ≥ 0 and N ≥ 1.

Lemma 4.2 is a formula due to Jensen. On the other hand, the proof of Lemma 4.3
can be found in [14, Lemma 4.2, Lemma 4.3].

Now, using assumption (26), we can provide an estimate of |Ak|−1
. One has:

Lemma 4.4. Let us fix k ≥ 1 and M ≥ q + k. Then, under the assumptions of
Theorem 1.9, we have

|Ak|−1 ≤


νM+2−q−k

(q − 1)!(2k + q − 1)!
(M + 1− k)! (M + 1 + k)!P−1

k , if k ≤ q,

νM−2(q−1)(2k − q)!
k [(q − 1)!]

2
(2k + q − 1)!

(M + 1− k)! (M + 1 + k)!P−1
k , if k > q,

(85)
where Ak and Pk are respectively given in (84) and (23).

Proof. The proof is a direct consequence of assumption (26). Indeed, let us first
assume that k > q. From the expression of Ak (see (84)), we obtain,

|Ak|−1
=

M+1∏
n=1
n 6=k

|Λk − Λn| = P−1
k

k−q∏
n=1

|Λk − Λn|
M+1∏
n=q+k

|Λk − Λn| := P−1
k S1,k S2,k,

where Pk is given in (23). On the other hand, assumption (26) provides the following
estimate

S1,k S2,k ≤
k−q∏
n=1

(
ν
∣∣k2 − n2

∣∣) M+1∏
n=q+k

(
ν
∣∣k2 − n2

∣∣)
= νM−2(q−1)

k−q∏
n=1

(k + n)

k−q∏
n=1

(k − n)

M+1∏
n=q+k

(k + n)

M+1∏
n=q+k

(n− k)

= νM−2(q−1) (2k − q)!
k!

(k − 1)!

(q − 1)!

(k − 1)!

(q − 1)!

(M + 1 + k)!

(2k + q − 1)!

(M + 1− k)!

(q − 1)!

= νM−2(q−1) (2k − q)!
k [(q − 1)!]

2
(2k + q − 1)!

(M + 1− k)! (M + 1 + k)! .

Putting both inequalities together we deduce (85) in the case k > q.
We can reason as before in the case k ≤ q. In this case, the first product S1,k in

the expression of |Ak|−1
does not appear. It is not difficult to deduce the following

estimate:

S2,k ≤
M+1∏
n=q+k

(
ν
∣∣k2 − n2

∣∣) =
νM+2−q−k

(q − 1)!(2k + q − 1)!
(M + 1− k)! (M + 1 + k)! .

The previous inequality implies (85) for k ≤ q. This ends the proof.

Let us continue with the proof of inequality (81) when k ≥ 3. Observe that
we can apply Lemma 4.2 to f1 with coefficients An given in (84), r = M , B =
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{Λn}1≤n≤M+1 and g(z) = e−tz (t ∈ [0, T ] is fixed). We obtain,

f1(t) =

M+1∑
n=1

(−1)M

M+1∏
i=1
i 6=n

(Λn − Λi)

e−Λnt = (−1)M
θ

M !

∂Mg

∂zM
(ξ) =

θtM

M !
e−tξ,

where θ = θ(t) satisfies |θ| ≤ 1 and

ξ =

M+1∑
n=1

αnΛn, with αn ≥ 0 and

M+1∑
n=1

αn = 1.

Using assumption (H4) and property (3), we can write:

<(ξ) =

M+1∑
n=1

αn< (Λn) ≥ δ
M+1∑
n=1

αn |Λn| ≥ δ |Λ1| ,

where δ > 0 is a constant only depending on β (δ = 1 when β = 0). Thus,

|f1(t)| =
∣∣∣∣θtMe−tξM !

∣∣∣∣ ≤ tM

M !
e−t<(ξ) ≤ tM

M !
e−δ|Λ1|t, ∀t ∈ [0, T ].

Coming back to (83) with Ak given in (84), we deduce that

dT,k ≤
1

|Ak|
‖f1‖L2(0,T ;C) ≤

1

M !
|Ak|−1

(∫ T

0

t2Me−2δ|Λ1|t dt

)1/2

, ∀k ≥ 1.

Let us introduce the quantity

Dk =


νk+q−2 (q − 1)! (2k + q − 1)!

√
δ |Λ1|+

1

2T
Pk, if k ≤ q,

ν2(q−1) [(q − 1)!]
2 k(2k + q − 1)!

(2k − q)!

√
δ |Λ1|+

1

2T
Pk, if k ≥ q.

(86)

Let us first work with k ≥ max{3, q}. If we use Lemma 4.4 and item 1 of
Lemma 4.3, we deduce

dT,k ≤
νM−2(q−1)

M !

(2k − q)!(M + k + 1)!(M − k + 1)!

k [(q − 1)!]
2

(2k + q − 1)!

TM
√

2T√
2M + 1 + 2δT |Λ1|

P−1
k

≤ ν−2(q−1)

√
2T

1 + 2δT |Λ1|
(2k − q)!P−1

k (M − k + 1)!

k [(q − 1)!]
2

(2k + q − 1)!M !
(M + k + 1)! (νT )

M

= D−1
k

(M + k + 1)!

M(M − 1) · · · (M − k + 4)(M − k + 3)(M − k + 2)
(νT )

M

≤ D−1
k

1

(k + q)(k + q − 1) · · · (q + 4)

(M + k + 1)!

(M + 1− k − q)2
(νT )

M

= D−1
k

(q + 3)!

(k + q)!

(M + k + 1)!

(M + 1− k − q)2
(νT )

M
, ∀k ≥ max{3, q},

where Dk is given in (86). In the previous inequalities we have used that k ≥ 3 and
M ≥ k + q.
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Now, if k is such that 3 ≤ k ≤ q, we can argue as before and deduce the same
inequality. Summarizing, for any k ≥ 3, one has

dT,k ≤ D−1
k

(q + 3)!

(k + q)!

(M + k + 1)!

(M + 1− k − q)2
(νT )

M
, ∀k ≥ 3,

where Dk is given in (86).
Let us finalize the proof of inequality (81) when k ≥ 3. The previous estimate of

dT,k and item 2 of Lemma 4.3 allow us to write:

π2

6

1

dT,k
=

∞∑
M=k+q

1

(M + 1− k − q)2

1

dT,k
≥ Dk

(k + q)!

(q + 3)!

∞∑
M=k+q

1

(M + k + 1)!

1

(νT )
M

= (νT )
k+1Dk

(k + q)!

(q + 3)!

∞∑
n=2k+q+1

1

n!

1

(νT )
n

≥ (νT )
k+1Dk

(k + q)!

(q + 3)!

1

(2k + q + 1)!

1

(1 + νT )
2k+q+1

e
1
νT ,

where Dk is given in (86). Coming back to (80), the previous inequality proves (81).

4.2. A lower bound for the norm of arbitrary biorthogonal families. Sec-
ond part. In order to finish the proof of Theorem 1.9, let us now show that, for
any k ≥ 1, one has

‖qk‖L2(0,T ;C) ≥ Ek Pk, (87)

where Ek and Pk are respectively given in (29) and (23).
Let us introduce the function

f2(t) =
∑

{n≥1:|k−n|<q}

Ãnen(t) =
∑

{n≥1:|k−n|<q}

Ãne
−Λnt, t ∈ (0, T ), (88)

with coefficients Ãn ∈ C given by

Ãn :=
∏

{i≥1:|k−i|<q}
i 6=n

(Λi − Λn)
−1
, n ≥ 1 : |k − n| < q. (89)

Observe that
∣∣∣Ãk∣∣∣ = Pk 6= 0 (Pk is given in (23)). As in the previous subsection,

we can write

1

Ãk
f2(t) = e−Λkt +

∑
{n≥1:0<|k−n|<q}

Ãn

Ãk
e−Λnt = ek(t)− p̃(t), t ∈ (0, T ).

Therefore,

dT,k ≤ ‖ek − p̃‖L2(0,T ;C) = P−1
k ‖f2‖L2(0,T ;C) , ∀k ≥ 1. (90)

Given k ≥ 1, we consider the set

B = {Λn : |k − n| < q}.

and the number r + 1 = #B. It is not difficult to see that

r =

{
k + q − 2, if 1 ≤ k < q,

2(q − 1), if k ≥ q,
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and, therefore r ≥ 1 (q ≥ 2). Now, if we apply Lemma 4.2 to f2 with coefficients

Ãn given by (89), the set B, r and g(z) = e−tz (t ∈ [0, T ] is fixed), we deduce

f2(t) =
θ̃

r!
tre−tξ̃,

where θ̃ = θ̃(t) is such that
∣∣∣θ̃∣∣∣ ≤ 1 and ξ̃ ∈ Conv (B), i.e.,

ξ̃ =
∑

{n≥1:|k−n|<q}

α̃nΛn with α̃n ≥ 0 and
∑

{n≥1:|k−n|<q}

α̃n = 1.

The previous expression of ξ̃ and assumption (H4) also allow us to deduce

<(ξ̃) =
∑

{n≥1:|k−n|<q}

α̃n< (Λn) ≥ δ
∑

{n≥1:|k−n|<q}

α̃n |Λn| ≥ δ min
Λn∈B

|Λn|

= δ
∣∣Λmax{1,k+1−q}

∣∣ ,
with δ > 0 as in (3) (δ = 1 when β = 0). Summarizing, we have proved

|f2(t)| ≤ 1

r!
|t|r e−δ|Λk+1−q|t, ∀t ∈ [0, T ].

Let us finalize the proof of (87). To this end, we work with the previous in-
equality, inequality (90), item 1 of Lemma 4.3 and the expression of r. Thus, if
1 ≤ k < q, we obtain

dT,k ≤
1

(k + q − 2)!

(∫ T

0

|t|2(k+q−2)
e−2δ|Λ1|t dt

)1/2

P−1
k

≤ 1

(k + q − 2)!

T k+q−2
√

2T√
2(k + q − 2) + 1 + 2δ |Λ1|T

P−1
k .

Now, if k ≥ q, r = 2(q − 1) and a similar computation provides

dT,k ≤
1

(2q − 2)!

T 2(q−1)
√

2T√
4(q − 1) + 1 + 2δ |Λk+1−q|T

P−1
k .

Of course, inequality (87) is a direct consequence of these inequalities and inequal-
ity (80). This finally ends the proof of Theorem 1.9. �

5. Application to the boundary controllability problem for some para-
bolic systems. This section will be devoted to apply Theorems 1.7 and 1.9 to two
particular parabolic systems in order to provide some new results on the control
cost for the boundary controllability problem associated to these systems. To be
precise, we will revisit the controllability problems analyzed in [34] and [22] and we
will prove new estimates of the control cost with respect to the final time T > 0.
Some results in this section have been previously announced in [21].

