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Componentwise Hölder inference
for robust learning-based MPC

José Marı́a Manzano, David Muñoz de la Peña,
Jan-Peter Calliess, and Daniel Limon

Abstract—This paper presents a novel learning method based
on componentwise Hölder continuity, which allows one to con-
sider independently the contribution of each input to each output
of the function to be learnt. The method provides a bounded
prediction error, and its learning property is proven. It can
be used to obtain a predictor for a nonlinear robust learning-
based predictive controller for constrained systems. The resulting
controller achieves better closed loop performance and larger
domains of attraction than learning methods that only consider
nonlinear set membership, as illustrated by a case study.

I. INTRODUCTION

Among the different techniques applied to learning-based
predictive control, one of the most popular consists in using
a machine learning algorithm to obtain a predictor from
input-output data, such as direct weight optimization [1], [2],
Gaussian processes [3], [4] or neural networks [5].

When using the model of a system, estimated from past
observations, prediction errors are present. To guarantee a safe
evolution of the system, the learning method must provide a
description of the uncertainty between the real evolution of
the plant and the estimated one.

Lipschitz interpolation methods [6], [7] may provide a
bound on the prediction error. They have also been referred to
as nonlinear set membership (NSM) [8]. However, knowledge
of the true Lipschitz constant of the plant is required. If
this constant is estimated stochastically [9], the deterministic
feature of the framework is lost. However, there exits a class
of learning rules, named kinky inference (KI) [10], which
encompasses Lipschitz interpolation and NSM, that provides
guaranteed bounds on the prediction error, with Lipschitz
constants estimated from the data set.

This property has been taken into account to design safe
learning-based predictive controllers [11], [12]. In [13], a data-
based robust model predictive control (MPC) was presented
using the smooth projected kinky inference version of the kinky
inference class, for systems with constraints on the inputs.
Later, in [14], a stabilizing robust version for systems subject
to input and output constraints was developed.

The main drawback is the possible conservatism of the
controller, due to the open-loop nature of the predictions,
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inherited from robust predictive controllers’ design. Thus, the
availability of tighter descriptions of the prediction error [15],
or tractable procedures to estimate the reachability sets of the
prediction models [16] can lead to an enhanced design of
safe learning-based MPC. Therefore, the derivation of learning
methods able to reduce the bound on the uncertainty is crucial.

The objective of this paper1 is to introduce a novel learning
methodology that extends and improves KI, able to signifi-
cantly reduce the prediction error. To this end, an extended ver-
sion of continuity of functions is used, namely componentwise
Hölder continuity, in order to derive a novel learning method,
named componentwise Hölder kinky inference (CHoKI).

In its core, this method generalises the real-valued Hölder
constant L and exponent p to matrices, in order to capture
different variations of the target along different dimensions of
the vector field that is to be learnt. A non-parametric estimation
method and the procedure to calculate its hyper-parameters
from measured (possibly noisy) data is presented. It is first
proven that the proposed learning method can estimate any
Hölder continuous function over a compact domain. Then, it is
also shown that the proposed method encompasses and extends
existing methods, such as kinky inference or NSM.

Besides, it is rigorously proven that the proposed learning
method ensures a bounded estimation of the prediction error,
and that the method is a learning algorithm. This is a key
aspect, since it allows one to relate the accuracy of the predic-
tions to the density of the available observations. In addition,
it renders the online version of such algorithm applicable, that
is, makes it prone to decrease prediction errors as more points
are taken into consideration by the predictor.

Another contribution of this paper is the application of
the novel estimation method to model nonlinear dynamical
systems, and based on this, to enhance existing model pre-
dictive controllers. To this aim, the robust constrained MPC
of [14] is extended to use the componentwise prediction
model, implying a double benefit: not only the prediction
errors are decreased with the new method, but also the
domain of attraction of the controllers is enlarged, since the
componentwise approach allows for tighter bounds on the
propagation of the uncertainty.

Notation: A set of integers [a, b] is denoted I
b
a. The no-

tation (v, w) implies [vT , wT ]T , and v ≤ w implies that
the inequality holds for every component. ‖v‖ stands for the
Euclidean norm of v, and |v| = {w : wi = |vi|,∀i}. Given
two sets A,B, A⊕B denotes the Minkowski sum, and A	B

1A preliminary version of this work was presented in [17].978-1-5386-5541-2/18/$31.00 ©2020 IEEE
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the Pontryagin difference. Their Cartesian product is denoted
A × B = {(x, y)|x ∈ A, y ∈ B}. ‖A‖ denotes its Lebesgue
measure and its norm is denoted ‖A‖∞ = maxa∈A ‖a‖∞.
The box B(v) ⊂ R

nv is defined as B(v) = {y : |y| ≤ v}, and
the ball B(v) ⊂ R

nv is defined as B(v) = {y : 0 ≤ y ≤ v}.
The ball over a set A, B(A), represents the Cartesian closed
topological hull of A. An n-dimensional column vector of ones
is denoted 1n, and the n,m-dimensional matrix of ones is
denoted 1n×m. Analogously for a vector (or matrix) of zeros,
denoted 0n(×m). The i-th row of a matrix M is denoted Mi.

