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Abstract

A method for tailoring mass matrices that allows large time step explicit transient
analysis is presented. It is shown that the accuracy of the present tailored mass matrix
preserves the low-frequency contents while effectively replacing the unwanted higher
mesh frequencies by a user-desired cut-off frequency. The proposed mass tailor-
ing methods are applicable to elemental, substructural as well as global systems,
requiring no modifications of finite element generation routines. It becomes most
computationally attractive when used in conjunction with partitioned formulation as
the number of higher (or lower) modes to be filtered out (or retained) are signifi-
cantly reduced. Numerical experiments with the proposed method demonstrate that
they are effective in filtering out higher modes in bars, beams, plain stress and plate
bending problems while preserving the dominant low-frequency contents.
KEYWORDS:
mass matrix tailoring; explicit time integration; partitioned analysis

1 INTRODUCTION

Explicit transient analysis of linear and nonlinear mechanics problems has remained popular, due to simplicity when employing
diagonal mass matrices and to some degree as it can accommodate variable time step strategies. It has been recognized that the
Courant step size restriction1 is largely due to the so-called mesh frequencies rather then physical contents when the dynamic
response is dominated by low-frequency modes. It should be mentioned that an important exception occurs when the responses
are dominated by the propagation of discontinuous stress waves where dispersion accuracy improvements are desired2,3,4,5,6.
In order to alleviate the step size limitations imposed by the mesh frequencies whose response components contribute very
little when low modes dominate the transient responses, various mass matrix tailoring have been introduced by altering the
mass matrices in order to reduce/ filter out the high frequencies of the dynamical system without affecting the low-mid fre-
quencies7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23. Most of existing methods cited above require either replacing existing elements
by tailored elements and/or adopt element component-dependent time stepping procedures, leading to either elemental and/or
global approaches, depending on how the modification of the mass matrix is made.

There is another issue which is typically paid only with lip-service attention: software modularity and implementation require-
ments. Most elemental modification approaches need to modify element mass and/or stiffness generation routines. Perhaps the
spectral scaling and global polynomial matrix selective mass scaling16 may be viewed as mass scaling methods that require no
elemental routine modifications. To the best of our knowledge, the global mass matrix modifications proposed therein leads to
dense mass matrix whereas the local mass scaling distorts the original mode shapes. The multiscale mass scaling17 may be clas-
sified as a local/global method, in which low frequency response components are approximated by a set of reduced-order bases
via proper orthogonal decomposition (POD). The mass matrix corresponding to the residual high frequency components are
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scaled not in the modal basis but in the physical degrees of freedom contents. Hence, the accuracy of some of the intermediate
modes may have been compromised as reported in their numerical experiments.

The preceding review of existing literature indicates that existing mass scaling methods fall into two categories: elemental or
global mass matrix modifications. While global approaches can reduce the maximum frequencies of the assembled global system
for large-scale models, spectral analysis at the global level becomes computationally infeasible. As for elemental modification
approaches, although conceptually simple and easy to implement, it has been shown that the elemental approaches applied at
the local level can severely affect accuracy.

In the present work, we propose a mass matrix tailoring approach aimed at filtering out the high-frequency response compo-
nents that are considered mesh frequencies or that contribute very little to overall response components, and that can be applied
via lower or higher mode shape projection. Specifically, we invoke the following requirements:

1. We rely on existing FEM software requiring no element-level modifications.
2. We avoid modifications in global-level matrix.
3. Most important of all, we employ mass tailoring on substructural level, thus avoiding costly global modifications.
4. To facilitate the preceding requirements, we carry out mass matrix tailoring within the context of partitioned analysis24,25.

One immediate benefit of employing partitioned analysis is its natural adaptation to treat substructural heterogeneities.
Section 2 introduces a simple example of elemental mass tailoring, illustrating the limitations of elemental mass tailoring, even

though it preserves the translational mass conservation. From this simple example, specific desirable mass tailoring properties
are identified and listed. Section 3 introduces partitioned explicit time marching procedure where the key computational need is
the calculation of accelerations for each step marching. Two mass tailoring methods are presented in Sections 4 and 5. The first
one is to utilize substructural high-frequency mode shapes together with the cut-off frequency such that all the higher modes
are annihilated and replaced by the same cut-off frequency while still preserving the mode-frequency contents for subsequent
partitioned analysis. The second is to utilize low-frequency mode shapes which effectively yields the same characteristics except
the resulting mass tailoring strategy is different from the first one. In Section 6 it is justified the definition of a cut-off frequency
at the substructure level.

Section 7 illustrates the performance of the proposed two mass tailoring methods and show the effectiveness of the present
mass tailoring methods via eigenvalue analysis using the scaled mass matrices as compared with the unscaled mass matrices, as
applied to vibration analysis of bar, plain stress problem and plate bending vibration problems. The numerical results indicate
that one can effectively increase maximum explicit time steps ranging from 4 to 10. Section 8 summarizes the objectives set out
in Section 2 and observations accrued from the present study and identifies further studies to make the proposed mass tailoring
methods as applied to nonlinear transient analysis.

2 MOTIVATION FOR PRESENT STUDY AND DESIRABLE MASS TAILORING
PROPERTIES

This section illustrates a simplest example revealing the limiting features of elemental mass matrix tailoring and sets up
requirements for desirable mass matrix tailoring.

2.1 A bar elemental mass tailoring example
Consider an elastic and homogeneous one-dimensional bar discretized with a regular mesh of 𝑁𝑒 linear finite elements. The
semi-discrete equation of motion of this problem can be written:

𝐌�̈� +𝐊𝐮 = 𝐟 (1)
where the global mass and stiffness matrices are formed by an element by element assembly of finite element contributions
given by the expressions:

𝐌𝑒 =
𝜌𝐴ℎ𝑒

2

[

1 0
0 1

]

, 𝐊𝑒 =
𝐸𝐴
ℎ𝑒

[

1 −1
−1 1

]

, 𝑒 = 1, 2…𝑁𝑒 (2)
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TABLE 1 Maximum global frequency 𝜔𝛼
𝑚𝑎𝑥 for different values of the tailoring parameter 𝛼 for the FEM bar example with

𝑁𝑒 = 40 elements and maximum frequency 𝜔𝛼=0
𝑚𝑎𝑥 of Figure 1 . The last two columns represent the maximum global frequency

scaling and the stepsize gain factor, respectively.