5.1. A 2× 2 linear coupled parabolic system. Let us consider the one-dimen-

sional Dirichlet-Laplace operator L̃1 := −∂xx with domain D(L̃1) = H2 (0, π) ∩
H1

0 (0, π). It is well-known that (L̃1, D(L̃1)) is self-adjoint and admits a sequence of

eigenvalues Λ1 = {λ(1)
k }k≥1 = {k2}k≥1 and normalized eigenfunctions given by

ϕ
(1)
k (x) :=

√
2

π
sin (kx) , ∀k ≥ 1, x ∈ (0, π).
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On the other hand, let Q ∈ L2(0, π) be a given function and consider the operator

L̃2 := −∂xx + Q with domain D(L̃2) = D(L̃1). Again, (L̃2, D(L̃2)) is self-adjoint,

admits a sequence of increasing eigenvalues Λ2 = {λ(2)
k }k≥1 and a sequence of

normalized eigenfunctions {ϕ(2)
k }k≥1 which is an orthonormal basis of L2(0, π).

In this section we will revisit the boundary controllability problem for the system
∂ty + L2y = 0 in QT := (0, T )× (0, π),

y(·, 0) = Bv, y(·, π) = 0 on (0, T ),

y(0, ·) = y0 in (0, π),

(91)

where y0 ∈ H−1
(
0, π,R2

)
is the initial datum, v ∈ L2(0, T ) is a scalar control,

the operator (L2, D(L2)) is given by (13) and B ∈ R2 is the control vector. It is
interesting to observe that we want to control system (91), two variables, with a
unique control function v ∈ L2(0, T ).

For every y0 ∈ H−1
(
0, π;R2

)
, system (91) admits a unique solution defined by

transposition, y, which satisfies y ∈ L2
(
QT ;R2

)
∩ C0

(
[0, T ];H−1

(
0, π;R2

))
.

It is well-known that, when Q ∈ L2(0, π) satisfies (14), one has

λ
(2)
k = λ

(1)
k + εk = k2 + εk, ∀k ≥ 1,

with {εk}k≥1 ∈ `2. In particular, lim εk = 0 (see for instance [26]). Observe that in

this case, the eigenvalues of the operator L2 do not fulfill the gap condition (5) and
the null controllability of system (91) has a minimal time T0 of null controllability
which is defined as:

T0 = lim sup
− log |εk|

k2
∈ [0,∞]. (92)

To be precise, one has:

Theorem 5.1. Let us consider Q ∈ L2(0, π), a function satisfying Q 6≡ 0 and (14).

Given T > 0 and B = (b1, b2)
t
, one has

1. System (91) is approximately controllable at time T > 0 if and only if

b1b2 6= 0 and λ
(1)
k 6= λ(2)

n ∀k, n ≥ 1. (93)

2. Assume that (93) holds and consider T0 given in (92). Then
(a) If T > T0, system (91) is null controllable at time T .
(b) If T < T0, system (91) is not null controllable at time T . �

The previous result has been proved in [34]. In this reference, the author also
shows that T0 depends on Q ∈ L2(0, π) and satisfies this property: given τ ∈ [0,∞],
there exists Q ∈ L2(0, π) satisfying (14) such that T0 = τ . Thus, the minimal time
T0 associated to system (91) could reach any value in the interval [0,∞]. Therefore,
there exist coefficients Q ∈ L2(0, π) such that the corresponding minimal time of
system (91) satisfies T0 > 0.

Remark 5.2. The study of the controllability of system (91) is easier when Q ∈
L2(0, π) does not satisfy condition (14). In fact, we have the following property:
system (91) is null controllable at time T > 0 if and only if the system is approx-
imately controllable at this time, i.e., if and only if (93) holds. In this case, we
have that T0 = 0 and the null controllability of the system is valid for any T > 0
(see [34]). On the other hand, it is not difficult to check that we can apply Theo-
rem 1.2 to the sequence Λ. As a consequence, the associated control cost K(T ) for
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system (91) satisfies (10) and (11) for appropriate positive constants C0, C1, τ0 and
τ1 independent of T . �

From now on, let us suppose that (14) and (93) hold. Then, when T > T0, we de-
duce that system (91) is null controllable at time T . So, for any y0 ∈ H−1(0, π;R2),
the set

CT (y0) :=
{
v ∈ L2(0, T ) : y(T, ·) = 0 in (0, π), y solution of (91)

}
,

is non empty and therefore, we can define the control cost of system (91) in time
T , K(T ), when T > T0 (see (9)).

The positive part of the null controllability result for system (91) at time T > 0
stated in Theorem 5.1 is proved in [34] by using the moment method. Let us briefly
describe this method for system (91).

From the previous assumptions, we deduce that (L2, D(L2)) is a self-adjoint
operator. Its spectrum is given by

σ(L2) := Λ = Λ1 ∪ Λ2 =
{
λ

(1)
k , λ

(2)
k

}
k≥1

=
{
k2, k2 + εk

}
k≥1

, (94)

and the eigenspaces of L2 associated to λ
(1)
k and λ

(2)
k are respectively generated by

φ
(1)
k =

(
ϕ

(1)
k

0

)
and φ

(2)
k =

(
0

ϕ
(2)
k

)
, ∀k ≥ 1. (95)

Moreover, the sequence
{
φ

(1)
k , φ

(2)
k

}
k≥1

is an orthonormal basis of L2
(
0, π;R2

)
and

an orthogonal basis of H1
0

(
0, π;R2

)
and H−1

(
0, π;R2

)
.

Using the spectral properties of the operator L2 (see (13)) we can rewrite the
null controllability problem for system (91) at time T as a moment problem. To be
precise, one has:

Proposition 5.3. Under the previous assumptions, given y0 ∈ H−1
(
0, π;R2

)
, the

control v ∈ L2(0, T ) is such that the corresponding solution of (91) satisfies y(T, ·) =
0 in (0, π) if and only if v ∈ L2(0, T ) satisfies

b1ϕ
(1)
k,x(0)

∫ T

0

v(T − t)e−λ
(1)
k t dt = −e−λ

(1)
k T 〈y0, φ

(1)
k 〉H−1,H1

0
,

b2ϕ
(2)
k,x(0)

∫ T

0

v(T − t)e−λ
(2)
k t dt = −e−λ

(2)
k T 〈y0, φ

(2)
k 〉H−1,H1

0
.

(96)

for any k ≥ 1, where λ
(i)
k and φ

(i)
k are respectively given in (94) and (95). �

For a proof of the previous property, see [34].
In fact, when (93) holds and T > T0, T0 given in (92), the corresponding null

controllability problem at time T for system (91) (or equivalently, the moment
problem stated in Proposition 5.3) can be explicitly solved as follows (see [34] for
the details): The sequence Λ given in (94) satisfies (3). Therefore, Lemma 4.1

can be applied to deduce the existence of a sequence {q(1)
k , q

(2)
k }k≥1 ⊂ L2(0, T )

biorthogonal to {e(1)
k , e

(2)
k }k≥1 ⊂ L2(0, T ), where

e
(i)
k (t) = e−λ

(i)
k t, ∀t ∈ (0, T ), i = 1, 2. (97)

Thus, a formal solution of the moment problem (96) is:

v(t) =
∑
k≥1

(
e−λ

(1)
k Tm

(1)
k q

(1)
k (T − t) + e−λ

(2)
k Tm

(2)
k q

(2)
k (T − t)

)
, ∀t ∈ (0, T ), (98)
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where

m
(i)
k =

−1

biϕ
(i)
k,x(0)

〈y0, φ
(i)
k 〉H−1,H1

0
, ∀k ≥ 1, i = 1, 2. (99)

Furthermore, when T > T0, with T0 given in (92), the series (98) converges abso-
lutely in L2(0, T ) and provides a null control v ∈ L2(0, T ) which in fact is a solution
of the moment problem (96).

Let us see that we can conveniently choose the sequence {q(1)
k , q

(2)
k }k≥1 in order to

select a null control for system (91) associated to y0 ∈ H−1
(
0, π;R2

)
with minimal

norm in L2(0, T ). For that purpose, we define (see Section 4)

E(Λ, T ) := span
{
e

(i)
n : n ≥ 1, i = 1, 2}

}L2(0,T )

,

E
(1)
k (Λ, T ) := span

{
e

(1)
n , e

(2)
l : n ≥ 1, n 6= k, l ≥ 1

}L2(0,T )

, ∀k ≥ 1

E
(2)
k (Λ, T ) := span

{
e

(1)
n , e

(2)
l : n ≥ 1, l ≥ 1, l 6= k

}L2(0,T )

, ∀k ≥ 1.

We have:

Proposition 5.4. Under the previous assumptions, let us suppose that (93) holds.
Let us also consider T > T0 and the sequence of functions

s
(i)
k (t) :=

e−λ
(i)
k t − p(i)

k (t)

d2
T,k,i

, t ∈ (0, T ), ∀k ≥ 1, i = 1, 2,

where dT,k,i and p
(i)
k ∈ E

(i)
k (Λ, T ) are defined by

d2
T,k,i = inf

p∈E(i)
k (Λ,T )

∥∥∥e(i)
k − p

∥∥∥2

L2(0,T )
=

∫ T

0

∣∣∣e−λ(i)
k t − p(i)

k (t)
∣∣∣2 dt, ∀k ≥ 1, i = 1, 2.

Then, the sequence {s(1)
k , s

(2)
k }k≥1 ⊂ E(Λ, T ) is biorthogonal to {e(1)

k , e
(2)
k }k≥1 in

L2(0, T ) (the function e
(i)
k is given in (97)). Moreover, given y0 ∈ H−1(0, π;R2),

the control u ∈ L2(0, T ) given by

u(t) =
∑
k≥1

(
e−λ

(1)
k Tm

(1)
k s

(1)
k (T − t) + e−λ

(2)
k Tm

(2)
k s

(2)
k (T − t)

)
, ∀t ∈ (0, T ), (100)

where m
(i)
k is given in (99), satisfies u ∈ CT (y0), û ∈ E(Λ, T ) (û is the function

û(t) = u(T − t), t ∈ (0, T )) and

‖u‖L2(0,T ) = inf
v∈CT (y0)

‖v‖L2(0,T ).

