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Las ecuaciones de Navier-Stokes conforman la base de la teoria matematica para la
dindmica de fluidos viscosos. Podemos considerar una gran variedad de escenarios
que involucran este tipo de fluidos. En particular, los fluidos se pueden clasificar
en dos regimenes principales: laminar y turbulento. El nimero de Reynolds es una
constante que esta intimamente relacionada con este comportamiento, y asocia las
fuerzas de viscosidad que acttan en el fluido (causan friccién entre las particu-
las), con las fuerzas inerciales (causan la aceleracién del fluido). En esta tesis,
se estudia la dinamica de fluidos viscosos desde dos perspectivas muy diferentes.
Por un lado, estudiamos el caso en el que el niimero de Reynolds es despreciable,
dando lugar al sistema de Stokes. Describimos el comportamiento de dos flui-
dos dos-dimensionales diferentes que evolucionan en el tiempo, y analizamos las
propiedades de la interfaz entre ellos. Este problema pertenece a la clasificacién de
problemas de frontera libre. Por otro lado, consideramos un escenario totalmente
diferente, donde el nimero de Reynolds es grande y se desarrolla turbulencia. Es-
tudiamos el movimiento de un fluido en dos o tres dimensiones, cuya turbulencia
es homogénea, isotropica y fully-developed., a través del modelo de turbulencia de
Kolmogorov. Esta tesis esta dividida en dos partes, cada una de ellas dedicada a
uno de los problemas mencionados.

La primera parte de la tesis contiene una introduccién y dos capitulos. Esta
basada en el articulo [32]. En el primer capitulo, presentamos el modelo que de-
scribe la dinamica de dos fluidos incompresibles, inmiscibles y viscosos que fluyen
en el regimen de Stokes, y estan contenidos en una banda dos dimensional que
es periddica en la direccion horizontal. Asumimos que los fluidos estan sujetos a
fuerzas gravitatorias y que tienen distintas densidades. La motivacién para estu-
diar este problema es la falta de resultados en el caso de salto de densidades, que

X
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consideran una densidad no integrable y un espacio fisico de profundidad infinita.
En este caso, la diferencia de densidades induce la dinamica de la interfaz que se
genera entre los dos fluidos. Uno de los métodos clasicos para tratar los problemas
de interfaz libre es usar la teoria del potencial para construir soluciones explicitas
para el sistema. Usando este método, construimos una ecuacion de dinamica de
contorno para este problema, a través de una version horizontalmente peridédica
del Stokeslet. Esta técnica genera soluciones explicitas para nuestro escenario, in-
cluso para términos de fuerza més generales al que usamos en nuestro anélisis (la
fuerza gravitatoria). Ademds, esta formulacién para la velocidad consiste en una
ecuacion no local y fuertemente no lineal. Como primera estrategia, analizamos
el operador lineal que se genera, y probamos que, en el caso estable de las densi-
dades, cuando el fluido méas denso esta debajo del menos denso, produce un efecto
de weak damping. Este tipo de comportamiento supone un gran contraste entre
este y otros problemas de frontera libre relacionados, cuyos operadores lineales son
parabdlicos. En nuestro caso, el efecto de weak damping sugiere que las soluciones
no ganan regularidad, y por lo tanto nuestro problema es de naturaleza hiperbdlica.
Teniendo esto en cuenta, estudiamos el problema no lineal y probamos existencia
y unicidad de soluciones locales en tiempo, cuando la interfaz inicial estda descrita
por una curva sin auto-intersecciones y con regularidad C'7, con 0 < v < 1. De
acuerdo con el comportamiento esperado, la solucién no gana regularidad, es C'*
en espacio. Este resultado de well-posedness es cierto independientemente del reg-
imen de las densidades, es decir, el sistema esta bien propuesto incluso cuando el
fluido més denso se encuentra encima del menos denso. Este fenémeno se debe a
la viscosidad de los fluidos.

En el segundo capitulo, estudiamos el comportamiento de las soluciones para
tiempos largos, cuando el dato initial es pequeno y esta descrito por el grafo de
una funciéon. Las técnicas utilizadas aprovechan las propiedades del semi-grupo
lineal y el llamado weak damping. Con estas técnicas, probamos existencia global
en tiempo para el caso estable de las densidades (estabilidad Rayleigh-Taylor).
La prueba se basa en estimaciones de energia a priori en espacios de Sobolev y
el estudio riguroso de los nucleos que aparecen. También probamos la estabili-
dad de la interfaz plana, es decir, el decaimiento de la frontera libre al estado
estacionario plano. En particular, probamos existencia y unicidad de soluciones
globales en tiempo con regularidad Sobolev H?® y decaimiento polinomial de la
interfaz al estado estacionario. Ademas, podemos extender este resultado a fun-
ciones analiticas en espacios de Wiener. Para ello, usamos técnicas de analisis
de Fourier en la ecuacion de dindmica de contorno y las propiedades del semi-
grupo lineal en las 4lgebras de Wiener para obtener existencia global en tiempo
y decaimiento exponencial hacia el estado estacionario plano. Finalmente, en el
regimen Rayleigh-Taylor inestable de las densidades, construimos una amplia fa-
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milia de soluciones suaves con crecimiento exponencial en tiempo para intervalos
de tiempo arbitrariamente largos, probando que las interfaces pueden crecer expo-
nencialmente en el caso intestable.

La segunda parte de la tesis contiene una introduccién y un capitulo. Esta
basada en el préximo articulo [21]. En este capitulo, se establece la existencia y
unicidad de soluciones locales en tiempo para el modelo de Kolmogorov de turbu-
lencia. Este modelo pertenece a los modelos k — ¢, y describe la dindmica de un
fluido homogéneo, isotropico con turbulencia fully-developed. Generalizamos los
resultados previos relajando las hipotesis sobre la energia cinética turbulenta, que
puede anularse, para cubrir un mayor rango de casos posibles. En consecuencia,
perdemos la parabolicidad del sistema, y se necesita un analisis cuidadoso para
encontrar existencia y unicidad de soluciones. Probamos well-posedness en espa-
cios de Sobolev criticos H® para s > 1+ d/2, para fluidos de dimensién dos y
tres, que ocupan un dominio periédico. Consideramos que la regularidad es frac-
cionaria, y en consecuencia, nuestro estudio involucra calculo paradiferencial y la
descomposicion de Littlewood-Paley, para poder obtener estimaciones de energia
a priori.






Abstract

The mathematical bases of the dynamics of viscous fluids are given by the classical
Navier-Stokes equations, which model the motion of a viscous incompressible fluid.
We can consider a wide variety of scenarios involving these type of fluids. In par-
ticular, one can classify the motion of fluids in two general regimes: laminar and
turbulent. The Reynolds number is a constant intimately related to this behavior,
which associates the viscosity forces acting on the fluid (causing friction between
particles), with the inertial forces (causing acceleration of the fluid). In this thesis,
we study the dynamics of viscous fluids from two very different perspectives. On
the one hand, we study the scenario where the Reynolds number is vanishingly
small, giving rise to the Stokes system. We describe the behavior of two different
two-dimensional fluids which evolve in time, and we analyze the properties of the
interface between them. This problem lies in the class of free boundary problems.
On the other hand, we consider a drastically different scenario, where the Reynolds
number is large and turbulence is developed. We study the motion of a two or
three-dimensional fully developed homogeneous isotropic turbulent fluid, through
the Kolmogorov two-equation model of turbulence. This thesis is divided into two
parts, each of them devoted to one of the problems.

The first part of the thesis contains an introduction and two chapters. It is
based on the submitted paper [32]. In the first chapter, we present the model
which describes the dynamics of two incompressible immiscible viscous fluids in
the Stokes regime, filling a 2D horizontally periodic strip. We assume that the
fluids are subject to the gravity force and they have different densities. This
framework is chosen motivated by the lack of results in the density jump setting
with an infinitely deep geometry and a non-integrable density. In this scenario, the

xiii
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density jump induces the dynamics of the free interface arising between the two
fluids. One of the classical methods to deal with free boundary problems is to use
potential theory to furnish explicit solutions for the system. Using this approach,
we derive a contour dynamics formulation for this problem, through a x;-periodic
version of the Stokeslet. This technique yields explicit solutions of the system,
even for more general forcing terms than the one used in our analysis (the gravity
force). Furthermore, this formulation of the velocity consist of a non-local and
strongly non-linear equation. As a first approach, we analyze the linear operator
inside the explicit solution, which shows what we call a weak damping effect in the
stable stratification of the densities, when the lighter fluid lies above the denser
one. This type of operator shows a contrast between this and other related free
boundary problems, whose linear operators are of parabolic type. In our case,
the weak damping effect suggests that the solutions do not gain regularization in
time, hence the nature of the problem is hyperbolic. Having this in mind, we
study the full non-linear equation and we show local-in-time well-posedness when
the initial interface is described by a curve with no self-intersections and C'™
Holder regularity, with 0 < v < 1. According to the expected hyperbolic behavior,
the solution does not gain any regularity, it is C**7 in space. This well-posedness
result holds regardless of the Rayleigh-Taylor stability of the physical system, i.e.,
the system is well-posed even when the denser fluid lies above the lighter one. This
behavior is due to the viscosity of the fluids.

In the second chapter, we study the long time behavior of solutions when the
initial data is small and described by the graph of a function. The techniques
used exploit the properties of the linear semi-group and the so-called weak damp-
ing effect. With these techniques, we prove the global-in-time existence for the
Rayleigh-Taylor stable case of the densities (the lighter fluid lies above the denser
fluid). The proof relies on a priori energy estimates on suitable Sobolev spaces and
the careful study of the singular kernels appearing. We also prove stability of the
flat interface, i.e., the decay of the free interface to the flat steady state. In par-
ticular, we prove existence and uniqueness of global interfaces with H? regularity
and polynomial decay of the interface. Moreover, we can extend this global-in-time
existence result to analytic solutions in suitable Wiener spaces. We use Fourier
techniques of the contour dynamics equation and the properties of the linear semi-
group in Wiener algebras to obtain global-in-time existence and exponential decay
to the flat interface. Finally, in the Rayleigh-Taylor unstable regime, we construct
a wide family of smooth solutions with exponential in time growth for an arbitrarily
large interval of existence, showing that the free boundaries can grow exponentially.

The second part of the thesis contains an introduction and one chapter. It
is based on the forthcoming paper [21]. In this chapter, we establish a local
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well-posedness result for the Kolmogorov two-equation model of turbulence. This
model belongs to the k-¢ models, and describes the dynamics of an homogeneous
and isotropic fully-developed turbulent flow. We generalize the previous results
letting the turbulent kinetic energy vanish, in order to cover a wider range of phe-
nomena. Consequently, we lose the parabolicity of the system, and an accurate
analysis is needed to find the existence and uniqueness of solutions. We prove
local well-posedness in critical Sobolev spaces H*® for s > 1 4 d/2, for the cases
of two and three dimensional fluids, in a periodic box T¢. We consider fractional
regularity, and consequently, our study involves paradifferential calculus, passing
through Littlewood-Paley decomposition, in order to have a priori high order en-
ergy bounds.
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“...the effort expended in trying to answer the following two fundamen-
tal questions has not yet attained complete success: Do the equations
of hydrodynamics, together with suitable boundary and initial condi-
tions, have a unique solution? How satisfactory is the description of
real flows given by the solutions of those equations?”

— O. A. Ladyzhenskaya

I The dynamics of a viscous fluid

The description of the dynamics of viscous fluids is a classical problem in physics
and a very challenging problem from a mathematical point of view.

Let us consider a viscous incompressible fluid of constant density (a viscous
liquid) which occupies a region Q of the d- dimensional space R?. In general, we

3
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are interested in the cases d = 2, 3, which are the most common to model physical
phenomena (planar and three-dimensional fluids). Under these assumptions, the
dynamics of the fluid is described by the following system of partial differential
equations:

d
p(dlz—l—u~Vu>:uAu—Vp—pf, r €N, teRT, (I.1a)

V-u=0, z€Q, teR". (I.1b)

In the previous system, ¢t € R represents time, x € € stands for a point in the
physical region, and the variables of the system are the velocity vector field u(z, t)
and the pressure scalar field p(z,t). The constants p, i denote the density of the
fluid and the dynamic viscosity coefficient, respectively, while the function f(z,1)
represents the external forces exerted on the fluid.

The mathematical operators inside the equation have the following form in

cartesian coordinates:
0 0
V=|—....,—
oy Oxg

82

A=y

2
— Ox;

is the gradient operator and

is the Laplace operator.

With these definitions in mind, the term in the left-hand side of the equation
represents the total acceleration of the fluid particles (the inertial forces). In
particular, the non-linear term

4 Ju
u-Vu = ;m%

%

is the convective term and captures the non-linear interactions taking place in the
dynamics.

On the right-hand side, the Laplacian of the velocity represents the viscous
friction, the gradient of the pressure represents the internal forces acting on the
surfaces of fluid volumes, and finally, f captures the external forces (e.g., gravity
forces).

The physical law behind equation (I.1a) is the balance of linear momentum,
i.e., Newton’s second law. Equation (I.1b) represents the conservation of mass
in the case of a fluid with constant density, which derives into the conservation
of volumes. For that reason, this equation is referred to as the incompressibility
condition.
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The system (I.1) is known as the Navier-Stokes equations. It was first proposed
by Navier [78] and consolidated by Poisson (1831), Saint Venant (1843) and Stokes
[84], who settled the bases from a continuum mechanics point of view. In the
twentieth century, the advances of Leray [59, 60, 61|, Hopf [47], Ladyzhenskaya
[56, 57], among others, placed the Navier-Stokes equations as the fundamental
system describing the dynamics of an incompressible viscous fluid. Note that if
we set the viscosity u = 0, we recover the well-known Fuler equations for the
dynamics of ideal fluids.

Nowadays, the Navier-Stokes equations constitute one of the main fields of
research in mathematical fluid dynamics. It is worth mentioning that, although
modern sophisticated techniques have been developed to study this PDE system,
there are a wide variety of unsolved questions and problems. From an analytical
point of view, the community is mostly interested in the existence of solutions, their
uniqueness and their regularity, as well as the possible formation of singularities.

The most celebrated open problem is the well-known millennium problem,
which consists in finding global existence of smooth solutions for the Navier-Stokes
equations in three dimensions. Such a result holds true in two dimensions, as
proved by Leray [61] (see also the contributions to this problem by Ladyzenskaya
[57] and Lions & Prodi [64]) and also in the three dimensional case for finite time,
according to Leray [59]. Although weak solutions globally exist, as proved by Leray
[61] and Hopf [47], it remains an open question whether smooth solutions can be
continued for all times (see Robinson & Rodrigo & Sadowski [82] for a review of
results).

Notice that the Navier-Stokes system models very general phenomena. In or-
der to tackle a particular phenomenon, a possible approach would be to restrict
the model by adding extra assumptions. For instance, one might assume certain
intrinsic properties of the fluid, such as a small/large ratio between inertial forces
and viscous forces. This particular hypothesis will be our next subject of study.

Let us denote the characteristic length-scale and the characteristic velocity of
a fluid as L and V, respectively. These quantities depend intrinsically on the fluid
and the domain where it is flowing. For instance, if we are analyzing the motion of
a fluid in a pipe, L represents the diameter of the pipe and V stands for the mean
velocity of the fluid. Consider also the dynamic viscosity of the fluid p. Then,

LV

1
is an adimensional quantity and captures the ratio between inertial and viscous
forces. This constant is known as the Reynolds number. It was introduced by

Stokes [85] but named after Reynolds, due to his popular experiments using this
parameter (see [81]).

Re (1.2)
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Figure 1: Development of turbulence in an experiment conducted by Reynolds [81], consisting
in injecting colored water at different velocities in a glass tube filled with clear water.

The Reynolds number allows us to measure how turbulent is the behavior of
a fluid. At small Reynolds numbers, the viscous forces are strong compared to
inertial forces, which causes the fluid to flow in a laminar regime. On the contrary,
at high Reynolds numbers, the viscosity is not strong enough to prevent the fluid
to form eddies and turbulent patterns due to the high acceleration of the particles.

Assuming no external forcing for simplicity, the non-dimensional form of the
Navier-Stokes equations becomes

Re (f;; +u- Vu) = Au— Vp. (L.3)

I The Stokes law and the Stokeslet

In this section, we will focus on the scenario where the Reynolds number Re is
small enough to be negligible. This hypothesis added to the non-dimensional form
of the Navier-Stokes equations (1.3) gives rise to the Stokes equations

Au—Vp=0, 7€, teR" (I1.1a)
V-u=0, z€Q,teR". (IT.1b)

There is a vast literature about the study of the Stokes operator and Stokes-
based models. For instance we refer to the pioneer works by Ladyzhenskaya [57],
Ladyzhenskaya & Solonnikov [56] and Abe & Giga [1].

The existence and uniqueness of weak solutions to the system (II.1) in a
bounded domain €2 is due to Odqvist and Lichtenstein in independent works (see
[57], Chapter 2). In contrast, we are interested in the special case where the fluid
occupies the whole space {2 = R". In this setting, it is possible to construct explicit
solutions using the approach of hydrodynamic potentials, which allow us to build,
in a similar fashion as for the Laplace equation, a fundamental solution for the
Stokes equation, or Stokeslet (see [29] for a further discussion).
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Let us consider the symmetric tensor field .S and the vector field P, defined by
the relations

62
Sij(x —y) = (%‘A - ayiay]) O(|x —y|), (I1.2a)
0
Pi(z —y) = —5 ~A(|z —y]), (I1.2b)
Y;

where z,y € R", §;; is the Kronecker delta and ®(z) is a smooth enough function
for z # 0. Formal computations lead us into

9

ASij(w —y) + 5 Pz —y) = 0;8%0(jz — y)), (IL3a)
9

5. i@ —y) =0. (I.3b)

Notice that, if we choose ® to be a fundamental solution for the biharmonic equa-
tion in R”, from (I1.3), it follows that the pair S, P defined in (II.2) is a fundamental
solution to the Stokes system in R™.

In the three dimensional case, where n = 3, the fundamental solution of the
biharmonic equation is

[z — |
O(lz —y|) = —
and the fields S and P are given by
1 03 (@i — yi)(x; — yj)
Sii(z —y :—< + T I1.4a
= ol T P (HH4e)
1 z; —vy;
Pi(x—y)=———21—"2, I1.4b
(o =) = = (IL4b)

Similarly, in the planar case, where n = 2, we have

1
(e —yl) = gl - y|* log(|z — yl),

Sij(x —y) = —417T <5ij log (]:1: — y[) + (z _\gi)—(:;; yj)) , (IL.5a)

1 1. — .
Pz —y) =50 (1L5b)

T 2|z —y?

The fundamental solution also allows to get explicit solutions for the non-homogeneous
Stokes problem

Au—Vp=f zeR"
V-u=0, xeR"
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One gets from potential theory that the solution for this system is explicitly given
by

u(w) = [ St -y)- flu)dy,
pa) == [ P—1)- fo)dy

Let us briefly discuss an alternative approach to get the previous explicit solu-
tion for the non-homogeneous Stokes system in R", which may be more clarifying
from a physical point of view. We take the stream potential coming from the
velocity u, whose existence is assured by (II.1b). It is characterized by the relation

u=V A1.

Applying the curl to the Stokes equation, we find that the stream function solves
the elliptic problem
~A*) =V A

From this point, we can get an explicit formula for the stream function, through
the Green function of the biharmonic equation. Therefore, we obtain the formal
expression of the velocity u:

u=V A=AV AL)).

Similarly, taking the divergence of the Stokes equation, we find the elliptic
relation for the pressure (Poisson type)

—Ap=V_f

It is well-known that we can find an explicit expression for p from the latter elliptic
equation.

