
1

Design, Implementation and Validation of a

Simulation Tool for Networked Virtual

Environments
Juan Luis Font , Jose Luis Sevillano , Daniel Cascado-Caballero, Gema Lopez-Muñoz , Berhanu Regassa

Department of Computer Technology and Architecture, University of Seville, Spain

{juanlu, sevi, danic, gemalopez, berhanu}@atc.us.es

Abstract—The popularisation of Networked Virtual Environ-
ment (NVE) applications in several context, including social
interaction and e-Health fields, makes them an interesting subject
of study. The proper estimation of their network requirements
are key to ensure a good user experience, an important factor that
determines the acceptance and success of the applications. The
studies focused on NVE with an important social component are
relatively scarce. This paper presents the design, implementation
and validation of a simulation tool to assist in the study of
the requirements of a NVE application, Open Wonderland.
This tool will facilitate the study of several parameters that
define the user experience. The study describes the overall
structure, development framework and models that define the
traffic generation patterns and validates the simulation results
by comparing its traces with real traffic from previous studies.

I. INTRODUCTION

Open Wonderland (OWL) is one of the so-called Net-

worked Virtual Environment applications, which are focused

on providing a virtual world experience based on a distributed

simulation. The success of several of these application in

contexts such as gaming or social interaction have contributed

to introduce them to larger audiences. This popularisation

together with the proliferation of the “persuasive systems”,

focused on motivating healthy lifestyle habits [1], have led

to our research group to develop a persuasive system called

“Virtual Valley”, based on Open Wonderland and relying on

the virtual world concept [2], [3].

OWL has several characteristics that make it suitable as

basis for a research persuasive system. First, it is licensed

under the GPL v2, it is also a 100% Java project [4], which

ensures a high degree of portability, and its design allows

to any organisation or particular to deploy an instance in

their own network infrastructure. The network traffic derived

from Wonderland is mainly due to three sources. First, object

synchronisation which allows all users to have a coherent view

of the virtual world (including moving objects like avatars).

Second, messages intended to support communications among

users, including voice traffic (the main source of traffic) but

also text messages (chat). And, finally, traffic due to the

execution of applications shared among different users. The

latter is very difficult to model, as it depends on the particular

application. Therefore, this study will focus on the first two

sources: object synchronisation and voice traffic.

The user experience is a key factor for the success of a

NVE such as OWL. Poor graphic performance, network lag

or inconsistencies translate into a poor user experience that

may lead the user to reject the application. Assuring such a

good user experience requires the study of the parameters that

have a direct impact on it, identifying the threshold below

which the application becomes unusable. In this context, the

network traffic performance is of great importance. A virtual

world environment requires certain network resources to keep

its clients synchronised, sharing a common and coherent view

of the same simulated reality. It is important to determine the

maximum throughput for OWL clients and servers to properly

size the required network resources and be able to predict

the throughput evolution depending on the scenario. Network

simulators play a useful role to study such requirements.

This paper aims to define, implement and validate a simu-

lation tool to facilitate the study of the network requirements

of OWL clients. The models used to implement the traffic

generation patterns have been defined in previous work. The

paper is structured as follows: Section II lists previous work in

this area, Section III contains the network modes proposed for

OWL client traffic in previous work. The simulator framework,

structure and implementation details are listed in Section IV

and the validation and results are discussed in Section V.

Finally, the paper closes with the conclusions and future work

in Section VI, acknowledgments and bibliography.

II. PREVIOUS WORK

Most studies about Networked Virtual Environments (NVE)

focus on multi-player online games, specially on First Person

Shooters (FPS) [5]. Real-Time Strategy (RTS) [6] and Mas-

sively Multi-player Online Role-Playing Games (MMORPG)

[7] are also genres subject of academic research, although in

a lesser extent.