Proof. As said before, under assumption (93), the sequence Λ satisfies (3). Then,

the family {e(1)
k , e

(2)
k }k≥1 is minimal in L2(0, T ). In particular, we deduce that

the functions s
(i)
k are well defined, live in E(Λ, T ), for any k ≥ 1 and i = 1, 2,

and are biorthogonal to {e(1)
k , e

(2)
k }k≥1. These properties together with T > T0

imply that the function u defined in (100) satisfies û ∈ E(Λ, T ) and solves the
null controllability problem at time T for system (91) and y0 ∈ H−1(0, π;R2), i.e.,
u ∈ CT (y0).
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Let us now consider another null control v ∈ CT (y0). Using the equivalence stated
in Proposition 5.3 we infer that v satisfies the moment problem (96). Therefore,∫ T

0

[v(T − t)− u(T − t)] e−λ
(i)
k t dt = 0, ∀k ≥ 1 and i = 1, 2,

that is to say, v̂ − û ∈ E(Λ, T )⊥ (v̂ and û are defined as v̂(t) = v(T − t) and
û(t) = u(T − t), t ∈ (0, T )). Using that û ∈ E(Λ, T ), we deduce

‖v‖2L2(0,T ) = ‖v̂‖2L2(0,T ) = ‖(v̂ − û) + û‖2L2(0,T ) = ‖v̂ − û‖2L2(0,T ) + ‖û‖2L2(0,T )

≥ ‖û‖2L2(0,T ) = ‖u‖2L2(0,T ) .

The previous inequalities prove the result. This finalizes the proof.

Our objective is to apply Theorems 1.7 and 1.9 to system (91) in a particular
case. To this end, let us state a technical result of inverse spectral theory whose
proof can be found in [36] (see also [34]):

Lemma 5.5. Let us consider {εk}k≥1, a sequence in `2. Then, there exists a

function Q ∈ L2(0, π) satisfying (14) such that

σ(L̃2) = Λ2 =
{
k2 + εk

}
k≥1

,

where L̃2 := −∂xx +Q with domain D(L̃2) = H2 (0, π) ∩H1
0 (0, π). �

From now on, we will take

εk = e−k
2γ

, k ≥ 1,

with γ ∈ (0,∞), and B = (b1, b2)t with b1b2 6= 0. Clearly {εk}k≥1 ∈ `2 and we can
apply Lemma 5.5. We will work with the function Qγ associated to the previous
sequence provided by Lemma 5.5 and the corresponding sequences of eigenvalues

and orthogonal basis Λ1, Λ2 and {ϕ(1)
k }k≥1 and {ϕ(2)

k }k≥1 associated to the oper-

ators L̃1 and L̃2. With this choice, we consider the parabolic control system (91)
with L2 given in (13).

Observe that the sequence Λ of eigenvalues of the operator L2 can be rearranged
as an increasing sequence Λ = {Λk}k≥1 (γ ∈ (0,∞)) doing:

Λ2k−1 = k2, Λ2k = k2 + e−k
2γ

, ∀k ≥ 1. (101)

It is clear that the functions

φ2k−1 =

(
ϕ

(1)
k

0

)
and φ2k =

(
0

ϕ
(2)
k

)
, ∀k ≥ 1. (102)

are an orthonormal basis of eigenfunctions of the operator L2 in L2(0, π;R2) and
an orthogonal basis of H1

0 (0, π;R2) and H−1(0, π;R2).
The controllability properties of system (91) at time T > 0 can be deduced from

Theorem 5.1. In this case, system (91) is approximately controllable for any final
time T > 0. The expression of the minimal time is (see (92))

T0 = lim
− log

(
e−k

2γ
)

k2
=

 0 if γ ∈ (0, 1),
1 if γ = 1,
∞ if γ > 1.

We deduce then

1. If γ ∈ (0, 1), system (91) is null controllable at any final time T > 0.
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2. If γ = 1, system (91) is null controllable at any final time T > 1 and is not
controllable at time T when T < 1.

3. When γ > 1, system (91) is never null controllable at any final time T > 0.

Observe that, when γ ∈ (0, 1) and Qγ ∈ L2(0, π) is the function provided by

Lemma 5.5 associated to εk = e−k
2γ

, system (91) is null controllable at time T ,
for any T > 0. We can introduce the control cost K(T ) associated to this system
(see (9)). Our objective is to analyze the dependence of K(T ) with respect to T
and γ ∈ (0, 1).

First, let us see that the sequence Λ = {Λk}k≥1 (see (101)) of eigenvalues of the

operator L2 is in the class L(β, ρ, q, p0, p1, p2, α) (see Definition 1.4) for appropriate
parameters satisfying (20). One has:

Proposition 5.6. Let us fix γ ∈ (0, 1) and consider the sequence Λ = {Λk}k≥1 with

Λk given in (101), k ≥ 1. Then, the sequence Λ satisfies Λ ∈ L(β, ρ, q, p0, p1, p2, α)
and (26), with β = 0, q = 2,

ρ =
1

16
, p0 = 1, p1 = p2 = 2, α = 2 +

1√
e

and ν =
1

2

(
1 +

1

e

)
.

Proof. The proof of this result is a direct consequence of Proposition 2.14 and
Remark 2.16. Indeed, the sequence Λ can be written as Λ = Λ1 ∪ Λ2 with

Λ1 =
{
λ

(1)
k

}
k≥1

=
{
k2
}
k≥1

and Λ2 =
{
λ

(2)
k

}
k≥1

=
{
k2 + e−k

2γ
}
k≥1

.

It is easy to see that Λ1 ∈ L (β, ρ1, q, π0, π1, π2, α1) and satisfies (26) with β = 0,
ρ1 = 1, q = 1, π0 = π1 = π2 = 1, α1 = 1 and ν = ρ1 = 1. On the other hand,

ε0 = sup
k≥1
|εk| = sup

k≥1
e−k

2γ

= e−1.

In addition, the sequence Λ can be explicitly defined by (101) (see (50)). So, from
Proposition 2.14 and Remark 2.16, we deduce that Λ ∈ L(β, ρ, q, π0, p1, p2, α) and
satisfies (26) with parameters given in the statement of the result. This finalizes
the proof.

With the previous choice, the sequence Λ satisfies property (H5) for q = 2. In
this case, let us see how the term Pk (see (23)) can be estimated. One has:

Proposition 5.7. Let us fix γ ∈ (0, 1) and consider the sequence Λ given by (101).
Then, P1 = e and

1

(2n− 1)
en

2γ

≤ P2n−1 ≤
1

(2n− 1)− e−1
en

2γ

, ∀n ≥ 2,

1

(2n+ 1)
en

2γ

≤ P2n ≤
1

(2n+ 1)− e−1
en

2γ

, ∀n ≥ 1,

where Pk and the sequence Λ are respectively given in (23) and (101).

Proof. Let us prove the result when k = 2n, with n ≥ 1. The case k = 2n− 1, with
n ≥ 1, is similar. From (23) and (101), we deduce

P−1
2n = (Λ2n − Λ2n−1) (Λ2n+1 − Λ2n) = e−n

2γ
[
(2n+ 1)− e−n

2γ
]
, ∀n ≥ 1.

The previous formula provides the proof of the result.
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Remark 5.8. Let us take a sequence {εk}k≥1 in `2 such that 0 < εk < 1 for

any k ≥ 1. From Lemma 5.5, there exists a function Q ∈ L2(0, π) such that

σ(L̃2) =
{
k2 + εk

}
k≥1

. As before, we can consider the operator L2 associated

to system (91) (see (13)) and the corresponding sequence of eigenvalues Λ given
by (94). In this case, we can repeat the computations in Proposition 5.7 and deduce
P1 = ε−1

1 and 
1

(2n− 1) εn
≤ P2n−1 ≤

1

(2n− 2) εn
, ∀n ≥ 2,

1

(2n+ 1) εn
≤ P2n ≤

1

2n εn
, ∀n ≥ 1,

(Pk is given in (23) with q = 2). The previous estimates prove that we can construct
functions Q ∈ L2(0, π) such that the sequence {Pk}k≥1 associated to the sequence
Λ = σ(L2) can have any arbitrary explosive behavior. �

The main results of this section concern the control cost K(T ) associated to
system (91). First, let us state a bound from above of the control cost:

Theorem 5.9. Let us fix γ ∈ (0, 1) and take the function Qγ ∈ L2(0, π) provided

by Lemma 5.5 associated to εk = e−k
2γ

. If we denote Kγ(T ) the control cost of
system (91) in L2(0, T ) at time T > 0, then, there exists a positive constant C,
independent of γ, such that

Kγ(T ) ≤ exp

[
C
(

1 +
1

T

)
+

C
(1− γ)T

+
1− γ
T

γ
1−γ

]
, ∀T > 0. (103)

Proof. Under the assumptions of the theorem, we can apply Proposition 5.6 and
deduce that the sequence Λ = {Λk}k≥1 (Λk given in (101)) of eigenvalues of the

operator L2 (see (13)) satisfies Λ ∈ L(β, ρ, q, p0, p1, p2, α) and (26), with β, ρ, q, p0,
p1, p2 and α given in the statement of this result.

Let us now take T > 0. Recall that the minimal time associated to system (91) is
T0 = 0. Therefore, without loss of generality, we can assume that T ∈ (0, 1). Thus,
Theorem 1.7 can be applied to Λ and we deduce the existence of a family of functions
{qk}k≥1 ⊂ L2(0, T ), biorthogonal to {ek}k≥1 in L2(0, T ) (for the expression of
ek, see (1)) which satisfies (22). In particular, there exists a positive constant C,
independent of γ, such that

‖qk‖L2(0,T ) ≤ exp

[
C
(

1 +
√
|Λk|+

1

T

)]
Pk, ∀k ≥ 1.

If we combine the previous inequality with Proposition 5.7 and (101), we get
‖q2k−1‖L2(0,T ) ≤ exp

[
C
(

1 + k +
1

T

)
+ k2γ

]
, ∀k ≥ 1,

‖q2k‖L2(0,T ) ≤ exp

[
C
(

1 + k +
1

T

)
+ k2γ

]
, ∀k ≥ 1,

(104)

for a new positive constant C, independent of γ.
Let us prove the result. To this end, we consider y0 ∈ H−1(0, π;R2) with

‖y0‖H−1(0,π;R2) ≤ 1.

Using the moment method, in [34], the author proves that, taking

v(t) =
∑
k≥1

(
e−k

2Tm
(1)
k q2k−1(T − t) + e

−
(
k2+e−k

2γ
)
T
m

(2)
k q2k(T − t)

)
, (105)
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t ∈ (0, T ), where m
(i)
k is given in (99), one has v ∈ L2(0, T ) and the corresponding

solution of system (91), y ∈ C0([0, T ];H−1(0, π;R2)), satisfies y(T, ·) = 0 in (0, π)

(φ
(i)
k is given in (95)). In [34] the author also shows that there exists a positive

constant C (independent of k) such that∣∣∣m(i)
k

∣∣∣ ≤ C‖y0‖H−1(0,π;R2) ≤ C, ∀k ≥ 1, i = 1, 2.