II. COMPONENTWISE HÖLDER INFERENCE

Consider an unknown (target) function within two compact
spacesW ∈ Rnw and Y ∈ Rny (referred to as input and output
spaces, respectively), such that f :W → Y . The only informa-
tion available a priori from this function f is a collection of
(possibly) noisy observations, gathered in a data set of ND
points, defined as D = {(wi, ỹi)}, i ∈ IND1 , where ỹi is the
noise-corrupted measurement, assuming the noise is bounded
by some known ē ∈ Rny . The data set containing only inputs
is denoted WD.

The objective is to learn f and to predict unseen query
points q ∈ W \WD. To this end, Hölder continuity of the
function is assumed, that is,

‖f(w1)− f(w2)‖ ≤ L‖w1 − w2‖p, ∀w1, w2, (1)

where the exponent p is a scalar such that 0 < p ≤ 1. In
particular, if p = 1 this property is called Lipschitz continuity,
with constant L, which is also a scalar.

Based on this property, Lipschitz interpolation methods
learn the ground truth function f using the data set of
samples [6], [7], as well as the constant L and the exponent p.
Encompassing such methods, the standard kinky inference
is presented in [10]. If the parameters are known a priori,
the method guarantees bounded prediction error and sample
consistency. If they are unknown, [18] proposes a method to
estimate L that maintains bounded errors and consistency.

A. Componentwise Hölder continuity

The Hölder continuity condition relates the effect on the
output of a variation on the input, bounding the worst case. In
this paper, we extend the Hölder property to a componentwise
setting, where the contribution of the variation of each input
on each output is taken into account separately.

Hence, we propose to use matrices (instead of scalars) as the
parameters of the Hölder property: L, P ∈ Rny×nw , yielding
the following definition:

Definition 1 (Componentwise Hölder continuity). Given the
matrices L and P , a function f :W → Y is componentwise
L-P-Hölder continuous if ∀w1, w2 ∈ W and ∀i ∈ Iny

1

|fi(w1)− fi(w2)| ≤
nw∑
j=1

Lij |w1,j − w2,j |Pij . (2)

In Hölder continuity, L aggregates the effect of the inputs
on the outputs into a single constant. On the contrary, the

proposed componentwise approach uses each Li,j to take into
account separately the effect of each input j on each output i.

This componentwise Hölder continuity condition may be
rewritten in a more compact form, using the following nota-
tion:

Given a vector w ∈ Rnw and two matrices L, P ∈ Rny×nw ,
we define

dPL (w) :=

a : ai =

nw∑
j=1

Li,jw
Pi,j

j ,∀i ∈ Iny

1

 . (3)

Then, the componentwise Hölder continuity in (2) can be
written as

|f(w1)− f(w2)| ≤ dPL (|w1 − w2|), ∀w1, w2. (4)

The following theorem states under which conditions Hölder
continuity and componentwise Hölder continuity are equiva-
lent. The proof of the theorem is presented in the appendix.

Theorem 1. Let f :W ⊆ R
nw → Y ⊆ R

ny .
1) If f is Hölder continuous inW , then f is componentwise

Hölder continuous in W .
2) If W is compact and f is componentwise Hölder con-

tinuous in W , then f is Hölder continuous in W .

Corollary 1. If P = p1ny×nw , the equivalence in Theorem 1
holds for any input space W , even if it is not compact.

With a slight abuse of notation, in what is to follow the
mapping in (3) may also be used for sets, such that for a
given set A ⊂ R

nw , we denote dPL (A) := {dPL (x)|x ∈ A}.

Corollary 2. In the Lipschitz case and for every output
component i ∈ I

ny

1 , if the Lipschitz constant is such that
L = ‖Li‖∞, then L‖wi‖∞ ≥ dLi(|wi|).

B. Componentwise Hölder Kinky inference

Proceeding as in the standard KI approach, assuming that f
is Hölder continuous, and given a data set of input-output
observations, this paper presents the componentwise Hölder
kinky inference (CHoKI) predictor.

Provided that the componentwise Hölder condition (2) holds
in virtue of Theorem 1, the proposed estimation method is:

f̂(q; Θ,D) =
1

2
min

i=1,...,ND
(ỹi + dPL (|q − wi|))

+
1

2
max

i=1,...,ND
(ỹi − dPL (|q − wi|)), (5)

where Θ = {L, P}.
The resulting prediction function is componentwise Hölder

continuous, with the same parameters, as stated in the follow-
ing lemma (whose proof can be found in the appendix):

Lemma 1. For a given Θ = {L, P}, the CHoKI predictor f̂
given by (5) is componentwise L-P-Hölder continuous.