The quality of the user experience of each genre depends

on different aspects, so various techniques are deployed de-

pending of the requirements. For example, UDP transport

protocol is used by those that give preference to time restricted

updates over transmission reliability. On the other hand, ap-

plications that require a reliable data stream service rely on

TCP protocol. OWL follows a hybrid approach using TCP

connections for object synchronisation traffic and UDP for

audio transmission.

Similar works dealing with requirements for NVEs are

scarce: Quality of Service (QoS) is studied in [8] and [9].

2

Bandwidth requirements for some popular multi-player online

games are studied in [10] monitoring network traffic during

several sessions.

To the best of our knowledge, there are no published

studies about the networking resources needed to support the

execution of Virtual Worlds based on Open Wonderland except

for the preliminary approach made in [11] and further study

performed in [12]. This paper follows a micro scale modelling

approach similar to that described in [13] and proposes a set

of models to describe the traffic generation patterns of OWL

clients.

III. NETWORK TRAFFIC MODELS FOR OWL CLIENTS

This section presents a summary of the modelling process

results presented in [12], a study of the traffic generation pat-

terns of the OWL clients. These models focused on modelling

the Inter-Arrival Time between consecutive packets and packet

size for two of the main OWL traffic sources: TCP object

synchronisation and UDP audio traffic. The first is used to

synchronise virtual world simulation shared by all the clients

so its volume of traffic depends on the user activity. The second

traffic is responsible of the audio conversations and softphone

calls.

On the one hand, the object synchronisation process gen-

erates update requests and propagations depending on the

user activity. Constant movement translates into a higher rate

of object synchronisation packets meeting some restrictions

to avoid an updates overflow. Highly active users generate

synchronisation packets following a truncated exponential dis-

tribution. The rate parameter λ, that determines the exponential

behaviour, depends on the number of concurrent users within

the session. Experimental results proved that λ decreased with

the increase in concurrent users. Table I shows rate λ values

calculated by Maximum Likelihood Estimation (MLE) for

various experimental sessions. This model is described by a

continuous random variable in Equation 1. Inactivity periods

have a considerable impact on the packet rate and are of little

interest for the current study. There are few possible packet

sizes whose probabilities can be described using a discrete

random variable as shown in Equation 2.

TABLE I
RATE PARAMETER λ VALUES FOR OBJECT SYNCHRONISATION IAT

Session λ

2-client 4.168

3-client 3.687

5-client 3.146

F (x;λ) =











1 , x > 0.5

1− e−λx , 0.5 ≥ x ≥ 0

0 , x < 0

(1)

P (x) =



















0.9704 , x = 239 bytes

0.0195 , x = 478 bytes

0.0057 , x = 536 bytes

0.0044 , x = 717 bytes

(2)

On the other hand, audio packets are generated following

periodic patterns that can slightly vary depending on the

underlying operating system and network stack, although the

overall throughput is similar among different configurations.

This paper focuses on the Windows XP case, whose Inter-

Arrival value behaviour is described in Equation 3. The vast

majority of the audio packets have a UDP payload size of

1292 bytes, so this parameter is considered to be constant.

P (X = k) =



















0.1426 , k = 0.0114 s

0.6405 , k = 0.0221 s

0.0723 , k = 0.0340 s

0.1446 , k = 0.0442 s

(3)

(4)

IV. IMPLEMENTATION OF THE SIMULATOR

The development of the simulation tool has not been un-

dertaken from scratch. Instead, ns-3 discrete-event network

simulator has been chosen as starting point. Ns-3 provides

a modular and well tested simulation framework, it is an

open source community-driven project and provides a well

defined building process, comprehensive documentation and

the possibility of coding in C++ or Python [14], [15]. Ns-

3 is devised to be executed in GNU/Linux and Unix-like

environments, being also possible to build and run it in

Windows systems using CygWin. The version used in this

paper is ns-3.13, last stable release at the time of writing.