Coming back to (105) and taking into account (104) and the previous estimate,
we deduce

‖v‖L2(0,T ) ≤ eC(1+ 1
T )
∑
k≥1

e−k
2T+Ck+k2γ ,

for a new positive constant C, independent of γ. Let us now take ε ∈ (0, 1/2), which
will be fixed later. Observe that Young inequality implies

Ck ≤ εk2T +
C2

4εT
, ∀k ≥ 1,

and therefore, we can write

−k2T + Ck + k2γ ≤ −k2T + εk2T +
C2

4εT
+ k2γ = hε

(
k2
)

+
C2

4εT
− εk2T, ∀k ≥ 1,

where the function hε is given by

hε(x) = − (1− 2ε)Tx+ xγ , x ∈ (0,∞).

To summarize, the previous calculations provide the following estimate:

‖v‖L2(0,T ) ≤ eC(1+ 1
T )e

C2
4εT

∑
k≥1

ehε(k
2)e−εk

2T , (106)

for any ε > 0.
It is easy to see that hε possesses an absolute maximum in (0,∞) at point

x∗ =

(
γ

1− 2ε

1

T

) 1
1−γ

.

Thus, if we take ε = (1− γ)/2, we can write

hε(x) ≤ hε(x∗) = (1− γ)

(
γ

1− 2ε

) γ
1−γ 1

T
γ

1−γ
=

1− γ
T

γ
1−γ

, ∀x ∈ (0,∞).

Going back to the formula (106), we deduce

‖v‖L2(0,T ) ≤ exp

[
C
(

1 +
1

T

)
+

C2

2 (1− γ)T
+

1− γ
T

γ
1−γ

]∑
k≥1

e−
1
2 (1−γ)k2T .

Finally, a comparison with Gauss integral gives∑
k≥1

e−
1
2 (1−γ)k2T ≤

∫ ∞
0

e−
1
2 (1−γ)Tx2

dx =

√
2π

2

1√
(1− γ)T

≤ e
1

2(1−γ)T ,

and then,

‖v‖L2(0,T ) ≤ exp

[
C
(

1 +
1

T

)
+

C2 + 1

2 (1− γ)T
+

1− γ
T

γ
1−γ

]
.

It is clear that, from the previous inequality, we can deduce (103) for a new positive
constant C, independent of γ. This completes the proof.
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Our second result provides an estimate from below of the control cost Kγ(T ) for
system (91) in L2(0, T ) at the final time T > 0. As before, we are going to fix
γ ∈ (0, 1) and take the function Qγ ∈ L2(0, π) provided by Lemma 5.5 associated

to εk = e−k
2γ

. One has:

Theorem 5.10. Under the assumptions of Theorem 5.9, there exists two positive
constants τ0 and C, independent of γ, such that

Kγ(T ) ≥ C exp

(
C
T

+
C (1− γ)

T
γ

1−γ

)
, ∀T ∈ (0, τ0). (107)

Before starting the proof of Theorem 5.10, we will show a technical result that
we will use in its proof:

Lemma 5.11. Let us consider T > 0 and γ ∈ (0, 1) and define the function

h̃(x) = −Tx+ xγ , ∀x ∈ (0,∞).

Let us assume that

T < γ

(√
2− 1√

2

)2(1−γ)

. (108)

Then, there exists k0 ≥ 1 such that

h̃
(
k2

0

)
≥ (1 + log 2)

2e

(1− γ)

T
γ

1−γ
.

Proof. Under the assumptions of the lemma, it is easy to see that the function h̃ is
increasing in (0, x̃) and decreasing in (x̃,∞), where

x̃ =
( γ
T

) 1
1−γ

.

Thus, if k0 ≥ 1 is such that
1

2
x̃ ≤ k2

0 ≤ x̃, (109)

then

h̃
(
k2

0

)
≥ h̃(x̃/2) =

(
1

2γ
− γ

2

)( γ
T

) γ
1−γ

>
1

2
(1 + log 2) (1− γ)

( γ
T

) γ
1−γ

≥ (1 + log 2)

2e

(1− γ)

T
γ

1−γ
,

and we would have the proof of the result.
In order the finish the proof, let us check that there exists k0 ≥ 1 such that (109)

holds. Indeed, (109) is equivalent to

1√
2

√
x̃ ≤ k0 ≤

√
x̃.

Observe that this property occurs if

√
x̃− 1√

2

√
x̃ > 1,

i.e., if T satisfies (108). This ends the proof.
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Proof of Theorem 5.10. As before, under the assumptions of the theorem, we know
that the sequence Λ of eigenvalues of the operator L2 (see (13)) satisfies Λ ∈
L(β, ρ, q, p0, p1, p2, α) and (26), with β, ρ, q, p0, p1, p2 and α given in the statement
of Proposition 5.6.

Let us fix T > 0. The minimal time T0 for system (91) associated to the function
Qγ is T0 = 0. In addition, we can apply Proposition 5.4 and Theorem 1.9. We
deduce that the optimal family {sk}k≥1 ⊂ E(Λ, T ) biorthogonal to {ek}k≥1 in
L2(0, T ) satisfies (27) (ek is given in (1)).

We will divide the proof of the result into two parts:

1. Assume that γ ∈ (0, 1/2]. In this case, it is easy to check that, for any
τ0 ∈ (0, 1], one has

1

T
≥ 1− γ
T

γ
1−γ

, ∀T < τ0.

Therefore, inequality (107) is equivalent to prove the existence of a positive constant
C0, independent of γ, such that

Kγ(T ) ≥ C0 exp

(
C0
T

)
, ∀T ∈ (0, τ0). (110)

Our objective is to find C0 > 0 and τ0 ∈ (0, 1], independent of γ, such that one has
inequality (110).

From inequality (27) written for the function s3, we deduce (ν = 1
2

(
1 + 1

e

)
):

‖s3‖L2(0,T ) ≥
6

π2
B3 P3 e

1
Tν

where (see (28) for q = 2)

B3 = C (νT )
4

(1 + νT )
9

√
|Λ1|+

1

2T
,

and C is a positive constant (β = 0 and then δ = 1). From the previous expression,
it is not difficult to see that there exist C0 > 0 and τ0 ∈ (0, 1], independent of γ,
such that

B3 P3 ≥ C0e−
1

2Tν , ∀T ∈ (0, τ0).

Coming back to the expression of ‖s3‖L2(0,T ), we finally deduce:

‖s3‖L2(0,T ) ≥ Ce
1

2Tν , ∀T ∈ (0, τ0). (111)

Let us take y0 = φ3/ ‖φ3‖H−1 (see (102)). Then, applying Proposition 5.4 to y0,
it is possible to construct the null control with minimal L2-norm for system (91)
associated to y0 (see (100)):

u(t) = e−4T 1

b1ϕ
(1)
2,x(0)

1

‖φ3‖H−1

s3(T − t), ∀t ∈ (0, T ).

From (111), we also have

Kγ(T ) ≥ inf
v∈CT (y0)

‖v‖L2(0,T ) = ‖u‖L2(0,T ) = C ‖s3‖L2(0,T ) ≥ Ce
1

2Tν , ∀T ∈ (0, τ0).

This proves inequality (110) and inequality (107) when γ ∈ (0, 1/2].

2. Let us now assume that γ ∈ (1/2, 1). In this case, inequality (107) is equivalent
to

Kγ(T ) ≥ C0 exp

(
C0

T
γ

1−γ

)
, ∀T ∈ (0, τ0). (112)
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and therefore, our goal is to prove that there exist two positive constants C0 and
τ0, independent of γ, in such a way that the previous inequality holds. As before,
we are going to work with an appropriate element sk0 of the optimal biorthogonal
family {sk}k≥1 ⊂ E(Λ, T ) provided by Proposition 5.4.

Let us define τ0 as

τ0 =
1

2

(√
2− 1√

2

)
.

Observe that if T ∈ (0, τ0), then inequality (108) is valid for any γ ∈ (1/2, 1). From
Lemma 5.11, we can infer the existence of k0 ≥ 1 such that

h̃
(
k2

0

)
= −k2

0T + (k0)
2γ ≥ (1 + log 2)

2e

(1− γ)

T
γ

1−γ
=
C (1− γ)

T
γ

1−γ
. (113)

Consider y0 = φ2k0−1/ ‖φ2k0−1‖H−1 , i.e. (see (102)),

y0(x) = k0

√
2

π

(
sin (k0x)

0

)
.

On the other hand, let us also consider the null control for system (91) associated
to y0 provided by Proposition 5.4:

u(·) = e−k
2
0T

1

b1ϕ
(1)
k0,x

(0)
〈y0, φ2k0−1〉H−1,H1

0
s2k0−1(T−·) =

1

b1

√
2

π
e−k

2
0T s2k0−1(T−·).

Using inequality (27), written for the function s2k0−1, and taking into account
Proposition 5.7 (q = 2 and δ = 1) and (113), we deduce

‖u‖L2(0,T ) = Ce−k
2
0T ‖s2k0−1‖L2(0,T ) ≥

C
T 2

(
5

2T
+ Λ2k0−2

)1/2

e−k
2
0T P2k0−1

≥ C
T 2

(
5

2T
+ Λ2k0−2

)1/2
1

2k0 − 1
e−k

2
0T+(k0)2γ

=
C
T 2

(
5

2T
+ Λ2k0−2

)1/2
eh̃(k

2
0)

2k0 − 1
≥ C
T 2

exp

(
C (1− γ)

T
γ

1−γ

)
.

where C is a constant independent of γ and k0.
As before,

Kγ(T ) ≥ inf
v∈CT (y0)

‖v‖L2(0,T ) = ‖u‖L2(0,T ) ≥
C
T 2

exp

(
C (1− γ)

T
γ

1−γ

)
, ∀T ∈ (0, τ0).

Thus, we can conclude that inequality (112) holds. This ends the proof of Theo-
rem 5.10.

Remark 5.12. Observe that inequalities (103) and (107) are valid when γ ∈ (0, 1).
In fact, these inequalities are equivalent to:

1. If γ ∈ (0, 1/2], then, there exist three positive constants τ0, C0 and C1 (inde-
pendent of γ) such that

exp

[
C0
(

1 +
1

T

)]
≤ Kγ(T ) ≤ exp

[
C1
(

1 +
1

T

)]
, ∀T ∈ (0, τ0).

Observe that the previous estimates for the control cost of system (91) are
similar to those obtained for the control cost of the heat equation (see for
instance [23] and [20]).
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2. If γ ∈ (1/2, 1), again, there exist three positive constants τ0, C0 and C1 (inde-
pendent of γ) such that

exp

[
C0
(

1 +
1

T
γ

1−γ

)]
≤ Kγ(T ) ≤ exp

[
C0
(

1 +
1

T
γ

1−γ

)]
, ∀T ∈ (0, τ0).