Parameter 𝛼 𝜔𝛼=0
𝑚𝑎𝑥 𝜔𝛼

𝑚𝑎𝑥 𝜔𝛼
𝑚𝑎𝑥∕𝜔

𝛼=0
𝑚𝑎𝑥 𝖭𝗀𝖺𝗂𝗇

0 √

2
√

2 1 1
3 √

2 1
√

2
1
2

2
15 √

2 1
2
√

2
1
4

4
99 √

2 1
√

50
1
10

10

with Young’s modulus 𝐸, mass density 𝜌 and element size ℎ𝑒. Eigenvalue analysis of these finite element matrices, reveal that
the element presents only one deformational mode shape, given by the mass-normalized eigenvector:

𝚽ℎ = 1
√

𝜌𝐴ℎ𝑒

[

1
−1

]

(3)

associated to the frequency 𝜔𝑒 = 2𝑐∕ℎ𝑒, where 𝑐 =
√

𝐸∕𝜌 is the phase velocity of the elastic medium.
Historically, there have been two approaches to tame the mesh frequencies so that one could use a larger explicit integra-

tion step, namely, elemental mass tailoring and global mass tailoring. Elemental mass tailoring can be accomplished with the
following transformation of the element mass matrix:

�̂�𝑒 = 𝐌𝑒 +𝐌𝑒𝝓ℎ
(

𝛼𝐈1
)

𝝓𝖳
ℎ𝐌𝑒 (4)

where 𝝓ℎ is the elemental mesh mode shape (3), also highest elemental frequency eigenvector for this example and 𝛼 > 0 is a
scaling parameter. Note that this tailored mass matrix will be symmetric and positive definite by construction for positive values
of 𝛼. Evaluating the expression for our case, it is obtained:

�̂�𝑒 =
𝜌𝐴ℎ𝑒

2

[

1 + 1
2
𝛼 − 1

2
𝛼

− 1
2
𝛼 1 + 1

2
𝛼

]

(5)

a modified element mass matrix that scales the frequency of the deformational mode by a factor (1 + 𝛼)−
1
2 .

As an example, let us investigate how global mesh frequencies are affected by the proposed tailored mass matrix (5) consid-
ering a bar discretized with 𝑁𝑒 = 40 finite elements of frequency 𝜔𝑒 =

√

2. Table 1 presents the global maximum frequency
𝜔𝛼
𝑚𝑎𝑥 obtained for different values of the scaling parameter 𝛼 and the reduction 𝜔𝛼

𝑚𝑎𝑥∕𝜔
𝛼=0
𝑚𝑎𝑥 = (1 + 𝛼)−

1
2 with respect to the

unscaled maximum frequency 𝜔𝛼=0
𝑚𝑎𝑥. Because the maximum stable explicit stepsize can be evaluated as Δ𝑡𝛼 = 2∕𝜔𝛼

𝑚𝑎𝑥, the final
stepsize gain factor is computed as 𝖭𝗀𝖺𝗂𝗇 = Δ𝑡𝛼∕Δ𝑡𝛼=0 = (1 + 𝛼)

1
2 . In Figure 1 we compare the numerical frequencies of the

bar with the analytical solution, for different values of the scaling parameter. It is clearly observed how accuracy in the lower
modes quickly degrades with the element scaling parameter 𝛼.

The preceding simple example illustrates that an element-by-element mass tailoring to increase critical time step for explicit
transient analysis is not feasible for stepsize increases beyond a factor of 2, at least for the cases of one-dimensional problems.

2.2 Desirable mass tailoring properties
All was not futile with the one-dimensional elemental mass tailoring reported in the preceding demonstration example, though.
It demonstrates that the high-frequency filtering scheme given by (4) preserves the low-frequency mode and its mode shape
(3) for the bar, the rigid-body mode (associated to 𝜔𝛼 = 0) and its mode shape. In addition, it conserves the total mass of the
assembled system.

We are now in a position to stipulate the desirable properties of mass matrix tailoring:
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FIGURE 1 FEM bar example with𝑁𝑒 = 40 and element-by-element mass tailoring. The color band delimits a 10% of analytical
error. Beyond the reduction of critical stepsize by half (𝛼 = 3), the accuracy loss for lower modes is not permissible.

• System kinetic energy should be conserved after undergoing mass tailoring up to user-specified cut-off frequency defined
as 𝜔𝑐 .

• Modes and mode shapes of the low-frequency contents to be retained should not be modified.
• Tailored mass matrices should not require full dense matrix factorization.
• Tailored mass matrix should be applicable to all finite elements without requiring modifications FEM software within

element generation routines. This can be taxing for nonlinear explicit transient analyses.
• Finally, it should avoid global tailoring (even though it can), which are typically are expensive and costly, especially for

large-scale problems.
Mass matrix tailoring that satisfies most of the desirable properties set out above is described in the next section.

3 PARTITIONED ANALYSIS

To derive the partitioned equations of motion of a linear structural dynamical system, we use the variational formulation proposed
by Park and Felippa24,25,23,26 where the problem is treated like if all bodies were entirely free. Then, the total virtual work of
the complete system is obtained by summing up the contributions of each substructure, plus the contribution of the interface
constraints via the method of localized Lagrange multipliers (LLM):

𝛿𝒲𝓉 = 𝛿𝒲𝒹 + 𝛿𝒲𝒸 (6)
terms corresponding to the virtual work of the free-floating substructures and localized interface constraints, respectively.

The displacement-based discrete energy functional 𝒲𝒹(𝐮), for a group of 𝑁 free-floating linear undamped substructures
under dynamic loading, can be expressed in matrix form as:

𝛿𝒲𝒹 (𝐮) =
𝑁
∑

𝑖=1
𝛿𝒲𝒹𝑖

(

𝐮𝑖
)

=
𝑁
∑

𝑖=1
𝛿𝐮𝖳𝑖

{

𝐌𝑖�̈�𝑖 +𝐊𝑖𝐮𝑖 − 𝐟 𝑖
}

= 𝛿𝐮𝖳 {𝐌�̈� +𝐊𝐮 − 𝐟} (7)
with the following definitions,

𝐌 =
⎡

⎢

⎢

⎣

𝐌1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝐌𝑁

⎤

⎥

⎥

⎦

, 𝐊 =
⎡

⎢

⎢

⎣

𝐊1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝐊𝑁

⎤

⎥

⎥

⎦

, 𝐮 =

⎧

⎪

⎨

⎪

⎩

𝐮1
⋮
𝐮𝑁

⎫

⎪

⎬

⎪

⎭

, 𝐟 =
⎧

⎪

⎨

⎪

⎩

𝐟1
⋮
𝐟𝑁

⎫

⎪

⎬

⎪

⎭

(8)
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FIGURE 2 Connection of two substructures using localized Lagrange multipliers. Localized Lagrange multipliers introduce
an explicit definition of the interface with its own DOFs denominated frame.

where 𝐮 is the partitioned subsystem-by-subsystem displacement vector, 𝐟 the assembled vector of external forces, 𝐊 and 𝐌 are
the block diagonal substructure-by-substructure stiffness and mass matrices, respectively, the subindex 𝑖 = 1,… , 𝑁 refers to
partition number and the superscript dot denotes time differentiation.