Ns-3 code roughly distinguishes internally between models,

helpers and simulations. The models are classes that imple-

ment the functionality of the modelled real systems, such as

network nodes, data packets, protocol stacks, network devices

or packet generating applications. On the other hand, helpers

are auxiliary classes that make the creation and configuration

of large amounts of related entities easier, such as definition

of several interconnected nodes, the initialisation of large

amounts of network decides with consecutive IP addresses,

and so on. Finally, a simulation is a program that defines,

configures and launches the simulation experiment based on

the models and helpers.

The ns-3 code that implements the OWL clients is written

in C++. According to the ns-3 software architecture, the Node

class acts as a container entity that represents a network node.

This entity contains objects that model the network devices,

protocol stacks and links to other entities such as physical

channels. Several application models can be “installed” on top

of a node object. These applications are classes that inherit

from the generic Application class. They generate and

consume network traffic following the logic coded by the

programmer. The simulator structure is shown in Figure 1.

3

�����
����	

��
���	��
����	

�����
����	

��
���	��
����	

�����
����	

��
���	��
����	

������
���

�����
�������������	
�

��
���	��
�����������	
�

����

�
�
�
�
�

��������		��

����

�
�
�
�
�

������
���

�����������

�����
����������� �� �

��
���	��
��������� �� �

�����������

�����	
����

��
���
����	
�����

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Fig. 1. Simulator architecture

The classes that implement the OWL client-server architec-

ture are listed below:

• OWLMovClient generates TCP object synchronisation

packets with Inter-Arrival Times defined by the distribu-

tion in Equation 1. The TCP payload size is determined

by Equation 2. It uses a TCP Socket object to pass

packets to the IPv4 stack of its containing Node. It is

set up with the IP address and TCP port of its associated

OWL server.

• OWLMovServer receives TCP object synchronisation

packets from several OWLMovClient objects and

dumps them to disk into pcap files.

• OWLAudioClient generates audio packets with Inter-

Arrival Times determined by the distribution in Equation

3. The UDP payload size is 1292 bytes. It uses an UDP

Socket object to pass packets to the IPv4 stack of its

containing Node. It is set up with the IP address and

TCP port of its associated OWL server.

• OWLAudioServer receives UDP audio packets from

several OWLAudioClient objects and dumps them to

disk in pcap files.

The simulated network infrastructure is defined and con-

figured in the owl_client_sim.cc file, located in

$NS_DIR/scratch. The simulation comprises a Carrier

Sense Multiple Access (CSMA) bus topology operating at

100 Mbps and interconnecting an arbitrary number of nodes.

This topology is equivalent to the original 100 Mbps Ethernet

network used in the testing sessions. All the simulation nodes

share the same CSMA channel and are equipped with CSMA

network devices. Each node has also a IPv4 stack and associ-

ated IP address. All these models are provided by default with

the ns-3 simulation and are well tested and documented.

The Application child classes are installed in the

simulated nodes. In this topology there is only a single

server and an arbitrary number of clients. Each client node

has a OWLMovClient and OWLAudioClient object as-

sociated while the only server has a OWLMovServer and

OWLAudioServer instance installed.

The ns-3 building process generates an executable file

owl_client_sim, that lacks Graphical User Interface

(GUI) and can be launched from command line using waf, the

build automation tool used by ns-3. The simulation executable

accepts several parameters that are listed below:

• nClients: specifies the number of OWL clients partic-

ipating within the simulation. Default value 2.

• packetRate: rate parameter λ, determines the distribu-

tion of the IAT values for object synchronisation packets.

Clients within scarcely populated sessions have λ values

close to 5 while λ tends to 3 for overcrowded sessions.

Default value 4.168, two concurrent highly active users.

• tSimulation: sets in seconds the duration of the

simulated OWL session. Default value 250 s.

• seed: specifies the seed to initialise the random number

generations.

• logPath and logName: specify respectively the store

directory and the root name for the output trace file. The

logName string is appended with a time stamp. Default

values are “/tmp/” and “owl trace ”.