Let us observe that in order to explicitly solve the Stokes system, we need to
know the explicit expressions of the Green functions for some elliptic problems in
the physical domain R”. Once we have understood the difficulties and techniques
that are key to find the fundamental solution of the Stokes system in the whole
space, our aim is to study the construction of these type of kernels in a domain
with a boundary (for instance, see Chapter 4 in [29] for the case of the half-space).

In this part of the thesis, we will study the two-phase non-homogeneous Stokes
system in the horizontally periodic planar strip T x R. The analysis for this
model will strongly rely on the theory of hydrodynamic potentials presented above
(we will construct suitable potentials for our scenario) and of Calderén-Zygmund
theory for singular kernels (see [9] and [36]).
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III The two-phase Stokes problem

III.1 Description of the model

We study the two-phase Stokes problem in the planar strip T x R. We consider two
different immiscible fluids evolving in the physical domain, and as a consequence,
the motion of the fluids will result into the dynamics of the free boundary between
them. In other words, we introduce another level of complexity to the problem,
since the domain of the fluids becomes a function of time, Q = Q(¢). These type
of problems are known as free boundary problems. The methodology consists in
analyzing different properties of the free boundary, such as its regularity or the
possible formation of singularities, in order to determine certain behavior of the
flow. The fact that the domain and the solution of the PDE are coupled makes free
boundary problems very technical, since numerous standard PDE techniques do
not extend to these problems. Consequently, the study of free interfaces requires
the use of a wide toolbox of mathematical analysis techniques, where Fourier
analysis and harmonic analysis are fundamental.

Free boundaries appear naturally in many different physical and biological
phenomena. The vast variety of interesting questions and scenarios makes it a
very active area of research. For instance, they appear in the dynamics of ocean
waves, air masses, or in the mixing of two immiscible fluids of different nature. In
particular, the motion of a two-phase highly viscous flow is a practical problem in
many applications ranging from biology to physics. Furthermore, this is also a first
principles step towards the description of viscous water waves. Indeed, although
for most of the applications in coastal engineering, water waves are assumed to
be inviscid, as already stated by the celebrated applied mathematician Longuet-
Higgins [65] (see [37] for more details regarding the mathematical modeling of
viscous waves):

“For certain applications, however, viscous damping of the waves is
important, and it would be highly convenient to have equations and
boundary conditions of comparable simplicity as for undamped waves”.

With this physical phenomena in mind, we consider two incompressible, viscous
and immiscible fluids filling the 27-periodic strip in the variable x;, T x R. The
curve

['(t) ={(z1(a, t), 20(v, t)); « € [—m, 7], z(a+27mk,t)=(27k,0)+ z(a,t)},
is the interface between the fluids in such a way that

TxR=Q () UQ (HUDE), QTN () =6, ) =T().
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Then the upper fluid fills the domain Q7(¢), while the lower fluid lies in Q~(¢).
More precisely, there exists a constant M big enough such that

T x [M,+00) C Q*(t) and T x (—oo,—M] C Q" (1).

We consider the Reynolds number defined in (I.2) to be vanishingly small, so the
fluids flow in the Stokes regime. As a consequence, the dynamics of the fluids is
described by the following system of PDEs:

—pEAuE = —Vp* — gp*(0, 1), x € QF(t),t €0,T], (I11.1a)
V-ut=0, ze€O@t),tel0,T], (I11.1b)

[—pI + pu(Vu+ (Vu)')/2)] - (042)" =0, xe€T(t),tecl0,T], (I1L.1c)
[u] =0, zeT(t),telo,T], (I11.1d)

2z = u(z,t), tel0,7T], (III.1e)

r=z, t= (T11.1f)

Above we have used the notation
(aaZ)L = (_aaz%aazl)a

[F] = F*(2(a, 1), 1) = F~ (2(, 1), 1),

giving in (III.1c) the continuity of the stress tensor and in (III.1d) the continuity
of the velocity due to the viscosity of the fluids. In the previous equations, g refers
to the acceleration due to gravity while u,p, u and p denote the velocity vector
field, the pressure scalar field, the dynamic viscosity and the density of each fluid,
respectively. Then, z describes the internal wave separating both fluids, which
moves with the flow. This internal wave is a free boundary and should be recovered
from the dynamics of the problem. We assume that these fluids have the same
viscosities but different densities, i.e.

pt=pT, pt#p

In what follows, we assume, without loss of generality, that © = g = 1. We
emphasize the form of the density function, which can be expressed in the whole
space as a piece-wise defined function with p* and p~ two different constants:

et zeQF(),te0,T],
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Qr(t), p*

Figure 2: The situation under study.

I11.2 State of the art

The dynamics of free boundary viscous waves driven by different forces is a classical
and challenging problem, where many scenarios are still unsolved. As discussed in
the introduction, the fluid dynamics can be subject to different regimes, such as
the Stokes regime, Navier-Stokes regime (see [42]) or a water waves regime with
viscosity (see [39]), among others. The fluids are typically driven by gravity and
capillarity forces, and their dynamics also depend on the geometry of the problem.
The two-phase Stokes regime driven by capillarity in R?, where the interface
between the two fluids is described by the graph of a function, was first studied by
Badea & Duchon [3] in the contour dynamics formulation approach. In this work,
the authors prove a global existence and uniqueness result for small initial data in
the space of Fourier transforms of bounded measures. This scenario has also been
studied by Matioc & Prokert [67, 68], with equal viscosities and viscosity jump,
respectively. The authors prove well-posedness in sub-critical Sobolev spaces with
arbitrarily large initial data and a criterion for global existence, using the potential
theory approach. The linear problem for a graph in the case of a Stokes flow driven

by capillarity is
fE=—a(=0H)Y2fE o>0. (I11.2)

Taking advantage of the parabolic character of the capillarity problem, they also
prove parabolic smoothing of the solution. The same authors have recently proven
a similar result for the one-phase problem (i.e., the fluid above behaves like vac-
uum) as a small viscosity limit [69]. Moreover, Guo & Tice [43] (see also [86]) study
the stability of contact lines in fluids. In particular, they consider the dynamics
of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top
vessel under the influence of gravity and capillary forces. See also [6], where the
Stokes system is used to model a de-mixing process of a binary viscous liquid.
Furthermore, the sedimentation of intertialess particles in a viscous flow in 3D
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is described by a coupled transport-Stokes system subject to gravity. This model
was derived by Hofer [44] and Mecherbet [70]. Regarding this problem, Hofer
& Schubert [46] and Mecherbet [71] prove in parallel works the existence and
uniqueness of solutions with initial density in L' N L>°. Further results concerning
the transport-Stokes system problem in 2D, are, for instance, [2] and recent work
[40], where the author show global well-posedness for compactly supported and
L' N L™ initial density and persistence of regularity results. Moreover, in the
also recent result [58], the author proves global well-posedness for bounded initial
density in the case of bounded domains and the infinite strip 2 = R x (0, 1).
See also [45], where Stokes is used to model vortex filaments and [17], where the
fractional transport-Stokes is considered. In a very recent result [48], the author
uses a Lagrangian approach to show well-posedness of the Stokes transport system
with initial L' density. A more exhaustive collection of results for the transport-
Stokes system can be found in [72].

In this thesis, we will use a contour dynamic approach to write the Stokes free
boundary problem as a single non-linear and non-local partial differential equation.
Two celebrated problems sharing the linear part of the capillarity-driven Stokes
problem are the Peskin and the Muskat problems. Furthermore, both problems
can be studied as a non-linear and non-local partial differential equation using a
contour dynamics approach similar to the one that we use in this work. On the one
hand, the Peskin problem models the dynamics of an elastic filament immersed in
a Stokes fluid [77, 35, 63, 15]. On the other hand, the Muskat problem models the
dynamics of fluids with different densities flowing in a porous media according to
Darcy’s law [30, 38]. However, in the problem under consideration in this work,
the gravity driven Stokes problem, the dynamics is induced by the gravity force.

The results concerning the gravity driven free boundary Stokes problem are
much more scarce when the fluids fill an infinitely deep domain. We start noting
that the Stokes gravity interface dynamics when the internal wave is given as the
graph of the function h(z,t) verifies the following energy balance

(p‘

pr) (p‘ pr)

IACIZz ) HVUHLz TxR)d 1RO IZ2 r)
Furthermore, for the Stokes gravity interface dynamics, the linear operator reads
(=)' ff = (™ = "),

which is not of parabolic type. Instead, we show that this operator has a damping
effect without regularization if the denser fluid is below the lighter one: a situation
know as the Rayleigh-Taylor stable scenario. We call this a weak damping effect.
This is in heavy contrast to the Peskin problem, the Muskat problem and the
capillarity-driven Stokes problem where the linear operator is given by a square
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root of the Laplacian as shown in (II1.2). This striking difference makes the gravity
driven Stokes problem a hyperbolic problem for the free boundary. For this hy-
perbolic non-local problem we establish the local existence for ' interfaces and
global well-posedness and decay for sufficiently small free boundaries in the RT
stable case. We provide two global existence theorems. First, we establish global
well-posedness of classical solutions in Sobolev spaces and polynomial decay of
the L? norm towards the flat interface. Secondly, we prove global well-posedness
of analytic interfaces in Wiener algebras and exponential decay towards the flat
interface. In the two-phase gravity driven Stokes, our result is, to the best of our
knowledge, the only one dealing with an infinitely deep domain with non integrable
densities, instead our densities are merely in L> with no decay.

The local well-posedness results extends to the Rayleigh-Taylor unstable regime,
establishing the existence of local in time C17 unstable interfaces. Despite being
well-posed, in the final result of this work, we prove that interfaces in the unstable
regime growth exponentially in some Wiener norms. We prove this result by a
careful study of the linear semi-group, which shows exponential growth bounds.
We can generalize this behavior to the full non-linear problem, showing exponen-
tial growth for smooth small data in Wiener spaces in an arbitrarily large interval
of existence. Previous results in this direction are scarce and sometimes are more
restricted. In this direction, we have to mention the previous result [41], where
Guo, Hallstrom & Spirn showed instability for smooth interfaces in three different
physical settings. Namely, vortex sheets with surface tension, the Muskat problem
with surface tension and vortex patches. They show that the dynamics of per-
turbations of the steady states are characterized by the dynamics of their linear
semi-groups in a particular time scale related to the size of the perturbation. We
would also like to mention the result by Kiselev & Li [49], where the authors show
double exponential growth of the curvature of an Euler patch boundary under cer-
tain symmetry assumptions and with fixed boundary. We have to emphasize that
in our result, we do not need any symmetry or time scale restriction, instead we
prove the exponential growth for arbitrary time scales and non-symmetric initial
data.

IV Contributions

IV.1 Chapter 1

One of the classical methods to deal with free boundary problems is to exploit
potential theory in order to reformulate the problem into a new contour dynamics
equation, which will be typically non-local and strongly non-linear. Let us mention
that this kind of approach has been extensively and successfully used in other free
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boundary problems in fluid dynamics to show well-posedness (see [14, 5] for the
vortex patch, [18] for water waves, [51, 34, 33] for the SQG sharp-front, [19, 31]
for the Muskat problem and [35, 15] for the Peskin problem). Furthermore, it has
been applied to prove singularity formation for the water waves, the SQG sharp-
front and the Muskat problem [12, 10, 50, 34, 11]. In Chapter 1, we derive the
contour dynamics formulation for (II1.1) through a new kernel, which we call the
x1-periodic Stokeslet. This approach results in the following equivalent contour
dynamics equation for the internal wave z(«, t):

alast) = (5~ = o) / S(x(art) — 2(8,8)) - Gz (B.)2(8,0)dB,  (IV.1)
T
where the so-called x;-periodic Stokeslet reads

S(y) = < log (2(cosh(yz) — cos())) - 1
B Y2 < —sinh(ys) sin(y;) >

87 (cosh(yz) — cos(y1)) sin(y;)  sinh(ys)

We take advantage of this contour dynamics formulation (IV.1) to prove the
following local in time existence result for the interface with Holder regularity
C'7(T), in the case when the initial geometry of the interface is a curve zo()
satisfying the arc-chord condition (which is measured by the function F defined
in (1.3.1)-(1.3.2)).

Proposition (Prop 3, Chapter 1. Local existence of solutions in C17(T)). Let
0 < v < 1 be a fixed parameter and zo(«) € C'7(T) be the initial data satisfying
the arc-chord condition. Then, there is a time 0 < T such that there exists a
unique local solution

z € CY((~T,T);C*(T))

of (IV.1) satisfying the arc-chord condition on (=77, 7).

The proof of this result relies on the Picard Theorem on a suitable Banach
space. Note that it is independent of the regime of the densities, being valid in
both the stable and unstable case. Further details of the proof are shown in Section
1.3.

In the particular case when the internal wave is described as the graph of a
function h(a,t), i.e.,

z(a,t) = (a, h(a, 1)),
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we show that the contour dynamics equation is equivalent to

i) = ) [ rog(a(cosh(htan ) = h(5,1)) — coste = )A(S)

X [1+ ha(@)ha(B)]dB
(p~—p") h(B)(h(a) — h(B))
+ 8T /T cosh(h(a) — h(5)) — cos(a — j3)
X [(ha(@)ha(B) — 1) sinh(h(a) — h(B))] d3
(p~—p") h(B)(h(a) — h(B))
* 8w /Ecosh(h(a) h(B)) — cos(a — )
X [(ha(c) + ho(B)) sin(a — 5)] dB (IV.2)

\_/\_/

The detailed proofs of these formulations are given in Section 1.1.

IV.2 Chapter 2

In order to prove global-in-time existence of solutions in Sobolev spaces in the
stable regime of the densities, we study the linear semi-group

fE=—=(p —pH) (=D 2 fF,

which results from the linearization of (IV.2) around the equilibrium, and prove
a decay result (see Section 1.2 for further details). The linear semi-group prop-
erties together with a priori estimates in L?*(T) and H?(T) lead us into one of
the main results of this chapter, where we show stability for classical solutions
with prescribed small initial data in H3(T). Although we expect that the optimal
regularity is less than H?, we have chosen this space for the sake of simplicity.

Theorem (Thm 1, Chapter 2. Global existence and decay of solutions for small
data). Let hy € H3(T) be the initial data for (IV.2). Assume that the system is
in the RT stable regime, i.e.

p__p+>07

and take m arbitrarily close to 2, that is, m = 2 — ¢ for some € > 0. There is a
0<0=0(p~ — p") such that if

120l sy <0,
there exists a unique global classical solution h(a,t)

h e C([0,T]; H?),
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of (IV.2) for arbitrary 7" > 0 such that
(L) [|All 2 + 1Al s < Cllholl s
for some constant C' > 0.

Further details of the proof are shown in Section 2.1.
Moreover, we prove global well-posedness in Wiener spaces of analytic functions

Ay ={ue LX(T) st. Jlullay = > e Mk[|a(k)| < oo}
k=—o00

with v > 0, by a careful analysis of equation (IV.2) applying Fourier techniques
and taking advantage of the algebra structure of Wiener spaces. This result is
stated in the following theorem:

Theorem (Thm 2, Chapter 2. Global existence of solutions in Wiener algebras
for small data). Let hg € A, be the initial data for (IV.2) in the RT stable case,

p-—pt>0.

Assume that
vy > 0.

There isa 0 <0 =d(p~ — p*, 1) such that if
ol <6

so that
vy — M(|[holl 4y ) > 0,

for a suitable non negative function M(z) ~ x + O(z?), there exists a positive
decreasing function v(t) > 0 with v(0) = vy (characterized by (2.2.21)) and a
unique global analytic solution h(«, t)

of (IV.2) for arbitrary T > 0 satisfying
iy, < lholl, -

The details of the proof are shown in Section 2.2.2. This result, together with
a careful study of the linear semi-group growth and the ideas of the proof of the
global existence result in Sobolev spaces, allow us to prove exponential decay of
solutions in Wiener algebras. The statement reads as follows:
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Theorem (Thm 3, Chapter 2. Global existence and exponential decay of solutions
for small data). Let hg € A, be the initial data for (IV.2) in the RT stable case,

p~—p" >0,
fulfilling the hypotheses of Theorem 2. In particular,
ol Ly, <
for a suitable 6 = §(p~ — p*, ). Assume that

0<v < Yo
— 24
Thereisa 0 <e=¢e(v*, p~ —pT, HhOHA%) such that if
ol <<,
there exists a unique global analytic solution h(a,t)
he (o, T A2,

of (IV.2) for arbitrary T > 0 satisfying

p==pt
VT bl o + (b, < C o

for some constant C > 0.

||A3*7

The proof is given in Section 2.2.3.
Finally, using the previous result, we can prove that smooth initial data in the
RT unstable scenario can lead to exponential growth in a particular Wiener norm.

Theorem (Thm 4, Chapter 2. Exponential growth of solutions in the RT unstable
case for small data). Let T" > 0 be an arbitrary fixed parameter. Then, it exists a
family of smooth initial data

9o € AV*?

such that
g€ C([0,T]; A),),

is a solution of (IV.2) in the RT unstable regime,

p-—p <O,

lg(T)la0. = Fe VT“gOHAO? 7 €0,T]. (IV.3)

and
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This chapter is based on [32].

1.1 The contour dynamics formulation in T x R

In this section we are going to find that system (III.1) is equivalent to a single
non-local and nonlinear equation for the internal wave z(«,t). This new equation
is called the contour dynamics formulation of (ITI.1). Although such a formulation
for the Stokes problem has been used before [3] in the case of R?, the fact that
we are considering periodic waves makes the form of the Stokeslet different and
its computation far from being trivial. Thus, as the closed form of the periodic
stream function and the periodic Stokeslet for a given generic force F' can be of its
own interest, we include some of the details in the next section. Then, we restrict
us to the case where the force F' reduces to the gravity force to further simplify
the integral kernels.

19
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1.1.1 The stream function

Let us consider a generic force F'. The purpose of this section is to find a repre-
sentation formula for the stream function v, i.e. the function such that

W@, 1) = VE(,8) = (0 tb(,8), 00, (3, 1)), (1.1.1)
where u is the velocity field given by (I11.1). We have
VE - u(z, t) = Ay(a,t).
Let us consider the Stokes equations written as
Au—Vp=F zxze€TxR

V-u=0, ze€TxR.
Using the stream function, we find that

A% =V F(x).

Then, in order to solve the Stokes system of PDEs, we have to first solve the
bilaplacian in the strip T x R. This latter problem will be solved by finding the
Green’s function associated to this fourth order elliptic problem K. Namely, we
will prove the existence of the stream function by finding

P(z) = K(z —y)V* - F(y)dy, (1.1.2)

TxR

where K is any function satisfying
A’K =6, zin T x R.

As this Green function can be useful in many different problems in viscous fluid
dynamics, we give its precise expression and the proof of its construction in the
next proposition.