The key to obtain a partitioned formulation of the problem is to treat the connection interfaces by the method of LLM that
produces independent multipliers for each substructure. Specifically, see the case represented in Figure 2 with𝑁 = 2 partitions,
instead of carrying out a direct coupling of the two bodies, we will introduce an explicit representation of the interface boundary
Γ, denominated frame, with its own displacement DOFs 𝐮𝑓 , and consider the coupling in terms of interaction of the substructures
with the frame.

We can write the substructure-frame boundary displacement compatibility equations as:

𝐁𝖳
𝑖 𝐮𝑖 = 𝐋𝑓𝑖𝐮𝑓 (𝑖 = 1⋯𝑁) ⇒

⎧

⎪

⎨

⎪

⎩

𝐁𝖳
1𝐮1
⋮

𝐁𝖳
𝑁𝐮𝑁

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝐋𝑓1
⋮

𝐋𝑓𝑁

⎫

⎪

⎬

⎪

⎭

𝐮𝑓 (9)

where 𝐁𝑖 is the Boolean assembly matrix corresponding to 𝑖𝑡ℎ substructure and 𝐋𝑓𝑖 is the Boolean matrix relating the frame
displacements 𝐮𝑓 to the substructural displacements 𝐮𝑖. These boundary constraints can be written in matrix form:

𝐁𝖳𝐮 − 𝐋𝑓𝐮𝑓 = 𝟎 (10)
by making use of the block-matrices:

𝐁 =
⎡

⎢

⎢

⎣

𝐁1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝐁𝑁

⎤

⎥

⎥

⎦

, 𝐋𝑓 =
⎡

⎢

⎢

⎣

𝐋𝑓1
⋮

𝐋𝑓𝑁

⎤

⎥

⎥

⎦

(11)

where 𝐁 is the global boundary assembly operator and 𝐋𝑓 is the frame-substructure interpolation matrix.
The partition interface constraint functional is simply obtained multiplying the boundary compatibility condition (10) by a

field of Lagrange multipliers:
𝒲c

(

𝐮,𝐮𝑓 ,𝝀
)

= 𝝀𝖳
{

𝐁𝖳𝐮 − 𝐋𝑓𝐮𝑓
} (12)

where 𝝀𝖳 =
[

𝝀𝖳
1 ⋯𝝀𝖳

𝑁

] represents the independent LLMs of the substructures.
Finally, the total virtual work of the discrete partitioned system 𝛿𝒲𝓉 is derived combining (7) and (12) in the form:

𝛿𝒲𝓉

(

𝐮,𝐮𝑓 ,𝝀
)

= 𝛿𝐮𝖳 {𝐌�̈� +𝐊𝐮 − 𝐟} + 𝛿
{

𝝀𝖳
(

𝐁𝖳𝐮 − 𝐋𝑓𝐮𝑓
)} (13)

and from the stationary-point condition of this virtual work, the partitioned equations of motion are obtained:
⎡

⎢

⎢

⎣

𝐌 𝐁 𝟎
𝐁𝖳 𝟎 −𝐋𝑓
𝟎 −𝐋𝖳

𝑓 𝟎

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

�̈�
𝝀
�̈�𝑓

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝐫
𝟎
𝟎

⎫

⎪

⎬

⎪

⎭

(14)



6 González and Park

with 𝐫 = 𝐟 − 𝐊𝐮 and where all terms can be clearly identified; first equation represents the dynamic equilibrium of the elastic
substructures, second equation imposes the interface constraint condition between the substructure boundaries and the frame,
and last equation imposes the frame equilibrium condition.

It is here, at the partition level, that we propose a modification of the mass matrices, replacing the original partitioned
mass matrix 𝐌 by a substructure by substructure modified mass matrix �̂�, specifically designed to satisfy the requirements
enumerated in the previous section.
Remark 1. Once the modification of the mass matrices has been performed at the substructure level, the problem could be
solved in a monolithic way by reassembling the partitioned matrices into a global equation, maintaining displacements as the
only unknowns. However, this is not always practical, specially for problems with a large number of DOFs.

3.1 Partitioned explicit time marching algorithm
As observed in Section 2, while it is easy to implement elemental mass tailoring (EMT), for most finite elements EMT does
restrict the stepsize gain due to accuracy loss. On the other hand, global mass tailoring (GMT) can be computational expensive,
especially for problems where the number of mesh frequency modes are excessively large. Hence, we will employ partitioned
(substructural) mass tailoring (PMT) that offers the following features:

• The number of mesh frequencies to be tailored in each partition are substantially smaller than those in global structures;
• For structures consisting of heterogeneous substructures, different mass tailoring can be applied to each partition. This

feature is especially attractive for explicit time marching of multiphysics problems.
To this end, consider the substructure-by-substructure partitioned equation (14) with the mass matrix (𝐌) replaced by a

modified mass matrix (�̂�):
⎡

⎢

⎢

⎣

�̂� 𝐁 𝟎
𝐁𝖳 𝟎 −𝐋𝑓
𝟎 −𝐋𝖳

𝑓 𝟎

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

�̈�
𝝀
�̈�𝑓

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝐫
𝟎
𝟎

⎫

⎪

⎬

⎪

⎭

(15)

where (

�̈�,𝝀, �̈�𝑓
) are the substructural accelerations, substructural interface forces and the frame accelerations, respectively.

