
This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

Toward Dependency-Aware API Gateways⋆

Saman Barakat1[0000−0002−7714−3742], Ana B. Sánchez1[0000−0003−1473−0955],
and Sergio Segura1[0000−0001−8816−6213]

SCORE Lab, I3US Institute, Universidad de Sevilla, Seville, Spain
saman.barakat@gmail.com

Abstract. Web APIs often include inter-parameter dependencies that
constrain how input parameters can be combined to form valid calls to
the service. API requests violating one or more of these dependencies
result in an unnecessary exchange of messages, causing a waste of time
and user quota. Also, dependencies are often not correctly checked by the
servers, resulting in critical failures or uninformative error responses. In
this paper, we propose extending API gateways to support the detection
and explanation of inter-parameter dependencies violations. To achieve
this goal, we leveraged IDL4OAS, an OAS extension for describing the
dependencies among input parameters in web APIs, and IDLReasoner,
a constraint-based IDL reasoner. Both were integrated into a prototype
tool using Spring Cloud Gateway. Preliminary evaluation results on five
industrial API operations show that our approach can successfully detect
and explain all invalid requests, reducing the response time by around
80.31% and minimizing potential input validation failures.

Keywords: API Gateway · inter-parameter dependencies · web APIs

1 Introduction
Web APIs frequently include dependencies between input parameters that re-
strict the valid combinations of parameters for making calls to the service. These
relationships between input parameters are known as inter-parameter dependen-
cies (or simply dependencies for short). In the Yelp API, for example, the param-
eter location is required if either latitude or longitude is not provided, and
both parameters are required if the location is not provided [9]. A recent study
revealed that dependencies are extremely common in industrial web APIs: they
appear in 4 out of every 5 APIs across all application domains and types of oper-
ations [4]. Motivated by the lack of support for defining dependencies in current
API specification languages, Martin-Lopez et al. [3] introduced IDL4OAS, an
OAS extension for describing the dependencies among input parameters in web
APIs as a part of the OAS specification format, and IDLReasoner, a constraint-
based Java library that enables the analysis of IDL (Interparameter Dependency
⋆ This work has been partially supported by grants PID2021-126227NB-C22 and

TED2021-131023B-C21, funded by MCIN/AEI/10.13039/501100011033 and by Eu-
ropean Union “NextGenerationEU”/PRTR».

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

2 S. Barakat et al.

Language) specifications, e.g., checking whether an API call meets its dependen-
cies. We leverage both of them in this work.

Dependency violations are common in API requests and cause wasted time
and quota consumption. Also, dependencies are often not correctly checked by
the servers, resulting in critical failures or uninformative error responses.

In this paper, we propose extending API gateways with analysis capabilities
making them able to automatically detect and explain inter-parameter depen-
dencies violations. To do this, we leveraged IDL4OAS and IDLReasoner, inte-
grating them into a prototype tool using Spring Cloud Gateway. Preliminary
results reveal that our solution can successfully detect and explain dependency
violations, reducing the response time of invalid requests by 80%, saving un-
necessary communication with the services, and minimizing potential validation
failures.

2 Approach

We propose extending API gateways to support detecting and explaining inter-
parameter dependencies violations. In a traditional gateway, when a client makes
a request to a service through the gateway, the gateway forwards the request to
the target service as shown in Figure 1a. However, in our approach, when a
client makes a request, the gateway analyzes the request before forwarding it to
the server as shown in Figure 1b. If the request is valid, the gateway sends the
request to the server. Otherwise, it returns an error explanation message to the
client, thereby blocking unnecessary traffic through the services.

As an example, the OMDb API documentation describes the following de-
pendency between parameters i (IMDb ID) and t (Movie title): “while both ‘i’
and ‘t’ are optional, at least one argument is required” [6]. Using IDL4OAS, this
dependency can be expressed as shown in Listing 1. Failing to adhere to this
dependency by sending a request to the API without both parameters results
in the API gateway forwarding the request to the service, which responds with
the message “Incorrect IMDb ID.” However, by applying our approach, the API
gateway analyzes the request, identifies the dependency violation, and returns
an explanation outlining the invalid parameters and the dependencies violated:
“InvalidRequestParams=[t=null, i=null], IDLConflicts=[Or(i, t);]”. More impor-
tantly, our approach blocks the invalid request, saving unnecessary message ex-
change and mitigating potential failures due to bugs in the validation code of
the services.

1 paths:
2 /:
3 get:
4 parameters:
5 - name: i [...]
6 - name: t [...]
7 [...]
8 x-dependencies:
9 - Or(i, t);

Listing 1: OAS document of OMDb API extended with IDL4OAS

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

Toward Dependency-Aware API Gateways 3

Our approach is based on the IDLReasoner, a Java-based library used to
perform several analysis operations using OAS documents extended with IDL [3].
We implemented our approach using the Spring Cloud Gateway, a lightweight
API gateway built on top of the Spring ecosystem [7]. Spring Cloud Gateway
provides several built-in filters and supports the integration of custom ones. In
our work, we implemented a custom filter utilizing the IDLReasoner. The filter,
referred to as dependency filter from now on, uses IDLReasoner for detecting
(and optional explaining) violations of the inter-parameter dependencies in the
incoming API requests. Violations are detected by checking the API requests
against the OAS specification of the service, augmented with a description of its
inter-parameter dependencies using the IDL4OAS extension. Figure 1 illustrates
two scenarios where a client sends requests to a service through the Spring Cloud
gateway without and with our dependency filter.