The previous expressions prove that the control cost blows up when γ → 1−.
This is natural because the minimal time for system (91) when γ = 1 is T0 = 1
and the system is not null controllable at time T when T < 1. �

5.2. The linear phase-field system. Let us now apply Theorem 1.7 and Theo-
rem 1.9 to the linear version of (15) around the constant trajectory (0, c) with c = 1
or c = −1. To be precise, we will work with the linear system (12) with L = L3

(see (16)) and ρ, τ, ξ ∈ (0,∞). As said above, the controllability properties of this

system has been analyzed in [22] under the condition ξ 6= 1
j2
ρ

τ
, for any j ∈ N. The

approximate controllability of this system is given by the next result:

Theorem 5.13 (Approximate controllability). Fix T > 0. Then, system (12) with
L = L3 (see (16)) is approximately controllable in H−1(0, π;R2) at time T > 0 if

and only if λ
(3,1)
k 6= λ

(3,2)
n for any k, n ≥ 1 (see (17)), that is to say, if and only if

ξ2τ2(`2 − k2)2 − 2ξρτ(`2 + k2)− 2ρ− 1 6= 0, ∀k, ` ≥ 1, ` > k. (114)

The proof of this result can be found in [22].
Now, our objective is to give a null controllability result at time T > 0 for

this system when (114) holds (which, in fact, is a necessary condition for the null
controllability at time T of system (12) with L = L3) and obtain a bound for the
corresponding control costK(T ). This problem has analyzed in [22] under additional
assumptions on the parameters ξ, ρ and τ . To be precise, in [22] the authors prove:

Theorem 5.14. Let us us fix T > 0 and consider ξ, ρ and τ , positive real numbers
satisfying (114) and

ξ 6= 1

j2

ρ

τ
, ∀j ≥ 1. (115)

Then, system (12) with L = L3 (see (16)) is exactly controllable to zero at time
T > 0 in H−1(0, π;R2). Moreover, there exist two positive constants C and M ,
only depending on ξ, ρ and τ , such that

K(T ) ≤ CeM/T , ∀T > 0,

where K(T ) is the control cost for system (12) with L = L3:

K(T ) = sup
‖y0‖H−1(0,π;R2)=1

(
inf

v∈ZT (y0)
‖v‖L2(0,T )

)
, ∀T > 0.

and

ZT (y0) :=
{
v ∈ L2(0, T ) : y(·, T ) = 0 in (0, π), y solution of (12) for L = L3

}
.

Conditions (114) and (115) implies that the sequence Λ(3) = {λ(3,1)
k , λ

(3,2)
k }k≥1

(see (17)) satisfies the conditions in Theorem 1.2 (see Remark 1.3). In fact, con-
dition (115) provides the gap condition (5) for the sequence Λ3. Therefore, Theo-
rem 5.14 is a consequence of Theorem 1.2.

As said before, our objective is to analyze the null controllability of system (12)
with L = L3 without imposing condition (115) to the sequence Λ3 of eigenvalues of
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the operator L3. Let us first see that this sequence is in L(β, ρ, q, p0, p1, p2, α) with
β = 0 and appropriate parameters ρ, p0, p1, p2, α ∈ (0,∞) (see Definition 1.4):

Proposition 5.15. Let us consider ξ, ρ and τ , positive real numbers satisfy-

ing (114). Then, the sequence Λ(3) = {λ(3,1)
k , λ

(3,2)
k }k≥1, with λ

(3,i)
k given in (17),

can be rearranged as a positive increasing sequence Λ(3) = {Λk}k≥1 satisfying

Λ(3) ∈ L(0, ρ, q, p0, p1, p2, α) and (26), with

p0 = p1 = p2 =
2√
ξ

and α =
1

2
√
ξ

(√
ρ

τ
+

√
3ρ+ 4

τ

)
+ 2,

and q ≥ 2, ρ and ν positive constants only depending on ξ, ρ and τ .

Proof. The proof of this result is a direct consequence of the results in [22]. Indeed,
from Proposition 3.2 of [22] one has,

0 < λ
(3,1)
k < λ

(3,2)
k , ∀k ≥ 1.

Secondly, as a consequence of assumption (114) and Theorem 5.13, we deduce that
the elements of the sequence Λ(3) are pairwise different. Thus, this sequence can be
rearranged into a positive increasing sequence Λ(3) = {Λk}k≥1 that satisfies (H1)
and, of course, (H2), (H3) (β = 0) and (H4).

On the other hand, taking into account the proof of Proposition 3.3 in [22], we
also have that Λ(3) satisfies condition (H6) in Definition 1.4 with parameters p0, p1,
p2 and α as in the statement of the proposition.

Finally, we deduce properties (H5) and (26) from Proposition 2.4 with q, ρ and
ν given in (36). This ends the proof of the proposition.

In the next result we will provide further properties of the sequence Λ(3) that
will be used later. Again, we will use some properties that has been proved in [22].
One has:

Proposition 5.16. Let us consider ξ, ρ and τ , positive real numbers. Then,

λ
(3,2)
k − λ(3,1)

k+i = ξ

(√
ρ

ξτ
− i
)

(2k + i) +

(
εk+i

k + i
+
εk
k

)
, ∀k, i ≥ 1, (116)

where λ
(3,i)
k is given in (17) and {εk}k≥1 is the increasing sequence given by

εk =

(
ρ+ 1

2τ

)2
1√

ξρ
τ + 1

k2

(
ρ+1
2τ

)2
+
√

ξρ
τ

, ∀k ≥ 1. (117)

Proof. The proof of the result can be found in [22].

Let us now analyze the control cost for the linear phase-field system, i.e., the
control cost for system (12) with L = L3. One has:

Theorem 5.17. Let us consider ξ, ρ and τ , positive real numbers satisfying (114).
Then, system (12) with L = L3 (see (16)) is exactly controllable to zero at any time
T > 0. Moreover, there exist positive constants C0, C1, M0 and M1 (only depending
on ξ, ρ and τ) such that

C0e
M0/T ≤ K(T ) ≤ C1e

M1/T , ∀T ∈ (0, 1], (118)

where K(T ) is the control cost for system (12) with L = L3 defined in the statement
of Theorem 5.14.
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Proof. The result is proved in [22] when the coefficients ξ, ρ and τ satisfy condi-
tions (114) and (115). Thus, let us prove the result when these coefficients do not
satisfy (115), that is to say, when one has

ξ =
1

j2
0

ρ

τ
,

for some integer j0 ≥ 1. In this case, (116) becomes

λ
(3,2)
k − λ(3,1)

k+i = ξ (j0 − i) (2k + i) +

(
εk+i

k + i
+
εk
k

)
, ∀k, i ≥ 1, (119)

where λ
(3,i)
k is given in (17) and {εk}k≥1 is the increasing sequence given by (117).

In particular, we can estimate the terms εk of the sequence as follows:(
ρ+ 1

2τ

)2
1√

ξρ
τ +

(
ρ+1
2τ

)2
+
√

ξρ
τ

= ε1 ≤ εk < lim
k→∞

εk =

(
ρ+ 1

2τ

)2 √
τ

2
√
ξρ

:= L,

for all k ≥ 1. We will use the previous inequalities in what follows.
If we choose i such that 1 ≤ i ≤ j0 − 1, from (119), we infer λ

(3,2)
k − λ(3,1)

k+i > ξ (j0 − i) (2k + i) ,

λ
(3,2)
k − λ(3,1)

k+i < ξ (j0 − i) (2k + i) +
2L

k
≤ ξ (j0 − 1) (2k + j0 − 1) + 2L,

(120)
for any k ≥ 1. Now, if we take i = j0, using again (119), we deduce

λ
(3,2)
k − λ(3,1)

k+j0
=

εk+j0

k + j0
+
εk
k
>

2ε1
k + j0

, ∀k ≥ 1,

λ
(3,2)
k − λ(3,1)

k+j0
=

εk+j0

k + j0
+
εk
k
<

2L

k
, ∀k ≥ 1.

(121)

Finally, if i ≥ j0 + 1, equality (119) provides the formula

λ
(3,1)
k+i − λ

(3,2)
k = ξ (i− j0) (2k + i)−

(
εk+i

k + i
+
εk
k

)
, ∀k ≥ 1, ∀i ≥ j0 + 1.

If we take k0 ≥ 1 (only depending on ξ, ρ and τ) such that

2L

k0
≤ ξ

2
(2k0 + j0 + 1) ,

in particular, for any k ≥ k0 and i ≥ j0 + 1, one has

εk+i

k + i
+
εk
k
<

2L

k
≤ 2L

k0
≤ ξ

2
(2k0 + j0 + 1) ≤ ξ

2
(i− j0) (2k + i) ,

and  λ
(3,1)
k+i − λ

(3,2)
k >

ξ

2
(i− j0) (2k + i) ≥ ξ

2
(2k + j0 + 1) , ∀k ≥ k0,

λ
(3,1)
k+i − λ

(3,2)
k < ξ (i− j0) (2k + i) .

(122)

The first consequence that we can obtain from (120)–(122) is the following one:
for any k ≥ k0, we can write

λ
(3,1)
k+j0

< λ
(3,2)
k < λ

(3,1)
k+1+j0

< λ
(3,2)
k+1 < · · · , ∀k ≥ k0,
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(λ
(3,i)
k is given in (17)). Thus, we can give an explicit expression of the elements

of the increasing sequence Λ(3) = {Λk}k≥1 (see Proposition 5.15): if 1 ≤ k ≤
2k0 + j0 − 2, we define Λk such that

{Λk}1≤k≤2k0+j0−2 ≡
{
λ

(3,1)
k

}
1≤k≤k0+j0−1

∪
{
λ

(3,2)
k

}
1≤k≤k0−1

,

and Λk < Λk+1, for any k : 1 ≤ k ≤ 2k0 + j0 − 3. From the (2k0 + j0 − 1)-th term,
we define

Λ2k0+j0+2s−1 = λ
(3,1)
k0+j0+s and Λ2k0+j0+2s = λ

(3,2)
k0+s, ∀s ≥ 0.

Equivalently, in the case k ≥ 2k0 + j0 − 1, we have Λk = λ
(3,1)
1
2 (k+j0+1)

, if k ≥ 2k0 + j0 − 1 and k + j0 is odd,

Λk = λ
(3,2)
1
2 (k−j0)

, if k ≥ 2k0 + j0 − 1 and k + j0 is even.
(123)

Our next objective will be to obtain appropriate estimates of the products Pk
(see (23)) for the sequence Λ(3). Recall that Λ(3) ∈ L(0, ρ, q, p0, p1, p2, α) and sat-
isfies (26), with p0, p1 and p2 given in Proposition 5.15, and q ≥ 2, ρ and ν
positive constants only depending on ξ, ρ and τ . We will reason for arbitrary
k ≥ 2k0 + j0 + q − 2 because if k is such that 1 ≤ k < 2k0 + j0 + q − 2, taking
into account that |Λk − Λn| > 0 for any k 6= n (assumption (114)), we deduce the
existence of two positive constants c0 and c1 (only depending on ξ, ρ and τ) such
that

0 < c0 ≤ Pk ≤ c1, ∀k : 1 ≤ k < 2k0 + j0 + q − 2. (124)

Let us then take k ≥ 2k0 + j0 + q − 2 and n ≥ 1 such that 1 ≤ |k − n| < q. In
particular, n ≥ 2k0 + j0− 1 and we can use formulae (123) for the expression of Λk
and Λn, and inequalities (120)–(122) for the corresponding indexes.