Now, the partitioned (or substructure-by-substructure) accelerations are isolated from the first equation:
�̈� = �̂�−1 (𝐫 − 𝐁𝝀) (16)

and substituted into the second equation:
𝐁𝖳�̂�−1 (𝐫 − 𝐁𝝀) − 𝐋𝑓 �̈�𝑓 = 𝟎 (17)

to yield the system:
[

𝐁𝖳�̂�−1𝐁 𝐋𝑓
𝐋𝖳
𝑓 𝟎

]{

𝝀
�̈�𝑓

}

=
{

𝐛
𝟎

}

(18)
with 𝐛 = 𝐁𝖳�̂�−1𝐫, from where we can compute the interface unknowns.

To describe the explicit time marching scheme, see Algorithm 1, suppose that computations have proceeded until 𝑡 = 𝑡𝑛 and
we seek a solution for 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡. Then, time integration proceeds as follows. First, the interface forces 𝝀𝑛 are computed
solving (18). This step can be performed iteratively27 or in a direct form as described in Algorithm 1, solving first for the frame
accelerations �̈�𝑛𝑓 and then for the multipliers 𝝀𝑛. Once we know the interface forces, the accelerations �̈�𝑛 are obtained from (16).
Finally, updating of the velocity and displacement can be made via the summed form of the central difference method:

⎧

⎪

⎨

⎪

⎩

�̇�𝑛+
1
2 = �̇�𝑛−

1
2 + Δ𝑡 �̈�𝑛

𝐮𝑛+1 = 𝐮𝑛 + Δ𝑡 �̇�𝑛+
1
2

(19)

and we are ready to proceed with the next time step.
In employing the partitioned explicit integration procedure outlined above, there are two mass tailoring procedures: high-

frequency filtering procedure and low-frequency mode preservation procedure. Both techniques are described below.
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Algorithm 1 Partitioned explicit time integration by central difference scheme
𝐮0, �̇�0, �̇�

1
2 = �̇�0 + Δ𝑡

2
�̈�0 ⊳ Initial conditions

for n do 1...𝑛 time loop ⊳ Time integration loop
𝐫𝑛 = 𝐟𝑛 −𝐊𝐮𝑛 ⊳ Evaluate residual forces
𝐛𝑛 = 𝐁𝖳�̂�−1𝐫𝑛 ⊳ Evaluate free term
[

𝐋𝖳
𝑓

(

𝐁𝖳�̂�−1𝐁
)−1 𝐋𝑓

]

�̈�𝑛𝑓 =
{

𝐋𝖳
𝑓𝐛

𝑛
}

⊳ Solve for frame accelerations �̈�𝑛𝑓
[

𝐁𝖳�̂�−1𝐁
]

𝝀𝑛 =
{

𝐛𝑛 − 𝐋𝑓 �̈�𝑛𝑓
}

⊳ Solve for interface forces 𝝀𝑛

�̈�𝑛 = �̂�−1 (𝐫𝑛 − 𝐁𝝀𝑛) ⊳ Compute global accelerations
�̇�𝑛+

1
2 = �̇�𝑛−

1
2 + Δ𝑡�̈�𝑛 ⊳ Update global velocities

𝐮𝑛+1 = 𝐮𝑛 + Δ𝑡�̇�𝑛+
1
2 ⊳ Update global displacements

end for ⊳ Proceed to the next time step

4 MASS TAILORING EMPLOYING HIGH-FREQUENCY MODE SHAPES WITH A
CUT-OFF FREQUENCY

We start examining the original mode shapes of a substructure, that are obtained by solving the generalized eigenvalue problem:
𝐊𝚽 = 𝐌𝚽𝚲 (20)

with the well known eigen-decomposition properties,
{

𝚽𝖳𝐊𝚽 = 𝚲
𝚽𝖳𝐌𝚽 = 𝐈𝑛

(21)

where 𝚽 ∈ ℝ𝑛×𝑛 is a square matrix with the orthogonal mode shapes of the substructure, 𝐈𝑛 is the identity matrix of size 𝑛 and
the diagonal matrix 𝚲 ∈ ℝ𝑛×𝑛 contains the original system eigenfrequencies, i.e., 𝚲 = diag

[

𝜔2
1, 𝜔

2
2 …𝜔2

𝑛

].
Then, after ordering the frequencies in 𝚲, the 𝑛 orthogonal mode shapes can be separated into 𝑟 and 𝑚 = 𝑛 − 𝑟 low and high

frequency mode shapes, respectively, in the form:
𝚽 =

[

𝚽𝑙 𝚽ℎ
] (22)

where 𝚽𝑙 ∈ ℝ𝑛×𝑟 groups low-frequency modes whose responses are to be retained and 𝚽ℎ ∈ ℝ𝑛×𝑚 collects high-frequency
modes whose responses are to be filtered out. These orthogonal modes now fulfill,

𝚲 =
[

𝚽𝖳
𝑙 𝐊𝚽𝑙 𝟎
𝟎 𝚽𝖳

ℎ𝐊𝚽ℎ

]

=
[

𝚲𝑙 𝟎
𝟎 𝚲ℎ

]

(23)
where 𝚲𝑙 ∈ ℝ𝑟×𝑟 and 𝚲ℎ ∈ ℝ𝑚×𝑚 are diagonal matrices grouping with the corresponding low and high frequencies.

4.1 High-frequency based mass matrix tailoring
First, we adopt the elemental mass tailoring introduced in (4) to partitioned substructural mass matrices, �̂�ℎ:

�̂�ℎ = 𝐌 +𝐌𝚽ℎ𝐒ℎ𝚽𝖳
ℎ𝐌, (24)

using the diagonal tailoring matrix,
𝐒ℎ = diag

[

𝑠1, 𝑠2 … 𝑠𝑚
] (25)

where 𝚽ℎ ∈ ℝ𝑛×𝑚 is now a retained set of higher mode shapes whose frequencies are deemed to be mesh frequencies and
therefore to be filtered out; 𝐒ℎ ∈ ℝ𝑚×𝑚 is a diagonal matrix to be discussed subsequently and 𝑚 is the number of the higher
mode shapes utilized.
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Proposition 1. The tailored mass matrix �̂�ℎ scales the high frequencies of the partition by a factor (𝐈 + 𝐒)−1, maintaining the
partition low frequencies unaffected, i.e., the new tailored partition eigenvalues are given by the diagonal matrix:

�̂�ℎ =
[

𝐈𝑟 𝟎
𝟎 (𝐈𝑚 + 𝐒ℎ)−1

]

𝚲

with the same mode shapes 𝚽 of the original partitioned system.
Proof. It is very simple to demonstrate that the new tailored-mass eigenvalue problem:

𝐊𝚽 = �̂�ℎ𝚽�̂�ℎ

has exactly the same eigenvectors than the original one, with the same 𝑟 low frequencies and 𝑠 reduced high frequencies. This
is demonstrated premultiplying by 𝚽𝖳 the previous expression, thanks to properties (21), revealing the new eigenvalues:

𝚲 = 𝚽𝖳

(

𝐌 +𝐌
[

𝚽𝑙 𝚽ℎ
]

[

𝟎 𝟎
𝟎 𝐒ℎ

]

[

𝚽𝑙 𝚽ℎ
]𝖳 𝐌

)

𝚽�̂�ℎ =
(

𝐈𝑛 +
[

𝟎 𝟎
𝟎 𝐒ℎ

])

�̂�ℎ

from where we can obtain �̂�ℎ inverting a simple diagonal matrix.