Proposition 1 (Green function of the z;-periodic bilaplacian). Define

K(z) = Z:Zﬁn(xg)emml. (1.1.3)

where "
Bo(w2) = ‘224’:3. (1.1.4)
Ba(m2) = (|m28|;21’)§’_|m2| for n # 0. (1.1.5)

Then K verifies
A’K =6, zin T x R.
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Proof. Above equation can be expressed as the product of two deltas
A’K(x) = §(29)0(21), o1 €T, x5 €R. (1.1.6)
The delta function in the periodic setting is given by
1 )
5 - inTy
R

if it is understood in the distributional sense. Then, it yields

A2 () = 22) 3 e, (1.1.7)

2 ne”L

On the other hand, K must be a 2r—periodic function in z; so that we find K (x)
given by

K(z) =3 Baw2)e™™. (1.1.8)
nez
Comparing (1.1.7) and (1.1.8), we get an ODE for 3, (z2)
(5(;;) = 0, Bn(x2) — 20202 Bu(x2) + n* Br(w2). (1.1.9)

The case n = 0 can be solved in a direct manner getting (1.1.4). The case n # 0
can be solve by applying the Fourier Transform in the x5 variable

fe) = / fz2)e " dxs.
R
Then we find that

1 A N R
3 = §5(€) +20°E B, () + 1B (9). (1.1.10)
We apply the inverse Fourier Transform to obtain
nles) = (27r)2/]R§4+2n2§2+n46é e (LL11)

Solving the above integral it is possible to get (1.1.5). This concludes the proof of
the proposition. O

Let us further simplify the expression for the stream function. Integrating by
parts,

(x) = K(x —y)(=0p,F1(y) + 0y, Fa(y))dy

TxR

:/T R—émK(x—y)Fl(y) + 0p, K(z — y) Fa(y)dy

=/T R‘I’(fﬁ—y) - F(y)dy,
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with
U = (—812[(, %K),
where
O K () = >~ i, (za)e™™
neZ
_ i Z (i’x2|e—|nx2| + i €—|nx2> einxl
8T nezmzo \ T n|n|
1 1
and

O, K () = Oy B ()€™

nez
_ ng‘l'gl . ﬁ Z i€—|n:c2|€in:c1
8 8T nETmA0 In|
To|me| 1 el
= S — cos
1Y A ;;U?”MQ (na1) n2

We observe that, due to the Fourier series of the kernel K, we have that W is, at
least, a function whose Fourier series is absolutely convergent and, as a consequence
a C(T x R) function. Therefore we can ensure the existence of the continuous

function V.

1.1.2 The z;-periodic Stokeslet

The aim of this section is to use the representation formula for the stream function

in order to obtain a representation formula for the velocity u. We recall that

b(z) = / (=) Fly)dy

with
U= (-0,K,0, K),
and F' is a generic force. As a consequence,

u(w) = Vi ()

= S(z —y) - F(y)dy,

TxR
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where the zi-periodic kernel is

o[ BEK  —0,0.K
“\ on0nK 2K )

with
02 K(r) = 1 > <|x2|e_”$2 + 16‘”'”') cos(nzy)
i 4 = n ’
! ~ ~nlzs|
00,0, K (z) = — ) xpsin(nay)e ™2,
4m n>0
and

67n|12|

n>0

= I - |x2|e_””“"2|> cos(nxy).

We observe that, even if the kernel ¥ was not explicit, we are able to sum up the
Fourier series corresponding to the Stokeslet to find a closed form expression for
the kernel S. We compute

en(ix1—|x2|) o en(—i$1—|a:2|)

> sin(na)e Ml =3

n>0 n>0 21
1 eiw17|zg| 67i117|:p2|
o 27/(1 _ eix1—|x2| - 1 _ e—ix1—x2>
1 sin(xy)

2 cosh(z3) — cos (1)
1
= 58301 log(cosh(zs) — cos(xy)).
As a consequence

efn|x2|

> cos(nay)

n>0

= C(z2) — ;log(cosh(:cg) — cos(z1)).

n
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Similarly,

en(i:v1—|;t2|) 4 en(—i;t1—\a:2\)

3" cos(nay)e ™ 2y = S 5 |22

n>0 n>0

iz —|z2| —iz1—|x2|

1 e e

= — - - s
2\ 1 — efz1—|z2] + 1— e—zml—\xg\ ’ 2|

1 cos(zy) — eIl

|$2|

- 2 cosh(z3) — cos (1)

_ Lcos(z1) — cosh(zp) 4 cosh(zz) — e 12l

2 cosh(xg) — cos(z1) 2|
1 1 sinh(|x2])
2|I2| * 2 cosh(zq) — cos(z1) el
1 1 inh
_ Lyl To sinh(zs) .
2 2 cosh(zg) — cos(z1)
Thus, we find that
9y, 3 cos( )6_”“02' 1axy 1 sinh(xs)
s Y cos(na =_ - =
= Yo 2|zy]  2cosh(xy) — cos(xq)
1 sinh(xq)
— O (25) — =
(x2) 2 cosh(xy) — cos(xy)’
from where
—nlzs) 1
> cos(nxl)6 = |$22| b log(cosh(zs) — cos(xy)) + c.
n

Choosing x5 = 0 and z; = 7, we find

i 1 log (2
> cos(nxl)e = |x22| b log(cosh(zg) — cos(z1)) — og2( )

n>0

The previous computations lead to

Cw sinf)
OO K (y) = 87 cosh(ys) — cos(y1)’
2 __ Y sinh(y2) s _
ale(y) - S COSh(yQ) . COS(yl) + 87 10g(2(COSh(y2) COS(yl))),

Y2 sinh(yz)
87 cosh(ys) — cos(y1)

08K (4) = . log(2(cosh(y) — cos(un) +
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Collecting all the terms we can write

§(y) = - log (2(cosh(yn) — cos(y)) - I
Y2 ( —sinh(ys) sin(y;) )

87 (cosh(yz) — cos(y1)) sin(y;)  sinh(ys)

Similarly, we can compute the pressure using the Green function for the Poisson
equation in T x R, namely

Px) = _417r log (cosh(zq) — cos(z1)) -

which solves

—AP =0.
Then, we find that
1
p(x) = ~ar log (cosh(zg — ya) — cos(zy —y1)) V - F(y)dy

T JTxR

_ 1 —sin(z; — y1)Fi(y) —sinh(zz — 12) F(y) ,

= Yy

A Jrer cosh(xg — y2) — cos(xy — y1)

1 (sin(yy), sinh(ys)) - F(z — y)

=_—— dy.
it Jrem cosh(ys) —cos(y)

1.1.3 The equation for the free boundary: the case of an
arbitrary curve

In this section we are going to focus on the case where the force acting on the fluid
F is the gravity force in order to obtain the contour dynamics formulation for the
free surface under consideration. Indeed, in our case of two homogeneous fluids
separated by an internal wave under the action of gravity, we can write the acting
force as

F(x,t) = gp(x,t)(0,1) = V(p(x,t)xy) for x € Q*(1),

with

| pt for xin QF(t)
plz,t) = { p~  for xin Q(¢)

We can use this specific structure to further simplify the representation formulas
in the situation under study. Let us start with the case of the stream function.
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We integrate by parts in order to find that

(z) = / =) Vipl)m)dy

- /m U(x—y) - Vy(ptyp)d / Vy(p~y2)dy

= — Vy - U(x—y)p ydy — / —y) - p 1dy,
O+

s / Uz — 2(8)) - (952(8)) - (B)dp
s / U — 2(8)) - (952(8)) - (B)dp
= (o — ") / U — 2(8)) - (Bs2(8)) 22(B)dB.

The previous computation implies that the velocity solves

u(@) = (o~ — p*) / S(x — 2(8)) - 2(8)=2(5)dB,
with
§(9) = - log (2(cosh(yn) — cos(y)) - 1

_ Yo —sinh(yz) sin(y;)
8m(cosh(yz) — cos(yy)) ( sin(y;)  sinh(ys) ) : (1.1.12)

Since the velocity is continuous across the interface we find the contour equation
for the case of an arbitrary periodic curve

zi(a,t) = (p~ —p") /TS(Z(oz,t) —2(B,1)) - Opz (B, ) 22(B, t)dp. (1.1.13)

1.1.4 The equation for the free boundary: the case of a
graph

In the previous section we have found the contour equation for the internal wave
separating both fluids. However, such a free boundary is not necessarily param-
eterized as the graph of a function. In fact, the graph parametrization is not
maintained by the contour equation (1.1.13). In this section we are going to find
the contour equation for the case where the free boundary is parameterized as a
graph. In order to do that we start with an initial data given by the graph of
certain function and we evolve such initial data with a modified contour dynamics
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equation. Due to the smoothness of the evolution, the solution of this modified
contour dynamics equation is a graph and, besides this, it is parameterized as a
graph. Finally, we show that, due to the definition of our modified evolution, a
reparametrization of the graph solves the contour dynamics equation (1.1.13) and
as a consequence, the evolving graphs are equivalent to a solution of (1.1.13) after
a reparametrization.

Suppose z(q, t) is a solution to the following modified contour dynamics equa-
tion

o) = (07 = ) [ S(elant) = 2(5.0) - 055 (3,103,145 + New, (0,
where A will be defined below. Assuming that the curve z is initially a graph, i.e.,
21(,0) = «

then, at least for a short time ¢, we have 0,21 (c,t") # 0 for every t' € [0,¢]. This
way, taking

)‘(Oévt) = _m (/TS(Z(O‘J) - Z(th» ’ aﬁzL(ﬁat)ZQ(/Bat)d6> : (170)7

we can reparametrize the curve z as the graph of certain function h(a,t).
With this choice of A, the equation for the graph becomes

hi(a,t) = (p~ —p") /TS((a = B, h(a,t) = h(B,1))) - (=0ah(B, 1), )A(B, t)df
- (=0ah(a,t),1). (1.1.14)

More explicitly,

e t) = 20 | 1ostetcoshnta,t) = 1(5.)) ~ costa — A

X [1+ ha(a)ha(B)ld5
(P_—P+)/ h(B)(h(a) — h(B))

81 cosh(h(a) — h(5)) — cos(a — )
X [(ha(a)ha(B) — 1) sinh(h(a) — h(5))] df

+

\_/\_/

(p~—p") h(B)(h(a) — h(B))
L / cosh(h(a) — h(B)) — cos(a — B)
X [(ha(c) + ho(B)) sin(a — 5)] dB (1.1.15)

Then, define a reparametrization of the curve

2o, t) = Z(d(o 1), 1)



Chapter 1. The free boundary Stokes system 28

with new parameter

§= ¢(a7 t)
We want to find ¢ such that Z(£,t) solves

(6t = (0 — pY) / SEE1) - 00.1) - 9 F (0. ) B (x. Dy,

T

Changing variables

X =0(B), sz (B,t) = 0,2 (x, 1)¢'(B), dx = ¢'(B)dp,

/T SEE1) — 2(B.8)) - D= (8. 1)2a(B, 1)dB

:Asggo—a%wyafuw%www.

We compute

Zt(a7t) = 8t5<¢(04,t),t)
- ¢t<a7 t)agg(é, t) + 215(57 t)

Dealing with the non-local part of the contour equation we find

o) = (07 = ) [ S(elant) = 2(5.0) - 055 (5,1):a(5, 15
4 A (0, 1)nz(ast)
= (07 =) [ SEED = 2000) -9 (02 iy
+ Ma, t)palo, t)0eZ(€, ).
As a consequence, if we chose ¢ solving
Bu(a, 1) = A=) (e, Dalr 1)

we obtain that Z solves

(6t = (0 — pY) / SEE1) - F00.1) - 9 F (0. ) B (x. Dy,

T

Thus, finding a solution of (1.1.14) is equivalent to finding a solution of (1.1.13).
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1.2 The linear operator

Let us linearize around the steady state z, = («,0). Then, we find that the linear
problem reads

hi(a, t) = Ml/qrh(a — ,t)log <4sin2 ( g)) dg. (1.2.1)

4 21

Using the properties of the logarithm, we find the equation

he(a, 1) = —(p_;pﬂ/\_l(h)(a,t)—k (p_;p+)1"§7§4> /Th(ﬁ,t)dﬂ, (1.2.2)

where the operator A™! is given explicitly as follows

A () (0 t) = —217T /T h(a — B,1) log <sm2 ( g)) da.

Its Fourier coefficients are the following (see [13])

iy 4 “am e log |sin®(8/2)|d = &, for k #0,
(k) = _i fT log ’ Sin2(5/2)’d5 = log(4), for k= 0.

Another relevant singular operator is the Hilbert transform in the torus

™

H(h)(a,t) = ;PV/ cot (g) h(ce — B, t)dp (1.2.3)
T
which is related to the previous operator via
0o (A1 (B) (e, 1)) = —H(h) (0 1).

Let us emphasize that in the stable case, when p~ — p* > 0, the linear operator
shows a damping effect without regularization. In this sense, the linear operator
is not of parabolic type. To simplify the notation we write

(r”=r")

p = 4

Using the previous computations, we have that

A _i/\
hi(k,t) = |k|h(k>t), for k # 0,
0, for k =0,
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and it follows that

A _it/\
Wk, t) = € " ho(k), for k70, (1.2.4)
ho(0), for k = 0.

We will use the notation
Wz, t) = e P2 h(x),

for the semi-group acting on some zero-mean data hy. We observe that if we set an
initial data with zero mean, i.e., ﬁo (0,t) = 0, then, this property is conserved due
to (1.2.4). In this section we will focus in studying the time decay of the solution
to (1.2.2) in the Rayleigh-Taylor stable case p > 0.

Before stating our results, let us introduce the following Banach scale of spaces

Hy={ue L*(T)st. > *Hk*|ak)]® < oo}, (1.2.5)
k=—00
A ={ue LX(T)st. Y eMkPla(k)| < oo} (1.2.6)
k=—00

To simplify notation we write

together with
A =A5, A, =AY A=A

In particular, we have the following result:

Proposition 2 (Decay in L? and A). Let us consider equation (1.2.2) in the RT
stable case p > 0 with zero mean initial data hy. Then we have that the solution
verifies

1Al 2 < Cllholl a0 (1 +1)7%, (1.2.7)
All4 < C[hol [ 420 (1 +18)77, (1.2.8)

where
0<s<sg (1.2.9)

is arbitrary. Furthermore, with initial analytic regularity, we also have the follow-
ing exponential decay
1Al 2 < ClRoll, e, (1.2.10)

1214 < Cllhol| 5, e V7. (1.2.11)
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Proof. Let us first obtain an algebraic decay rate for Sobolev initial data. In the
RT stable case we fix M > 0 < sg and compute

1hl[e = > Ak )P+ 3 [A(k, 0P

k| <M k#0 k| >M
9P 4.2 1 ~
< Y BB e X ok Ik
k| < M, k0 |k|>M
_95-L 2 1 2
< e ol 2 + 1 ol

The global bound z"e™* < C(n) for x > 0 provides

|7, < M

[1hol[72 + o

272s0 1ol

where n is arbitrary and ¢ > 1. Taking M such that

C(n) WM 1

D ongn - M2507

it is possible to get
__sqn_
||]’L||_L2 S O(n’p’SO)Hh’OHHS()t n+230‘
The uniform bound || zz < |[[hol|,» for t <1 yields the desired bound

__son
1h]|, < C(n, 5, 50) [|hol | ggeo (1+ 1) 720,

increasing the constant C'(n,p, sg). Taking n big enough we find

TS
S = < Sp.
n+ 2sg

A similar approach yields

__Sson
HhHA < C’(n,ﬁ, 80) ||h0| As0 (1 —|—t) n+2sq

We compute for a different M > 0 the following
1Al = > VhkOF + 2 [hk, )P
k| <M, k#£0 |k|>M

§€72%t Z |;L0<k)|2+6721/M Z ’B0<k)‘2€2y\k|
k| <M, k0 |k|>M

< e hollga + e 72 M [lho [,
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Taking
ﬁt =vM,

allows us to conclude that
17| g2 < |lholl g, eV,
A similar approach provides

2]l 4 < [hol] 4, e VP

1.3 Local existence

This section is devoted to prove local in time existence of solutions for the contour
dynamics problem in the case of an interface defined by a curve z(«, t) (1.1.13). We
will prove that the local existence of smooth initial data is guaranteed regardless
of whether the fluids are in a stable/unstable stratification.

As we need to control the arc-chord condition of the interface to avoid self-
intersections, we define the function

_ p?

Fla) B 1) = cosh(za(a,t) — zo(ae — B3,t)) — cos(z1(a, t) — z1(a — 5, 1)) (13.1)

for o, 8 € (—m, ) and
2
F(2)(a,0,t) = eIk (1.3.2)
Defining
[12)]] e = supz(e, 1)l

and

1F )] e = sup [F(2)],
a,BET
we emphasize that as long as
IF ()] e < 00,

self-intersections of the curve are excluded.
Our result is the following:
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Proposition 3 (Local existence of solutions in C*7(T)). Let 0 < v < 1 be a fixed
parameter and zy(a) € C17(T) be the initial data satisfying

1 (z0)l] e < 00
Then, there is a time 0 < T such that there exists a unique solution
z € CY((=T,T); C(T)),
of (1.1.13) satisfying the arc-chord condition.

Proof. Sketch of the proof and functional framework; The proof of this
result is based on the Picard Theorem on a suitable Banach Space (see [66] for
another application of this method in a different problem). The precise statement
of Picard Theorem that we are going to use is:

Lemma 1 (Picard Theorem on a Banach Space). Let O C B be an open subset
of a Banach space B and let N(X) be a nonlinear operator satisfying the following
criteria:

e N(X) maps O to B,

o N(X) is locally Lipschitz continuous, i.e., for any X € O there exists L > 0
such that N - -
[NX) - N, < LX-x||, vXeo.

Then, for any Xy € O, there exists a time T' > 0 such that the ODE

dX
E:N(X), X’t:():XOEO

has a unique local solution X € C'((=T,T);0).

Our functional frame will be the Banach space B = C'7(T), equipped with
the norm

z()lgrs = 20| + [l2a(®)]] e + |2a(t)],
where the y—Holder seminorm is defined as

_ (e t) = 2(8, 1)
|2(¢)], = max P T

We define the set OM ¢ C*7(T) as

OM = {z € CY(T); |IF ()l pm < M, Nlzllcan < M}, (13.3)
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This set is open in C'7 in the appropriate topology. Defining
N()(ast) = (p~ = p*) / S(x(t) — 2(8,6)55(8,0)(8,DdB,  (1.3.4)
T

equation (1.1.13) can be written as

dz(a,t)
dt

= N(z)(a,t).

Once we have established the functional setting of the theorem, it remains to prove
the nonlinear operator satisfies the two hypothesis of the Picard Theorem.
Step 1: N(z) maps OM to C'7(T); We need to prove

IN()rs < Clp,7, M), for all = € OM,
The proof of this proposition boils down to the following estimate:
INW(2)], < Clp, 7, M). (13.5)

We write B N
N(#)(a) = L2

o (MNi2)(a) = No(2)(a))

with

Ni(2)(ar) = /Tlog (2(cosh(za(a) = 22(B)) — cos(z1(@) = z1(B)))) 22(8) 25 (8)dB,
(1.3.6)

B (22() — 22(B))22(8)
N = [ i) o ata] )
—sinh(zo(a) — 22(8))  sin(z1(a) — z1(5)) 1
x ( sin(z1(a) — 21(8))  sinh(z(a) — 2(3)) ) 2 (B)dB.

For the sake of brevity, we are going to estimate only the term Ny, being N, similar.
To obtain an expression of 0,N;(2)(«), we differentiate the expression (1.3.6) and
we perform the change of variables § = a — ' for simplicity. We get

0N (2)(a) = /T Zo(a) - (Sin(21_(;é2)),Sinh(zg_(a)))
x F(2)(@, B)zaler = Bz (o = B)dB, (1.3.7)

where

zi-(a) = zi(a) — zi(a — B). (1.3.8)
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We have the following splitting
aaNl(Z)<05 + h) — 8aN1(z)(oz) = ]1 + .[2 + 13 + ]4 + 15, (139)

where

I = / (za(a 4+ h) — zo()) - (sin(z;_(a+ h)),sinh(ze_(a + h)))
T p?
X F(2)(a+ h, B)za(a+h — B)zy (a+h — B)dp,

I — / zo(@) - (sin(z1_(a + h)) — sin(z;_(«)), sinh(zo_(a + h)) — sinh(zy_(«)))
F 7
x F(2)(a+ h, f)z(a+h = B)z(a+h—B)ds,

Iy = /Tza(a) - (sin(z1 - (a)), sinh(zy_()))

z(a+h—B)zt(a+h— B)

/82 /67

X (F(2)(a+h, B) = F(z)(a, B))

) - (sin(z_ (), sinh(2z9_()))
[4 = /F 52
X (z2(a+h— ) = z(a — §))zy (o = B)dB,

and

I - /f (Siﬂ(zl—(gl)aSinh(22—(a))))z2<&_6)
x (za(a+h—B) = zy(a — B))dp.
To prove |9, N1(2)], < C(y, M), it suffices to show
|I;| < |h]PC(y, M) fori=1...5. (1.3.10)

We are going to estimate only the first term, I;, being the remainder terms similar.
We compute

I — / (za(a+ h) — z4(a)) - (sin(z1_(a + h)),sinh(zo_(a + h)))
ok 7
X F(2)(a+h, B)za(a+h — B)zy (a+h — B)ds
=hLi+hLo+hLzg+hiatLis+ 1.