We will reasoning when k+ j0 is odd. A similar argument will provide the proof

when k + j0 is even. Indeed, if k + j0 is odd, from (123), one has Λk = λ
(3,1)

k̃
and

Λk+1 = λ
(3,2)

k̃−j0
with k̃ = 1

2 (k + j0 + 1). Thus, we can apply (121) for k̃ − j0 and

write
2ε1

1
2 (k + j0 + 1)

≤ Λk+1 − Λk ≤
2L

1
2 (k − j0 + 1)

.

On the other hand, let us take n 6= k+1 with 1 ≤ |k − n| < q. Using properties (120)

and (122) and the expression of λ
(3,i)
k (see (17) and (18)) and Λn (see (123)), it is

not difficult to check the existence of positive constants c0 and c1 (as before, only
depending on ξ, ρ and τ) such that

c0k ≤ |Λk − Λn| ≤ c1k, ∀n 6= k + 1 with 1 ≤ |k − n| < q.

As a consequence of the previous inequalities, again, we deduce the existence of
positive constants c0 and c1 (only depending on ξ, ρ and τ) such that

c0k
2q−4 ≤

∏
{n≥1: 1≤|k−n|<q}

|Λk − Λn| ≤ c1k2q−4,

or, equivalently (see (23)),

c0
k2q−4

≤ Pk ≤
c1

k2q−4
, ∀k ≥ 2k0 + j0 + q − 2, (125)

(c0 and c1 are new positive constants only depending on ξ, ρ and τ). We will use
this inequality later.
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Let us now revisit some properties on null controllability of system (12) with
L = L3 proved in [22]: Given T > 0 and y0 ∈ H−1(0, π;R2), there exists a control
v ∈ L2(0, T ) such that the solution of (12) with L = L3 satisfies y(·, T ) = 0 in (0, π)
if and only if v ∈ L2(0, T ) solves the moment problem∫ T

0

e−Λktv(T − t) dt = e−ΛkTmk, ∀k ≥ 1. (126)

In the previous equality Λ(3) = {Λk}k≥1 = {λ(3,1)
k , λ

(3,2)
k }k≥1 (λ

(3,i)
k is given in (17))

and mk only depends on y0 and satisfies

|mk| ≤ Ck ‖y0‖H−1 , ∀k ≥ 1, (127)

with C > 0 only depending on ξ, ρ and τ .
On the other hand, the sequence Λ(3) belongs to L(0, ρ, q, p0, p1, p2, α) and satis-

fies (26) (p0, p1 and p2 are given in Proposition 5.15, q ≥ 2, and ρ and ν are positive
constants only depending on ξ, ρ and τ). Then, we can apply Theorems 1.7 and 1.9
to the sequence Λ(3). We deduce the existence of a biorthogonal family {qk}k≥1 to

the exponentials {ek}k≥1 (see (1)) associated to the sequence Λ(3) satisfying (22)

and (27).
Let us first prove that, under the assumptions of Theorem 5.17, system (12) with

L = L3 is null controllable at any time T > 0 and satisfies the second inequality
in (118). To this end, we will solve the previous moment problem for any y0 ∈
H−1(0, π;R2). An explicit solution of this problem is

v(t) =
∑
k≥1

e−ΛkTmkqk(T − t), ∀t ∈ (0, T ).

Since qk, Pk and mk respectively satisfy (22), (124) or (125), and (127), we can
prove that the previous series is absolutely convergent in L2(0, T ) and provide an
estimate of the L2-norm of v. Indeed,{

|mk|‖qk‖L2(0,T ) ≤ Ck eC
√

ΛkeC/TPk ≤ CeC
√

ΛkeC/T ‖y0‖H−1

≤ CeC/T eC
2

2T +T
2 Λk = CeC/T e

T
2 Λk , ∀k ≥ 1,

for a new positive constant C, only depending on ξ, ρ and τ . If we use (43) (p2 and
α are given in the statement of Proposition 5.15), we deduce that v ∈ L2(0, T ) and

‖v‖L2(0,T ) ≤ Ce
C/T

∞∑
k=1

e−
T
2 Λk ≤ CeC/T

α∑
k=1

e−
T
2 Λk

∑
k>α

e−
T
8 ξ(k−α)2

≤ CeC/T
∫
R
e−

T
8 ξ(x−α)2 dx = C

√
8π

ξT
eC/T .

From this inequality we deduce the estimate from above of K(T ) in (118).
Let us now prove the first inequality in (118). To this end, we will reason as in

Subsection 5.1 and, to be precise, as in Proposition 5.4 and the first point of the
proof of Theorem 5.10. We first construct the sequence {sk}k≥1 biorthogonal to the

exponentials {ek}k≥1 associated to the sequence Λ(3). Given y0 ∈ H−1(0, π;R2),

we know that the null control with minimal L2-norm for system (12) with L = L3

(see (16)) associated to y0 ∈ H−1(0, π;R2) is

u(t) =
∑
k≥1

e−ΛkTmksk(T − t), ∀t ∈ (0, T ),
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where mk depends on y0 and appears in the corresponding moment problem (126).
Let us take ` = max {3, q} and y0 = Ψ`, with Ψ` the eigenvector of L3 associated

to Λ` with ‖Ψ`‖H−1 = 1 (for the expression of Ψ` see Proposition 3.1 in [22]). In
this case, the corresponding null control with minimal L2-norm is

u(t) = e−Λ`Tm`s`(T − t), ∀t ∈ (0, T ),

and K(T ) ≥ ‖u‖L2(0,T ) = e−Λ`T |m`| ‖s`‖ (m` only depends on ρ, ξ and τ). If we

use inequalies (27), for the function s`, and (124) or (125) for k = `, we deduce the
existence of a positive constant C, only depending on ρ, ξ and τ , such that

K(T ) ≥ CB` e
1
Tν = C

(νT )
`+1

(1 + νT )
2`+q+1

√
|Λ1|+

1

2T
e

1
Tν , ∀T > 0.

Finally, there exist C > 0, only depending on ρ, ξ and τ , such that

(νT )
`+1

(1 + νT )
2`+q+1

√
|Λ1|+

1

2T
≥ C e

−1
2Tν , ∀T ∈ (0, 1].

Therefore,

K(T ) ≥ C e 1
2Tν , ∀T ∈ (0, 1],

for a new constant C > 0 only depending on ρ, ξ and τ . This proves (118) and
finalizes the proof of Theorem 5.17

Theorem 5.17 in particular provides a local boundary exact controllability re-
sult to the trajectory (0, c) (c = ±1) for the nonlinear system (15) under assump-
tion (114). One has:

Theorem 5.18. Let us consider ξ, τ and ρ three positive numbers satisfying (114),
and let us fix T > 0 and c = −1 or c = 1. Then, there exists ε > 0 such that, for
any (θ0, φ0) ∈ H−1(0, π)× (c+H1

0 (0, π)) fulfilling

‖θ0‖H−1 + ‖φ̃0 − c‖H1
0
≤ ε,

there exists v ∈ L2(0, T ) for which system (15) has a unique solution

(θ, φ) ∈
[
L2(QT ) ∩ C0([0, T ];H−1(0, π;R2))

]
× C0(QT )

which satisfies
θ(·, T ) = 0 and φ(·, T ) = c in (0, π).

In order to obtain the proof of the previous local controllability result for sys-
tem (15), it is enough to follow the reasoning of the reference [22] that combines
inequality (118) with the general methodology developed in [32]. For further details,
see [22].

Remark 5.19. Theorem 5.18 is valid under the only assumption (114). In this
sense, Theorem 5.18 generalizes the local controllability result for system (15) stated
in [22] where the authors prove the same result under assumptions (114) and (115).
�
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Appendix A. Proof of Propositions 2.9, 2.11, 2.13 and 2.14.

A.1. Proof of Proposition 2.9. Let us take Λ = {Λk}k≥1 ⊂ (0,∞), a sequence
under the assumptions of the proposition. It is clear that the sequence Λ satis-
fies (H1)–(H4) for β = 0.

Let us first see that property (44) implies property (H6). Indeed, given r > 0,
one has N (r) = k if and only if Λk ≤ r and Λk+1 > r. Since the sequence Λ satisfies

γ0k +
√

Λ1 − γ0 ≤
√

Λk ≤ γ1k +
√

Λ1 − γ1, ∀k ≥ 1, (128)

we can write

γ0k +
√

Λ1 − γ0 ≤
√
r and

√
r < γ1(k + 1) +

√
Λ1 − γ1,

i.e., condition (H6) holds with p0, p1, p2 and α as in the statement of the proposition.
Let us now see that we can deduce (H5) from property (44). First, one has√

Λk −
√

Λn ≥ γ0 (k − n) , ∀k, n : k ≥ n.
As a direct consequence, one also has

Λk − Λn ≥ γ0 (k − n)
(√

Λk +
√

Λn

)
, ∀k, n : k ≥ n,

that together with (128) provides

Λk − Λn ≥ γ2
0

(
k2 − n2

)
+ 2γ0(k − n)

(√
Λ1 − γ0

)
,

for any k, n : k ≥ n. If
√

Λ1 ≥ γ0, clearly one gets (H5) with ρ as in the statement.
Otherwise,

√
Λ1 < γ0 and, from the previous inequality, we deduce

Λk − Λn
k2 − n2

≥ γ2
0 −

2γ0

k + n

(
γ0 −

√
Λ1

)
≥ γ2

0 −
2

3
γ0

(
γ0 −

√
Λ1

)
,

for any k, n : k ≥ n. In this case we also deduce (H5) with ρ given in the statement.
Finally, let us prove (26). Reasoning as before, we can write

Λk − Λn =
(√

Λk −
√

Λn

)(√
Λk +

√
Λn

)
≤ γ1 (k − n)

(√
Λk +

√
Λn

)
,

for any k, n : k ≥ n, that together with (128) gives

Λk − Λn ≤ γ2
1

(
k2 − n2

)
+ 2γ1(k − n)

(√
Λ1 − γ1

)
, ∀k, n : k ≥ n.