4.2 Design of the tailoring matrix
We seek now an expression for the tailoring matrix (25). Of several possible choices to construct 𝐒ℎ, we propose the following
formula:

𝐒ℎ = 1
𝜔2
𝑐
𝚲ℎ − 𝐈𝑚 (26)

where 𝜔𝑐 is a user-specified cut-off frequency beyond which all the higher frequencies will be filtered out. Substituting (26) in
the result of Proposition 1, we observe that the modified frequencies take the form:

�̂�ℎ =
[

𝚲𝑙 𝟎
𝟎 𝜔2

𝑐𝐈𝑚

]

. (27)
It is observed from the preceding result that, while the lower modes (𝚲𝑙) and their mode shapes of each substructure are

preserved, the higher modes which are expected to consist of mesh frequencies are effectively filtered out and replaced by the
cut-off frequency, 𝜔𝑐 . One can show that the mass tailoring matrix given by (26) satisfies the first five desirable properties. As
for the sixth desirable property, while depending on existing elemental mass matrix routines, a substructural-level modification
is necessary. This can be implemented as part of solution strategies.

4.3 Implementation details for high-frequency modes mass tailoring
For computational efficiency, �̂�−1

ℎ can be explicitly given via the well-known Woodbury formula28:
�̂�−1

ℎ = 𝐌−1 −𝚽ℎ
(

𝐒−1ℎ + 𝐈𝑚
)−1 𝚽𝖳

ℎ (28)
where 𝚽𝖳

ℎ𝐌𝚽ℎ = 𝐈𝑚 is utilized. Hence, if the tailoring matrix 𝐒ℎ is diagonal then �̂�−1 is trivially obtained, especially when
employing a diagonal partitioned mass matrix. Note also that many prefer to use a diagonal mass matrix for explicit time
integration.

Solution of 𝝀 in (18) is straightforward in itself. If desired, one can use the following predictor-corrector form or iterative form:
[

𝐁𝖳𝐌−1𝐁 𝐋𝑓
𝐋𝖳
𝑓 𝟎

]{

𝝀𝑛
𝑘

�̈�𝑓

}

=

{

𝐛𝑛 + 𝐁𝖳
[

𝚽ℎ
(

𝐒−1ℎ + 𝐈𝑚
)−1 𝚽𝖳

ℎ

]

𝐁𝝀𝑛
𝑘−1

𝟎

}

(29)

Observe that, since 𝐌 is diagonal, the matrices 𝐁𝖳𝐌−1𝐁 and 𝐋𝖳
𝑓

(

𝐁𝖳𝐌−1𝐁
)−1 𝐋𝑓 needed in the predictor-corrector iteration,

are also diagonal.
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4.4 Stepsize gain
Adoption of the tailoring matrix given by (27) offers the following stepsize gain:

𝖭𝗀𝖺𝗂𝗇 =
𝜔𝑚𝑎𝑥

𝜔𝑐
=

Δ𝑡𝑡
Δ𝑡𝑚𝑎𝑥

(30)
where (

Δ𝑡𝑡,Δ𝑡𝑚𝑎𝑥
) are the maximum table stepsize for the mass tailored case and the original partitioned system, respectively.

It will be shown that a stepsize gain of 5 to 10 are within the manageable gain levels for most low-frequency dominated explicit
transient analysis cases.

5 MASS TAILORING EMPLOYING LOW-FREQUENCY MODE SHAPES

In the previous Section, the basic mass tailoring tools were the high-frequency substructural mode shapes 𝚽ℎ with its associated
frequencies 𝚲ℎ limited by a cut-off frequency 𝜔𝑐 . But, there are cases for some substructures where we need to compute an
excessive number of high-frequency mode shapes. In this case, it is preferable to perform the mass tailoring using the low-
frequency mode shapes 𝚽𝑙. For such a case, we compute low-frequency mode shapes and construct a new tailored mass matrix
�̂�𝑙 as follows:

�̂�𝑙 = 𝐌 + 𝐏𝖳
𝑙 𝐒𝑙𝐏𝑙 (31)

with a new tailoring matrix,
𝐒𝑙 =

1
𝜔2
𝑐
𝐊 −𝐌 (32)

and a projection operator constructed using the lower-modes:
𝐏𝑙 = 𝐈 −𝚽𝑙𝚽𝖳

𝑙 𝐌 (33)
where 𝐏𝑙 ∈ ℝ𝑛×𝑛 is a projector that filters out the lower modes leaving the higher modes unaffected, i.e., 𝐏𝑙𝚽 =

[

𝟎 𝚽ℎ
]. In

this case, 𝚽𝑙 ∈ ℝ𝑛×𝑟 is selected as a set of 𝑟 lower mode shapes whose frequencies are deemed to be the dominant response
frequencies of the system and therefore to be retained.
Proposition 2. The tailored mass matrix �̂�𝑙 scales the high frequencies of the partition to 𝜔2

𝑐 , maintaining the partition low
frequencies unaffected, i.e., the new partition eigenvalues are given by the diagonal matrix:

�̂�𝑙 =
[

𝐈𝑟 𝟎
𝟎 𝜔2

𝑐𝚲
−1
ℎ

]

𝚲

with the same modes 𝚽 than the original unscaled partition.
Proof. As we did before, we multiply by 𝚽𝖳 the new tailored-mass eigenvalue problem:

𝐊𝚽 = �̂�𝑙𝚽�̂�𝑙

to obtain the relation between the original and the new eigenvalues:

𝚲 =
(

𝐈𝑛 +
[

𝟎 𝚽ℎ
]