Chapter 1. The free boundary Stokes system 36

The first of these terms is
I / (zala+ h) — zo(@)) - [(sin(z1_(a + h)),sinh(ze_(a + h))) — z_(a + h)]
1,1 T 62
X F(2)(a +h, B)zala+ h — B)zt(a + h— B)dB.

Using the integral Mean Value Theorem

z(a+hy:A2«m+hp+u-wxa+h—5mm& (1.3.11)

which, together with the series expansion of the trigonometric functions sin and
sinh, implies

|(sin(z1— (o + h)), sinh(z_ (o + h))) — z— (o + h)| < |8 ||zall} .
we find that
[l S |h|7|za|7||f(z)||L°°||Za||i°0||Z||L°°/T|ﬂ|dﬁ
< |h["C(y, M).

The second term reads

_ L2\ CGalat ) z(a) s ot h)
o= [ (oo n 0~ ) P

x 2@+ h — f)zy (a+h — B)dB.
In order to estimate this term, we use (1.3.11) and

Lﬂ@m+mﬁyw%mihw

B2 za(a + h)|? — 2(cosh(za_(a + h)) — cosh(z;_(a + h)))
|z (a0 4+ h)|?(cosh zo_(a + h) — cosh(z;_(a + h)))
S BNF e Nzal [ - (1.3.12)

to find that

2 2 5
(2] S 1R [2aly 1F () Lo |2]]700 [[2all700

< [R]"C(y, M).

Note that thanks to (1.3.2), it holds that

PR
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Then, the third term

_ 2 (zala+h) — z4(@)) - 2 (v + h)
hﬁ‘w4a+mvﬁ 5

% Zg(Oé‘i‘h—ﬁﬂ)—Zg(a‘i‘h)zi_(a_i_h_ﬁ)dB’

can be bounded as
3
[13] S TR [zaly IF ()] oo 20l
< [h]7C(y, M).
Using the previous ideas together with the inequality

|z(a+h) — z(a+h = B) — zo(a+ h)B] < B ]24], (1.3.13)

we have that

—72;:2(&—1—]1) ZalOr — 2o
ha= 205 [ oot i) = 20(a)

8 (z_(a+h)—6za(a+h))zi(oz+h_ﬂ)dﬁ

32
verifies
[Tl S |h!'*|za|3!|f(Z)HLoo\|Z||Loo|\ZaHLoo/T\ﬁ|””2d5
S 1B [zal2 IF ()] oo 1121 e [12all o
< [n["C (v, M).
The term
. — 2z0(a+ h)(zo(a 4+ h) — zo(@)) - zo(a + h)
’ |20 (e + h)?
X /T <; — cot(ﬂ)) zo(a+h— B)dp,

can be estimated as follows

1l S 1R zal, IF (o 2] e 120l 7o /T |5ld

S 1B [zal, IF () oo 12l o ll2al 7o

< |R]"C(y, M).
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Finally, the last term reads

2z0(a+ h)(zo(a 4+ h) — zo(a)) - zo(a + h)
2o (a + R)|?

Lig= 2nH (z) (o + h).

We observe that the Hilbert transform H(-) given in (1.2.3) maps continuously C7
to C7. In particular,

1 i
[#)]],. S HzaHV (1.3.14)
Consequently,
(16l S B |zal, [IF ()] e |21 oo |2all o |[2all,
< [p["C(v, M).
Collecting the estimates of the terms Iy ..., we obtain
1] < WP Oy, M), (1.3.15)

Using these ideas we can estimate the remaining terms. This concludes the proof
of this step.

Step 2: N(z) is locally Lipschitz continuous; We have to prove that the
operator N defined as in (1.3.4) is locally Lipschitz continuous in C*7(T), i.e., for
any z € OM | there exists a constant L > 0 such that

ING) = N@))llors < Lp 7 M) |2 = wllon, YweOM. (13.16)

For the sake of brevity, we are going to show some of the estimates corresponding
to

[Na(2) = Na(w))l, < L(p, v, M) ||z = w]|ay -

The previous statement is equivalent to prove that

[(Nal2)(@ + h) = Na(w)(a + h)) = (Na(2)(a) — Na(w)(@))
< L(p, 7. M)A ||z = wl] s (1.3.17)

As before, we are going to focus on the term N;. From (1.3.9), we deduce that
(OaN1(2)(a+h) =0 N1(w)(a+h) = (0aN1(2) (@) =0uNi(w)(a) = > _(Li(2)—Li(w)).

Let us focus on the first term. The remaining terms can be estimated using the
same tools and ideas. The first term can be split as follows:

L(z) = L(w)=J\+Jy +J3+J; +J2,
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where

g1 / (z —w)ala+h) — (2 —w)a(@)) - (sin(z;_(a + h)), sinh(zy_(a + h)))
Yoo 32
X F(2)(a+h,B)za(a+h— B)zt(a+h — B)dB,

Jy =

/ (sin(z1_(a + h)) — sin(w; _(a + h)),sinh(ze_(a + h)) — sinh(wy_(a + h)))
T B2
(wala+ h) —wo (@) F(2)(a+ h, B)za(a+h — B)zy(a+h— B)dp,

g / (Wo(a+ h) —we(@)) - (sin(wy_(a+ h)), sinh(wy_(a + h)))
R 32
x (F(2)(a+ h, B) — Fw)(a+ h, B))za(a+ h — B)zx (o + h — B)dB,

g / (Wao(a+ h) —wy(@)) - (sin(w;_(a+ h)), sinh(wy_(a + h)))
o 32
X F(w)(a+h, B)(z2 — ws)(a + h — B)zE(a + h — B)d,

and

v [ (wala+h) —we(a)) - (sin(w;y_ (o + h)),sinh(ws_(a + h)))
J5 —/T 32
x F(w)(a+ h, Blws(a +h = B)(z — w); (a+ h — B)dp.

The terms J;, J} and J3 can be estimated similarly to I; in Step 1. As a conse-
quence we obtain the estimates

|J¢1| < L(y,M) ||z —wl||,, fori=1,4,5.

We treat the terms J3, J1 separately, as the difference of the curves is not explicitly
present in these terms. We split J; as follows:

1 (sin(z1_(a + h)) — sin(w;_(a + h)), sinh(ze_(a + h)) — sinh(we_(a + h)))
JQ :/T 32
(wala + h) — we(a)) F(2)(a+ h, B)za(a 4+ h — Bz (o + h — B)dB
= J21,1 + J21,2 + J21,3 + J§,4 + J21,5 + le,ﬁ-
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We have that
J21,1 =
/T [(sin(z1_(a+ h)) —sin(w;_(a + h)),sinh(zy_(a + h)) — sinh(wy_(a + h)))

—(z —w)_(a+h)]
F(2)(a+h,B)zm(a+h—B)zt(a+h—p)
/82

(wa (o + h) — wa(a)) dp,
JL, = /T(z —w) (ot h) - (wala+h) — wa(a)) (f(z)(a +hB) — 2)

ENCEIDIE
z(a+h—B)zt(a+h—p)
X >

1_72 z—w)_(« (W la — Wyl
T = e L~ ) ) - (g ) = )

y (zola+h—B) — z(a+h))zt(a+h—pB)
32

dﬁ?

! _m zZ—Ww (% — zZ—Ww «
Ba= s [ =)o) = Ble = oo+ 1)
zHa+h—p)

- (wa(a +h) —wa(a)) 7

dp,

! —Mz—w (07 (Wl — W\
2,56 ’Za<0é+h)|2( )Oé( +h’) ( a( +h’) a( ))

xﬂfﬁa+h—m<;—amm>w,

and

1—Mz—w (6% (Wl — Wl ™ ZJ'CY
o= T fa g e~ Whalo 1) - (oo ) — ()20 ) o )

To estimate the term J;,, we use the integral Mean Value Theorem and the Taylor
series expansion of the functions sin and sinh leading us to

|(sin(z1_ (v + h)) — sin(w; _(a + h)), sinh(zo_ (o + h)) — sinh(wy_(a + h)))
— (z—w)(a+h)|
< CM)IBP (= — w)all g -
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which implies

]Jalts;cxﬂ4>u<z—-uoaHLmrhw|u@LyHF%z>HUmqupx\uaHLmtﬁ;uﬂdﬂ
< L(v-M)[A[ ||z = w1 -
The terms Jy,...J54 are estimated like the terms I 5...116. Note that they

contain terms depending on the linear difference of the curves z—w, so consequently
we obtain estimates of the form:

| J3:| < L(v, M)|h|" ||z — w|| 1,y fori=2...6.
We conclude that
| J3] < Ly, M)[R]" ||z — wl]cas -

In order to estimate the term Ji we have to use
F(2) (- 8) = F(w)(-, 5)
_ ]:(z)(~,ﬁ)f(w)(.,ﬁ)COSh(w2_(')) — cos(wy_(+)) — cosh(zy_(-)) + cos(z1_(+))

32 ’
(1.3.18)

which, together with

|cosh(wq_ (v + h)) — cos(wi_(a+ h)) — cosh(ze_(a + h)) + cos(z1_(a + h))]
< C(M)[BI*[](z = wal | e ,

lead to
[ F(2)(a+h, B) = Flw)(a+h, B)] < C(M)[|(z = w)all -
Similarly, we find that

2 2
elarnp TNt TP

< C(M)[BP|(z = w)all o -
This leads to

‘}"(z)(a +h, ) —

5| < Ly, M)[R[ [z = ]| oa,s -
As a consequence, we have that
[11(2) = Li(w)| < Ly, M)|R]" ||z — wl[cry -

We can perform the same type of splitting for the other terms [;(z) — I;(w).
Then, the desired estimate is obtained using the same ideas. This concludes the
proof of the result. O
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This chapter is based on [32].

2.1 Stability of classical solutions in the stable
case
In this section we assume that the system is in the Rayleigh-Taylor stable case
where the lighter fluid lies above the denser fluid, namely
p-—pt>0.

Then we prove the global existence and decay to equilibrium for small enough

initial data
2(a,0) = (a, h(,0))

given as a graph in the Sobolev space H?3. In particular, the result we prove is the
following;:

43
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Theorem 1 (Global existence and decay of solutions for small data). Let hg €
H?3(T) be the initial data for (1.1.15) in the RT stable case,

p~—p" >0,

and take m arbitrarily close to 2, that is, m = 2 — ¢ for some € > 0. There is a
0<d=40d(p~ — p") such that if

[hollga(ry <0
there exists a unique global classical solution h(c,t)
h e C([0,T]; H)
of (1.1.15) for arbitrary 7" > 0 satisfying
(L + )" [Ihll g2 + [[All s < Cllholl s
for some constant C' > 0.

Proof. The linear part: First we observe that, without lost of generality, we can
consider the initial data ho(«) having zero mean. Due to the fact that the equation
for the case of a graph can be written as

Oth(a, t)da = Ou¢p(ay, h(a, t))

where 1) is the stream function, we have that the solution h(a,t) satisfies
/h(a,t)da = 0 for every ¢t > 0.
T
In this setting, equation (1.1.15) can be written as
o, t) = =pA~ (), ) + L= (T (o) + Dol ) + (e, 8) + Iy, 1), (2.1.1)

where
p=p —p,

: h2 h_(ot)
Li(a,t) = /log (1 + sm(;)) h(a — 5,t)dp,
T

sin? (4)

L(a,t) = /Tlog <sinh2 <h<2&’t>> + sin® <§>> h(a — B,t)ha(a, t)he(a— 5, t)dS,
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_ (a — B, t)h_(a )
I3(a’t>_/231nh2 (h ))—|—2sm (ﬂ)

X [(ha(e, t)hala = 3,t) — 1) sinh(h_ (e, )] dp,

= (a =B t)h-(a,1) « a— sin
hmi*i/%mm( M»+2m1@ﬂwx,w+m< 3,0))sin(8)] 3.

Above we use the notation h_(a) = h(a) —h(a— ) as in previous sections. Define

R[]l = sup ((1+)™ [[Rf]L2 + [[A]lys) - (2.1.2)
te[0,T7]

The proof follows the ideas in [16]. Namely, our goal now is to obtain an inequality
of the form
1A < Mo + F(J[[R]]]),

where F is a smooth O(x*) function with k > 1.
The L? estimate: In this subsection we prove a L? estimate of the interface
h(a,t) by using Duhamel principle. Using Duhamel formula we obtain that

ha,t) = e P2 hy(a)

o
+ 2p7r/ e PN (1 (a,5) + Do, s) + Is(a, s) + Li(a, s))ds.
0

Then, by (1.2.7),

Hh||L2 SJ (1 + t)_m Hh0||H2

+ % (1+t—s) ™ |[(I1(s) + I2(s) + I3(s) + Lu(9))|| g2 ds  (2.1.3)

with m < 2 to be chosen later.

We first estimate each of the terms I;(c,s)...Is(«a,s) in H?. Secondly, we
use Gagliardo-Niremberg interpolation inequality, in order to get estimates in our
norm, defined by (2.1.2). Some basic inequalities we will use are:

—-m (5—2k)
AR S IR IO < @+ ™5 (Bl 0 < k<2,
1Al S @I IR S (10752 Al 0< k<3,

For the sake of simplicity, we will drop the time dependence in the notation when
it does not cause any ambiguity. We start by estimating I; in H2. We have that

e S KT+ Ky + Ky,
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where
sinh? (—h*(a))
1_ 2 2 _
K| = /1og< = (5) )8ah(oz B)dp L27
sinh? ( (O‘))
K, = /8 log (1 + 5 ) ho(a — B)dB||
SlIl (5) 2
and
sinh? (h*(a)>
1 2 2 _
K; = /T@alog (1+ o (§> ) h(a — B)dp )

First of all,

Kll < sup
a,BET

N[

sinh? ("=
log (1 + SH12((2>>) | HhHH2 :

Using the integral Mean Value Theorem in (1.3.11), we can estimate the finite
differences in h as

h
ot < ok,
This fact together with
sinh(z) g T
, < cosh(x), M < BL
imply
sinh? (h 2(0‘)> sinh (ﬁ) ’
o8 (” sin? (2) )‘ T @) |
[ (=) | s [
N 2(0‘) ‘ o} sin (g)

< cosh® (||| o) 1Pl [ -
The previous computations yield
K} S cosh?([[A]] o) [1hal [z 1|2 - (2.1.4)

Similarly, 1 ,
Ky S cosh(2{[h]] ) [[hal oo [[2]] g2 (2.1.5)
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and

K3 < cosh®(2 [[R]] o) 1B e
X (Il gs 11hall oo + 1Bl

O2h|| . + 1Al

athLoo hall?) - (2.1.6)

Now, we apply Gagliardo-Nirenberg interpolation inequalities to (2.1.4), (2.1.5)
and (2.1.6), which will produce powers of the energy multiplied by factors of the
type (1 + s)™™* for some p > 0. As a consequence, we find the estimate

1112 S (14 5) 773 cosh® (2|l o) ([1IRIIP =+ [[[R]]]°) (2.1.7)
Now, let us estimate the second term I using the same techniques:
Cmd
1l g2 S (14 8)7™5 (14 cosh®21[A]] o)) (1A + RN+ (1IRI7) - (2.1.8)
The term I3 is similarly estimated. In this way we find that
i
sl 2 S (1) 7™ cosh® (4[] o) ([P + 1B + RN+ RIE) - (2.1.9)
Finally,
i
1 all 2 S (14 9)775 (14 cosh®(2 ||| =) (RN + RN + WIRNT) - (2.1.10)

In order to close the estimate in L? we need integrability in time in (2.1.3).
Note that the norm in B does not depend on time. For that purpose, we use
Lemma 2.4 in [23], which establishes that, for m,n > 0,

/t(1 +t—5)""(1+s)" T < C(m,n)(1+1)™ (2.1.11)

Introducing estimates (2.1.7), (2.1.8), (2.1.9) and (2.1.10) in (2.1.3) and using
(2.1.11), we obtain that, for any m > %, it holds that
Al e < (1487 [lholl g2 + C(L+ )7 Bu(|[[A)PrA IR, (2.1.12)
where P; is a polynomial with monomials at least cubic and
Bi(z) = 14 cosh®(4z).
The H? estimate: We compute that

1d

5 2 IO = =2 1) s

tor / (e, )05 (I (v, t) + Lo, t) + Is(a, 1) + L, ) dav,
T
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Then,
d _
GBI < 2 [ 0228 (@) + afa) + Io@) + L(a) do.
T

The aim is to estimate each of the four terms in H?. The strategy to bound most
of the terms is similar to the one in [20].

For the sake of brevity we will estimate in detail the term corresponding to the
first integral. Denote

/ ()21 (a)da = R} + Ry + Ry + R},
T

where

and

sinh? ("=
/83 (/ & log (1 + 112((;))) ho — B)dﬂ) da

Similarly to the estimates performed for the L? estimate of the interface, we

find that

Ry S (Al cosh®([[] o) [[Fal [
< (14 £) ™™ cosh?([[A][]) [[IR1]]*
RY S [l gs [Pl g2 cosh([[A]] ) [|02R)| _ [[Fal] e
< (14 £)™ cosh(([Al[]) [|I]]]",
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Ry < (14 t) 7™ cosh®(|[[R][]) (I11AI11* + 1A]]]°) .