The simulator generates as output a network trace captured

in the OWL server side, including both audio and object

synchronisation traffic. This trace is stored as a file in pcap

format.

V. SIMULATION RESULTS AND VALIDATION

The packet analyser Wireshark v.1.6.5 was used to study

the simulated and experimental traces. Tshark is the terminal-

based version of Wireshark, providing the same functionality

regardless the GUI and facilitating the scripting and automa-

tion tasks. Command line tool capinfos was used to extract

statistics from the pcap files, Bash scripting to articulate the

automation tasks and the statistics language R for calculations

and plots.

Packets from real traces missed 4 bytes corresponding to

the Frame Check Sequence (FCS) for Ethernet. Most operating

systems do not provide these bytes to packet analysers. On the

contrary, simulated traces include the Ethernet FCS. These 4

extra bytes per packet have been taken into account in the

calculation of the throughput for real traffic.

Experimental data from [12] came from three cases, com-

prising 2, 3 and 5 concurrent OWL clients respectively. The

study of such a reduced set of clients is not determined by

the server resources, but by the number of users that can

simultaneously interact while providing a proper user experi-

ence without overwhelming the end user. All the clients within

those sessions performed high activity rates. Three equivalent

simulation configurations have been defined to be recreated by

simulation. The goal is to compare the simulator throughput

with previous experimental results. Rate parameter values from

Table I have been used to set the object synchronisation packet

rate according to the number of concurrent users specified for

each simulation run.

Configurations for the 2, 3 and 5-client cases have been run

100 times each one in order to obtain the sample mean (X̄)

and sample standard deviation (σX̄) with a Confidence Interval

(CI) of 95%. Each run used a different seed to initialise the

random number generators.The duration of each simulated ses-

sion was of 250 s. Packet sender/receiver classes do not have

to establish network connections or load simulation entities

which generate heavy data traffic. Instead, they start generating

traffic following stationary patterns from real OWL clients.

Thus, due to the logic coded in the packet sender/receiver

4

classes, the warm-up period is almost negligible and the clients

reach long run throughput values in early simulation stages,

so long simulation times are not needed.

Results showed that the simulated object synchronisation

throughput decreases as the number of concurrent clients

increases. Results for simulator runs using λ parameters from

Table I are shown in Table II. 100 simulator runs (samples)

have been performed for each configuration (2, 3 and 5-

clients), sample means (X̄) decrease as the number of clients

increases. The sample deviation (σX̄) does not experience

significant variations. Figures have a 95% Confidence Interval

assuming a normal distribution of the sample means values.

Experimental results from the previous study are shown in

Table III. Although the simulation results show a slight

overestimation, real and simulated client throughput follow

a similar evolution linked to the number of concurrent users.

This correlation can be observed in Figure 2. It should be noted

that the experimental results have a relatively high deviation

due to the variable nature of the traffic. Despite the slight

overestimation, the simulator results do not differ largely if

the experimental deviation is taken into account. Simulator

means are within or very close to the interval defined by the

deviation about the experimental means.

TABLE II
SIMULATED OBJECT SYNCHRONISATION THROUGHPUT

N. Clients Samples X̄(b/s) σ
X̄

2 100 1475.36 48.07

3 100 1352.62 49.99

5 100 1231.95 42.76

TABLE III
EXPERIMENTAL OBJECT SYNCHRONISATION THROUGHPUT

N. Clients X̄(b/s) σ
X̄

2 1407.49 19.27

3 1282.78 141.62

5 1085.91 134.72

Clients

b
y
te

/s

2 3 4 5

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Experimental traffic

Simulated traffic

Fig. 2. Simulated Vs experimental object synchronisation throughput

Audio client traffic generation follows a periodic pattern

dictated by jVoiceBridge, the software component responsible

for sending audio packets following a theoretical period of 20

ms. Experimental results showed a different generation pattern

while the overall audio throughput remained constant over

time and slightly below the expected maximum theoretical

audio throughput [12]. Thus, the audio Inter-Arrival Time

model (Equation 3) was proposed to better describe audio

traffic and give a more realistic estimation than the theoretical

one only based on the used audio coding. A summary of the

simulator results for audio traffic are shown in Table IV. All

the samples have a similar mean value (X̄) independently of

the number of concurrent clients participating in the session.