Service

Client

BA

BA
Filters

Spring Cloud Gateway

BA

BA

(a) No dependency filter

Service

BA

BA

IDLReasoner + IDL4OAS

DependencyFilter

A B

B

Invalid

A

Valid

Spring Cloud Gateway

Client

A

A

(b) Dependency filter

Fig. 1: API Gateway with (no) support for dependency detection

3 Preliminary evaluation

We conducted a preliminary evaluation by testing five real-world API operations.
We use the testing tool RESTest [5] for generating 2000 random API requests,
1000 valid and 1000 invalid, and then executed them through our prototype
API gateway. An API request is considered valid if it satisfies all constraints
and dependencies between input parameters described in the web API. Then,
we compared the response time with and without our dependency filter. The
response time was measured in all cases from the time the gateway receives the
request to the moment in which it returns a response to the client.

As anticipated, the API gateway permitted the valid requests to pass through
with minimal delay. To be specific, when the dependency filter was not employed,
the average response time for the gateway was 243 ms. However, when valid
requests were processed using the dependency filter, the average response time
increased slightly to 272 ms.

Table 1 shows the result of performing 1000 invalid requests for each opera-
tion using the gateway with and without the dependency filter. The results show
that the average response time for all operations without the dependency filter,
where invalid calls are forwarded to the target services, is 168 ms. However, our
dependency filter takes 33 ms to detect invalid API requests (36 ms for detecting
and explaining), avoiding forwarding the invalid requests to the services. This
means a 80% reduction in response time when used for detection only, and 78%
when used for validation and explanation.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

4 S. Barakat et al.

Table 1: The average response time of 1000 invalid requests (ms)
Operation No detection Detection Explanation

FSQ-PlaceSearch [1] 159.73 18.70 22.67
GitHub-UserRepos [2] 196.23 74.88 77.29
OMDb-ByIdTitle [6] 173.34 24.91 29.26
Tumblr-BlogLikes [8] 150.66 26.59 29.26
Yelp-BusinessSearch [9] 160.90 20.48 22.67

Mean 168.17 33.11 36.23

4 Conclusions

In this paper, we propose to extend API gateways with capabilities for detecting
and explaining dependency violations between parameters in web APIs. This not
only allows to reduce response time when processing invalid requests, but also to
provide informative messages to users about violated dependencies. In addition,
our approach serves as a shield for API servers, stopping invalid requests and
preventing input validation failures. Our future plans include a more extensive
evaluation and improving explanation messages.

References

1. Foursquare Places API, https://location.foursquare.com/developer/
reference/place-search, accessed online in March 2023

2. GitHub Repositories API, https://docs.github.com/en/rest/repos/repos#
list-repositories-for-the-authenticated-user, accessed online in April 2023

3. Martin-Lopez, A., Segura, S., Muller, C., Ruiz-Cortes, A.: Specification and auto-
mated analysis of inter-parameter dependencies in web apis. IEEE Transactions on
Services Computing pp. 1–14 (2021)

4. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A catalogue of inter-parameter de-
pendencies in restful web apis. In: Yangui, S., Bouassida Rodriguez, I., Drira, K.,
Tari, Z. (eds.) Service-Oriented Computing. pp. 399–414. Springer International
Publishing, Cham (2019)

5. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Restest: Black-box constraint-based
testing of restful web apis. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H.,
Bouguettaya, A., Motahari, H. (eds.) Service-Oriented Computing. pp. 459–475.
Springer International Publishing, Cham (2020)

6. OMDb API, https://www.omdbapi.com/, accessed online in April 2023
7. Spring Cloud Gateway, https://cloud.spring.io/spring-cloud-gateway, ac-

cessed online in March 2023
8. Tumblr API - retrieve blogs likes. https://www.tumblr.com/docs/en/api/v2, ac-

cessed online in April 2023
9. Yelp Search businesses API, https://docs.developer.yelp.com/reference, ac-

cessed online in March 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://location.foursquare.com/developer/reference/place-search
https://location.foursquare.com/developer/reference/place-search
https://docs.github.com/en/rest/repos/repos#list-repositories-for-the-authenticated-user
https://docs.github.com/en/rest/repos/repos#list-repositories-for-the-authenticated-user
https://www.omdbapi.com/
https://cloud.spring.io/spring-cloud-gateway
https://www.tumblr.com/docs/en/api/v2
https://docs.developer.yelp.com/reference

	Toward Dependency-Aware API Gateways