The term R} is more singular. We split it into parts by computing the derivative

9% log <1 + Smh;( g 6(/2))/ 2)>

explicitly:
Ry=Ry,+Ri,+Ris+Rj,+ Rjs+ Ri¢+ Ris+ Ry,

with

L[ [ @) sinhh(@)
Hia = /T/Taah( ) 2 sinh? (h‘T(a)> + sin? (g) i p)dpd

5 82h (ha)_(oz) cosh(h_(a)) B N
ia= [ f o st () 4 sin2 (3) P

o 5 a2h h o) () sinh?(h_(a)) . N
Rig=— | [ o shia — B)ddd

(sinh® (2=2) 4 sin? (5))

o 5,0 (ha)-(a))? sinh(h—(a)) B N
Hia = /T/Taah(oz) 2 sinh? (h‘T(a)> + sin? (g) Mo = F)dbd

| 31 ((ha)-(a))® cosh(h_(a))sinh(h_(a))
Ry;=— d h(a) YT - sh(o — p)dfda
/T/T 4 (smh ( 2( )> + sin (g))

5 2 sinh?(h_(a)) B N
Rig == [ [ ot - ho — B)dad

(152) s (5))

T 3 ((ha)—(a))? sinh(2h_(«))
Rl.=— /1r /T o) ) h(a — B)dBda

(sinh (252) =+ sin? (5))

) @) sb@)
Rig= [ [ ainio) e hla — B)dgd

(sinh? (2=2) + sin? (§))




Chapter 2. Stability and instability for small initial data 50

We focus on the most singular term Rzll,l' We split R}Ll into parts, in order to
localize the singularity:

1 _ pl 1 1 1 1 1
R4,1 = R4,1,1 + R4,1,2 + R4,1,3 + R4,1,4 + R4,1,5 + R4,1,67

where

1 3, agh —(a) sinh(h_(a)) — h-_(a) _ o
Rii= [ [ oihte) ° @)< 8)dsd

sinh? ( ) + sin
S 1l cosh(2 [[Al] oo [l 7o [Al]7 -
Similarly, using

32 4
sinh2 (h(a)> + sin2 (g) I+ ’ha(a)P

S hall g [haal | Lo B,

2

we find that

Rm_//ag 83h )_(a )hﬂ(f)

3 4
’ (Sinh2 (=) +sin? (8) 1+ |ha(a)|2) il = B)ddo

2

2 2
S Mhaall g (12155 1ol loe [1A]]oe -

We compute

R413 // 1_|_|h I 2 h(a )(aah;—(oé) h_() ;fha(a)h(a—ﬁ)dﬁda
S 1Bl 1Al P o

Furthermore, we can continue as follows

I h(a) 1
Raa= [ [ it ™5 nanta - 5) (5 - corts)) asa
o0~ ),  h(a—F) - ha)
| [t =G o) dpdo

2
S Al hall e 1Al oo + 1121 1gs ol Iz
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and

! = 7T74 3 agh(a) « a)ace
Rius = [ 2 mmsoihe) S5 b () (k) )

5 Bh(a—B) 1
//1+|h plal(@) =5 —"hal@)h(a) (—cot(5)> dfda

S 1Al hall e ol + 1Al s ol | o (1]l

Finally, we have that

1 4 3, H(03h) () oh(a)do
Riso= [ 2 mmsoinle) SO b @)h(a)a

2
S s hal | oo [172]] poo -

Consequently,
Ry S (L+6)7"B([[Al| o) IR PRI,

and hence
/Tafih(a)@ih(a)da S ()7 B([A]] ) RPN R])-

This estimate provides the condition m > 1 in order to have integrability in time.
The terms corresponding to the remaining integrals I, I3 and I4 can be estimated
following the previous procedure, giving rise to

d 2
7 1Bll5s < (1+6)7"5C(p)Ba([[[BI)Pa([[1RI1]) (2.1.13)
where P, is a polynomial with monomials with degree at least four and
By(z) = 14 cosh®(4z).

The final estimate (2.1.13) requires the choice of m to be m > 3/2 (to assure
the further integrability in time). Nevertheless, the optimal choice of m will be
arbitrarily close to 2, in order to gain rate of decay. Equipped with this regularity
and using standard energy arguments (see [33] section 6 for details), we conclude
the continuity in time of h in H?3.

Global existence: Collecting estimates (2.1.12) and the integrated (in time)
version of (2.1.13), we find

A1 < 2[Rl s + C(R)BUIIRIDP AL, (2.1.14)
where P is a polynomial with monomials of degree at least 3, and

B(z) = 1 + cosh®(4z).
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Let the initial data be such that

[[holl s < 6.
Now we prove that, if § is small enough,

1R[] < 40.

We argue by contradiction. Assume that the solution reaches the value |||h||| = 46
at certain time ¢ = 7. Then, by (2.1.14),

45 < 26 + C(p)B(48)P(43).

Using the smallness conditions of § and the fact that B is a monotonic increasing
function, we observe

46 < 20 + CB(40)166%, and therefore 2§ < CB(1)165%,
which is a contradiction if
§ < min{(CB(1)8)~* 471}

Consequently,
[|[R]]] < 46.

Finally, we can choose a big enough constant such that
Cllhollgs = 0,

thus
46 < AC ||| s -

Therefore, abusing notation for an arbitrary constant C', we have shown that as
long as the initial data is small enough, we can find a classical solution to (1.1.15)
such that

Al = S (8™ Al 2 + (1Al gs) < Cllholl s (2.1.15)

for every T > 0. O]
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2.2 Stability of analytic solutions in the stable
case

This section is devoted to prove global well-posedness and exponential decay of an-

alytic solutions to (1.1.15). For that purpose, we will exploit the algebra structure

of Wiener spaces A? (see (1.2.6) in Section 1.2 for the definition of these spaces).
We assume the RT stable scenario, where
p~—p"

> 0.
4

p:

In this case, we will prove global existence and exponential decay of solutions for
small enough initial data, given as a graph in a suitable Wiener space

ho € All,o, with 9 > 0.

We recall that we can assume that the initial data has zero mean without loss
of generality, and this property is propagated thanks to the existence of a stream
function 1. In particular, we prove the following result:

Theorem 2 (Global existence of solutions in Wiener algebras for small data). Let
ho € A}, (T) be the initial data for (1.1.15) in the RT stable case,

p~—pt >0

Assume that
vy > 0.

There isa 0 <0 =d(p~ — p*, 1) such that if
lholly, <6

so that
vo— M(|lhoLy, ) > 0

for a suitable non negative function M(z) ~ x + O(z?), there exists a positive
decreasing function v(t) > 0 with v(0) = 1y (characterized by (2.2.21)) and a
unique global analytic solution h(«,t)

heC([0,T]; Ay
of (1.1.15) for arbitrary 7" > 0 satisfying

<
1Al g, < ol Ly,
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The details of the proof are shown in Subsection 2.2.2. The control of the
analyticity of solutions is similar in spirit as in Foias & Temam [27]. Moreover,
we can prove that, assuming the hypotheses of the previous theorem and certain
extra conditions, we can get global existence and exponential decay of solutions in
AV, for a suitable v* < 1. This result is captured in the following statement:

v*)

Theorem 3 (Global existence and exponential decay of solutions for small data).
Let hy € A} be the initial data for (1.1.15) in the RT stable case,

p~—pt>0.
fulfilling the hypotheses of Theorem 2. In particular,
Iholly, <
for a suitable 6 = d(p~ — p*, ). Assume that
v
0<v < i.
Thereisa 0 <e=c¢c(v*p~ —p™, ||h0||A50) such that if
Iholl o, <
there exists a unique global analytic solution h(«, t)
h e C([0,T]; A%)
of (1.1.15) for arbitrary 7" > 0 satisfying

eV ((p==pt)/4rv*t

[l a0 + 11240, < Clhol| g0,
for some constant C > 0.

The details of the proof are shown in Subsection 2.2.3.

2.2.1 Fourier analysis

In this subsection, we study the Fourier side of equation (1.1.15), in order to exploit
its structure in the Wiener Space context. We will use the equivalent expression
given in (2.1.1).

First of all, we recall some properties of Wiener spaces. The fundamental
property of Wiener spaces is their algebra structure:

fi- foee fallag < TTI
=1

As e
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We can also interpolate Wiener algebras using Holder inequality in the following
general way:

1Rl 45, = D[RO k) e OOl
keZ
< |Ih@)2e RO
< [1OIagzr, IO o0

with p,¢ > 1 such that %—i—%zlandoga,ﬁg 1.

Note that nonlinearities in the original equation will result in convolutions in
the Fourier side. In the following, we will represent the convolution of n copies of
f (n — 1 convolutions), as

Also note that translations in the original variable h will result in multipliers in
the Fourier side. In this sense,

—

B(- = B)(k, B) = h(k)e™™" and h_(k, B) = h(k)m(k. B),
with )
m(k,B) = (1 —e ™) = —ikﬂ/ e RBU=3) g,
0
Now, we take the k—th Fourier coefficient of equation (2.1.1):

. h(k,t

+£Jﬂw@+gmo+gw@+ﬁ%@) (2.2.1)

In the following, we will drop the time dependence in the notation when it does
not cause any ambiguity. Moreover, we consider that h is small enough in order
to represent functions sinh(x) and log(1 + x) by their Taylor series, and = as a
geometric sum. Define

sinh? (=) 00 e+l oo Q)2 n
Ti(a, B) = log (1+(/32)) = = (Z(h()))

sin2 (5) = (g)%n = 22j+1(2j + 1)!

and
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Then, the nonlinear terms in (1.1.15) can be expressed in the following way:

/ Ti(o 8)d5,

Iy(a) = / To(ew, B) [(ha(@)halc — B) — 1) sinh(h_(a))] dB,

= [ @) (ha@) + haa = ) sin(3)] 5.

Therefore, their Fourier coefficients are

/T1 x e"*0h(k)dp, (2.2.2)

fg(k):i ! ‘ /T Ta(k, B) * (ikh(k) * (ke *h(k)) =+ (m(k, B)h(k)) dB

D P ' /T Tok, B) x #*1 (m(k, B)(k) ) dB. (2.2.4)

Iy(k) = /qr sin(8) T (k, B)  [(ikh(k)) + (ike *7h(k))| dB. (2.2.5)
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Taking the k—th Fourier coefficient, we find

DT (S )
ﬂ(k,ﬂ)—z; * (jz:%sin (g) 22j+1(2j+1)!>

o (—1)tt (& k2 (m(k, B)R(K))

22/+1(2j + 1)

( 2(j+n)+1 A
KT m(k, B)h(k
n=1j onsin2” (g) 22j+1<2j+1)| [ ( ) ( )]
(
B
2

A =0 nsin® (§) 22125 + 1))

234
X Z (m(kg(jJrn))m(k — kl)

k.k1 k2, ko (j4n)#0

1

m(k; — k’l+1))
2(j+n)—1

+n)—
11
=1
x (ﬁ(kQ(Hn))ﬁ(k: —k) I k- k:l+1)) .
=1

(2.2.6)

Note that

2(j+n)—1
(m(/f2(j+n))m(/f —k) I mk - kl+1)>
=1

1 1 1 ' 2(j+n)—1
= / ds / dsy . .. / dsa(iyny (=) 2T gy (k= k1) [T (ki — ki)
0 0 0 =1

2(j+n)—1
% 62n+2j+1 e—ikQ(j+n)ﬁ(1—s)e—i(k—kl)ﬂ(l—s)

H e~ ikhi—ki1)B(1=s1) |
=1
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Similarly,
7. _ (=" G2+ FL [ (NG
Talh, 5) (m (2)§§(2J+1>,22j+181n 26 [ (/f)h(k)])
# (e h(k)) * (m(k, B)h(k))

Y CLr
| 2sin? (g) 220 =0 (27 + 1)!12%+1 gin?" (g)

2(j+n)—1
X > (771(k2(3'+n))m(’€ —k) I mk - le))
kl,kg,...k2(j+n>€Z =1
R R 2(j+n)—1 R A R
X (h(/fz(j+n))h(/f k) I nlk- le)ﬂ + (7™ h(k)) * (m(k, B)h(k)).
=1

2.2.2 Proof of Theorem 2

In this section, we prove Theorem 2 exploiting the structure of nonlinear terms
(2.2.2)-(2.2.5).

Proof. Consider the evolution of the norm

. X
. ht :I//t ht 1 + : 7
i MOl =/ ORIy, + 30 2[h(k, )

From (2.2.1), we find that

d _
g 1Ol < V@O RO~ PRl (2.2.8)
D Zi[ (k,t)h(k,t) + h(k, )f(k,t)ey(tw
T k0 i=1 2|h(k, t)|
VO Ny, =PRIz + 5 ZZII (K, t)|e” "
k;éOz 1
<V A Lo+ : : 2.
VO ROy, =P lR4z + 5 ;IILHA%) (2.2.9)

Let us estimate the norms HL-HAO< . Note that
v(t

2(n+j5)—1

|]€’ < |k_k1|+’k2(n+j)| Z |km_km+1|a

m=1
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thus
2(n+j)—1
eV DIkl < giv(O)|k—ki] v (t)|k2nt24] H WO km—Fkmi1]

m=1

Therefore, using (2.2.6) and

o0

x? 1
5377 ~log(1 —2) = log ()

for x small enough, it holds

gotontt 2(j4n)+1 2 (t)[k|
Tillpo < , $20E0F ikh (k)| | e
7 a0, I;);]Z%)RSIH (ﬁ) 22]+1(2j+1)!‘ [ ( }
2”623+1 2(j+n)+1 7 )k
< KT kR (E) || €
I;)nz:”z: n22iti( 2j +1)! ‘ [ ( )}
= 07122]Jrl 2j +1)! A
_ 1
<sinh (T 1A |
< sin <2H ||A’£(t>) 0g 1—7T2||hH21
vy
<G (HhHAim) , (2.2.10)

where we defined

1
) 2
12 [All%,

(T
Gi (I1hlLay, ) = sinh (5 I1hlLy, ) 1og
From (2.2.2) and (2.2.10), we get the estimates

Millg,, < [ 11TilLg, lblLg,

S%QOMMMNWWM (2211)

(5
Il < [ (1Tl +1om (s (5 ) )) W, L,

< 201Gy (IhlLas, ) 1AL, I, + 4o [AlL, 1A, - (2212

and



Chapter 2. Stability and instability for small initial data 60

From (2.2.3), (2.2.7) and
1

— o
anzl_la

=0

for x small enough, we get

H'EHA% = Z (7) ZZ

v 75 2 sin? n=0,=0 (27 + )'22J+1sm (g)

(32n-+2j+2

x [ 20002 [ifh ()] ¢ B | €O
1 o0 00 2Anti)t2 N
< = 0 n+i)+2 |1 p
— nzzojz%) 2]+ |22]+1 H HA H HAO
s 1
< —sinh
< Zsiun (3 ||A(t))1_w2”h“il( el 1elLo,
< Galllbll s, ) el (2213)

where we defined

T 1
h — —qi h( > h .
Ga(|| ||A11/(t>) 5 Sin [[B] 41 o) 1= 72 |hl s | ||A11/(t)
v(t)

From (2.2.4), (2.2.5) and (2.2.13), we get the estimates

il < [ 17l (Ialfsy, +1)sioh (v bl ) a5

< 27G(|1hlLas, ) 1AL, (11eIs, +1) sinh (AL, ) (2214

and

il < [ 20 Tl Wiy,

(t)
< 8Ga([[llay ) 12l]a0, ||hHA (2.2.15)

Joining the estimates of terms HL;HAo( ) in (2.2.9),
v(t

d
GO, VORI, -7,
G bl g, AR, ) (2:2.16)

where J; is an increasing function and C'(p) depends linearly on the density jump.
In fact,

Ji(z) =z + O(2?) (2.2.17)
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The evolution of the All,(t) norm can be expressed, similarly, as

d yi—
— R, < V@) IR 2 —PIh — Ll o
2t 110y, < V@I, = PliAlLy, + 503 Ik,

We have
oo 00 2n52j+1|k| ] R
< 2(j+n)+1 ikh(k v(t)|k|
|T||A1 gog:”zonzzﬁl 2]+1) ‘* {Z ( )} e
oo 00 7T2n+2j+1

< 20 +n)+1 . -
_I;;j;( (Jj+mn) )n22j+1(2]+1)!

x [200) ikh(k)] « [[k|PiR (k)] | e O

oo 00 7T.2n+2j+l 2(J+
< 2(9 1 : ™A
< [lhlle, 5 cosh (S 11hlLy, )1 !

—cosh | = 0
- Aw 2 2 AL ) 08 1— 72| |h| )%
v(t)
i, s (S Ly, ) o
+ sin
A2 An) 1 — n2 ||hHA1()
< gi(HhHAi(t)) 1]z, (2.2.18)
From (2.2.18), we get
il < [ |7tk e hiw)], s
v(®) T A

< [ (Il NnlLg, + 11Tl el ) 45
< 206G, (Ihll s, ) el ss, Vel +2wgl<||h||,4i(t)>||h||Aim

< CllblLg, IlAlle, Fi (Hmu;m)
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and

el < [ [[Tith.8) « ke « k1) = ik, a9

—|—/ log (sm <B>>
T

< Tillas,, WAlLao,, R  + 1 Tallgo, 11,
+2||7'||Ao HhHA ||h||,4 Rl

< Clihllg, mmzaomm%)

1
Au(t)

dp

Je ™ (ikh(k)) * (e~ ™ikh(k))|

1
0

Furthermore,
1Tollas,, < GalAlla ) AL, 1l +GolllblLay Il - (2:219)
From (2.2.19), we get
||]3||A1 < C||h||Ao ||h||A2 B <||h||,43(t)> :
and

y|[4|\A1 <C||hHA0 Hh||Az F4(Hh!|Ai(t>)7

where the functions F},... Fy are increasing functions.
Joining all the estimates of terms ||/;]| ALy, together, we get
v(t

d _
AR, < VO 1L, —pllAlLy,

+Co(p) Il g, IlLge,, o (I, ) (2220)
where 7, is, again, an increasing function, and Cy(p) depends linearly on the
density jump.

Control of norms for all time. Define
v (t) = = (ma{ o) (11hlLg, ) +€) 1L, - (22.21)

for € > 0. Then, by (2.2.16), (2.2.20) and (2.2.21)

d
SRy, <0,
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d
by, <0,
for every t > 0. Consequently

AL, < lhollg, and AL, < llkolloy, (2.2.22)

for every t > 0. In addition, from (2.2.20), taking into account the damping term,
we have

t
1Ol +7 | 1L, ds < Lol (22.23)

Consequently, the solution is controlled by the initial data for all time ¢t > 0.
Control of the analyticity band. Using (2.2.23) and the monotonic increas-
ing character of functions J;,

v(t) =vy + /Ot V' (t)dt

t
> v~ (mas @@ (Iollg )3 +2) [ 1Ly, s
1

> v~ (max(C@T: (Il )} + <) kol

>0

for small enough data ||hg||,1 . This ensures that the analyticity bound does not
Y0

collapse at any time ¢ > 0.
In particular, we can choose small enough initial data such that

0< % < u(t) < 1. (2.2.24)

The estimates (2.2.22) and (2.2.24) give us the global existence of solutions in
Al L O
v(t)

2.2.3 Proof of Theorem 3

In this section, we prove Theorem 3. The proof relies on the proof of Theorem 2
and a similar strategy to the one used in the proof of Theorem 1: we exploit the
decay properties of the semi-group in Wiener algebras and combine them with a
priori estimates.

Proof. Before starting the argument of the proof, let us establish the following
decay lemma:
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Lemma 2. Let a,b > 0. Then,
/ ~Valt=5)g=Vbs g < ¢(min{a, b})e \/@
Proof. Define m = min{a, b}. Then,
/t e*\/me*‘/gds = /5 e*me*mds + /t ef\/me*‘/gds
0 0 ¢

t t
< /2 e~ Vmlt=s)g=vims g +/ eV mt=s)g=vms g

2

Vs / Vg 4 eV / V) g
evmtd (1 Vit (14 Vmt))

O

Let h € C([0,T]; A};)) be a solution of (1.1.15) in the RT stable case con-
structed under the hypotheses of Theorem 2, with small enough initial data

Iholly, <6
Define v* in such a way that
* Y
0 <12y Sggu(t)gyo,
and define the norm

1Al = sup (V™

tel0,T

) . (2.2.25)

The aim is to produce uniform bounds of (2.2.25), only depending on the size of
the initial data hg.

Using the estimate (1.2.11) in Proposition 2 for v = 2v* and Duhamel formula,
we get

1Al j0 S eV

~Y

-t
allag, + e [ VI  Lat ot L ds
O v




65 2.2. Stability of analytic solutions in the stable case

"= and Holder inequality, we can easily derive the estimates

(Bl . = kle M (k)]
k£0
< () 1Ml o

Using x < ¢(v*)e

* 3/4 1/4
< c(w) Rl 1Al |

and
13lLag . < e RIS IR
Since 12v* < % < (), we have the uniform estimates
Whllas,. < bl < I1hlLs, < Ilholly,
and
Whllay,. < Dby, < Dol

so that, by (2.2.11),(2.2.12), (2.2.14) and (2.2.15) in a band of width 2v* and the

estimates above,

4 Lo+ Is + Ll 4o < c(P) [[2]] 41 |

<)l .