The sample variance σX̄ and Confidence Interval do not

show significant changes between configurations. The simu-

lated audio throughput values overestimate the experimental

results shown in Table V. Despite this difference, simulation

results still provide a more accurate estimation than theoretical

maximum audio throughput, which was estimated in 62.4 KB/s

for the audio coding used. Simulated and real throughput also

show a considerable degree of correlation that can be observed

in Figure 3.

TABLE IV
SIMULATED AUDIO THROUGHPUT

N. Clients Samples X̄ (b/s) σ
X̄

2 100 54336.05 310.94

3 100 54363.64 332.80

5 100 54356.50 333.34

TABLE V
EXPERIMENTAL AUDIO THROUGHPUT

N. Clients X̄ (b/s) σ
X̄

2 48187.14 433.24

3 45678.54 3990.91

5 47816.95 4216.89

Clients

K
B

/s

2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Experimental traffic

Simulated traffic

Theoretical maximum

Fig. 3. Simulated Vs experimental audio throughput

5

VI. CONCLUSION AND FUTURE WORK

This paper describes the design, implementation and vali-

dation of a simulation tool for studying Open Wonderland, a

Networked Virtual Environment (NVE). The tool focuses on

the outgoing traffic of OWL clients. This traffic is divided into

two categories: audio and object synchronisation. Their micro

scale models were defined in previous work.

Ns-3 project was used as simulation framework to avoid

developing the tool from scratch. Some of the ns-3 default

models, such as those for Ethernet and IPv4 have been used

along with other custom classes that implement the traffic

generation behaviour of the OWL clients. The resulting com-

mand line tool is configurable through parameters and generate

network traces in pcap format. This feature allows to study

the simulator traces using tools such as Wireshark and Tshark,

to automatise the trace generation and the interoperability with

other tools.

The validation of the simulation tool was performed defining

several simulation scenarios that replicated the experimental

sessions from previous work. These configurations described

several multi-player sessions whose clients showed high rates

of user activity. The simulation input was the rate parameter λ,

which determines the packet generation relative to the number

of concurrent users. Throughput was chosen as the output

simulator parameter to study. Multiple runs of the simulator

were performed to determine the mean throughput for both

audio and object synchronisation traffic, their sample deviation

and a confidence interval of 95%.

The comparison between previous experimental and sim-

ulation results showed that they have a considerable degree

of correlation. The simulator slightly overestimate the object

synchronisation throughput but its response to the increase in

the number of users is similar to the experimental results. The

simulator also overestimate the audio throughput but it still

gives a better estimation than the theoretical maximum audio

throughput.

The most immediate future work would be describing more

accurately the relationship between the number of concurrent

clients within an OWL session and the value of the rate

parameter λ that determines the packet generation of those

clients. This would simplify the specification of the input

parameter of the simulator. Thus, the tool would only need the

number of concurrent users to automatically infer the proper

λ value.

Further future work would focus on the study of other

network parameters that have a direct impact on the user

experience, such as packet loss, packet delay or the influence

of the underlying network topology and technology (Gigabit

Ethernet, Wifi, DSL, etc.). The simulation presented in this

paper provides the ground for a modular, expandable and

configurable simulator network that would prove of great help

for the study of the parameters cited above and could be also

exported to other fields that require similar network evaluation

approaches.

ACKNOWLEDGMENT

This work was partially supported by the project

PROCUR@ - IPT-2011-1038-900000, funded by the program

INNPACTO of the Spanish Ministry of Science and Innovation

and FEDER funds; project Vulcano: TEC2009-10639-C04-02;

and by the Telefonica Chair “Intelligence in Networks” of the

University of Seville, Spain.