In case that the parameters L and P are unknown a priori,
they must be estimated from the available input-output data.
In standard KI methods, the Hölder constant can be derived
from D by a procedure based on sample consistency [18].
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However, in the componentwise case, the method presented
in [18] cannot be used, since ‖w1−w2‖ provides an aggregated
measurement of the effect of the inputs on the outputs, and
there is no direct information of the contribution of each input
on a particular output. In order to infer this contribution, an
optimization method is adopted, extending the results of [19]
to obtain the matrices L and P .

The parameters Θ = {L, P} are estimated solving an op-
timization problem offline, which depends on a regularization
parameter λ ∈ R

ny and two data sets: the data set D, used
for estimation, and a data set Dtest used for validation. In
this optimization problem, a measure of the performance of
the prediction over the data set Dtest, g(Θ,D,Dtest), plus a
regularization term are minimized, subject to a constraint that
ensures their consistency with the samples of the data set:

Θ = arg min
Θ

g(Θ,D,Dtest) + τ‖L − L0‖1, (6a)

s.t. |ỹi − ỹj | − λ ≤ dPL (|wi − wj |) (6b)
∀wi, wj ∈ WD, wi 6= wj ,

0 < Pij ≤ 1, i ∈ Iny

1 , j ∈ Inw
1 , (6c)

where τ is a design regularization hyper-parameter used to
ensure boundedness of L, and L0 stands for any possible
prior guess of L. Besides, the cost function g must be positive
and bounded, for any size of D. A possible choice of the
performance measure is the mean squared prediction error:

g(Θ,D,Dtest) =
1

ND

∑
wi∈WDtest

‖̂f(wi; Θ,D)− ỹi‖2. (7)

Remark 1. For an analysis on the effect of the regular-
ization hyper-parameter λ, the reader is referred to [18],
where λ ≥ 2ē is taken for each component to effectively
smooth out the effect of the noise in the prediction.

Remark 2. The regularization term of the cost func-
tion, τ‖L − L0‖1, prevents the problem from overfitting the
noise, while ensuring boundedness of L. If Dtest is separate
from D and such that g is bounded for all L, then it can be
removed, setting τ = 0.

Remark 3. In practice, it may be easier to fix P a priori,
and to optimize over L, provided that the assumptions hold
for the chosen P .

Next, based on T. Mitchell’s definition of a learning al-
gorithm [20], the following theorem states that CHoKI is a
learning method, which is a key contribution of this paper.

Theorem 2. Let Θ = {L, P} be obtained as the solution
of (6) for a data set D with λ ≥ 2ē, and assume that the
function f satisfies the componentwise Hölder condition (4)
for the pair {Lf , P} in W . Then, L is bounded and

|f(w)− f̂(w; Θ,D)| ≤ dPLf+L(RD) +
λ

2
+ ē, (8)

where RD = max
w∈W

min
wj∈WD

(|wj − w|) measures the maximum

radius between a possible query and the data set.

The proof of this theorem can be found in the appendix.
Based on this theorem, it can be derived that the worst-case

prediction error is bounded for all queries q in a compact
space W . Besides, it proves that as more observations are
added to the data set, the prediction error decreases, vanishing
up to λ/2 + ē for infinitely dense data sets, when RD → 0.

Corollary 3. If the real Hölder parameters Lf and P were
known, the worst-case prediction error is bounded by

|f(w)− f̂(w; Θ,D)| ≤ dPLf
(RD) + 2ē,

following the proof in [18] for the standard KI approach.

Finally, it is demonstrated that CHoKI enhances the existing
methods based on Hölder continuity. This is achieved by
proving that KI is a particular case of CHoKI for a certain
parameter setting, as it is stated in the following lemma:

Lemma 2. If L = L1Tnw
and the Lipschitz case

(i.e. P = 1ny×nw ) is applied using the one norm in the
standard KI, then both methods are equal.

Note that the method proposed to obtain L, P adds degrees
of freedom with respect to the scalar KI case. So in general,
CHoKI predictor will perform equal or better than standard KI
over Dtest, since the latter is a particular case of the former.

The overall performance of the proposed method is illus-
trated in the following example:

Example 1. Consider the function f :W ⊂ R
2 → R:

f(w) = 2w2
1 +

√
|w2|
2

,

within the input space W = B([10, 10]). Note that f is
not Lipschitz continuous in the origin. Figure 1 depicts the
prediction errors generated by CHoKI and KI trained on a
set of ND = 20 random sample data, over a grid of 900
query points. The Hölder parameters were obtained as per (6)
with λ = 0, yielding L = 34.6, p = 1 and L = [37.5, 0.2],
P = [1, 0.75]. Note that with CHoKI the point-wise prediction
error decreases up to 84%.