𝐒𝑙
[

𝟎 𝚽ℎ
]𝖳
)

�̂�𝑙 =

(

𝐈𝑛 +
[

𝟎 𝟎
𝟎 1

𝜔2
𝑐
𝚲ℎ

])

�̂�𝑙

from where we can isolate the expression for �̂�𝑙 .
Comparing the tailored frequencies �̂�ℎ obtained by employing the high-frequency mode shapes (24) and �̂�𝑙 obtained by

employing the low-frequency mode shapes (31), it is seen that both tailoring procedures lead to the same modified frequency
distributions, viz.,

�̂�ℎ = �̂�𝑙 =
[

𝚲𝑙 𝟎
𝟎 𝜔2

𝑐𝐈

]

. (34)
It is noted that, even if one has to invert the dense substructural mass matrix, it may be still attractive especially for most stiff
partitions since filtering all the higher modes may be computationally excessive.
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Algorithm 2 Efficient procedure for the computation of the stiffness matrix generalized inverse 𝐊+.

𝐑 =
⎡

⎢

⎢

⎣

𝐑𝑐

𝐑𝑓

⎤

⎥

⎥

⎦

, 𝐊 =
⎡

⎢

⎢

⎣

𝐊𝑐𝑐 𝐊𝑐𝑓

𝐊𝑓𝑐 𝐊𝑓𝑓

⎤

⎥

⎥

⎦

⊳ Partition rigid-body mode shape and substructural stiffness matrices

�̄� = 𝐑𝑓𝐑−1
𝑐 ⇒ 𝐓 =

[

−�̄� 𝐈
]

⊳ Construct matrices �̄� and 𝐓

𝐃𝑟 = 𝐈𝑛𝑟 − �̄�
[

𝐈 + �̄�𝖳�̄�
]−1 �̄� ⊳ Compute matrix 𝐃𝑟

𝐊+ = 𝐓𝖳𝐃𝑟 𝐊−1
𝑓𝑓 𝐃𝑟𝐓 ⊳ Obtain pseudo-inverse 𝐊+

5.1 Implementation details for low-frequency modes mass tailoring
A direct inverse of the low-frequency modification (31) for explicit transient analysis leads to full matrix inversion. Once again,
the Woodbury formula should be invoked to arrive at the following inverse mass matrix:

�̂�−1
𝑙 = 𝜔2

𝑐𝐊
−1 +𝚽𝑙𝐂𝑙𝚽𝖳

𝑙 , (35)
with a diagonal matrix,

𝐂𝑙 = 𝐈𝑟 − 𝜔2
𝑐𝚲

−1
𝑙 (36)

that can be easily computed.
Proposition 3. Tailored inverse mass matrices (28) and matrix (35) are completely equivalent. They represent the same
expression obtained via higher modes or lower modes, respectively.
Proof. We start incorporating the proposed scaling (26) into the tailored inverse with higher modes (28) and compute the inverse
of the diagonal matrix to obtain:

�̂�−1
ℎ = 𝐌−1 −𝚽ℎ

(

𝐈𝑚 − 𝜔2
𝑐𝚲

−1
ℎ

)

𝚽𝖳
ℎ

and then substitute the decomposition of the inverse mass matrix into lower and higher modes, i.e., 𝐌−1 = 𝚽𝑙𝐈𝑟𝚽𝖳
𝑙 +𝚽ℎ𝐈𝑚𝚽𝖳

ℎ,
to find the following relation:

�̂�−1
ℎ = 𝚽𝑙𝐈𝑟𝚽𝖳

𝑙 + 𝜔2
𝑐𝚽ℎ𝚲−1

ℎ 𝚽𝖳
ℎ

where higher modes only appear in the second term. Next, we use the decomposition for the stiffness matrix inverse 𝐊−1 =
𝚽𝑙𝚲−1

𝑙 𝚽𝖳
𝑙 +𝚽ℎ𝚲−1

ℎ 𝚽𝖳
ℎ to eliminate these higher modes and write:

�̂�−1
ℎ = 𝚽𝑙𝐈𝑟𝚽𝖳

𝑙 + 𝜔2
𝑐

(

𝐊−1 −𝚽𝑙𝚲−1
𝑙 𝚽𝖳

𝑙

)

= �̂�−1
𝑙

arriving finally to equation (35).
Since matrix 𝐂 ∈ ℝ𝑟×𝑟 is diagonal, one only needs to factorize the substructural stiffness matrix 𝐊. It should be noted that

𝐊−1 should be replaced by its pseudo-inverse when the substructures are floating. For this case, an efficient procedure exists24,
which is reproduced in Algorithm 2, where (

𝐑𝑐 ,𝐊𝑓𝑓
) are square matrices which have their corresponding full ranks as they

should be and the intermediate matrix 𝐃𝑟 ∈ ℝ𝑛𝑟×𝑛𝑟 , where 𝑛𝑟 is the number of rigid body modes, which maximum dimension is
6 for three displacements and three rotations in ℝ3.

The preceding mass tailoring employing the substructural low-frequency mode shapes also fulfills the first five desirable
properties set out in Section 2.2.

5.2 When is the mass tailoring employing low-frequency mode shapes desirable?
It is noted that the mass tailoring employing low-frequency mode shapes requires the inversion (or generalized inverse) of
substructural stiffness matrix as seen from (35). Hence, adoption of this tailoring should be sparingly employed. One notable
case is when a substructure is much more stiff compared with the rest of the partitions, whose mesh frequencies would be larger.
We will defer a trade-off study between the high-frequency vs low-frequency mass tailoring to a later occasion.
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FIGURE 3 Tailoring of substructural mass matrix for one-dimensional bar example for step size increase by a factor 𝖭𝗀𝖺𝗂𝗇 = 5
and 𝖭𝗀𝖺𝗂𝗇 = 10, respectively. Error in the global frequencies.