(D) |70
(

(. Iholl y, Je

Bllag . FilllklL )
Bllag . F(IAlL )

g, FClIblL, )
V1)

<c
<

2
v* )

where the first inequality comes from (2.2.17).
Consequently, applying Lemma 2,

1Al g0 < 772

t
2 — ) *(+— — /D *
V*/ e \/ P2r*(t s)e Nz 5ds
0

ol Lag . + (.. llhol Ly ) 11IA

—/pv* * — 2 —\/pv*
< eV gl g+ (7. holl gy ) IR, €7
Thus,
pr* * — 2
T 110 < ol ag . + (v, 7 Mol ) 1A (2.2.96)

Furthermore, by Hoélder inequality, we can similarly derive the estimates
1Al1ar, = > [Kle” M[A(k)]
k#0
< () 1Ml

* 3/4 1/4
<) ||hl1% 1R

0
ASV*
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and
* 1/2 1/2
[13l]Lao, < ew™) 11BIIS 1AL

By (2.2.16) in a band of width v* and (2.2.17), it holds that

d
2 L4, = Ci(p) 1A%,

< C(V*7ﬁ7 ||hO||A11,O)6

Lo, F(Ihl].)
|1

2
v*

Integrating from 0 to ¢, we get

t

2 /A *

V*/ e VPTSg
0

.. (2.2.27)

1Bl 10, < WholLo, + ("7 1hol Luy ) 117

< [holl a0, + (", 7, |hol| 4y ) 1111l

Joining the estimates (2.2.26) and (2.2.27), we find

i

2
v*

ve S lhollao, + (", 7, [lhol Loy ) I1]7]

Assuming the condition
lholl, <<

for € > 0 small enough, we can reproduce the argument in the proof of Theorem
1 and get

1]

U*

= sup (P Il + Il ) < Clltol, (2:2.28)

for every T > 0. This gives us the global existence of analytic interfaces in AY,
and the exponential decay of the A° norm in the stable regime.
]

2.3 Exponential growth of solutions in the un-
stable case
In this section, we prove that in the unstable regime of the densities, where the

denser fluid lies above the less dense, smooth solutions grow exponentially in cer-
tain Wiener norms. We collect this result in the following theorem:
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Theorem 4 (Exponential growth of solutions in the RT unstable case for small
data). Let T > 0 be an arbitrary fixed parameter. Then, it exists a family of
smooth initial data

g0 € A,

such that
g€ C([0,T]; A),)

is a solution of (1.1.15) in the RT unstable regime,
p_ - p+ < 07

and
1

Hg(T)HAS* 2 66 (|P_*p+|/4)y*7.

lgoll 40 7 €10,T]. (2.3.1)

Proof. Let T > (0 arbitrary. By Theorem 3, there exists a solution for every
7€0,T]
he C(0,7); AL

in the RT stable case starting from a small enough initial data hy,
HhQHAO* < E.

Setting a family of different initial data hg, we can find a family of different solu-
tions h(q,t). Furthermore, each solution satisfies

oV 1Pt

h(t)l|ao < Clliollo, 1€ [0.7] (2.3.2)

where C' > 0.
Now, define the function

gla,t) = h(a, T —1).
It is clear from the definition that
g € C([0,7]; A.).
Moreover, we find that
gi(e,t) = —=(he)(a, 7 1)
= [pIA" (9)(at) — |2[;| (L11(g) (e, t) + I (g)(a, t) + Ls(g) (e, t) + La(g)(a, 1)),

i.e., g(a,t) solves (1.1.15) (equivalently (2.1.1)) in the unstable RT scenario. Note
that
go(a) = h(a,7) and g(a, 7) = ho(a).
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Then, by (2.3.2), it holds that

1 plv* T
l9(r)lLag, = 5oV

90/l 40 T €[0,T7. (2.3.3)

The previous equation shows exponential growth of smooth analytic solutions of
the unstable RT scenario for small initial data, in a time interval which is arbitrarily

large.
O
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“When I meet God, I am going to ask him two questions: Why relativ-

ity? And why turbulence? I really believe he will have an answer for
the first.”

— W. Heisenberg

IV  Turbulence in fluids

There is not a completely satisfactory and precise definition of turbulence. How-
ever, one can have an intuitive notion of what turbulence is by numerous phenom-
ena occurring in oceanography, meteorology, astrophysics, etc. For instance, we
cannot predict accurately the behavior of ocean currents, and we observe eddies
in the atmospheres of the Earth, Jupiter and Saturn, or in the galaxy.

Following the discussion in [62], we can agree on some desired properties for
a turbulent flow: the motion is unpredictable, since small uncertainty in the data

71
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can lead to bifurcation or drastically different behavior due to the nonlinear terms;
transported quantities are mixed much more faster than in diffusion processes; the
motion covers a wide range of spacial wave lengths.

If we return to the discussion in Section I, we find that, contrary to what
happens in a laminar flow, in a turbulent motion, the Reynolds number must
be large. For instance, one can measure the Reynolds number as the product
of the characteristic length L associated to large eddies and the characteristic
fluctuating velocity u, divided by the viscosity forces. In turbulent fluids, this
ratio is large. This is in connection with the existence and uniqueness of global in
time solutions for the Navier-Stokes equations. Such solutions have not been found
for all ranges of Reynolds numbers, and one can justify this gap in the theory with
the appearance of turbulence, which might cause a loss of regularity and loss of
continuous dependence on the initial data.

Another relevant factor that characterizes turbulent flow is vorticity. There
are numerous experiments supporting that turbulent flows are rotational, i.e., they
have non-zero vorticity V x u # 0. Even in uniform irrotational fluids, vorticity
can be produced by the interaction with boundaries or obstacles; for example, the
contact with an obstacle produces a zero velocity condition which induces vorticity.

However, it is also interesting to study turbulence which evolves without im-
posed constraints. In this case, we consider the turbulence to be fully-developed. In
real phenomena, we can only find fully-developed turbulence at the small scales, in
the case where the Reynolds number is large enough so that the viscosity does not
influence the dynamics of the small scales. This is the case of the atmosphere of the
Earth, Jupiter and Saturn. Nevertheless, when studying a homogeneous turbulent
flow where no boundaries or external forcing is considered, for theoretical purposes,
we may assume the turbulence to be fully-developed even in the large scales. This
simplification will be useful to derive models based on statistical assumptions. We
will also consider the turbulence to be homogeneous and isotropic. A turbulence is
called homogeneous if the velocity u(z,t) is statistically independent of the point
of space x, that is, it is statistically invariant under translations; it is isotropic if
the means and moments of the velocity are invariant under rotations.

In the celebrated Kolmogorov’s 1941 theory, Kolmogorov and Obukhov estab-
lished the foundations of the mathematical theory of turbulence (see [52] and the
Appendix in [83] for an English translation). Kolmogorov’s theory is based on
three principal hypotheses, coming from experimental observations and dimen-
sional arguments:

o “At sufficiently large Reynolds numbers, the small-scale turbulent motions
(I << L) are statistically isotropic”. Here, L refers to the scale of the large
eddies, and it is stated that the directional biases of the large scales are lost
as the energy is transferred to small scales.
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e “In every turbulent flow at sufficiently high Reynolds number, the statistics
of the small scale motions (I << Lg) have a universal form that is uniquely
determined by € and v” In this statement, Lg is the length scale which
determines the difference between large scale anisotropic eddies and small
scale isotropic eddies, € refers to the energy dissipation rate and v is the
kinematic viscosity.

o “In every turbulent flow at sufficiently high Reynolds number, the statistics
of the motions of scale | in the range L >> | >> v have a universal form
that is uniquely determined by € independent of v.”

Kolmogorov’s theory has proved to work well in very high Reynolds numbers,
although some important simplifications are made which may not be true in prac-
tice. For instance, it is assumed that turbulence at large scales is completely
random, while in practice we might find large scale coherent structures. This
fact is key when it comes to develop the mathematical models. Randomness is
introduced and we work with stochastic averages.

This section is based on [28, 80, 62], where the reader can find a deep discussion
on turbulence and the related £ — ¢ models.

V The Kolmogorov two-equation model of tur-
bulence

V.1 Derivation of the model

One of the principal hypothesis to derive the statistical mathematical models for
turbulence is to assume that one can decompose the incompressible velocity field
into its mean part (u) and its oscillations u:

u = (u) + .

There is not a unique choice of the mean (u), although the natural choice in the
case of Navier Stokes equations with random initial data seems to be the statistical
average. If we inject this decomposition into the Navier-Stokes equations, we
obtain the so-called Reynolds averaged Navier-Stokes equations (RANS). We find
a cascade of differential equations for (u), @ and their high order correlations.
The main inconvenience about these models is that further information about the
correlations is needed, since the models are not closed. For example, if we search
for an equation for the averaged velocity (u), one can check that it satisfies the
so-called Reynolds equation

Oiu) + WV () + V) + V- (@@ 0) —vAl) =0, V-{u)=0,  (V.1)
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where the extra term (u ® ), called Reynolds Stress tensor appears. Then, if
one tries to use the equation for @ to find the correlation (7 ® @), a higher order
correlation is involved.

One possibility would be to determine only one closure hypothesis, and a rea-
sonable assumption is choosing the Reynolds stress tensor as a function of Vu.
This is the case of the Smagorinsky turbulence model, and the k-model proposed
by Prandtl [79] for boundary layers. For many applications, this may be too simple
and a more general form of the Reynolds tensor is needed. This will be the case
of the k-e models, introduced by Launder and Spalding (see [83]), which assume
that the stress tensor is a function of Vu, and also of the average turbulent kinetic
energy k and of the rate of dissipation of turbulent energy by the small eddies e.
In this way, the mean velocity satisfies the Reynolds equation (V.1) together with
the Reynolds hypothesis

k?2
V-(u@u) ~-=V- <€(V<u) + V(u)T)> )
The scalars k£ and ¢ are defined as
1
k=laf? and = g<|va +val .

One can find a relation between k and e through the scalar function w, the so-called
mean frequency of the turbulent fluctuations:

e =kuw.

In this way, we can equivalently define k-w models. The function

L ="
w
is known as the external length scale and represents the size of the largest eddies.
It will play an important role for the study of the turbulence.
With this brief introduction in mind, we introduce the PDE system for the
Kolmogorov two-equation model of turbulence derived in [52] (see also [83] for the
English version), which will be our subject of study in this part of the thesis:

O + (u-V)u + Vp — v div <5Du> =0
k
Ow + u-Vw — aq div (w Vw) = —ayw? (vV.2)
. [k k 2
Ok + u-Vk — ag div <ka> = —kw + cu;’]D)u’

divu = 0.
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In the model, the function V% denotes the kinematic eddy viscosity, while the
diffusion coefficients for w and k are alf and Oég%, respectively.

The three unknowns u, w and k are functions of time and space variables
(t,x) € Ry x Q, where  is a domain in R?, with d = 2,3. The vector field u € R?
represents the average velocity of the fluid. It is assumed to be incompressible,
whence the last equation in (V.2). Moreover, p is the mean pressure of the fluid.
The other two unknowns w and k are positive scalar functions and they are related
to the small scale quantities used to describe the turbulent fluid motion. For
simplicity, we assume that no external force is acting on the fluid.

All the parameters v, «; . .. ay are physical adimensional parameters which are
strictly positive numbers: we have

v >0, ay, g, ag, ag > 0.

Finally, the symbol D appearing in the first and third equations stands for the
symmetric part of the gradient of w:

Du = ;(Du + Vu),

where we have denoted by Du the Jacobian matrix of v and by Vu its transpose
matrix.

We will consider the physical domain to be a periodic box of dimension d in
order to avoid incompatibilities with the size of the domain or the interaction with
boundaries, since the object of study is the fully-developed turbulence.

V.2 State of the art

The previous works devoted to the mathematical analysis of the system (V.2) are
mostly from the last decade.

In [75] (see also [74]), Mielke and Naumann prove the existence of global in
time weak solutions to (V.2) in a periodic three dimensional box. Their analysis
strongly relies on the condition f > 0, that is, the eddy viscosity is strictly positive,
which makes the system fully parabolic. In particular, they assume that the mean
turbulent kinetic energy and the mean turbulent frequency are initially away from
zero, meaning that

0< Wo, < wy and 0< ]{30’* < ]{?0.

The positivity is preserved by the flow, so that for all times ¢ > 0 the previous lower
bounds remain valid (see the discussion in Subsection 3.2.1). Let us mention the
result by Mielke [73], where the author considers a toy model for the Kolmogorov
two-equation model of turbulence.
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In the works [54] and [55], Kosewski and Kubica prove local in time well-
posedness and global in time well-posedness for small initial data, respectively.
Again, the positivity condition for the quantities £ and w is crucial for their anal-
ysis. In a very recent result, Kosewski [53] generalizes the local well-posedness
result to fractional Sobolev regularity.

The only result dealing with the possible vanishing of kg is due to Buli¢ek and
Malek. In [8], they study system (V.2) in a three-dimensional bounded domain
with a smooth enough boundary and mixed boundary conditions, so that the
turbulent occurs at the Dirichlet part of the boundary. They construct global in
time weak solutions though a Galerkin approximation, by means of a finite energy
E which relates the velocity v and the turbulent kinetic energy k, so that they
reformulate the system in terms of the variables u,w and E. FEventually, it is
possible to obtain a solution to the original system from the reformulated one in
a suitable class of weak solutions. Let us note that, rather than being away from
zero, the vanishing of the initial mean turbulent kinetic energy is assumed to be
controlled by the following logarithmic bound:

log ko € L*(€).

This assumption also propagates for all times ¢ > 0.

With these results in mind, it would be interesting for completeness, to extend
the local in time well-posedness to the case where k is allowed to vanish. Citing
from [75]: “It would be desirable to develop an ezistence theory without this con-
dition, because this would allow us to study how the support of k, which is may
be called the turbulent region, invades the non-turbulent region where k =07 Ac-
cording to the previous cite, it could be an approach towards the understanding
of a setting where there is a transition from turbulent to non-turbulent flow.

VI Contributions

VI.1 Chapter 3

In this part of the thesis, we continue the study of [25], devoted to the one-
dimensional reduction of system (V.2). In that paper, the authors proved well-
posedness and blow-up in finite time of solutions at H™ level of regularity, for any
integer m > 2. The proof of the well-posedness result is based on a priori energy
estimates and the construction of solutions via a Galerkin process together with a
convergence argument. The blow-up mechanism is similar in spirit to that of the
Burgers equation, and the proof relies on the possible vanishing of the turbulent
kinetic energy k. In [26], the same authors proved a different blow-up mechanism
for a toy model of the 1-D reduction of (V.2).
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While it is not clear at present whether or not the blow-up results may be ex-
tended to higher dimensions, so to the true Kolmogorov model (V.2), in the present
paper we generalize the local well-posedness result of [25] in two aspects: first of
all, we extend it to the physically relevant situation of two and three-dimensional
flows; in addition, we prove well-posedness in optimal Sobolev spaces H*(T¢), with
s> 1+4d/2 and d = 2,3. Here, “optimal” means in terms of hyperbolic regularity,
the only one we can hope to propagate, owing to the degeneracy of the system for
k=~ 0.

The generalization to higher dimensions involves some extra technical difficul-
ties in the computations of a priori estimates, although the spirit of the proof is
the same one as in the one-dimensional model. However, the generalization to
non-integer regularity requires different techniques with respect to the integer reg-
ularity case. In particular, our strategy involves paradifferential calculus, passing
though Littlewood-Paley decomposition, in order to tackle the commutator esti-
mates appearing in the high order energy bounds, which are crucial to prove the
existence of solutions.

Our local well-posedness result reads as follows:

Theorem 5. Let s > 1+ d/2 and Q = T¢. Define (ug,wo, ko) as a triplet of
functions under the following hypotheses:

1. wo,wo € H?(QY), divuy = 0;
2. there exist two constants such that 0 < w, < wy < wW*;
3. ko >0 is such that By := vko € H*(Q).

Then, there exists a time 7" > 0 such that the system (V.2) equipped with the
initial data (ug,wo, ko), admits a unique solution (u,w, k) on [0, 7] x €2 such that

1. the non-negativity of w and k is propagated, i.e., for any (¢,x) € [0,7T] X
Q, w(t,z) >0 and k(t,z) > 0;
2. the functions u,w and vk belong to the space
£2([0, T (@) 0 () ([0, T; H'();

I<s
3. the gradient of the pressure Vp belongs to the space
L2([0,T); H*~H(Q)) n () C([0,T]; H?);

I<s

4. the functions \/» Du, \/> Vw and \/> k) belong to the space

L*([0,T): H
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5. the solution (u,w, k) is unique in the class

Xr(Q) == {(w,w,k) | ww ke L¥(0,T|xQ), w>0, k>0,
u,w, Vk € C([0,T]; L*(2)),
Vu, Vw, V(VE) € ([0, T] x Q)}.

Furthermore, we have the following blow-up criterion:

Theorem 6. We denote 7 > 0 as the lifespan of the solution and |s] the floor
of s.
Then, the solution blows-up at time 7™ < +o0 if and only if
T*
F(s) ds = 400, (VL.1)
0

where
2
F(t) = (1+||w,6||m)( + |IVwl[) [ Vu, Ve, VB[]
+ (141811 ) (14 [Vl

(7 Gzl ()

_|_

Lo

)
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Local well-posedness in critical Sobolev
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This chapter is based on the forthcoming paper [21].
3.1 Littlewood-Paley theory on the torus

We present a summary of some fundamental elements of Littlewood-Paley theory
and use them to derive some useful inequalities. We refer to Chapter 2 of [4] for
details on the construction in the R? setting and to [22] for the adaptation to the

d

case of a d-dimensional periodic box T¢, where a € R? (this means that the domain
is periodic in space with period equal to 2wa; with respect to the j-th component
for any 1 < j <d).

79
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For simplicity of presentation, we focus here on the case in which all a; are
equal to 1. We denote by "]I'd’ = E(Td> the Lebesgue measure of the box T<.

First of all, let us recall that, for a tempered distribution u € &'(T?), we denote
by Fu = (ﬁk> hezd its Fourier series, so that we have

) 1 )
U(x) = Z ak lem, with ak — / U(l‘) e—zk-x dr .
| Je

Next, we introduce the so called Littlewood-Paley decomposition, based on a
non-homogeneous dyadic partition of unity with respect to the Fourier variable.
We fix a smooth scalar function ¢ such that 0 < ¢ < 1, ¢ is even and supported
in the ring {r € R’ 5/6 < |r| < 12/5}, and such that

VreR\{0}, Se(27r) = 1.

jEL
Let us define |D| := (—A)Y2 as the Fourier multiplier' of symbol |k|, for
k € Z?. The dyadic blocks (A;),cz are then defined by
Vji€eZ, Aju = o277 D)u = Y (27 |k|) Gy, ™"
kezd

Notice that, because we are working on a compactly supported set, one has that
eventually, A; = 0 for j < 0 negative enough (depending on the size of T%). In
addition, one has the following Littlewood-Paley decomposition in &'(T9):

VueS (T, u ="+ » Aju in  S'(T%.

JEZ

In the decomposition above, iy stands for the mean value of u on T¢, i.e.,

Uy =1 = ‘r];d’/jrdu(x)dm.

It is relevant to note that the Fourier multipliers A; are linear operators which
are bounded on L? for any p € [1,+o0], and additionally, their norms are indepen-
dent of j and p.

Now, let us present a version of the classical Bernstein inequalities adapted
to our functional framework (see Chapter 2 of [4] for a general statement of this
result).

!Throughout we agree that f(D) stands for the pseudo-differential operator u — F~1(f Fu).
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Lemma 3. There exists a universal constant C' > 0, only depending on the size
of the torus T¢ and on the support of the function ¢ defined above, such that for
any j € Z, for any m € N, for any couple (p,q) such that 1 < p < g < 400, and
for any smooth enough u € &'(T?), it holds

-g(1_ 1
1A, < C26G3) 1AL

and
CTm2m | Ajulle < ID™Aull, < ORI A ull .