III. CHOKI-BASED ROBUST MPC

This section presents an extension of the learning-based
MPC presented in [14], using the CHoKI method to learn
the plant dynamics and to derive a prediction model. A dis-
crete plant whose manipulable inputs are u ∈ Rnu and whose
measured controlled outputs are y ∈ Rny is considered. These
signals must be limited to the constraint compact sets u ∈ U
and y ∈ Y . The measured output can be modeled as a NARX
regression of previous inputs and outputs [13]:

y(k + 1) = f(x(k), u(k)) + e(k), (9)

where

x(k) = (y(k), . . . , y(k− na), u(k− 1), . . . , u(k− nb)) (10)

is the regression state x ∈ Rnx , for some memory horizons na
and nb ∈ N0.

In order to use the proposed estimation method, the ar-
guments of f are aggregated into w = (x, u) ∈ Rnw . Given
some historical trajectories of u(k) and y(k), it is possible to
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Fig. 1. Prediction of f(w) = 2w2
1 + 0.5

√
|w2| using both the standard KI and the CHoKI method, given ND = 20 random data points.

construct a data set D = {(wk, yk+1)} for k = 1, . . . , ND and
to predict a new output y(k+1) given Θ = {L, P} as in (5):

ŷ(k + 1) = f̂(w(k); Θ,D). (11)

The prediction model can be formulated in state-space as
follows:

x̂(k + 1) = F̂ (x(k), u(k)) (12a)
ŷ(k) = Mx̂(k), (12b)

where F̂ (x(k), u(k)) =
(̂
f(x(k), u(k)), y(k), . . . , y(k − na +

1), u(k), . . . , u(k − nb + 1)
)

and M = [Iny
, 0, . . . , 0].

We propose to use a robust model predictive controller
which is stable by design, extending [14] to the enhanced
learning method proposed in this paper. Similarly to [14], the
predictive controller is derived from the following optimization
problem, denoted PN (x(k); Θ,D):

min
u

N−1∑
i=0

`(x̂(i|k), u(i)) + ηVf (x̂(N |k)) (13a)

s.t. x̂(0|k) = x(k) (13b)
x̂(j + 1|k) = F̂ (x̂(j|k), u(j)), j ∈ IN−1

0 (13c)
ŷ(j|k) = Mx̂(j|k) (13d)
u(j) ∈ U (13e)
ŷ(j|k) ∈ Yj . (13f)

Here, N stands for the prediction horizon, `(·, ·) is the
stage cost, η ≥ 1 is a design parameter and Vf (·) is the
terminal cost. Notice that this robust MPC does not require
a terminal constraint, but only a (weighted) suitable terminal
cost function [14]. The sets of constraints is given by

Yj = Yj−1 	Rj , (14)

with Y0 = Y , where the reachability sets Rj account for the
possible deviation of the nominal predictions ŷ(j|k) from the
real system, j steps ahead.

In this paper, CHoKI is used to derive a more accurate
prediction model (13c), and to get better estimations of the
reachable sets Rj , as it is presented next.

A. Reachability sets

Although the method presented in [14] could be used to
obtain reachability sets, in this section we present a procedure
based on the CHoKI predictor to calculate these sets, which in

general provides less conservative results. For its calculation,
we will make use of the following lemma.

Lemma 3. Consider a sequence of future inputs u(k + i),
i ∈ IN−1

0 . Let c1 ∈ Rny be a vector such that

|y(k + 1)− ŷ(1|k)| ≤ c1. (15)

The mismatch between a prediction at time step k+j given the
measurement at time step k, ŷ(j|k), and the prediction at that
time step given the measurement at time k+1, ŷ(j−1|k+1),
for the same sequence of control inputs is bounded by the sets

|ŷ(j|k)− ŷ(j − 1|k + 1)| ∈ Mj ⊆ R
ny (16a)

|ŵ(j|k)− ŵ(j − 1|k + 1)| ∈ Gj ⊆ R
nw . (16b)

The sets M and G can be obtained from the recursion

Mj = B(dPL (Gj−1)), (17a)
Gj = Mj × . . .×Mσ(j) × {0} × . . .× {0}, (17b)

with σ(j) = max(1, j − na), and M1 = B(c1).