In the case in which
√

Λ1 ≤ γ1, we deduce (26) with ρ = γ2
1 . Otherwise,

Λk − Λn
k2 − n2

≤ γ2
1 +

2γ1

k2 − n2

(√
Λ1 − γ1

)
≤ γ2

1 +
2

3
γ1

(√
Λ1 − γ1

)
,

for any k, n : k ≥ n. We also obtain (26) in this case with ρ given in the statement.
This finalizes the proof of Proposition 2.9. �

A.2. Proof of Proposition 2.11. Let us consider {λ(1)
k }k≥1 and {λ(2)

k }k≥1, two
sequences satisfying (45) and (47). It is clear that, from (47) and the third condition

in (45), the sequence {λ(1)
k }k≥1 ∪ {λ(2)

k }k≥1 can be rearranged as an increasing
sequence Λ = {Λk}k≥1.

First, let us see that (26) holds and Λ ∈ L(β, ρ, q, p0, p1, p2, α) for appropriate
positive constants ρ, q, p0, p1, p2, α and ν. It is clear that Λ satisfies (H1)–(H4).

On the other hand, using that λ
(1)
k 6= λ

(2)
n for any k, n ≥ 1, we also have

N (r) = #
{
k : λ

(1)
k ≤ r

}
+ #

{
k : λ

(2)
k ≤ r

}
:= N1(r) +N2(r), ∀r > 0,
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where N (r) is given in (21). Using the first property in (45) we infer

1

π2
i

k2 − c1k ≤ λ(i)
k ≤

1

π2
i

k2 + c1k, ∀k ≥ 1, i = 1, 2.

Therefore, we can follow the arguments in Remark 2.5 and deduce

−1− 1

2
π2
i c1 + πi

√
r < Ni(r) ≤ πi

√
r + c1π

2
i , i = 1, 2.

Coming back to the expression of N (r), we finally obtain

−2− 1

2
c1
(
π2

1 + π2
2

)
+ (π1 + π2)

√
r < N (r) ≤ (π1 + π2)

√
r+ c1

(
π2

1 + π2
2

)
, ∀r > 0.

Thus, condition (H6) holds with p0, p1, p2 and α as in the statement of Propo-
sition 2.11. Finally, applying Proposition 2.4, we also have that the sequence Λ
satisfies (26) and Λ ∈ L(β, ρ, q, p0, p1, p2, α) with the parameters ρ, q, p0, p1, p2, α
and ν given in the statement of Proposition 2.11.

Let us now check the gap condition (5). Taking into account property (47), we
just have to check the following property∣∣∣λ(1)

k − λ
(2)
n

∣∣∣ ≥ c2 > 0, ∀k, n ≥ 1,

and this will be deduced from the third condition in (45). Indeed, this condition
implies ∣∣∣λ(1)

k − λ
(2)
n

∣∣∣ ≥ r

k

(√
λ

(1)
k +

√
λ

(2)
n

)
≥ r

k

√
λ

(1)
k , ∀k ≥ 1.

If k ≤ 2c1p
2
1, from the previous inequality we deduce the existence of a constant

c > 0 such that ∣∣∣λ(1)
k − λ

(2)
n

∣∣∣ ≥ c, ∀n ∈ N.

If k > 2c1p
2
1, then we can apply the first assumption in (45) and deduce∣∣∣λ(1)

k − λ
(2)
n

∣∣∣ ≥ r

k

√
λ

(1)
k ≥

r

k

√
k2

π2
1

− c1k =
r

k

√
k

π2
1

(k − c1π2
1) ≥ r

k

√
k2

2π2
1

=
r√
2π1

.

This proves (5) and ends the proof of the result. �

A.3. Proof of Proposition 2.13. Let us consider the sequence Λ = {k2}k≥1 ∪
{dk2}k≥1 with d > 0. Thanks to assumption

√
d 6∈ Q, it is clear that k2 6= dn2

for any k, n ≥ 1. So, the sequence Λ = {k2}k≥1 ∪ {dk2}k≥1 can be rearranged as
an increasing sequence Λ = {Λk}k≥1 that satisfies (H1)–(H4) with β = 0. On the
other hand,

N (r) = #
{
k : k2 ≤ r

}
+ #

{
k : dk2 ≤ r

}
= b
√
rc+

⌊√
r√
d

⌋
, ∀r > 0,

i.e.,

−2 +

(
1 +

1√
d

)√
r ≤ N (r) ≤

(
1 +

1√
d

)√
r, ∀r > 0.

Thus, condition (H6) holds with p1 = p2 = p and α given in (49).
As a direct consequence of Proposition 2.4 we can deduce (26) and

Λ ∈ L(β, ρ, q, p0, p1, p2, α),
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(q, ρ and ν given in (36)). We will provide better values of these parameters using
the expression of Λ. Indeed, if we take r = Λk, k ≥ 1, one has k = N (Λk) and

k = N (Λk) =
⌊√

Λk

⌋
+

⌊√
Λk√
d

⌋
, ∀k ≥ 1.

Observe that if Λk = n2
k for some nk ≥ 1, from the previous inequality we deduce

k = nk +

⌊√
Λk√
d

⌋
.

Using that x− 1 ≤ bxc ≤ x, for any x > 0, the previous inequality provides,√
Λk +

√
Λk√
d
−1 = nk +

√
Λk√
d
−1 ≤ nk +

⌊√
Λk√
d

⌋
= k ≤ nk +

√
Λk√
d

=
√

Λk +

√
Λk√
d
,

and

k ≤
(

1 +
1√
d

)√
Λk ≤ k + 1, ∀k ≥ 1. (129)

The same property can be proved in the case in which Λk = dn2
k for some nk ≥ 1.

Let us now prove conditions (H5), with q = 2, and (26). If k−n ≥ 2, from (129),
one has(

1 +
1√
d

)2
Λk − Λn
k2 − n2

≥ k2 − (n+ 1)2

k2 − n2
=

(
1 +

1

k + n

)(
1− 1

k − n

)
≥ 5

8
.

Thus, (H5) holds with ρ given in (49). On the other hand, if k > n, we deduce
(see (129))(

1 +
1√
d

)2
Λk − Λn
k2 − n2

≤ (k + 1)2 − n2

k2 − n2
=

(
1 +

1

k + n

)(
1 +

1

k − n

)
≤ 8

3
,

and property (26) with ν given in (49). This ends the proof of Proposition 2.13. �

A.4. Proof of Proposition 2.14. Let us consider two sequences Λ1 = {λ(1)
k }k≥1

and Λ2 = {λ(2)
k }k≥1 under the conditions of Proposition 2.14. In particular, the

sequence Λ1∪Λ2 can be rearranged as a positive increasing sequence Λ = {Λk}k≥1.

Let us see that Λ ∈ L(β, ρ, q, p0, p1, p2, α), for β = 0 and appropriate positive
constants ρ, q, p0, p1, p2 and α, and (26) holds for ν > 0.

First, it is clear that Λ satisfies (H1)–(H4) (β = 0). As above, using that λ
(1)
k 6=

λ
(2)
n for any k, n ≥ 1, we also have

N (r) = #
{
k : λ

(1)
k ≤ r

}
+ #

{
k : λ

(2)
k ≤ r

}
:= N1(r) +N2(r), ∀r > 0.

From Remark 1.5 we deduce the following property:

N1(r − ε0) ≤ N2(r) ≤ N1(r + ε0), ∀r > 0, (130)

(in the previous inequality we have taken N1(r − ε0) = 0 when r ≤ ε0). Indeed,

given r > 0, if k2 = N2(r), then λ
(2)
k2
≤ r and λ

(2)
k2+1 > r. In particular,

λ
(1)
k2
− ε0 ≤ λ(2)

k2
≤ r and r < λ

(2)
k2+1 ≤ λ

(1)
k2+1 + ε0,

(ε0 = supk≥1 |εk|) and λ
(1)
k2
≤ r + ε0 and r − ε0 < λ

(1)
k2+1. Applying item 2 of

Remark 1.5, property (130) can be easily deduced.
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Recall that Λ1 =
{
λ

(1)
k

}
k≥1
∈ L(0, ρ1, 1, π0, π1, π2, α1). Thus, from (H6), we

deduce π1
√
r − α1 ≤ N1(r) ≤ π2

√
r + α1 for any r > 0. Combining this inequality

and the expression of N (r) with (130), we obtain{
π1

√
r − α1 ≤ N (r) ≤ π2

√
r + π2

√
r + ε0 + 2α1, if r ≤ ε0,

π1

√
r + π1

√
r − ε0 − 2α1 ≤ N (r) ≤ π2

√
r + π2

√
r + ε0 + 2α1, if r > ε0.

Now, from the previous property and taking into account inequalities (34), it is easy
to deduce that N (r) satisfies{

π1

√
r − α1 ≤ N (r) ≤ 2π2

√
r + π2

√
ε0 + 2α1, if r ≤ ε0,

2π1

√
r − π1

√
ε0 − 2α1 ≤ N (r) ≤ 2π2

√
r + π2

√
ε0 + 2α1, if r > ε0.

In particular,

2π1

√
r − π1

√
ε0 − 2α1 ≤ N (r) ≤ 2π2

√
r + π2

√
ε0 + 2α1, ∀r > 0.

Therefore, condition (H6) holds with p1, p2 and α as in the statement of Proposi-
tion 2.14.

Let us now see that the sequence Λ satisfies (H5) and (26) with q = 2 and
appropriate positive parameters ρ and ν. To this end, we will use that Λ1 is in
L(0, ρ1, 1, π0, π1, π2, α1) (q = 1) and satisfies (26), for ν1 ∈ (0,∞) or, more precisely,
we will use

ρ1

∣∣k2 − n2
∣∣ ≤ ∣∣∣λ(1)

k − λ
(1)
n

∣∣∣ ≤ ν1

∣∣k2 − n2
∣∣ , ∀k, n ∈ N. (131)

The sequence {εk}k≥1 is bounded. So, there exists k0 ≥ 1, depending on ρ1 and
ε0, such that

|εk| ≤ ε0 ≤
ρ1

4
(2k − 1) ≤ ρ1

4

∣∣k2 − n2
∣∣ , ∀k, n ≥ 1 : k ≥ k0, n 6= k.

With this value of k0 and (131), written for k and n, we obtain∣∣∣λ(1)
k − λ

(1)
n

∣∣∣ ≥ ρ1

∣∣k2 − n2
∣∣ ≥ ρ1

2

∣∣k2 − n2
∣∣ ,∣∣∣λ(1)

k − λ
(2)
n

∣∣∣ ≥ ∣∣∣λ(1)
k − λ

(1)
n

∣∣∣− ε0 ≥ ρ1

∣∣k2 − n2
∣∣− ρ1

4

∣∣k2 − n2
∣∣ ≥ ρ1

2

∣∣k2 − n2
∣∣ ,∣∣∣λ(2)

k − λ
(2)
n

∣∣∣ ≥ ∣∣∣λ(1)
k − λ

(1)
n

∣∣∣− 2ε0 ≥ ρ1

∣∣k2 − n2
∣∣− ρ1

2

∣∣k2 − n2
∣∣ ≥ ρ1

2

∣∣k2 − n2
∣∣ ,

with k ≥ k0 and n 6= k, i.e.,∣∣∣λ(i)
k − λ

(j)
n

∣∣∣ ≥ ρ1

2

∣∣k2 − n2
∣∣ , ∀k, n ≥ 1 : k ≥ k0, n 6= k, ∀i, j ∈ {1, 2}. (132)

As a consequence of (132), we also obtain λ
(1)
k < λ

(2)
k+1 and λ

(2)
k < λ

(1)
k+1, for any

k ≥ k0. This provides the following explicit formula for the terms of the increasing
sequence Λ when k ≥ 2k0 − 1:

Λk =


min

{
λ

(1)
` , λ

(2)
`

}
, if k = 2`− 1,

max
{
λ

(1)
` , λ

(2)
`

}
, if k = 2`.