REFERENCES

[1] B. Fogg, Persuasive technology: using computers to change what we

think and do, ser. Morgan Kaufmann series in interactive technologies.
Morgan Kaufmann Publishers, 2003.

[2] S. Romero, L. Fernandez-Luque, J. Sevillano, and L. Vognild, “Open
Source Virtual Worlds and Low Cost Sensors for Physical Rehab of
Patients with Chronic Diseases,” Lecture Notes of the Institute for Com-

puter Sciences Social-Informatics and Telecommunications Engineering,
vol. 27, pp. 84–87, 2010.

[3] D. Cascado, S. Romero, S. Hors, A. Brasero, L. Fernandez-Luque, and
J. Sevillano, “Virtual worlds to enhance ambient-assisted living,” in
Engineering in Medicine and Biology Society (EMBC), 2010 Annual

International Conference of the IEEE, 31 2010-sept. 4 2010, pp. 212
–215.

[4] O. W. Project, Open Wonderland Project, accessed March 15th 2011.
[Online]. Available: http://www.openwonderland.org/

[5] S. Ratti, B. Hariri, and S. Shirmohammadi, “A Survey of First-Person
Shooter Gaming Traffic on the Internet,” IEEE Internet Computing,
vol. 14, no. 5, pp. 60–69, Sep. 2010.

[6] M. Claypool, D. LaPoint, and J. Winslow, “Network analysis of counter-
strike and starcraft,” in Performance, Computing, and Communications

Conference, 2003. Conference Proceedings of the 2003 IEEE Interna-

tional. IEEE, 2003, pp. 261–268.
[7] T. Fritsch and H. Ritter, “The effect of latency and network limitations

on MMORPGs: a field study of everquest2,” ACM SIGCOMM workshop

on Network, 2005.
[8] D. Gracanin, Y. Zhou, and L. DaSilva, “Quality of service for networked

virtual environments,” Communications Magazine, IEEE, vol. 42, no. 4,
pp. 42–48, 2004.

[9] T. Henderson and S. Bhatti, “Networked games: a QoS-sensitive applica-
tion for QoS-insensitive users?” in Proceedings of the ACM SIGCOMM

workshop on Revisiting IP QoS: What have we learned, why do we

care? ACM, 2003, pp. 141–147.
[10] E. Asensio, “Analyzing the network traffic requirements of multiplayer

online games,” Advanced Engineering Computing and Applications in

Sciences, 2008. ADVCOMP’08. The Second International Conference

on, pp. 229–234, 2008.
[11] J. Font, D. Cascado, J. Sevillano, G. Lopez, S. Romero, and G. Jimenez,

“Network requirements evaluation of a multi-user virtual environment,”
in Performance Evaluation of Computer Telecommunication Systems

(SPECTS), 2011 International Symposium on, june 2011, pp. 90 –97.
[12] J. ”Font, D. Cascado, J. Sevillano, F. Dı́az-del Rı́o, and G. Jiménez,

“Network traffic analysis and evaluation of a multi-user virtual environ-
ment,” Jan. 2012, submitted to SIMPAT.

[13] M. Borella, “Source models of network game traffic,” Computer Com-

munications, vol. 23, no. 4, pp. 403–410, Feb. 2000.
[14] J. L. Font, P. Iñigo, M. Domı́nguez, J. L. Sevillano, and C. Amaya,

“Architecture, design and source code comparison of ns-2 and ns-3
network simulators,” in Proceedings of the 2010 Spring Simulation

Multiconference, ser. SpringSim ’10. New York, NY, USA: ACM,
2010, pp. 109:1–109:8.

[15] J. Font, P. Iñigo, M. Domı́nguez, and C. Sevillano, J.L.and Amaya,
“Analysis of source code metrics from ns-2 and ns-3 network simula-
tors,” Simulation Modelling Practice and Theory, vol. 19, no. 5, pp.
1330–1346, 2011.