Proof. Given w(k) = (x(k), u(k)) and the sequence of future
inputs u(k + i) for i ∈ I

N−1
0 , provided that w contains

predicted values if j > na, and real measurements if not, the
definition of |ŵ(j|k) − ŵ(j − 1|k + 1)| translates into (17b),
provided that if ŷ(j|k) is a real measurement, then the differ-
ence |y(j|k)−y(j−1|k+ 1)| equals 0ny

, and belongs toMj

otherwise.
To obtain Mj we make use of the componentwise Hölder

continuity of the predictor f̂. Given equation (15), we have
that M1 = B(c1). Note that ŷ(j + 1|k) = f̂(x̂(j|k), u(k +
j); Θ,D), and that |̂fi− f̂j | ≤ dPL (|wi−wj |). Hence, it follows
that |∆y| ≤ dPL (Gj), so the minimum set that contains all
possible values of |∆y| is the Cartesian closed topological
hull, Mj+1 = B(dPL (Gj)).

This lemma proved that the smallest sets that contain all
possible values of the differences |ŷ(j|k) − ŷ(j − 1|k + 1)|
and |ŵ(j|k)− ŵ(j − 1|k + 1)| are Mj and Gj , respectively.

The set Rj is defined as

Rj = {y : |y| ∈ Mj}, (18)

for all j ∈ IN1 , whereMj is calculated from (17) usingM1 =
B(c1), with c1 = µ.

The following lemma proves that the sets Mj and Gj are
boxes that can be calculated by a simple recursion.
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Lemma 4. Given Lemma 3, let cj ∈ R
ny and dj ∈ R

nw

be such that Mj = B(cj) and Gj = B(dj). The sets Mj

and Gj can be calculated using the recursion cj = dPL (dj−1)
and dj = (cj , . . . , cσ(j), 0, . . . , 0). Besides, Rj = B(cj).

Proof. The Cartesian hull of the map dPL (B(v)), (the
tightest ball containing it) is a ball given by B(dPL (v)),
i.e. B(dPL (B(v))) = B(dPL (v)). This is inferred by noticing
that dPL (B(v)) = {dPL (x)|x ∈ B(v)}, and that for every
component i ∈ I

ny

1 it can be bounded that for all j ∈ I
nw
1 ,

0 ≤ Lijx
Pij

j ≤ Lijv
Pij

j , for all x ∈ B(v). Besides, for
j > 1, given that Gj−1 = B(dj−1), we have that

Mj = B(dPL (Gj−1)) = B(dPL (dj−1)) = B(cj),

Gj =Mj × . . .×Mσ(j) × {0} × . . .× {0} = B(dj).

If the set Y is a polytope, as it is customary, then the
resulting tightened constraints are also polytopes. Notice that
these calculations are done only once, offline.

B. Stabilizing conditions for CHoKI-MPC

In order to recover the safe-by-design properties of the
controller in [14], the following assumptions must hold true:

Assumption 1. f is Hölder continuous.

Assumption 2. The prediction error is bounded by
some µ ∈ Rny . This bound is known for all admissible x and u,
i.e.,

|̂f(x, u; Θ,D)− f(x, u)− e| ≤ µ. (19)

Notice that this bound exists given Assumption 1, Theo-
rem 2 and the compactness of the admissible sets.

Assumption 3. The stage cost function `(x, u) is a componen-
twise Hölder continuous, positive definite function such that
`(x, u) ≥ α(‖x‖), where α is a K-function. Given P , its
Hölder constant is L`.

Assumption 4. Vf is a componentwise Hölder continuous,
positive definite function, with Hölder parameters Lf , P , such
that Assumption 4 in [14] holds.

Assumption 5. Assumption 5 in [14] holds redefining ν as

ν(µ) =

N∑
j=1

‖dPL`
(Gj)‖∞ + λ‖dPLf

(GN+1)‖∞. (20)

Assumption 6. The prediction horizon N and the estimation
error bound µ are such that the set YN is non-empty.

Next, we present the stability result for the CHoKI-MPC,
which follows the same line of reasoning as the stability proof
presented in [14] for KI predictors.

Theorem 3 (ISS stability). Suppose that assumptions 1-6
hold. Let κN (x) be the control law derived from the solution
of PN (x) (13) applied using a receding horizon policy. Then,
for any x(0) ∈ Γ, the system to be controlled by the control
law u(k) = κN (x(k)) is input-to-state stable with respect to

the estimation error µ, x(k) ∈ Γ, and the constraints are
always satisfied, i.e. y(k) ∈ Y,∀k.

Proof. The proof of this theorem follows the same steps as
the proof of Theorem 1 in [14]. Lemma 2 in [14] has to be
modified to take into account the CHoKI predictor as follows:

Lemma 5. For all y ∈ Yj and for all ∆y such that
|∆y| ∈ Mj , the sets Yj are such that y + ∆y ∈ Yj−1.

Proof By definition, we have that if |∆y| ∈ Mj then
∆y ∈ Rj . Thus, since the origin is contained in Rj ,

y + ∆y ∈ Yj ⊕Rj = Yj−1 	Rj ⊕Rj ⊆ Yj−1.