By use of Bernstein inequalities, we prove the following Poincaré-Wirtinger
type inequality:

VEeW S (TY) with =0,  |fll= S I VA (3.11)

The proof relies on an optimization procedure for the dyadic partition of f and
the systematic use of Bernstein inequalities. In particular, for N € N to be fixed
later, we can estimate

IlEe < DAz + ZIIA flze + > 183 £11z=

]<0 ]>N+1
< S AfI + Z?MHA FI2+ 3 2795 A
j<0 j>N+1

S (14 2Y) 1£13: + 272V VA

Now, we can choose N such that

2/(d+2)
2SI ~ 2V IV — o~ (W) |
7]

Inequality (3.1.1) follows immediately from the previous choice of N.

It is well known that Sobolev spaces H*(T?) for s € R are characterized in terms
of Littlewood-Paley decomposition (see Section 2.7 of [4]) through the following
norm equivalence:
~ Jao|? + Y 2% || Ajulf2 . (3.1.2)

JEZ

This characterization involves the low order term |to|*, which indeed can be sub-
stituted by the square of the L? norm, by noticing that |do|* < ||ul|7,. Thus

1o~ ullze + D027 (| Ajul e (3.1.3)

JEZ.

||l
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The high order term is equivalent to the homogeneous Sobolev norm of regularity
s

%{s ~ 222sj HAJUH%? .

jEZ

[l

In the next section, we will present a priori energy estimates involving the low
order and high order terms. In particular, the high order a priori estimates will
involve some commutators; the structure described in the following lemma will be
present through the estimates.

Lemma 4. Let s > 0 and d = 2,3. Let a be a scalar function and u a vector field,
both defined over T¢. There exists a constant ¢ = ¢(s,d) such that

1/2
(Z 2° [y, - wu;) < e(1Vull llod e + 11Vl [Vl recr)

JEZ
(3.1.4)
In addition, if divu = 0, we have
[Aj7u] -Va =div ([Ajv u] O./) )
thus
1/2
(Z 2%7° [ div ([Ay, u] a)l\iz) < c(IVull g llall s + [IVall g [Vl o) -
JEZ
(3.1.5)

Proof. Estimates (3.1.4) and (3.1.5) are particular cases of Lemma 2.100 in [4],
Chapter 2. We adapt the proof in the previous reference to the geometry of the
torus. For that purpose, we show that the estimates do not depend on the mean
of u and a. We write

u=u+ 1y, «a=a-+ a,

where © and & are zero mean functions. We notice that
[Aj,u] Va = [Aj,ﬁ + g, |-V (a+ &) = [Aj,ﬁo] -V&—F[Aj,ﬂ] Va = [Aj,ﬂ] -Va.

Therefore, we can assume that functions v and a have zero mean and the proof
is straightforward adapted to the torus T¢, since now we can work with the non-
homogeneous dyadic decomposition as in the R? case. O]

Furthermore, the next lemma, which involves commutators estimates, will turn
out to be fundamental to close the estimates.
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Lemma 5. Let s > 1+d/2. Let @ and f be scalar functions and u a d-dimensional
vector field, all of them defined over T?, such that they belong to H*(T?).

Assume that

22275/ o? |[A VP doz < +oo.
JEZ T3

Then, the product oV f belongs to H?*(T%).
inequalities, stating the “equivalence of norms” up to lower order terms:

?{s < ZQst /d a? ]Aij|2 dz
T

=Y/

In addition, one has the following

le V7 f]

)

e T Vel (]

+ (VA lla]
js 2 2 2
> 2Y /Tda2 1A VT de S la Vil + UVl llallg + Vel [ f]5:)"
jEz
Furthermore, if
222j5/ o? |ADul? dz < +oo,
JEZL T3
then, the product a Du belongs to H*(T?). Similarly, it holds
laDul?. < 222j5/ o? |A;Dul* dz+
JEZ Td
2
+ (IVull oo [l g + IVal] oo [ull )"
2 2
we + IVl llall g + Vol lullg.)"

2223'5/ o? |A;Vul)® dz < [la Dyl
JEL Td

Proof. The proof of the previous proposition is based on the dyadic characteri-
zation of Sobolev spaces, the equivalence of norms (3.1.2) and the application of

Lemma 4. We estimate
2
qu < </ a|Vf|dm> + ZQst/ o? |Aij|2 dx
Td JEZ Td

+ 3214, a] VAl

JEZ.

SUVF llallie + 32 [ o 1AV da

JEZ

eV

IVl Nl + 19 115
S22 [t IATIR do (9l
T

JET

2
we)

e HIVall e [If]
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On the other hand,

> 2 /T o |V do S 302 Il A VL + 2027 18,V )2

JEZ JEZ JEZ
2 2
S VAl ledlgs + Vel oo 1f 1 ge)™ + lla Vil -

The second part of the lemma is straightforward taking into account the decom-
position
\V4 T
Dy — (V)" + VU'
2
O

Finally, we give the statement of a technical result for the control of Sobolev
norms involving products.

Lemma 6. Given s > 0, the space L°°(T?) N H*(T%) is an algebra, and a constant
C exists such that

[|uv]| g < CGs) (el goo 0] s A [l g 0] oo ) -

This result is a particular case of Corollary 2.86 of [4] in the R? setting. The
proof can be easily adapted to the configuration of the torus using the Littlewood-
Paley decomposition in this setting.

3.2 A priori estimates

We are now in the position of showing a priori estimates for system (V.2). As
in [25], their derivation is based on a two-step procedure: first of all, we are
going to bound the energy norm (more precisely, suitable L” norms) of the so-
lution (u, w, k); next, we will derive higher order estimates for the dyadic blocks

A, (u, w, k) . All together, those bounds will imply the sought control of the Sobolev
norm H? of the solution.

We point out that, in order to carry out the higher order estimates, it will
be fundamental to resort to the formulation of the system on the new unknowns

(u,w,ﬁ), where 8 = Vk.
3.2.1 Estimates coming from the energy

We can derive pointwise lower and upper bounds for the functions w and k following
the ODE analysis as in Section 3.1 of [25]. We define the quantities

Wy 1= gleigwo(m), w* = I;leaé{W()(l‘), ky = rxnelél ko(x).
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Note that, due to the H® regularity of the solutions for s > 1 + 7, we find
that k£ and w are Lipschitz continuous, thus differentiable almost everywhere by
Rademacher theorem. This fact together with the hypotheses of Theorem 5 allows
us to get the following bounds:

V(t,x) e Ry x Q,

*

Wy w
0 mintzig t < ——— = WM¥() < W' 3.2.1
< Wmin(?) Wyt +1 wit,z) wrat + 1 W) < w ( )
and k:
k(t,z) > - = Kkmin(t) > 0. (3.2.2)

= (w*Oé2 + 1)1/042

Now, we perform estimates coming from the energy identities derived from the
PDE system. First of all, we multiply the equation for v by u itself and integrate
in 2. We then perform an integration by parts, taking into account the divergence
free property for the velocity u, to find the following energy estimate:

k
~|Dul?dx = 0.
2dt/]u|dw—|—u/w| ul“dr =0

Integrating in time, we find that

¢
k
Hu||iz + 2V/0 /Qw|]D)u|2dxds < ||u0|]ig . (3.2.3)

We perform the same computations to the equation for w, getting

w|?dz + «a /Vw dr + « /w dx = 0.
s e v [ Svepds o [

Integrating in time, we have

t k t
||| |75 +2a1/ / ;]Vw|2d:vds+ 2a2/ /w3 dads < ||wol|75 - (3.2.4)
0 Jo 0 Jo

Let us turn to the equation for k. We cannot expect to get estimates in L?
for this variable, due to the presence of a term in the right-hand side of the third
equation in (V.2) which is merely in L!. We perform an estimate in L!, getting

d kdx+/kwdx—a4/k|ﬂ)u|2 dz.
dt Qw

We then integrate in time and note that the right-hand side is uniformly bounded
by (3.2.3). Thus,

t
Oy
Ml + [ [ e < S lull+ ol (325
0
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The discussion in [25] suggests to work with the good unknown g := Vk. Note
that the previous estimate would be translated into L? control of the variable §,

t
0%
618+ [ [ B < 3 uollss + Nl (3.2.6)

Finally, let us note that, applying divergence to the equation for u, the pressure
satisfies the following elliptic problem:

k
—Ap = div (div (]Du) —u- Vu) : (3.2.7)
w
We get the following a priori L? estimate for the gradient of the pressure:
k
div (]D)u) —u-Vu
w

3.2.2 Reformulation of the system and localization

VPl <

(3.2.8)

L2

In this section, we reformulate the PDE system (V.2) in the new variables (u,w, ().
To derive a new equation for 5, we multiply the third equation in (V.2) by 1/ (2\/E)
and straightforward computations provide

op + u-VE — ag div (52 Vﬁ) = _Bw + %é‘ﬂ)uf—%agé ]Vﬁf.
w 2 2 w w

We recall the complete PDE system in the new variables

2
o + (u-V)u + Vp — v div iDu) =0

2

Ow + u-Vw —ag div| —Vw| = —ayw?
w
2

08 + u-VB — a div <5w> _ B %ﬁmuf +as D v
w 2 2 w w

divu = 0.

(3.2.9)
We will perform the high order Sobolev estimates on this new system. We
note that we need to control the possible vanishing of § := vk > 0. For the
moment, we will assume that the new system is well-defined and perform formal
computations.
In order to tackle high order Sobolev estimates, we will localize the equation
by taking the operators A; in the Littlewood-Paley decomposition as shown in
Section 3.1. Some commutators will arise from this localization procedure.
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We first deal with the equation for u. We apply the operator A; to the equation
and as a result, we get

2
(9tAju + (U . V)AJU + VAJp — v div (6 DAJU>
w

= —[A;,u]Vu + v div (lAj 521 ]D)u> :

"W
Analogous computations based on the equations for w and [ give

2
OAjw + (u-V)Ajw — a; div (6 VAjw>
w

2
ﬁ] ch) — ag Ajw?

)
w

= —[Aj,u]l - Vw + a; div ([Aj
and
62
8tA]ﬂ + ('LL : V)Ajﬁ — Q3 div (W VA]5>

= —[Aj,u]- VB +as div([A- 521 Vﬁ)

.
7w

A .
_-ﬁmy+?A4imﬁj+%%<iWW>

3.2.3 Estimates for the localized system

In the following estimates, we generally use the notation f < g to denote
f S C(Va aq, (g, O3, Oy, da Sy W, W*)ga

i.e., where the constant c is a harmless constant depending on the fixed parameters
of the system, the dimension of the space T?, the regularity of the solution s and
the lower and upper bound of the variable w, which are w, and w*, respectively.

Note that, when it does not cause any ambiguity, we will drop the time depen-
dence from the notation through the estimates for the sake of simplicity. For the
same reason, in general, when doing the a priori estimates, we denote the scalar
product of two vectors simply as u v := u - v.

In the following sections, we search for energy estimates for the homogeneous
part of the Sobolev norm, which in terms of the Littlewood-Paley decomposition

translates into .
e~ 27 (1Al

JET

[[ul
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High order estimates for u

We test the localized equation for u against Aju and integrate in €2, resulting

1d

ﬁQ
3% 1Aull?, + v /Qw IDAul> dz = — Q([Aj,u]Vu) Aju dz

52
+ v / div ([Aj, ] ]Du> Aju de.
Q w

We multiply the equation by 2%¢ and sum over the integers j € Z to get the formal
identity

2

1d | 8
SN2 AR, 4+ v Y 2% || =D(Au)
thj% |Ajullr j% Va1
2
= — 222js/ ([Aj,u]Vu) Aju dz + v Z22js/ div <[Aj,ﬂl Du) Aju dz.
JEZ Q JEZ Q w

(3.2.10)

Let us observe that the terms on the left side of the identity are composed by the
derivative of the homogeneous Sobolev norm of order s and a viscosity term which
will be crucial to close our estimates (it will be fundamental to apply Lemma 5).

We now focus on the right hand side of the equation. The first commutator is
estimated using Cauchy-Schwarz inequality and Lemma 4 as

3920 / (A, ] Va) Aju de < 3722 [[[A,u] Vull 2 [|Aul
€7

J JEZ

1/2 1/2
< (Z 227°|[A;, u] wn;) (Z i ||Aju||;)

JEL JEL.

2
S IVl oo [l -

The second commutator requires a further decomposition. Notice that, if we
estimate it directly using Lemma 4, we lose derivatives and the estimate cannot be
closed. For this reason, we must find an accurate decomposition which allow us to
exploit the viscosity term on the left hand side of the equation. The key for this
decomposition is to pull out a factor of 3/4/w in order to find a suitable structure
to apply Lemma 5.



89 3.2. A priori estimates

We have

5 [ ([, 2] o) s
oz fan (2 s o [, 2] (L) e

g ([ ] (L))

The first term in the divergence (T1) has a good structure to be estimated using
Lemma 5. Note that, after integrating by parts, we find a suitable commutator
structure multiplied by %D(Aju). The latter structure is present in the localized
equation as a viscous term, hence the idea is to absorb it with the left-hand side of
the equation. The remaining term needs further decomposition. Straightforward
computations give

s ([0 2] (o)) s
o () oo ()] ()
=Ty Y2 / <[Av<ﬁ_d>1 (%Du»%udx

At this point, we can estimate (T2) using analogous techniques as in the previous
term, but we cannot close an estimate for the last part without losing derivatives.
For this reason, we decompose

g s ()] () o

oo (o (o () [

= T3 + Ty,

where now, we have suitable structures to apply the commutator estimates.
In conclusion, we have

2
1/222js/ﬂdiv ([Aj, i} Du) Ajude =T +To + T3 + Ty, (3.2.11)

JET
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where
T = VjEZZ22jS/QdiV (f@ [Aj, \/651 ]Du> Ajude,
T, = VjGZZ 22].5/Q ([AJ, \/Bc_u} div (%Du)) Ajudr,
_ 2 B (B |
T3 = I/jGZZ22] /Q ([A], \/JV (ﬁ)] ]Du) Ajudx
and

s [©( L) ([2a] o) aua

We find that, integrating by parts,

Ti= vy [ (L5 |20 | oo Diamas

Then, by C-S, the weighted Young inequality and Lemma 4,

e

T 5]6222298 j_D(A ) B lAj,fa] Du B
:
5%22j8( H]D Aju) +O(5)|HAj,ﬁ_u] Du LZ)
< 5%2%8 ﬁ Aju) )
v o) (v (Z5)|| _ el + 192 || H)

LOC

Notice that, at this point, we can choose § > 0 small enough in order to absorb
the first term by the left hand side of (3.2.10).

The next term is estimated using C-S, weighted Young inequality and Lemma
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9 \ 1/2 1/2
) (Zzzﬂ‘SHAjuuiz)
L2 JEZL

B) )
V [ Du—— U
(ou2)| )i

2
Hs

5, as

T2 5 (Z 22j8

JEZ
’S <

B
<

o o 22
()

e ouls ()
. p

NG

2

ﬁDu
5}

HS

Kl
LJHﬁ

2

Hs

[[ul
LOO

ﬁﬂ)u
e

<53 29| piau)
jez w

e
2
+C(0) (HVUHiw ||UH§{S)
o>
g
) il
" Hv <ﬁ [
Again, the first term can by absorbed by the viscosity term in (3.2.10) for a small

enough § > 0.
T3 and Ty are estimated using C-S and Lemma 4,

||U| Hs

LOO HS

L2

v

||l

8
\/c_u
8

Hs

LOO HS

o5 (o (2 ()] o+ |2 (2, e
s () ()t )

It is relevant to note that the variable % plays a role through all the estimates.

This structure is present in most of the estimates and we can consider % to be
a natural variable for the system. Indeed, this “variable” can be estimated in the

regular spaces as

‘ B

7
Iz
r (&

S L+ 1Bl e + L+ OB 4 [Vl |2) 1] oo [

HS

S+ Bl
Lo

S+ VB e + (1402 ||[Vw]| oo 18] oo -
Loo

Hs >
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Above, we have used the estimate

1 1 Vw
\/C’_"] \/_ .2 w3/2 Hs—1
S A+ 0 ol + 1Vl | 5|
1
3/2
S (U402 ol + 19l e || ]|

<
S @40 [Jwllys + A+ )E2 4+ | [Vw| DB |w]] .
S A+ 4 || Vol w4

where |s] is the floor of s.
Additionally, we need to control some other terms depending on \Bf arising in
T5. Firstly, using analogous techniques as in the previous estimates,

s L p
\Y ———V
()5l - =67 - 27",
g s
H\/_ L® \/_ 5+H2w Le ﬁvw Hs
5l Rzl sl |
V| g || VW 2w w oo
§5222j5(| HVAw )

jEL

+ (1 + )l (1 + ||ﬁ||m + IVl + VB
x (L+1IVellE) (]l +118]

1e) -

We observe that, in order for this norm to be controlled, it will be fundamental to
have a viscosity term equivalent to the one for the localized equation of u. Again,
we will choose > 0 small enough in order to absorb the first term with the help
of the localized equations for w and f.

Secondly, we bound
[v( (%) 2%)| s a0 @rsiie) oo iveli- +19615-)
Vi) Voo )l ™ z L L
5
VI{|—=V .
LJH (ﬁ ”) Loo)

(L9201 4+ 1161]) (Hv (5v9)
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Collecting all the estimates, we get
2

1d |8
928 ||A~u||22 + (v —cd) 9%js —D(A;u)
2dtj€% 7HE ]2 v
3 2
con (o] < 2]
JEZ L?

s 2 2 2 2
+ (1670 (14 |[wl[fo + 1817) (1 +IVullf< + V@i~ + [IVBI[7 )
x (14 11Vl 7)) (lull3s + ol + 118115
+ (L+ )2 (1418 1)

(a2l e (el I (=)l )
x (1+]1VellEd) (|ru| 2 e I+ 1111 ) -

High order estimates for w

We test the localized equation for w against Ajw, and integrate in 2, getting

1d 3?
sai el v [

2
+ o /div <[A 5 ] Vw) Ajwdr — ay /Aj(wQ)Ajwdx.
Q Q

(3.2.12)

Then, we multiply by 2%* and sum over the integers j € Z in the same fashion as
in the previous estimate

B
22295 |A; wH , + oy 22235
thjez L = Vw

2
-y 22a‘s/ ([A), 4] Vw) Ajwda + a; Y 2%° /Q div (lAgs i] VW> Ajwdz
JEZL JEZ

— ZQ2JS/A Awd:c

JEL

IV(Ajw)|?dz = —/Q([Aj,u] Vw) Ajwdx

2

—=V(Ajw)

L2

We observe that, in the left hand side of the equation, a viscosity term arises as
in the equation for u. In addition, we must control the three terms appearing on
the right-hand side of the equation. The third term is a para-product which can
be controlled using C-S and Lemma 6 as

— g Z22JS/A Awdx

JET

S Mol

Hs WHLOO-
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Moreover, the first term is bounded using C-S and Lemma 4 as

S Nwllis (IVull poo [l s + V@l oo [full ) -

‘— > 2 /Q ([A), u] Vw) Ajw dz

JET

Finally, the second term requires again a decomposition of the commutator.

2
aq ZQQjS/QdiV ([Aj, i‘| Vw) Ajwdx =R+ Ry+ Rs + R4,

JEZ
where
Ry = ay 22%/9 ([Aj, \/ﬁa} div (\/%w» Ajwdz,
o 3320 [ ([ 2 ()] 5 s
and i
Ri=o %2% /Q \Y% (%) ([\/B@ Aj_ w) Ajwdz.