6 ADVANTAGE OF EMPLOYING THE SUBSTRUCTURAL CUT-OFF FREQUENCY IN
LIEU OF THE GLOBAL CUT-OFF FREQUENCY

There is an important property we should mention. That is, what about the global cut-off frequency?... the answer to this question
comes from the classical eigenvalue bounding property of finite element stiffness and mass matrices that goes back to the early
1970s. If all the substructural mass matrices are modified in a similar manner, with the same cut-off frequency, then B. Iron’s
bounding theorem29,30 states that the maximum frequency of the assembled system is bounded by the maximum frequency
of elemental-substructural maximum frequencies. As the present mass tailoring employs the same cut-off frequency for all
substructures, the maximum frequency of the assembled system is bounded by 𝜔𝑐 . This leads us to use the maximum stable
explicit stepsize given by:

Δ𝑡𝑐 =
2
𝜔𝑐

> Δ𝑡𝑠 =
2

𝜔𝑚𝑎𝑥
, 𝜔𝑚𝑎𝑥 = max

(

𝜔𝑚𝑎𝑥,1, 𝜔𝑚𝑎𝑥,2 …𝜔𝑚𝑎𝑥,𝑁
) (37)

where 𝜔𝑚𝑎𝑥,𝑖 is the maximum frequency for the i𝑡ℎ partition substructure. Therefore, we can define the stepsize gain factor,

𝖭𝗀𝖺𝗂𝗇 =
Δ𝑡𝑐
Δ𝑡𝑠

(38)

as the critical time stepsize extension we have obtained for explicit time integration thanks to the scaling process.
It is important to mention that, although different mass-tailoring methods have been proposed by other authors13,16,17, the

proposed mass-tailoring technique is defined as selective in the sense that we can choose the number of modes to be filtered out
or retained and this tailoring is performed at the substructural level or elemental level when doing so would yield the overall
accuracy to be maintained.

7 NUMERICAL EXPERIMENTS

In this section, we test the proposed mass tailoring technique via eigenvalue analysis, using the scaled mass matrices as compared
with the unscaled consistent mass matrices. This is done for different finite element types.
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TABLE 2 Input data used in example bar problems shown in Figure 3 .

Partition

Property Units 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5

Density kg∕m3 3000 1500 1000 2000 3000
Elastic modulus kPa 10 20 10 30 3
Cross section cm2 50 50 50 50 50
Element size cm 0.1 1 1 1 0.1
Number of elements − 15 15 15 15 15
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FIGURE 4 Tailoring of plane stress vibration problem by the present tailoring of substructural mass matrix, achieving a stepsize
increase by stesize gain factor 𝖭𝗀𝖺𝗂𝗇 = 5.

7.1 One-dimensional bar problem
As shown in Section 2, elemental mass matrix tailoring yields at most an increase of the step size by the factor 𝖭𝗀𝖺𝗂𝗇 = 2 due to
accuracy restrictions. Figure 3 illustrates a bar example with 5 substructures consisting of 15 elements per each substructure,
with varying lengths, densities and Young’s modulus shown in Table 2 .

When the step size increase by the stepsize gain factor 𝖭𝗀𝖺𝗂𝗇 = 5 compared with non-scaled mass matrices is desired, the
accuracy of the elemental tailoring case starts to deteriorate after 10 modes. The substructural mass matrix tailoring employing
the high-frequency mode shapes (24) continues to yield good accuracy for modes up to 40 modes. When the step size increase
by 𝖭𝗀𝖺𝗂𝗇 = 10 is sought, however, elemental tailoring start to lose accuracy after a few modes whereas the substructural mass
tailoring offers good accuracy up to a dozen modes.

7.2 Plane stress vibration problem
We now move on to the task of plain stress frequency filtering. In order to assess the proposed mass tailoring method, viz.,
higher-mode shape based method (27) and the lower-mode shaped based method (31) beyond the one-dimensional problem. To
this end, a square domain Ω ∈ [0, 1]2 with 5 × 5 partitions, with each partition modeled by 10 × 10 elements. Subdomain size
is 𝐻 = 1∕5 and element size ℎ = 𝐻∕10. For the material properties, the elasticity modulus of 𝐸 = 1 MPa, Poisson’s ratio of
𝜈 = 0.3 and the density of 𝜌 = 1000 kg∕m3 are used.
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FIGURE 5 Elemental tailoring of plate bending mass matrix by the present tailoring with three different cut-off frequencies.
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FIGURE 6 Tailoring of plate vibration problem by the present tailoring of substructural mass matrix, achieving a step size
increase by stepsize gain factor 𝖭𝗀𝖺𝗂𝗇 = 5. Plate is discretized by 36× 36 4-node bending element, with each partition consisting
of 36 elements.

The global problem has 5, 202 DOFs and each substructure consists of 242 DOFs. For each substructure, 28 lower modes are
used for the tailoring to increase the critical stepsize by a factor of 5. Results are presented in Figure 4 . We have also performed
the same eigenvalue analysis employing the higher-mode method, requiring 214 higher mode shapes, with identical result. On
the other hand, element by element scaling requires modification of the 5 higher element frequencies. For this problem, it is
clear that elemental mass tailoring yields poor performance in spite of using a larger number of higher modes.



14 González and Park

500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

100 200 300 400 500

Detail lower modes

0.85

0.9

0.95

1

1.05

FIGURE 7 Tailoring of plate vibration problem by the present tailoring of substructural mass matrix, achieving a step size
increase by stepsize gain factor 𝖭𝗀𝖺𝗂𝗇 = 10. The plate is discretized by 36 × 36 quadrilateral 4-node bending element, with each
partition consisting of 9 elements.

7.3 Plate bending vibration problem
Explicit transient analysis of plates and shells presents a different challenge compared with problems modeled with plain stress
elements and three-dimensional solid elements. This is because due to high frequencies associated with transverse shear, out-
of-plane rotational modes and in-plane membrane modes relative to bending modes. Thus, one is tempted to apply the present
proposed mass tailoring methods to elemental mass tailoring.

Figure 5 shows the performance of the present mass tailoring as applied to a single free-free plate bending element by
filtering the 6, 5 and 4 higher modes, respectively. As expected, the present methods preserve the first non-zero 3, 4 and 5 low
modes and their corresponding elemental mode shapes are preserved, achieving an increase of critical step size by a factor of
5.48, 3.78, 2.77, respectively. The first three elemental non-zero mode shapes are a diagonally bending mode, two x and y-
directional beam bending modes, and the fourth and fifth are fundamental shear mode, which is desirable to be included for
accuracy consideration. Hence, employing elemental mass tailoring, the most one can achieve is the step size increase by a factor
of 3.78 from the accuracy viewpoint. Of course, one can deliberately accomplish the step size by a factor of 5.48 by taking the
cut-off frequency to coincide with the third elemental bending mode.