It is important to remark that the benefits of the robust
predictive controller based on the componentwise Hölder
approach are two-fold, compared to the KI-based MPC of [14].
First, the enhanced learning method potentially provides sig-
nificantly less conservative estimation errors (see Fig. 1),
yielding more accurate predictions. This leads to an improve-
ment of the closed-loop performance of the controlled system.
Second, note that the recursion used for the set of tightened
constraints (cf. equation (14)) is obtained using the compo-
nentwise Hölder metric, in contrast to the standard version
presented in [14]. Hence, recalling Corollary 2, even if the
maximum prediction errors were the same (which in general
they are not), the back-off of the set of tightened constraints are
less conservative

(
RCHoKI
N ⊆ RKI

N

)
, thus yielding larger regions

of feasibility of the proposed controller. This double benefit of
the proposed method will be illustrated in the following case
study.

IV. CASE STUDY

The system considered is the quadruple-tank process de-
scribed in [21], [22], which consists of four tanks, where the
two on top discharge on the inferior ones. The tanks are fed
with two pumps, whose flows enter two three-ways valves,
which divide each flow into two branches, determined by the
fractions γa and γb.

There are two control inputs, the flows qa and qb (m3/h).
The heights of the tanks are denoted as hi(m), i ∈ I

4
1. The

outputs of the system are the heights of the two lower tanks,
i.e., h1 and h2. The model and its parameters can be found
in [22]. Note that the model is only used to emulate the real
plant. It is also assumed that the height sensors have a 2%
measuring error. The error is generated randomly for each
measurement using an uniform distribution.

The constraints in the inputs are 0 ≤ qa,b ≤ 2.6 m3/h,
and the constraints in the heights are given by 0 ≤ h1 ≤
1.25 m and 0 ≤ h2 ≤ 1.42 m. The sampling time is 5 s, and
the reference operating point is href = [0.65 0.65](m), qref =
[1.63 1.99](m3/h).

A data set with ND = 36000 is obtained as in [13], scaling
the values of all signals between 0 and 1. The prediction
horizon is set to N = 5. Separate cross validation tests are
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Fig. 2. A hundred closed-loop simulations of the quadruple-tank process, with
three MPCs whose models are (top) the ideal state-feedback set of ODEs,
(middle) the standard KI [14] and (bottom) the proposed CHoKI-based MPC.

used to estimate L using λ = 2ē, such that the sum of the
areas of Yj is maximized, i.e.,

g = −
N∑
j=1

‖Yj‖. (21)

This occurs for na = 3 and nb = 1, yield-
ing µ = [0.031, 0.032]. 2 The set of tightened constraints is
obtained considering the Lipschitz case.

The solver chosen for the optimization problem is Matlab’s
fmincon. The stage and terminal costs are defined as

`(x, u) = ‖x− xref‖2Q + ‖u− uref‖2R
Vf (x) = ‖x− xref‖2P ,

where Q = 100I2, R = I2, and λ = 10. The terminal matrix P
is obtained solving an LQR for a linearisation of the CHoKI
model around the reference point.

The initial state is set to hi = 0.45 m, i ∈ I
4
1, and the

proposed CHoKI-based controller is applied to the system. In
order to compare the results, the same setup is applied to other
two controllers, whose models are (i) the ideal state-feedback
set of ODEs and (ii) the standard KI proposed in [14].

The results are shown in Figure 2, for 100 simulations
subject to random noise. Besides, the performance of these
simulations is measured according to

Φ =

tsim∑
i=1

`(x(i), u(i)), (22)

which is compared in Figure 3. Note that the data-based
control problem is able to perform in a similar way to the
ideal MPC, whereas the standard KI exhibits a worse perfor-
mance, illustrating the main properties of CHoKI. Following
the procedure in [13] results in γ = 8100, ν(µ) = 49.72
and φ = 4.45× 105, which satisfy all the assumptions.

Note that the main advantage of CHoKI with respect to
standard KI is not only the improvement of the prediction,
which in general leads to better closed-loop performance
results, but also the enlargement of the tightened constraints

2Recall that the signals are scaled between 0 and 1.

2000

4000

6000

8000

Fig. 3. Performance index comparison of the three controllers of Fig. 2.

presented in Section III-A, which implies that the multivariate
bound is less conservative. If we used the obtained D in the
standard KI approach presented in [14], the prediction error
would be µKI = [0.087 0.088] 2 (which is a reduction of 36%).
Then, the maximum prediction horizon such that Assumption 3
in [14] holds, i.e., that YN is not empty, is NKI = 2,
while NCHoKI = 8. 3 The sets Yj and Rj are represented
in Figure 4, 2 both for the CHoKI and the KI approaches.
Note that ‖RCHoKI

5 ‖ = 0.014, while ‖RKI
5 ‖ = 54.96. 2
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APPENDIX

Proof of Theorem 1.1. Consider two parameters L and p
such that f :W → Y is Hölder continuous. Provided that for
a given w ∈ Rnw , ‖w‖ ≤ √nw‖w‖∞, define L∞ = Ln

(p/2)
w .