Notice that these commutators are very similar to the ones arising from the de-
composition (3.2.11), hence we omit some details of the computations.
Firstly,

2s || B ’
R <9 P —=V(Aw
22 YA
v (v ()| ot 19etl | 2| )

This time, the first term can be absorbed by the viscosity term in (3.2.12).
We have similar estimates for the rest of the terms:

<6y 2% ﬁV(A w)
JEZ

Ve

+C(9) (HVWHim

Je (=)l

2

L2

6

||

B
N

2
2
HWHHs)
LOO

p

Ve lly

Hs
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s (o5 (), (2], o)
and
e ()t ()t )

All the norms arising are analogous or have been estimated in the previous sub-
section.
Collecting all the estimates, we find

5
ZZZ”HA w|| ) (v —cd) 22238 — )
2dt]€Z g JEZ \/—
2
<9 925 A;B)
S| V)|

(14 £)2b) (1 + ol + 18117) (1+ [[Vulfio + [Vl [ +IVB]7)
< (1+ 11Vl 7)) (1]l o+ 181
)

s (e ()]s ()
x (14 [1VwllEL) (I1ll; )

2
we + ||

st ||W| Hs

High order estimates for

We test the localized equation for 3 against A;3 and integrate in €, getting
2

8
22]8 A ) 22]8 7V A
dtje% | 5”[, "’043]6% \/— ( ﬁ) .
— =2 [ (18,0 V5) Ay5da
jez Q
+ a3 ZQZjS/dinA 52]V5>Ajﬁdx_222js/ (ﬁw)Aﬂd
jez Q = 0 2
s B 2 is (B AN
36%2” / j (w Dl )Ajﬁdstj%? /QAJ (w V8l )Ajﬂdx.

This time, we have some additional terms appearing in the right hand side.
The first term is controlled using C-S and Lemma 4 as

S (IVall = 115]

e T VBl e [l

s)

“Z22js/([ﬁjau] VB)A;Bdx
JEZ Q




Chapter 3. Local well-posedness in critical Sobolev spaces 96

The second term is decomposed analogously as in the previous estimates for u
and w. We decompose it as

2
Q3 ZQQjSAdiV<[Aj 6 ]Vﬁ) Ajﬂd$251+52+53+54,

,—
w

JEZ
where
S1 = ag jEZZQQjS/QdiV <ﬁw [Ajj \/B(,_u‘| Vﬁ) Ajﬁ dx,
So = a3 je%g%‘s/ﬂ ([Aj, i}} div (iVﬁ) A;fpdz,
83 = O3 %2%5/9 ([Aj, iv B(,u | Vﬁ) AJBdZE
and 8 5 _
— 2js Rt L , )
S4—(l3j6222 /QV<\/J> ([ﬁ,AJ- v5>A]5dZE

They are estimated as

2

ﬁVAjﬁ

< 27s
S <8y 2 =

JEZ

L2

B AR
v ([ ()| 1o+ 19siin|| | )
SRt KRN |
JEZ \/a L2
B

2 B 2
+C0) (nwuiw ; Hv <ﬁ) IIBIIZS>
He Lo

N

Gl B e
six (|9 (59 (%)) et + |59 ()| 190 ) 1t
and
s4s|'v (%) el (v(:%) Lw||@||Hs+|ﬁ_u Hs||w||po)-
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The third term is estimated using C-S and Lemma 6 as

e [ A0,

JEZL

S 2218 (Bw)ll 2 11858 2

JET

S 1161

1B1] o [lw]

HS( Hs+||w||L00||B| Hs)-

The fourth term also needs a further decomposition in order to close the esti-
mate. We decompose it as

% 3 22js/ A, (f} \mf) A;Bdz = S5+ S,
Q

jez
with

22235/5Du A;(Du)A; 5 dx
JEZ

and
JEZ Q
Firstly, we use weighted Young inequality to estimate Ss:

Du
Vw

B

Ss S22 ||A B e Vo

D(Aju)

JEZ Lo L2
|l B 2
BlI%. + 65 2% || =D(Au
Hfmnm S| i)
< C0) 2 || B ?
Va2 [18]%0 + 6 37 2% || 2 D(A )
m\\LH!H KZ% ﬁ(am
B 2
S CE) L+ ) [|Vul[roe |85, + 6> 2% ﬁD(AJ‘U)
JEZ L

The term Sg is estimated by using C-S and Lemma 4. Afterwards, me must
decompose the term H’BDUHHS in a suitable way to be able to apply Lemma 5 and
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close the estimate.

Se < (H ( ]Du) || s + | VUl o é]D)u )
Lo w Hs
5 2
< 52 2%% || —=D(Aju)
JEZ \/— L2

+ (1 + 02 (14 ||wll e + 11813 ) (14 [[Vulfiw + [Vl [2 + [|VBI[7)
x (14 [[Vel[EL) (Il o+ 18115

|
v (\%m) he) -

(lul
Finally, the fifth term is decomposed as follows:

+(L+1)'2 2+ 18]

LOO

(0% 222]8/ j (f} |Vﬂ|2> Ajﬁ dr = S7 + Sg,

JEL
with

S7 = OZgZszS/ f}V(Ajﬁ)VBAjﬁdw
Q

jez
and

Sg = a3 ZQQJS/Q <[Aj7 ijﬁ] Vﬂ> AJB dzx.

JEZ
They are estimated in a similar fashion as S5 and Sg:

Vi

; s
Sy < 2208 ||~ APl 2 [|[—=V(A,;B
7 j% \/CULOOHJHL @(])B
2
<S80 || L=v(AB)|| +C(5) e
jEZ L2 min

2

)1 +1) V517 11817

Hs -

b o
<oy 2w
Z \/_

JEZ

Jﬂ)
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(o) )

S0 25 || =V(A;B)
JEZ
+ (1)l (1 +lwllz + 18117) (1+ |V [Fo + VB[
x (14 (1VwllE) (Il + 118113 )

v (Zzou| noe

Lo
Collecting all the estimates, we find

and

B

Ss

18]

Lo
2

e T VBl e || =VB

~Y

L2

+ (1411

2

LI A + (v cd) Y2

JEZ JEZ

L2

Lo@auw|| +||2

Evia0)
2
N \/c_uv(Ajw) L2>
+ (141255 (14 (ol + 11813 )
x (14 [Vl + V|3 + [1V8]]7 )
x (14 11Vl 72 (lul 3 + ol + 118115
+ (1+ P2 (14118 1)

“(F ()l
x (1+][Val|2L) (||u| I ||w| e + 1Bl

5522%‘5( i | B

JEZ

L2

)l v (&)

)
).

In the next section, we will join together the estimates for u,w and g to find
uniform energy bounds for the triplet (u,w, [3).

3.2.4 Closing the estimates

We define the energy of the system as

E(t) = [Jult)l[z. + llw®|[z + 18]

Due to the characterization of norms in H* established in (3.1.3)

. (3.2.13)

B(t) = E(t) + En(t),
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where
Eo(t) = l[u(t)][72 + [lw(®)I72 + [1BE)]I2

and

1) = 322 (11Au(0) s + 1A @2 + 14,80)]12).

jez
First of all, low order estimates given by (3.2.3), (3.2.4) and (3.2.6) show

On the other hand, the collection of all the high order estimates in Section 3.2.3
derives into

2

L2>

2

B

7 V() =

N

< e (14023 F(1) (c1E0(0> + Eh( ),

iEh )+ > 2% (H]D) (Aju) V(A;pB)

dt P

2

where

F(t) = (1 + 118117 (1+ ||w||2w) (1+11Vu, Ve, VB|[3)
+ (1 + 118l 0e) (14 V][5

(7 Gzl Al )

We deduce from Gronwall lemma that

+

oo

)

Vit > 0, Eh(t) + ClEQ(O) < (Eh(O) + ClE()(O)) exp <02 /t(]_ + 3)2L5J+3F(8) ds

0

(3.2.15)

From the definition of the energy in (3.2.13) and the previous inequalities, it
holds

)

Vt>0, E(t)< E(0)exp <c / t(1 + 5)2IH3 R (s) d5> . (3.2.16)

0

We define the time instant 7" > 0 as
¢
T := sup {t > O‘ / (1+5)2LIT3F(s)ds < 2log 2} :
0

so that it holds
sup E(t) < CE(0) (3.2.17)

t€[0,T]



101 3.2. A priori estimates

for some constant C' = C'(v, vy, ..., a4, d, s, w,,w*) > 0.
Note that the uniform estimates of the energy also provide

B

0 jez

2

) ) ds < £(0),

s s
+||—=V(A + ||—=V(A
H Ve Vo
for t € [0, 7.
At this pomt, we can develop a blow-up criterion analogously as in [25]. We
have that, due to the previous estimates, if the blow-up instant of time is 7% < oo
and

T*
/ (1+5)2LIT3F(s)ds < oo,
0

then F(T*) < oo. Consequently, the solution cannot blow up at time 7" and
can be continued into a solution of (V.2) with the same regularity, if uniqueness
is granted (this will be proven later, as well as the rigorous existence of the solu-
tion). Therefore, the finity of the previous integral provides us with a continuation
criterion for our local solution.

Now, we will refine the continuation criterion. Firstly, it is straightforward
that one can remove the factor (1 + ¢)2l5J¥3 when T is finite. In addition, we can
estimate, using (3.1.1),

T* T*
| [ (A panie ||wu?d/d+2) ds

2 * 2d d 2
<11BolP T +(1+HU0750||L2)/0 IVBIRY@D g,

With this in mind, the equivalent continuation criterion (VI.1) is established.
Furthermore, we can get uniform energy estimates in terms of the initial energy.
Owing to the regularity s > 1 + d/2 and Sobolev embeddings,

thh(t) < C(1+ B(0)(1 + )41 + B, (1)) Ls)+3

with C' > 0 a uniform constant. Integrating from 0 to t, we get

1 1
T+ BRI T T+ BO) I

thus

< C(1+ E(0) [(1+ )17 — 1],

1+ E(0)
O S Tl g = 1+ B

(3.2.18)

for some constant C' = C'(v, ay, ..., a4, d, s, ws, w*) > 0.
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3.3 Local existence and uniqueness of solutions

In order to proof Theorem 5, we follow the strategy in [25] for the 1-D model. In
the previous reference, the proofs are discussed in detail, so when it is appropriate,
we will omit some details and refer the reader to the latter reference. The proof
begins by the construction of approximated solutions to system (V.2). Then, we
will find a real solution by a convergence argument. Finally, uniqueness of solutions
follows from a stability estimate for the system (3.2.9) and the equivalence between
the latter system and the original one.

3.3.1 Local existence of solutions

We will deal with sequences of solutions, denoted (f.).. When a sequence is
bounded in a normed space X, we will write (f.). C X. For simplicity, we will
sometimes use the notation L4.(X) := L*([0,T]; X).

We begin by removing the degeneration created by the possible vanishing of
turbulent kinetic energy k by lifting the initial data: for 0 < e < 1, we define

2
]{3075 Z:( k’Q—I—E) .

From the initial regularity v/ko € H*(Q), it is easy to see that
(k(]ﬁ)E - HS(Q), ]{7075 > 0.

At this point, for any fixed 0 < & < 1, we can solve the original system (V.2)
with respect to the initial data

(o, wo, ko) € HY(Q) x H*(Q) x H*(Q),

by Theorem 1 in [53]. The solutions (ug.,woe, ko) are constructed via a Galerkin
method, hence they are smooth and the a priori estimates are justified for these
solutions. Furthermore, some uniform-in-¢ properties hold.
The solutions are defined on the common time interval [0, 7] thanks to (3.2.18),
with
T .= inf)T6 > 0.

€€(0,1

Additionally, pointwise bounds described in (3.2.1) and (3.2.2) imply
(We)e C L([0,T] x Q), 0 <we(t,x) <w

and
ke(t,z) >0
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for all (t,z) € [0, 7] x Q. Furthermore, the uniform estimate (3.2.17) gives

(e, we, \Jke)e © LE(H®) x L (H?) x L (H?)

and it is direct in our setting that then, (k.). C L¥(H?®). We also obtain from the
uniform estimates that

( fj]]])ua) , ( fv%) , ( ZZEV(\/?E)) C LA(HY).  (33.1)

By Banach-Alaoglu theorem, we can extract a weak star convergent subse-
quence in LF(H®). We will prove that the limit of the mentioned subsequence
(u,w, k) is indeed the solution to our original system (V.2), by a compactness
argument.

We recall the equation for .,

ke
Owue + (ue - V)ue + Vp. — v div ( ]D)u5> = 0.

We

Taking the divergence operator to the equation we find the elliptic PDE for the
pressure as in (3.2.7). Therefore,

Vp. = V(=A)"!div ((us -V)u. — v div (ke Du€>> :

We
so, due to the L? estimate (3.2.8), the regularity of u. and (3.3.1), we find
Vp € Lp(H*),

thus
(Opu.). C LA(H*™)

and
(u.). € LP(H®) N W2(H™Y).

Ascoli-Arzela theorem gives the compact inclusion (u.). C Cr(H*™'). Then, by
interpolation of the previous space and L3°(H?), the strong convergence

ue —u in Cp(HY) for0<Il<s

holds for some subsequence (we abuse notation to avoid relabeling). Equipped
with this regularity, we can assure pointwise convergence of u. and its first order
derivatives

u: —u and Du. — Du  almost everywhere in [0, 7] x €. (3.3.2)
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An analogous analysis can be made for the sequences (w.). and (k.)., finding
pointwise convergence for them and their first order derivatives. We conclude that
the gradient of the pressure, recovered from the velocity, has regularity

Vp S CT(HS_2).

With this analysis, we conclude that the triplet (u,w, k) is a solution to the
original system (V.2). It is not difficult to conclude that the triplet (u,w, k)
solves (3.2.9) with the same regularity properties.

3.3.2 Uniqueness of solutions

First of all, we can prove that it is equivalent to find a weak solution to the
original system (V.2) and to the modified system (3.2.9) in the following functional
framework:

Xp(Q) == {(w,w,k) | ww ke L¥(0,T]xQ), w>0, k>0,
u,w,Vk € C([0,T]; L*(R)), Vu,Vw, V(VE) e L=([0,T] x Q)}.

The proof follows from Lemma 4.1 in [25].

Secondly, we can state a stability estimate in L? for strong solutions to (3.2.9).
Once we prove it, uniqueness of solutions to the original system (V.2) follows as a
consequence of the equivalence between the two systems.

Theorem 7. We assume that the triplets (uy,wq, 51) and (ug, wq, B2) are solutions
to (3.2.9). Assume also that, for some time 7' > 0 and j = 1,2, it holds that

(w0 B) € {(ww, ) | w8 L(0,THL®Q), w>0, B0,
Vu, Vw, VB € L=([0,T]; L=(Q))}.

Define the difference of the solutions as
U=u1—uy, Y:=w—wy, B:=p—/p,
and assume that U, 3, B € C([0,T]; L*(Q)). Define the energy norm
E(t) := [|U0)72 +IZO[72 + 1 BEz2

Then, there exists a constant C' = C(v, o, ..., q4) and a function © € L'([0,T])
such that, for all ¢ € [0, T, the following stability estimate holds

E(t) < E(0)exp (C’ /t @(T)dT) :
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Proof. The proof follows the same strategy as Theorem 4.2 in [25]. First of all, we
find that U solves the symmetric equations

k
U +u1 VU 4+ V(p1 — po) — v div (J]DU) = —UVuy + vdiv (P Duy) (3.3.3)
1

and

W

k
U +uyVU 4+ V(pa — p1) — v div <2DU> = —UVu; +vdiv(P Duy) (3.3.4)
2

where P is defined as

2 2
Pl B Pey Lo
w1 W2 C)
and p; stands for the pressure associated to the velocity u;. We perform energy
estimates for (3.3.3) and (3.3.4), integrate by parts when it is useful and sum the

two symmetric estimates to get

pE B
L0+ /“(1 B3\ DU do < (1[Vurll e + IVl 101

/ A Y (Duy + Duy) DU dx| + v
Q

Wi

/ — (b1 + B2) B (Duy + Duy) DU dx| .
Q W2

We estimate

/ i Y (Duy + Duy) DU dz
0 Wils
| 5

Wao+/W1

< (V]| oo + V][ 1) HEHLz

\/_

52
s5A;;mvﬁmwwxavamm+anmm) I
Moreover, for j = 1,2, it holds
/ Bi B (Du; + Duy) DU dx
Q W2
Ws 6]
< IVl oo + [IVu2|| 1) |\/_j 1B - \/7DU
w2 L \/_ L2
82 o |12
<3 [ ZpUPds+C) (IVulli +I19usle) | L2 81
Q Wj W2 |00
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Consequently, up to the choice of § > 0 which will be chosen later to be small
enough, we get the estimate

d 2 2
U + (v~ ca)/Q (ill + 52) IDU|? dz < ©,(1)E(1), (3.3.5)

%)

up to a multiplicative constant only depending on the parameter v. The functional
B VW1

We move on to the equation for X, in order to get a similar L? estimate. It is
easy to check that ¥ solves the symmetric equations

| ’

O1(t) = ||Vur, Vo | oo+ Vi, Vitz| |7 (

[ %

oY+ VE — o div (EVZ) + as(wy +wy)X = —UVwy + ay div (P Vws)
and

oY + us VY — oy div (ZZVE) + ag(wy +wy)X = —=UVw; + a; div (P Vuwy).
At this point, we can perform similar computations to find

d 2 2
91+ =) [ (24 ) 195 arban [ anlopas £ 0:080),
dt o \W1i W Q

(3.3.6)

where the multiplicative constant depends only on «; and
@2<t) = val, V(.UQ‘ ‘Loo
il

Wa/W1

Jor

%)

| ‘

2 1
|

Lo (.UQ

Finally, we need to find a L? estimate for B. We define

p=ti B Pig 1y

w1 ) W12 %)

LOO

+HVwawﬂﬁm(H

)

to control the extra terms appearing in the equation for i, 3. We find the two
symmetric equations for B:

2 1 1
OB +uVB — a3 div (fleB> + §W1B = UV + a3 div(P V) — 5252
1

+ %&DU : (Duy + Duy) + %]5|]Du2|2
2 w1 2

s TLVB (V6 + V) + s PV
1
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and

OB +usVB — a3 div (52 ) + 2sz = —-UVp + a3 div(P V) — *251

+ 245200 Dy + Dug) + 2 BlDuy 2
2 Wa 2

—+ 063@VB (Vﬁl —+ VBQ) + @3?|V61|2.

We notice that the first two terms in the right hand side are analogous to the
terms appearing in the previous equations. The third term appears in the energy
estimate as a contribution of

(51+52)23d37 (B2l oo + 11521] Lo JE(2)-

2

The fourth term can be estimated as

/ 4By . (Duy + Dug) B da
Q

Wi

IV, Vo[ || Bl

LOO

<5/62|]D>U12d +C(5)‘ !

J

The sixth term is similarly estimated as

/ a3&VB (VB + V5)Bde

1
V51, Va1 |IBl7

LOO

2
<5/6 |VB|? dz +C(5)‘

J

Finally, we can easily control the terms where P appears. We have

/ (S PIDwP + asPIVB) B
Q

B

W12

<19 o BEC

LOO

Gathering the previous estimates, we extract the energy bound
d 1
18132 +(as ) [ 55 s oo JREESIET
dt Q 2 /g
(ﬂl 52) IDU|? da, (3.3.7)

W

< O(8)Os(t)E(t) + 6 /

Q
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up to a multiplicative constant depending only on as, ay, where

O3(t) := ||Vur, Vug, VB1, VBal| e + |81, B2l | o
+ ||V, Vs, v617V62Hioo

2

2 —
VW1W2 || [ oo W2 || W wallpe W12 || 1

Summing the estimates (3.3.5), (3.3.6) and (3.3.7) and fixing the value of § > 0
small enough to absorb the extra terms with the left hand side of the inequalities,
we find the stability estimate

d
%E(t) S (©1(t) + O2() + O3(1))E(),
where the multiplicative constant is such that C'= C(v, ay, ..., a4). The applica-

tion of Gronwall lemma concludes the proof.

]
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