
Automated Code Generation for
Inter-parameter Dependencies in REST APIs

Saman Barakat1[0000−0002−7714−3742], Enrique Barba
Roque[0000−0002−7018−498X], Ana Belén Sánchez1[0000−0003−1473−0955], and

Sergio Segura1[0000−0001−8816−6213]

SCORE Lab, I3US Institute,
Universidad de Sevilla,

Seville, Spain
saman.barakat@gmail.com

Abstract. The generation of code templates from REST API specifica-
tions is a common practice in industry. However, existing tools neglects
the dependencies among input parameters (so called inter-parameter de-
pendencies), extremelly common in practice and usually described in
natural language. As a result, developers are responsible for implement-
ing the corresponding validation logic manually, a tedious and error-
prone process. In this paper, we present an approach for the automated
generation of code for inter-parameter dependencies specified using the
IDL4OAS extension. As a proof of concept, we present an extension of
the popular openapi-generator tool ecosystem, automating the genera-
tion of Java and Python code for the management of inter-parameter
dependencies in both, servers and clients. Preliminary results show the
effectiveness of the approach in accelerating the development of APIs
while making them potentially more reliable.

Keywords: Web APIs · Scaffolding · Code generation · OpenAPI Gen-
erator

1 Introduction

REST Application Programming Interfaces (APIs) are widely described using
the OpenAPI Specification (OAS) language [5], which provides a structural de-
scription of the APIs. OAS document enables developers and machines to use
and understand the functionality of services without knowledge of the actual
code implementation.

One of the applications of OAS is scaffolding: OAS documents can be used by
code generation tools to produce client and server code in various programming
languages. This saves time and effort for both API developers and API con-
sumers. OpenAPI Generator is a popular code generation tool for OAS [4]. It is
developed in Java and has over 50 generators for clients and servers in different
languages.

Inter-parameter dependencies (or simply dependencies) are constraints that
restrict the way in which two or more input parameters can be combined to
form a valid call to the service. For example in the Yelp API [6] (endpoint busi-
nesses/search), the parameter location is required if either the latitude or

2 S. Barakat et al.

longitude parameters are not provided, and both parameters are required if
the location is not provided. A recent study revealed that dependencies are ex-
tremelly common and pervasive in industrial REST APIs: they occur in 4 out of
every 5 APIs across all application domains and types of operations [9]. However,
OAS provides no support for the formal description of these types of dependen-
cies, despite being a highly demanded feature by practitioners1. Instead, users
are encouraged to describe them informally using natural language2.

Current scaffolding tools do not support inter-parameter dependencies be-
cause they are not supported in OAS. Therefore, the validation code associated
to these dependencies must be manually implemented. In the previous example,
for instance, developers should write the required assertions to make sure that
(latitude and longitude) must be used together when the (location) param-
eter is not provided, both in clients and servers. This is not only tedious, but
also error-prone making validation failures very common in practice [10].

The aim of this paper is to automate the generation of validation code for
inter-parameter dependencies in REST APIs. Specifically, we propose a specification-
driven approach supported by an extension of the popular tool OpenAPI Gen-
erator.

2 Approach

Our approach relies on the IDL4OAS extension for OAS [8]. Specifically, IDL4OAS
allows to formally describe the inter-parameter dependencies of API opera-
tions using the domain specific language IDL (Inter-parameter Dependency Lan-
guage) [8].

Our work follows a model-based approach where the specification of the
API—including the description of its dependencies using IDL4OAS—is used as
a starting point for the generation of code. Our approach has been implemented
in an extension of OpenAPI Generator as a base, extending its functionalities to
generate code assertions for the dependencies. This way, we can just focus on the
process of parsing IDL and generating code, while also providing the OpenAPI
community with the possibility of using IDL for their own projects.

OpenAPI Generator uses a set of templates to generate code for a specific
programming language and/or framework. The templates contain common code,
independent of the specific API, and have variables that are replaced with the
parsed and processed information from the OAS file. For example, a Java tem-
plate file could be a class skeleton that implements the operations of an API,
and the method names would be substituted from the parsed OAS file.

The project extends the OpenAPI Generator logic that processes the OAS
file and generates the variable map for the template. If an operation uses the
IDL4OAS extension [8], this is processed into a code assertion in the target lan-
guage and added to the variable map. The templates are modified to include a
conditional block that will add as many assertions as there are in the map. Fig-
ure 1 illustrates the process of automatically generating code with the OpenAPI

1 https://github.com/OAI/OpenAPI-Specification/issues/256
2 https://swagger.io/docs/specification/describing-parameters/#dependencies

Automated Code Generation for Inter-parameter Dependencies 3

Generator using the extension for the management of inter-parameter dependen-
cies. An example of OAS file using IDL with dependencies is shown in Listing
1. The generated code from the before IDL example is presented in Listing 2.