Then, we have that

‖y1 − y2‖ ≤ L‖w1 − w2‖p (23a)
≤ L∞‖w1 − w2‖p∞ (23b)
= L∞max

j
(|w1,j − w2,j |)p (23c)

≤ L∞

nw∑
j=1

|w1,j − w2,j |p, (23d)

where inequality (23d) holds provided that
|w1,j − w2,j |p ≥ 0, ∀j. Then, defining L = L∞1ny×nw

and P = p1ny×nw
, the function f is componentwise Hölder

continuous.

Proof of Theorem 1.2. Note that for any w1, w2, j ∈ Inw
1 , we

have that |w1,j − w2,j | ≤ ‖w1 − w2‖∞. Then,

|yi,1 − yi,2| ≤
nw∑
j=1

Li,j |w1,j − w2,j |Pi,j

≤
nw∑
j=1

Li,j‖w1 − w2‖Pi,j
∞ .

3N = 5 is chosen instead of N = 8 in order to not increase computational
complexity in excess.
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(a) Sets Yj with KI (b) Sets Yj with CHoKI (c) Sets Rj with KI (d) Sets Rj with CHoKI

Fig. 4. Sets Yj and Rj , both for the KI and the CHoKI approaches 3 in the quadruple-tank case. Note that Yj is empty for j ≥ 3 in the KI setup, and
notice the different scales between the sets Rj in figures (c) and (d).

If W is a compact space, there exists a c such that ‖w‖∞ ≤ c
for all w ∈ W , so ‖w1 − w2‖ ≤ 2c, ∀w1, w2 ∈ W . Besides,
if x ∈ [0, 1] and p1 ≥ p2, with p1, p2 ∈ (0, 1], then xp1 ≤ xp2 .

Let p = min
i,j
Pi,j , and let L = max

i

ny∑
j=1

Li,j(2c)Pi,j−p.

Then,

Li,j‖w1 − w2‖Pi,j
∞ ≤ Li,j(2c)Pi,j

(
‖w1 − w2‖

2c

)Pi,j

≤ Li,j(2c)Pi,j

(
‖w1 − w2‖∞

2c

)p
= Li,j(2c)Pi,j−p‖w1 − w2‖p∞.

Hence,

|fi(w1)− fi(w2)| ≤
ny∑
j=1

Li,j‖w1 − w2‖Pi,j
∞

≤
ny∑
j=1

Li,j(2c)Pi,j−p‖w1 − w2‖p∞

≤ L‖w1 − w2‖p∞.
And since ∃i∗ : |fi∗(w1)− fi∗(w2)| = ‖f(w1)− f(w2)‖∞,

we have that ‖f(w1)− f(w2)‖∞ ≤ L‖w1 − w2‖p∞.

Proof of Corollary 2. Using the Cauchy-Schwarz inequality,

dL(|w|) = 〈 L, |w|〉 ≤ ‖L‖∞‖w‖∞ = L‖w‖∞,
where 〈·, ·〉 denotes the canonical inner product.

Proof of Lemma 1. Given two scalars x ≥ 0 and 0 < p ≤ 1,
xp is concave, so ‖x1‖p − ‖x2‖p ≤ ‖x1 − x2‖p. Then,
given L, P , dPL (|w|) is Hölder continuous, since for each i-th
component

nw∑
j=1

Li,j |w1,j |Pi,j −
nw∑
j=1

Li,j |w2,j |Pi,j

≤
nw∑
j=1

Li,j(|w1,j − w2,j |)Pi,j .

The sum of two componentwise Hölder continuous func-
tions f, g, with Hölder parameters L and P , is also com-
ponentwise Hölder, since

|f(w1) + g(w1)− f(w2)− g(w2)|
≤ |f(w1)− f(w2)|+ |g(w1)− g(w2)|
≤ dPL (|w1 − w2|) + dPL (|w1 − w2|).

Finally, the minimum (or equivalently, the maximum) of com-
ponentwise Hölder functions is also componentwise Hölder:
Let denote h(w) = min(f, g) and assume, w.o.l.g., that
f(w1) > g(w2). Then, if f(w1) ≤ g(w1),

|h(w1)− h(w2)| = |f(w1)− g(w2)| = f(w1)− g(w2)

≤ g(w1)− g(w2) ≤ dPL (|w1 − w2|).

Hence, f̂ (cf. eq. (5)) is componentwise Hölder continuous,
with Hölder parameters L and P .