(133)

We are going to use the previous expression of the terms Λk in order to prove
condition (H5) with q = 2. Recall that the sequence Λ is real and increasing. Then,

Λk − Λn
k2 − n2

> 0, ∀k, n ≥ 1 : k ≥ n+ 1.



BIORTHOGONAL FAMILIES TO COMPLEX EXPONENTIALS 61

Assume that, for every n ∈ {1, . . . , 2k0 − 2} fixed, one has

lim inf
k→∞

Λk − Λn
k2 − n2

≥ ρ1

4
and lim sup

k→∞

Λk − Λn
k2 − n2

≤ ν1

4
. (134)

Then, there exists a positive constant ρ̃, only depending on k0 and ρ1 or, equiva-
lently, on ρ1 and ε0, such that

Λk − Λn ≥ ρ̃
(
k2 − n2

)
, ∀k, n ∈ N : 1 ≤ n ≤ 2k0 − 2 and n ≤ k.

In this way, we have proved condition (H5) for q = 1 and k, n ∈ N such that
1 ≤ n ≤ 2k0 − 2 and n ≤ k. We will prove (134) below.

Let us now see that the sequence Λ satisfies (H5), with q = 2 and an appropriate
value of the parameter ρ, when k, n ≥ 1 with k ≥ n+ 2 and n ≥ 2k0− 1. We divide
the proof into four cases:

1. Assume that k = 2` − 1 and n = 2m − 1, with `,m ≥ k0 and k − n ≥ 2.

In particular, ` −m ≥ 1, Λk = λ
(i)
` and Λn = λ

(j)
m , with i, j ∈ {1, 2}. Thus,

from (132)

Λk − Λn = λ
(i)
` − λ

(j)
m ≥

ρ1

2

(
`2 −m2

)
=
ρ1

8

[
(k + 1)

2 − (n+ 1)
2
]

=
ρ1

8
(k + n+ 2) (k − n) ≥ ρ1

8

(
k2 − n2

)
.

2. Assume now that k = 2` − 1 and n = 2m, with `,m ≥ k0 and k − n ≥ 2. In

particular, ` −m ≥ 3/2, Λk = λ
(i)
` and Λn = λ

(j)
m , with i, j ∈ {1, 2}, and we

can apply (132):

Λk − Λn = λ
(i)
` − λ

(j)
m ≥

ρ1

2

(
`2 −m2

)
=
ρ1

8

[
(k + 1)

2 − n2
]
≥ ρ1

8

(
k2 − n2

)
.

3. If k = 2` and n = 2m, with `,m ≥ k0 and k−n ≥ 2, then `−m ≥ 1, Λk = λ
(i)
`

and Λn = λ
(j)
m , with i, j ∈ {1, 2}. Applying again (132), we get

Λk − Λn = λ
(i)
` − λ

(j)
m ≥

ρ1

2

(
`2 −m2

)
=
ρ1

8

(
k2 − n2

)
.

4. In the case k = 2` and n = 2m− 1, with `,m ≥ k0 and k − n ≥ 2 we will use
the inequality

k2 − (n+ 1)2 ≥ 1

2

(
k2 − n2

)
which is valid for any k, n ≥ 1 such that k ≥ n + 2. Also, ` −m ≥ 1/2, i.e.,

`−m ≥ 1 and we can apply (132). As before, Λk = λ
(i)
` and Λn = λ

(j)
m , with

i, j ∈ {1, 2}, and

Λk − Λn = λ
(i)
` − λ

(j)
m ≥

ρ1

2

(
`2 −m2

)
=
ρ1

8

(
k2 − (n+ 1)

2
)
≥ ρ1

16

(
k2 − n2

)
.

We can conclude that property (H5) holds for the sequence Λ with q = 2 and

ρ = min
{
ρ̃,
ρ1

16

}
.

Recall that the constant ρ̃ only depends on ρ1 and ε0. Therefore, ρ only
depends on ρ1 and ε0.
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The next task will be the proof of (134). To this end, let us fix n such that
1 ≤ n ≤ 2k0 − 2 and k ≥ 2k0 − 1. Then k = 2` or k = 2`− 1 with ` ≥ k0. In both

cases, Λk = λ
(i)
` , with i ∈ {1, 2}, and we can write (see (131)):

Λk − Λn ≥ λ(1)
` − ε0 − Λ2k0−2 ≥ ρ1

(
`2 − 1

)
+ λ

(1)
1 − ε0 − Λ2k0−2

≥ ρ1

(
k2

4
− 1

)
− ε0 − Λ2k0−2,

Λk − Λn ≤ λ(1)
` + ε0 − Λ1 ≤ ν1

(
`2 − 1

)
+ λ

(1)
1 + ε0 − Λ1

≤ ν1

(
(k + 1)2

4
− 1

)
+ λ

(1)
1 + ε0 − Λ1.

This proves (134).
In order to finish the proof of Proposition 2.14, let us check that the sequence Λ

fulfills condition (26) for an appropriate ν > 0. The proof is very close to that of
condition (H5). First, one has

|εk| ≤ ε0 ≤ ε0 (2k − 1) ≤ ε0

∣∣k2 − n2
∣∣ , ∀k, n ≥ 1 : n 6= k.

From this inequality and (26), for ν1 ∈ (0,∞), we deduce

∣∣∣λ(1)
k − λ

(1)
n

∣∣∣ ≤ ν1

∣∣k2 − n2
∣∣ ≤ (ν1 + ε0)

∣∣k2 − n2
∣∣ ,∣∣∣λ(1)

k − λ
(2)
n

∣∣∣ ≤ ∣∣∣λ(1)
k − λ

(1)
n

∣∣∣+ ε0 ≤ (ν1 + ε0)
∣∣k2 − n2

∣∣ ,∣∣∣λ(2)
k − λ

(2)
n

∣∣∣ ≤ (ν1 + 2ε0)
∣∣k2 − n2

∣∣ ,
(135)

for any k, n ≥ 1 with 6= k.
Let us now prove condition (26) for the sequence Λ. As before, from the second

property in (134) we deduce the existence of a positive constant ν̃, only depending
on k0 and ν1, such that

Λk − Λn ≤ ν̃
(
k2 − n2

)
, ∀k, n ∈ N : 1 ≤ n ≤ 2k0 − 2 and n ≤ k.

Let us now see inequality (26) when k, n ∈ N are such that 2k0 − 1 ≤ n ≤ k.
Recall that, in this case, we have an explicit formula of the terms of the sequence
Λ (see (133)). Let us first consider the case n ≥ 2k0 − 1 and k = n+ 1. Thus, Λn+1 − Λn = Λ2` − Λ2`−1 = |ε`| ≤ ε0

(
(n+ 1)

2 − n2
)
,

Λn+1 − Λn = Λ2`+1 − Λ2` ≤ λ(1)
`+1 − λ

(1)
` ≤ ν1 (2`+ 1) ≤ ν1

(
(n+ 1)

2 − n2
)
.

In the general case, i.e., when k, n ∈ N are such that 2k0 − 1 ≤ n ≤ k with
k ≥ n+ 2, we can repeat the arguments above and deduce inequality (26) . Indeed,
as a consequence of (135), we deduce

1. If k = 2`− 1 and n = 2m− 1, with `,m ≥ k0 and k− n ≥ 2, then, `−m ≥ 1,

Λk = λ
(i)
` and Λn = λ

(j)
m , with i, j ∈ {1, 2}. (135) implies

Λk − Λn = λ
(i)
` − λ

(j)
m ≤ (ν1 + 2ε0)

(
`2 −m2

)
=
ν1 + 2ε0

4

[
(k + 1)

2 − (n+ 1)
2
]

=
ν1 + 2ε0

4
(k + n+ 2) (k − n) ≤ ν1 + 2ε0

2

(
k2 − n2

)
.

2. Assume now that k = 2` − 1 and n = 2m, with `,m ≥ k0 and k − n ≥ 2. In

this case, ` −m ≥ 3/2, Λk = λ
(i)
` and Λn = λ

(j)
m , with i, j ∈ {1, 2}. On the
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other hand, it is not difficult to check that

(k + 1)
2 − n2 ≤ 2

(
k2 − n2

)
, ∀k, n ≥ 1 : k ≥ n+ 2.

Thus, from (135) we get:

Λk − Λn = λ
(i)
` − λ

(j)
m ≤ (ν1 + 2ε0)

(
`2 −m2

)
=
ν1 + 2ε0

4

[
(k + 1)

2 − n2
]

≤ ν1 + 2ε0

2

(
k2 − n2

)
.

3. When k = 2` and n = 2m, with `,m ≥ k0 and k − n ≥ 2, one has `−m ≥ 1,

Λk = λ
(i)
` and Λn = λ

(j)
m , with i, j ∈ {1, 2}. Applying again (135), we get

Λk − Λn = λ
(i)
` − λ

(j)
m ≤ (ν1 + 2ε0)

(
`2 −m2

)
=
ν1 + 2ε0

4

(
k2 − n2

)
.

4. Finally, let us take k = 2` and n = 2m − 1, with `,m ≥ k0 and k − n ≥ 2.
Again, `−m ≥ 1/2, i.e., `−m ≥ 1 and we can apply (135). As in the previous

cases, Λk = λ
(i)
` and Λn = λ

(j)
m , with i, j ∈ {1, 2}, and

Λk − Λn = λ
(i)
` − λ

(j)
m ≤ (ν1 + 2ε0)

(
`2 −m2

)
=
ν1 + 2ε0

4

(
k2 − (n+ 1)

2
)

≤ ν1 + 2ε0

4

(
k2 − n2

)
.

Summarizing, we have prove property (26) for the sequence Λ with

ν = max

{
ν̃,
ν1 + 2ε0

2

}
.

Recall again that the constant ν̃ only depends on k0 and ν1, that is to say, on
ρ1, ε0 and ν1. Therefore, the parameter ν only depends on ρ1, ν1 and ε0.

With the proof of property (26) we end the proof of Proposition 2.14. �
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