Open API

Specification

IDL4OAS

}

Modified template filesAPI info + Dependencies assertions

Java project

with assertions

Fig. 1: Process of generating code with OpenAPI Generator

1 paths:

2 /businesses/search:

3 get:

4 parameters:

5 - name: location [...]

6 - name: latitude [...]

7 - name: longitude [...]

8 - name: open_now [...]

9 - name: open_at [...]

10 - [...]

11 [...]

12 x-dependencies:

13 - Or(location , latitude AND longitude);

14 - ZeroOrOne(open_now , open_at);

Listing 1: OAS document of the businesses/search operation from the Yelp API
extended with IDL4OAS

1 // Check dependency: Or(location , latitude AND longitude);

2 if(DependencyUtil.doNotSatisfyOrDependency ((location != null),(latitude != null) && (longitude != null))){

3 return new ResponseEntity("Dependency not satisfied: Or(location , latitude AND longitude);",

4 HttpStatus.BAD_REQUEST);

5 }

6 // Check dependency: ZeroOrOne(open_now , open_at);

7 if(DependencyUtil.doNotSatisfyZeroOrOneDependency ((openNow != null) ,(openAt != null))){

8 return new ResponseEntity("Dependency not satisfied: ZeroOrOne(open_now , open_at);",

9 HttpStatus.BAD_REQUEST);

10 }

Listing 2: Code with inter-parameter dependencies automatically generated

3 Preliminary evaluation

As a preliminary evaluation, we compared the code generated by the original
version of OAS Generator (without suppport for dependencies) and our extension
of the tool (with support for dependencies) in terms of lines of code. Table 1
shows the result of our experiment on 5 real-world API operations. As illustrated,
the original tool generated 70 lines of code for the videos resource in the Youtube
API [7], whereas our extension generated 104 lines of code after including the
IDL specification, i.e., 34 new lines of code that represent an increase of 32% over
the original code. While, in the Github API [2], it can be seen that the original
tool generated 108 lines of code and our tool generated 123 lines, which makes
15 lines more related to IDL specification (about 12% of increment regarding
the original code). Similarly, after using our tool with Yelp [6], OMDb [3], and
DHL [1] APIs, it generated 12, 13, and 12 lines more for each API, respectively,
comparing with the original tool. It can be observed that the Youtube API

4 S. Barakat et al.

has more numbers of code lines generated compared to the other APIs. This is
because Youtube API has more IDL dependencies than the other APIs used in
this experiment.

API Resource #LOC Original tool #LOC IDL extension
Youtube GET /youtube/v3/videos 70 104
Github GET /user/repos 108 123
Yelp GET /transactions/search 52 64
OMDb GET /search 56 69
DHL GET /find-by-address 76 88

Table 1: #LOC in OpenAPI Generator tool and in our extension

4 Conclusions
In this paper, we aimed to develop an extension for the OpenAPI Generator
tool to support code generation of inter-parameter dependencies in the REST
APIs. As far as we know, this is the first work aimed to generate code of inter-
parameter dependencies in the REST APIs. Preliminary evaluations show that
our work accelerates the development and makes APIs potentially more reliable
since some of the validation logic is added automatically. In the future, we plan
to improve the tool and enable the generation of code for more programming
languages.

Acknowledgements
This work has been partially supported by the European Commission (ERDF)
and Junta de Andalućıa under projects APOLO (US-1264651) and EKIPMENT-
PLUS (P18-FR-2895), and by the Spanish Government under project HORATIO
(RTI2018-101204-B-C21).

References

1. Dhl location finder api. https://developer.dhl.com, online; accessed May 2022
2. Github api. https://docs.github.com/en/rest/repos, online; accessed May 2022
3. Omdb api. http://www.omdbapi.com/, online; accessed May 2022
4. Openapi generator. https://openapi-generator.tech/, online; accessed April 2022
5. OpenAPI Specification. https://swagger.io/specification/, online; accessed March

2022
6. Yelp api. https://www.yelp.com/developers/documentation/v3, online; accessed

May 2022
7. Youtube data api. https://developers.google.com/youtube/v3/docs/videos/list,

online; accessed May 2022
8. Martin-Lopez, A., Segura, S., Muller, C., Ruiz-Cortes, A.: Specification and auto-

mated analysis of inter-parameter dependencies in web apis. IEEE Transactions on
Services Computing pp. 1–14 (2021). https://doi.org/10.1109/TSC.2021.3050610

9. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A catalogue of inter-parameter de-
pendencies in restful web apis. In: Yangui, S., Bouassida Rodriguez, I., Drira, K.,
Tari, Z. (eds.) Service-Oriented Computing. pp. 399–414. Springer International
Publishing, Cham (2019)

10. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Restest: Black-box constraint-based
testing of restful web apis. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H.,
Bouguettaya, A., Motahari, H. (eds.) Service-Oriented Computing. pp. 459–475.
Springer International Publishing, Cham (2020)