With the insight gained from elemental tailoring employing the present tailoring methods, a large-scale problem of plate
problems consisting of Ω ∈ [0, 1]2 with 5× 5 partitions, with each partition having 6× 6 elements. Subdomain size is 𝐻 = 1∕5
and element size ℎ = 𝐻∕6. For the material properties, values of elasticity modulus 𝐸 = 1 MPa, Poisson’s ratio 𝜈 = 0.3,
thickness 𝑡 = 0.01 m and density 𝜌 = 1000 kg∕m3 are used.

The global problem has 2, 283 DOFs and each substructure presents 147 DOFs. Mass tailoring, to achieve the critical time-
step of 5 times larger than by the original plate mass matrix, required 44 lower modes using equation (31) or 103 higher modes
with equation (24). The results are presented in Figure 6 .

In order to assess the sensitivity of substructural sizes on the number of mode shapes (either low modes or higher mode
shapes), the same plate is now partitioned into 100 substructural partitions from 25 partitions. For this refined partitions, 9 mode
shapes do the job of attaining 10 times increase of the unscaled critical step size as shown in Figure 7 .

7.4 Transient analysis of a cantilever beam under tip load
To test the solid hexahedral element, we use the cantilever beam with vertical load proposed Olovsson et al. in10 also studied by
Tkachuk et al.16,19 to investigate the accuracy of variational mass scaling methods. The geometrical definition of the problem
is shown in Figure 8 , where a cantilever beam of length 𝐿 = 0.1 m and section height 𝑏 = 0.003 m with thickness 𝑡 = 0.001 m
is considered. Material properties of the beam are 𝐸 = 207 GPa, 𝜈 = 0.3 and 𝜌 = 7800 kg∕m3.
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FIGURE 8 Cantilever beam with tip load. Original geometry, dimensions and assembled global mesh (left), mesh partitioned
into two subdomains for substructural (center) and mesh completely partitioned for element-by-element mass tailoring (right).
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FIGURE 9 Results of the tip loaded cantilever beam. Ratio of eigenfrequencies at two different levels of maximum frequency
reduction 𝖭𝗀𝖺𝗂𝗇 = {5, 10} using substructural and element-by-element mass tailoring (left). Beam deflection for maintained tip
loads computed with stepsize gain factor 𝖭𝗀𝖺𝗂𝗇 = 50 (right).

The beam is discretized using a regular mesh of 150 hexahedrical elements and 408 nodes, with 50×3×1 divisions per side.
One end of the beam is completely fixed and the other side has two vertical point loads of value 𝐹 = 1 N. Two different cases are
considered, first the tip load is fully applied at the first time step and maintained constant during the simulation. In the second
case, the load is applied as two initial impulses 1 mm∕s at the same points, in order to activate higher modes in the response of
the beam.

In both cases, we perform a time-domain analysis integrating in time the response of the beam using the explicit central
difference method (19). Initial conditions of the beam are assumed to be zero displacements and velocities, applying the tip load
completely at the initial time-step.

Using element-by-element tailoring, for respective extensions of stepsize gain factors of 𝖭𝗀𝖺𝗂𝗇 = 5 and 𝖭𝗀𝖺𝗂𝗇 = 50, it is
necessary to filter all the 18 higher modes of the element. Partitioning into two equal substructures of 75 hexahedrals and 208
nodes, on the contrary, produces 624 modes per subdomain, requiring a modification of 517 and 603 higher modes respectively
for extensions 𝖭𝗀𝖺𝗂𝗇 = 5 and 𝖭𝗀𝖺𝗂𝗇 = 50 with substructure scaling.
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FIGURE 10 Impulsive load on a cantilever beam. Tip deflection with different mass tailoring methods for reductions of the
maximum frequency of stepsize gain factors 𝖭𝗀𝖺𝗂𝗇 = 5 (left) and 𝖭𝗀𝖺𝗂𝗇 = 50 (right). It is observed the effect of accuracy loss in
the higher frequencies for the element-by-element tailoring.

We start analyzing the case of maintained tip loads. The results are shown in Figure 9 (right), where it is represented the
evolution of the tip deflection of the beam obtained with both tailoring methods for a reduction of 𝖭𝗀𝖺𝗂𝗇 = 50. Classical selective
mass scaling techniques applied to this problem10 were capable of extending the critical time step with reasonable accuracy to
a maximum of 𝖭𝗀𝖺𝗂𝗇 = 10 times. However, it should be noted that we are only exciting the lowest modes of the beam, where
both methods show good accuracy.

Next, we study the case of two impulse loads where higher modes are excited. In Figure 10 it is represented the tip deflection
for 𝖭𝗀𝖺𝗂𝗇 = 5 (left) and 𝖭𝗀𝖺𝗂𝗇 = 50 (right). It is clear that for moderate extensions of the critical time step, like 𝖭𝗀𝖺𝗂𝗇 = 5 in our
example, both methods can provide enough accuracy. However, for lager time step extensions, 𝖭𝗀𝖺𝗂𝗇 = 50, element by element
tailoring quickly starts loosing its accuracy, while substructural tailoring is able to maintain precision.

8 DISCUSSIONS

Two mass matrix tailoring approaches, viz., the high-frequency filtering method (26) and the low-frequency preservation method
(31), have been presented and their performance is assessed. We now offer the following observations:

• Both of the proposed methods preserve low-frequency eigenvectors and frequencies at or below the cut-off frequency.
• Regardless of the problem sizes and partitions numbers, the cut-off frequency is the upper bound frequency of the total

system when the mass matrix is tailored by employing the proposed two methods.
• Efficiency of the proposed methods is facilitated by exploiting the low rank-update inversion formulas (28) and (35).
• The smaller the number of degrees of freedom per partition, the more efficient the resulting computational procedure.

However, except for thin plates and shells (For example, in the case of thin plate models discussed in Section 7.3), ele-
mental mass tailoring yields poorer accuracy than substructural partition procedures. We hope further studies would offer
a sensible trades-off guide.

Finally, a word on applying the proposed large-step explicit integration is in order. In general, experience indicates that nonlin-
earities would bring about a minimum change in both higher frequencies and their mode shapes, whereas they can significantly
change low frequency mode shapes. This suggests that for highly nonlinear problems, the high-frequency mode filtering method
(26) is preferable, with a smaller number of elements per partition. This and more detailed explicit step marching procedures
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(for example, partitioned solution of accelerations) are being actively investigated and we hope to report the outcome of the
present ongoing studies in the near future.
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