Lemma 6 (Sample consistency of CHoKI). If L and P
are obtained as in (6), the CHoKI predictor (5) is sample-
consistent (up to λ/2), that is,

|̂f(wk)− f(wk)| ≤ λ

2
+ ē, ∀wk ∈ WD. (24)

Proof. Denote the indexes i =
arg minn

(
ỹn + dPL (|wk − wn|)

)
, and j =

arg maxn
(
ỹn − dPL (|wk − wn|)

)
.

Then,

f̂(wk) =
1

2

(
ỹi + dPL (|wk − wi|)

)︸ ︷︷ ︸
B

+
1

2

(
ỹj − dPL (|wk − wj |)

)︸ ︷︷ ︸
A

.

It is first proven that A ≥ ỹk. If j = k this is immediate.
Otherwise, note that

A = ỹj − dPL (|wk − wj |) ≥ ỹk − dPL (|wk − wk|) = ỹk.

Then, it is proven that A ≤ ỹk +λ. From (6b) we have that

|ỹk − ỹj | ≤ dPL (|wk − wj |) + λ.

Provided that ỹj ≥ A ≥ ỹk,

A = ỹj − dPL (|wk − wj |)
≤ ỹk + |ỹj − ỹk| − dPL (|wk − wj |) ≤ ỹk + λ.

The same procedure is applied to prove that ỹk−λ ≤ B ≤ ỹk.
Then, f̂(wk) is such that

1

2
(ỹk − λ) +

1

2
ỹk ≤ f̂(wk) ≤ 1

2
(ỹk + λ) +

1

2
ỹk,

or equivalently,

ỹk −
λ

2
≤ f̂(wk) ≤ ỹk +

λ

2
, |̂f(wk)− ỹk| ≤

λ

2
.

Finally, since ỹk ≤ f(wk) + ē, |̂f(wk)− f(wk)| ≤ λ
2 + ē.
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Proof of Theorem 2. First, it is proven that L as a solution
of (6) is bounded (i.e. not infinity). To this end, it is proven
that Lf is a possible bounded solution that satisfies the
constraint (6b). Indeed, note that since f is componentwise
Hölder continuous for (Lf , P), Lf is bounded and for
all wi 6= wj ∈ W ,

|ỹi − ỹj | − λ ≤ |yi − yj | ≤ dPLf
(|wi − wj |),

which satisfies the condition.
Next, it is proven that the solution of (6), i.e.

Θ∗ = arg min
Θ

g(Θ,D,Dtest) + τ‖L − L0‖1,

is bounded even for infinitely dense data sets, as ND →∞.
To this end, g(Θ,D,Dtest) must be bounded for all w ∈ W .

For example consider

g(Θ,D,Dtest) =
1

ND

∑
wi∈WDtest

‖̂f(wi; Θ,D)− ỹi‖2.

Since W is compact, the noise is bounded and f is Hölder,
then ỹi is bounded. Besides, Hölder continuity of f̂ ensures
that f̂(w,Θ,D) is bounded for any Θ. Then, g(·) is upper-
bounded by some k1, irrespective of the number of data points.

Hence, assuming that g(·) is bounded by k1, and taking
into account that Θf = {Lf , P} is a feasible solution of the
optimization problem, we have that

g(Θ∗,D,Dtest) + τ‖L∗ − L0‖1
≤ g(Θf ,D,Dtest) + τ‖Lf − L0‖1
≤ k1 + τ‖Lf − L0‖1 = k2,

for certain constant k2. Given that g(·) is positive, we have that

τ‖L∗ − L0‖1 ≤ g(Θ∗,D,Dtest) + τ‖L∗ − L0‖1 ≤ k2.

Therefore, L is bounded for any size of the data set.
Finally, the bound given in the Theorem is proven. Denote

wn = arg minwj∈WD (|wj − w|) the closest data point to the
query w. The following operation is decomposed into three
addends:

|f(w)− f̂(w)| = |f(w)− f(wn)|
+|̂f(wn)− f̂(w)|+ |f(wn)− f̂(wn)|.

The first term is less than or equal to dPLf
(|w−wn|), which is

bounded by dPLf
(RD). The second term is less than or equal to

dPL (|w−wn|)+λ, which is bounded by dPL (RD)+λ. The third
term is less than or equal to λ/2 + ē, as proven in Lemma 6.
Then, the three bounds add together, proving (8).

Proof of Lemma 2. The proof follows developing dPL (|q −
wi|) in eq. (5) using the definition in eq. (3) and bearing in
mind that Lj = L, for all column j ∈ I

nw
1 . Hence, using the

one norm for the standard KI,

L‖q−wi‖ = L

nw∑
j=1

|q−wi| =
nw∑
j=1

Lj |q−wi| = dPL (|q−wi|).
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